1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 33 #include <sys/param.h> 34 #include <sys/domain.h> 35 #include <sys/kernel.h> 36 #include <sys/jail.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/proc.h> 40 #include <sys/protosw.h> 41 #include <sys/signalvar.h> 42 #include <sys/socket.h> 43 #include <sys/socketvar.h> 44 #include <sys/sysctl.h> 45 #include <sys/systm.h> 46 47 #include <net/if.h> 48 #include <net/netisr.h> 49 #include <net/raw_cb.h> 50 #include <net/route.h> 51 52 #include <netinet/in.h> 53 54 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 55 56 /* NB: these are not modified */ 57 static struct sockaddr route_dst = { 2, PF_ROUTE, }; 58 static struct sockaddr route_src = { 2, PF_ROUTE, }; 59 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 60 61 static struct { 62 int ip_count; /* attached w/ AF_INET */ 63 int ip6_count; /* attached w/ AF_INET6 */ 64 int ipx_count; /* attached w/ AF_IPX */ 65 int any_count; /* total attached */ 66 } route_cb; 67 68 struct mtx rtsock_mtx; 69 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 70 71 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 72 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 73 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 74 75 static struct ifqueue rtsintrq; 76 77 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 78 SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW, 79 &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length"); 80 81 struct walkarg { 82 int w_tmemsize; 83 int w_op, w_arg; 84 caddr_t w_tmem; 85 struct sysctl_req *w_req; 86 }; 87 88 static void rts_input(struct mbuf *m); 89 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 90 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 91 caddr_t cp, struct walkarg *w); 92 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 93 struct rt_addrinfo *rtinfo); 94 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 95 static int sysctl_iflist(int af, struct walkarg *w); 96 static int sysctl_ifmalist(int af, struct walkarg *w); 97 static int route_output(struct mbuf *m, struct socket *so); 98 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 99 struct rt_metrics_lite *out); 100 static void rt_getmetrics(const struct rt_metrics_lite *in, 101 struct rt_metrics *out); 102 static void rt_dispatch(struct mbuf *, const struct sockaddr *); 103 104 static void 105 rts_init(void) 106 { 107 int tmp; 108 109 rtsintrq.ifq_maxlen = 256; 110 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 111 rtsintrq.ifq_maxlen = tmp; 112 mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF); 113 netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, NETISR_MPSAFE); 114 } 115 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0) 116 117 static void 118 rts_input(struct mbuf *m) 119 { 120 struct sockproto route_proto; 121 unsigned short *family; 122 struct m_tag *tag; 123 124 route_proto.sp_family = PF_ROUTE; 125 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 126 if (tag != NULL) { 127 family = (unsigned short *)(tag + 1); 128 route_proto.sp_protocol = *family; 129 m_tag_delete(m, tag); 130 } else 131 route_proto.sp_protocol = 0; 132 133 raw_input(m, &route_proto, &route_src, &route_dst); 134 } 135 136 /* 137 * It really doesn't make any sense at all for this code to share much 138 * with raw_usrreq.c, since its functionality is so restricted. XXX 139 */ 140 static int 141 rts_abort(struct socket *so) 142 { 143 144 return (raw_usrreqs.pru_abort(so)); 145 } 146 147 /* pru_accept is EOPNOTSUPP */ 148 149 static int 150 rts_attach(struct socket *so, int proto, struct thread *td) 151 { 152 struct rawcb *rp; 153 int s, error; 154 155 if (sotorawcb(so) != NULL) 156 return EISCONN; /* XXX panic? */ 157 /* XXX */ 158 MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 159 if (rp == NULL) 160 return ENOBUFS; 161 162 /* 163 * The splnet() is necessary to block protocols from sending 164 * error notifications (like RTM_REDIRECT or RTM_LOSING) while 165 * this PCB is extant but incompletely initialized. 166 * Probably we should try to do more of this work beforehand and 167 * eliminate the spl. 168 */ 169 s = splnet(); 170 so->so_pcb = (caddr_t)rp; 171 error = raw_attach(so, proto); 172 rp = sotorawcb(so); 173 if (error) { 174 splx(s); 175 so->so_pcb = NULL; 176 free(rp, M_PCB); 177 return error; 178 } 179 RTSOCK_LOCK(); 180 switch(rp->rcb_proto.sp_protocol) { 181 case AF_INET: 182 route_cb.ip_count++; 183 break; 184 case AF_INET6: 185 route_cb.ip6_count++; 186 break; 187 case AF_IPX: 188 route_cb.ipx_count++; 189 break; 190 } 191 rp->rcb_faddr = &route_src; 192 route_cb.any_count++; 193 RTSOCK_UNLOCK(); 194 soisconnected(so); 195 so->so_options |= SO_USELOOPBACK; 196 splx(s); 197 return 0; 198 } 199 200 static int 201 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 202 { 203 204 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 205 } 206 207 static int 208 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 209 { 210 211 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 212 } 213 214 /* pru_connect2 is EOPNOTSUPP */ 215 /* pru_control is EOPNOTSUPP */ 216 217 static int 218 rts_detach(struct socket *so) 219 { 220 struct rawcb *rp = sotorawcb(so); 221 int s, error; 222 223 s = splnet(); 224 if (rp != NULL) { 225 RTSOCK_LOCK(); 226 switch(rp->rcb_proto.sp_protocol) { 227 case AF_INET: 228 route_cb.ip_count--; 229 break; 230 case AF_INET6: 231 route_cb.ip6_count--; 232 break; 233 case AF_IPX: 234 route_cb.ipx_count--; 235 break; 236 } 237 route_cb.any_count--; 238 RTSOCK_UNLOCK(); 239 } 240 error = raw_usrreqs.pru_detach(so); 241 splx(s); 242 return error; 243 } 244 245 static int 246 rts_disconnect(struct socket *so) 247 { 248 249 return (raw_usrreqs.pru_disconnect(so)); 250 } 251 252 /* pru_listen is EOPNOTSUPP */ 253 254 static int 255 rts_peeraddr(struct socket *so, struct sockaddr **nam) 256 { 257 258 return (raw_usrreqs.pru_peeraddr(so, nam)); 259 } 260 261 /* pru_rcvd is EOPNOTSUPP */ 262 /* pru_rcvoob is EOPNOTSUPP */ 263 264 static int 265 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 266 struct mbuf *control, struct thread *td) 267 { 268 269 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 270 } 271 272 /* pru_sense is null */ 273 274 static int 275 rts_shutdown(struct socket *so) 276 { 277 278 return (raw_usrreqs.pru_shutdown(so)); 279 } 280 281 static int 282 rts_sockaddr(struct socket *so, struct sockaddr **nam) 283 { 284 285 return (raw_usrreqs.pru_sockaddr(so, nam)); 286 } 287 288 static struct pr_usrreqs route_usrreqs = { 289 .pru_abort = rts_abort, 290 .pru_attach = rts_attach, 291 .pru_bind = rts_bind, 292 .pru_connect = rts_connect, 293 .pru_detach = rts_detach, 294 .pru_disconnect = rts_disconnect, 295 .pru_peeraddr = rts_peeraddr, 296 .pru_send = rts_send, 297 .pru_shutdown = rts_shutdown, 298 .pru_sockaddr = rts_sockaddr, 299 }; 300 301 /*ARGSUSED*/ 302 static int 303 route_output(struct mbuf *m, struct socket *so) 304 { 305 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 306 struct rt_msghdr *rtm = NULL; 307 struct rtentry *rt = NULL; 308 struct radix_node_head *rnh; 309 struct rt_addrinfo info; 310 int len, error = 0; 311 struct ifnet *ifp = NULL; 312 struct ifaddr *ifa = NULL; 313 struct sockaddr_in jail; 314 315 #define senderr(e) { error = e; goto flush;} 316 if (m == NULL || ((m->m_len < sizeof(long)) && 317 (m = m_pullup(m, sizeof(long))) == NULL)) 318 return (ENOBUFS); 319 if ((m->m_flags & M_PKTHDR) == 0) 320 panic("route_output"); 321 len = m->m_pkthdr.len; 322 if (len < sizeof(*rtm) || 323 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 324 info.rti_info[RTAX_DST] = NULL; 325 senderr(EINVAL); 326 } 327 R_Malloc(rtm, struct rt_msghdr *, len); 328 if (rtm == NULL) { 329 info.rti_info[RTAX_DST] = NULL; 330 senderr(ENOBUFS); 331 } 332 m_copydata(m, 0, len, (caddr_t)rtm); 333 if (rtm->rtm_version != RTM_VERSION) { 334 info.rti_info[RTAX_DST] = NULL; 335 senderr(EPROTONOSUPPORT); 336 } 337 rtm->rtm_pid = curproc->p_pid; 338 bzero(&info, sizeof(info)); 339 info.rti_addrs = rtm->rtm_addrs; 340 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 341 info.rti_info[RTAX_DST] = NULL; 342 senderr(EINVAL); 343 } 344 info.rti_flags = rtm->rtm_flags; 345 if (info.rti_info[RTAX_DST] == NULL || 346 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 347 (info.rti_info[RTAX_GATEWAY] != NULL && 348 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 349 senderr(EINVAL); 350 if (info.rti_info[RTAX_GENMASK]) { 351 struct radix_node *t; 352 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1); 353 if (t != NULL && 354 bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1, 355 (char *)(void *)t->rn_key + 1, 356 ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0) 357 info.rti_info[RTAX_GENMASK] = 358 (struct sockaddr *)t->rn_key; 359 else 360 senderr(ENOBUFS); 361 } 362 363 /* 364 * Verify that the caller has the appropriate privilege; RTM_GET 365 * is the only operation the non-superuser is allowed. 366 */ 367 if (rtm->rtm_type != RTM_GET && (error = suser(curthread)) != 0) 368 senderr(error); 369 370 switch (rtm->rtm_type) { 371 struct rtentry *saved_nrt; 372 373 case RTM_ADD: 374 if (info.rti_info[RTAX_GATEWAY] == NULL) 375 senderr(EINVAL); 376 saved_nrt = NULL; 377 error = rtrequest1(RTM_ADD, &info, &saved_nrt); 378 if (error == 0 && saved_nrt) { 379 RT_LOCK(saved_nrt); 380 rt_setmetrics(rtm->rtm_inits, 381 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 382 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 383 RT_REMREF(saved_nrt); 384 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; 385 RT_UNLOCK(saved_nrt); 386 } 387 break; 388 389 case RTM_DELETE: 390 saved_nrt = NULL; 391 error = rtrequest1(RTM_DELETE, &info, &saved_nrt); 392 if (error == 0) { 393 RT_LOCK(saved_nrt); 394 rt = saved_nrt; 395 goto report; 396 } 397 break; 398 399 case RTM_GET: 400 case RTM_CHANGE: 401 case RTM_LOCK: 402 rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family]; 403 if (rnh == NULL) 404 senderr(EAFNOSUPPORT); 405 RADIX_NODE_HEAD_LOCK(rnh); 406 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 407 info.rti_info[RTAX_NETMASK], rnh); 408 if (rt == NULL) { /* XXX looks bogus */ 409 RADIX_NODE_HEAD_UNLOCK(rnh); 410 senderr(ESRCH); 411 } 412 RT_LOCK(rt); 413 RT_ADDREF(rt); 414 RADIX_NODE_HEAD_UNLOCK(rnh); 415 416 /* 417 * Fix for PR: 82974 418 * 419 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 420 * returns a perfect match in case a netmask is 421 * specified. For host routes only a longest prefix 422 * match is returned so it is necessary to compare the 423 * existence of the netmask. If both have a netmask 424 * rnh_lookup() did a perfect match and if none of them 425 * have a netmask both are host routes which is also a 426 * perfect match. 427 */ 428 429 if (rtm->rtm_type != RTM_GET && 430 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 431 RT_UNLOCK(rt); 432 senderr(ESRCH); 433 } 434 435 switch(rtm->rtm_type) { 436 437 case RTM_GET: 438 report: 439 RT_LOCK_ASSERT(rt); 440 info.rti_info[RTAX_DST] = rt_key(rt); 441 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 442 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 443 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 444 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 445 ifp = rt->rt_ifp; 446 if (ifp) { 447 info.rti_info[RTAX_IFP] = 448 ifp->if_addr->ifa_addr; 449 if (jailed(so->so_cred)) { 450 bzero(&jail, sizeof(jail)); 451 jail.sin_family = PF_INET; 452 jail.sin_len = sizeof(jail); 453 jail.sin_addr.s_addr = 454 htonl(prison_getip(so->so_cred)); 455 info.rti_info[RTAX_IFA] = 456 (struct sockaddr *)&jail; 457 } else 458 info.rti_info[RTAX_IFA] = 459 rt->rt_ifa->ifa_addr; 460 if (ifp->if_flags & IFF_POINTOPOINT) 461 info.rti_info[RTAX_BRD] = 462 rt->rt_ifa->ifa_dstaddr; 463 rtm->rtm_index = ifp->if_index; 464 } else { 465 info.rti_info[RTAX_IFP] = NULL; 466 info.rti_info[RTAX_IFA] = NULL; 467 } 468 } else if ((ifp = rt->rt_ifp) != NULL) { 469 rtm->rtm_index = ifp->if_index; 470 } 471 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 472 if (len > rtm->rtm_msglen) { 473 struct rt_msghdr *new_rtm; 474 R_Malloc(new_rtm, struct rt_msghdr *, len); 475 if (new_rtm == NULL) { 476 RT_UNLOCK(rt); 477 senderr(ENOBUFS); 478 } 479 bcopy(rtm, new_rtm, rtm->rtm_msglen); 480 Free(rtm); rtm = new_rtm; 481 } 482 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 483 rtm->rtm_flags = rt->rt_flags; 484 rtm->rtm_use = 0; 485 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 486 rtm->rtm_addrs = info.rti_addrs; 487 break; 488 489 case RTM_CHANGE: 490 /* 491 * New gateway could require new ifaddr, ifp; 492 * flags may also be different; ifp may be specified 493 * by ll sockaddr when protocol address is ambiguous 494 */ 495 if (((rt->rt_flags & RTF_GATEWAY) && 496 info.rti_info[RTAX_GATEWAY] != NULL) || 497 info.rti_info[RTAX_IFP] != NULL || 498 (info.rti_info[RTAX_IFA] != NULL && 499 !sa_equal(info.rti_info[RTAX_IFA], 500 rt->rt_ifa->ifa_addr))) { 501 RT_UNLOCK(rt); 502 if ((error = rt_getifa(&info)) != 0) 503 senderr(error); 504 RT_LOCK(rt); 505 } 506 if (info.rti_info[RTAX_GATEWAY] != NULL && 507 (error = rt_setgate(rt, rt_key(rt), 508 info.rti_info[RTAX_GATEWAY])) != 0) { 509 RT_UNLOCK(rt); 510 senderr(error); 511 } 512 if ((ifa = info.rti_ifa) != NULL) { 513 struct ifaddr *oifa = rt->rt_ifa; 514 if (oifa != ifa) { 515 if (oifa) { 516 if (oifa->ifa_rtrequest) 517 oifa->ifa_rtrequest( 518 RTM_DELETE, rt, 519 &info); 520 IFAFREE(oifa); 521 } 522 IFAREF(ifa); 523 rt->rt_ifa = ifa; 524 rt->rt_ifp = info.rti_ifp; 525 } 526 } 527 /* Allow some flags to be toggled on change. */ 528 if (rtm->rtm_fmask & RTF_FMASK) 529 rt->rt_flags = (rt->rt_flags & 530 ~rtm->rtm_fmask) | 531 (rtm->rtm_flags & rtm->rtm_fmask); 532 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 533 &rt->rt_rmx); 534 rtm->rtm_index = rt->rt_ifp->if_index; 535 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 536 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 537 if (info.rti_info[RTAX_GENMASK]) 538 rt->rt_genmask = info.rti_info[RTAX_GENMASK]; 539 /* FALLTHROUGH */ 540 case RTM_LOCK: 541 /* We don't support locks anymore */ 542 break; 543 } 544 RT_UNLOCK(rt); 545 break; 546 547 default: 548 senderr(EOPNOTSUPP); 549 } 550 551 flush: 552 if (rtm) { 553 if (error) 554 rtm->rtm_errno = error; 555 else 556 rtm->rtm_flags |= RTF_DONE; 557 } 558 if (rt) /* XXX can this be true? */ 559 RTFREE(rt); 560 { 561 struct rawcb *rp = NULL; 562 /* 563 * Check to see if we don't want our own messages. 564 */ 565 if ((so->so_options & SO_USELOOPBACK) == 0) { 566 if (route_cb.any_count <= 1) { 567 if (rtm) 568 Free(rtm); 569 m_freem(m); 570 return (error); 571 } 572 /* There is another listener, so construct message */ 573 rp = sotorawcb(so); 574 } 575 if (rtm) { 576 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 577 if (m->m_pkthdr.len < rtm->rtm_msglen) { 578 m_freem(m); 579 m = NULL; 580 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 581 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 582 Free(rtm); 583 } 584 if (m) { 585 if (rp) { 586 /* 587 * XXX insure we don't get a copy by 588 * invalidating our protocol 589 */ 590 unsigned short family = rp->rcb_proto.sp_family; 591 rp->rcb_proto.sp_family = 0; 592 rt_dispatch(m, info.rti_info[RTAX_DST]); 593 rp->rcb_proto.sp_family = family; 594 } else 595 rt_dispatch(m, info.rti_info[RTAX_DST]); 596 } 597 } 598 return (error); 599 #undef sa_equal 600 } 601 602 static void 603 rt_setmetrics(u_long which, const struct rt_metrics *in, 604 struct rt_metrics_lite *out) 605 { 606 #define metric(f, e) if (which & (f)) out->e = in->e; 607 /* 608 * Only these are stored in the routing entry since introduction 609 * of tcp hostcache. The rest is ignored. 610 */ 611 metric(RTV_MTU, rmx_mtu); 612 metric(RTV_EXPIRE, rmx_expire); 613 #undef metric 614 } 615 616 static void 617 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 618 { 619 #define metric(e) out->e = in->e; 620 bzero(out, sizeof(*out)); 621 metric(rmx_mtu); 622 metric(rmx_expire); 623 #undef metric 624 } 625 626 /* 627 * Extract the addresses of the passed sockaddrs. 628 * Do a little sanity checking so as to avoid bad memory references. 629 * This data is derived straight from userland. 630 */ 631 static int 632 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 633 { 634 struct sockaddr *sa; 635 int i; 636 637 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 638 if ((rtinfo->rti_addrs & (1 << i)) == 0) 639 continue; 640 sa = (struct sockaddr *)cp; 641 /* 642 * It won't fit. 643 */ 644 if (cp + sa->sa_len > cplim) 645 return (EINVAL); 646 /* 647 * there are no more.. quit now 648 * If there are more bits, they are in error. 649 * I've seen this. route(1) can evidently generate these. 650 * This causes kernel to core dump. 651 * for compatibility, If we see this, point to a safe address. 652 */ 653 if (sa->sa_len == 0) { 654 rtinfo->rti_info[i] = &sa_zero; 655 return (0); /* should be EINVAL but for compat */ 656 } 657 /* accept it */ 658 rtinfo->rti_info[i] = sa; 659 cp += SA_SIZE(sa); 660 } 661 return (0); 662 } 663 664 static struct mbuf * 665 rt_msg1(int type, struct rt_addrinfo *rtinfo) 666 { 667 struct rt_msghdr *rtm; 668 struct mbuf *m; 669 int i; 670 struct sockaddr *sa; 671 int len, dlen; 672 673 switch (type) { 674 675 case RTM_DELADDR: 676 case RTM_NEWADDR: 677 len = sizeof(struct ifa_msghdr); 678 break; 679 680 case RTM_DELMADDR: 681 case RTM_NEWMADDR: 682 len = sizeof(struct ifma_msghdr); 683 break; 684 685 case RTM_IFINFO: 686 len = sizeof(struct if_msghdr); 687 break; 688 689 case RTM_IFANNOUNCE: 690 case RTM_IEEE80211: 691 len = sizeof(struct if_announcemsghdr); 692 break; 693 694 default: 695 len = sizeof(struct rt_msghdr); 696 } 697 if (len > MCLBYTES) 698 panic("rt_msg1"); 699 m = m_gethdr(M_DONTWAIT, MT_DATA); 700 if (m && len > MHLEN) { 701 MCLGET(m, M_DONTWAIT); 702 if ((m->m_flags & M_EXT) == 0) { 703 m_free(m); 704 m = NULL; 705 } 706 } 707 if (m == NULL) 708 return (m); 709 m->m_pkthdr.len = m->m_len = len; 710 m->m_pkthdr.rcvif = NULL; 711 rtm = mtod(m, struct rt_msghdr *); 712 bzero((caddr_t)rtm, len); 713 for (i = 0; i < RTAX_MAX; i++) { 714 if ((sa = rtinfo->rti_info[i]) == NULL) 715 continue; 716 rtinfo->rti_addrs |= (1 << i); 717 dlen = SA_SIZE(sa); 718 m_copyback(m, len, dlen, (caddr_t)sa); 719 len += dlen; 720 } 721 if (m->m_pkthdr.len != len) { 722 m_freem(m); 723 return (NULL); 724 } 725 rtm->rtm_msglen = len; 726 rtm->rtm_version = RTM_VERSION; 727 rtm->rtm_type = type; 728 return (m); 729 } 730 731 static int 732 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 733 { 734 int i; 735 int len, dlen, second_time = 0; 736 caddr_t cp0; 737 738 rtinfo->rti_addrs = 0; 739 again: 740 switch (type) { 741 742 case RTM_DELADDR: 743 case RTM_NEWADDR: 744 len = sizeof(struct ifa_msghdr); 745 break; 746 747 case RTM_IFINFO: 748 len = sizeof(struct if_msghdr); 749 break; 750 751 case RTM_NEWMADDR: 752 len = sizeof(struct ifma_msghdr); 753 break; 754 755 default: 756 len = sizeof(struct rt_msghdr); 757 } 758 cp0 = cp; 759 if (cp0) 760 cp += len; 761 for (i = 0; i < RTAX_MAX; i++) { 762 struct sockaddr *sa; 763 764 if ((sa = rtinfo->rti_info[i]) == NULL) 765 continue; 766 rtinfo->rti_addrs |= (1 << i); 767 dlen = SA_SIZE(sa); 768 if (cp) { 769 bcopy((caddr_t)sa, cp, (unsigned)dlen); 770 cp += dlen; 771 } 772 len += dlen; 773 } 774 len = ALIGN(len); 775 if (cp == NULL && w != NULL && !second_time) { 776 struct walkarg *rw = w; 777 778 if (rw->w_req) { 779 if (rw->w_tmemsize < len) { 780 if (rw->w_tmem) 781 free(rw->w_tmem, M_RTABLE); 782 rw->w_tmem = (caddr_t) 783 malloc(len, M_RTABLE, M_NOWAIT); 784 if (rw->w_tmem) 785 rw->w_tmemsize = len; 786 } 787 if (rw->w_tmem) { 788 cp = rw->w_tmem; 789 second_time = 1; 790 goto again; 791 } 792 } 793 } 794 if (cp) { 795 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 796 797 rtm->rtm_version = RTM_VERSION; 798 rtm->rtm_type = type; 799 rtm->rtm_msglen = len; 800 } 801 return (len); 802 } 803 804 /* 805 * This routine is called to generate a message from the routing 806 * socket indicating that a redirect has occured, a routing lookup 807 * has failed, or that a protocol has detected timeouts to a particular 808 * destination. 809 */ 810 void 811 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 812 { 813 struct rt_msghdr *rtm; 814 struct mbuf *m; 815 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 816 817 if (route_cb.any_count == 0) 818 return; 819 m = rt_msg1(type, rtinfo); 820 if (m == NULL) 821 return; 822 rtm = mtod(m, struct rt_msghdr *); 823 rtm->rtm_flags = RTF_DONE | flags; 824 rtm->rtm_errno = error; 825 rtm->rtm_addrs = rtinfo->rti_addrs; 826 rt_dispatch(m, sa); 827 } 828 829 /* 830 * This routine is called to generate a message from the routing 831 * socket indicating that the status of a network interface has changed. 832 */ 833 void 834 rt_ifmsg(struct ifnet *ifp) 835 { 836 struct if_msghdr *ifm; 837 struct mbuf *m; 838 struct rt_addrinfo info; 839 840 if (route_cb.any_count == 0) 841 return; 842 bzero((caddr_t)&info, sizeof(info)); 843 m = rt_msg1(RTM_IFINFO, &info); 844 if (m == NULL) 845 return; 846 ifm = mtod(m, struct if_msghdr *); 847 ifm->ifm_index = ifp->if_index; 848 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 849 ifm->ifm_data = ifp->if_data; 850 ifm->ifm_addrs = 0; 851 rt_dispatch(m, NULL); 852 } 853 854 /* 855 * This is called to generate messages from the routing socket 856 * indicating a network interface has had addresses associated with it. 857 * if we ever reverse the logic and replace messages TO the routing 858 * socket indicate a request to configure interfaces, then it will 859 * be unnecessary as the routing socket will automatically generate 860 * copies of it. 861 */ 862 void 863 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 864 { 865 struct rt_addrinfo info; 866 struct sockaddr *sa = NULL; 867 int pass; 868 struct mbuf *m = NULL; 869 struct ifnet *ifp = ifa->ifa_ifp; 870 871 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 872 ("unexpected cmd %u", cmd)); 873 874 if (route_cb.any_count == 0) 875 return; 876 for (pass = 1; pass < 3; pass++) { 877 bzero((caddr_t)&info, sizeof(info)); 878 if ((cmd == RTM_ADD && pass == 1) || 879 (cmd == RTM_DELETE && pass == 2)) { 880 struct ifa_msghdr *ifam; 881 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 882 883 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 884 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 885 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 886 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 887 if ((m = rt_msg1(ncmd, &info)) == NULL) 888 continue; 889 ifam = mtod(m, struct ifa_msghdr *); 890 ifam->ifam_index = ifp->if_index; 891 ifam->ifam_metric = ifa->ifa_metric; 892 ifam->ifam_flags = ifa->ifa_flags; 893 ifam->ifam_addrs = info.rti_addrs; 894 } 895 if ((cmd == RTM_ADD && pass == 2) || 896 (cmd == RTM_DELETE && pass == 1)) { 897 struct rt_msghdr *rtm; 898 899 if (rt == NULL) 900 continue; 901 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 902 info.rti_info[RTAX_DST] = sa = rt_key(rt); 903 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 904 if ((m = rt_msg1(cmd, &info)) == NULL) 905 continue; 906 rtm = mtod(m, struct rt_msghdr *); 907 rtm->rtm_index = ifp->if_index; 908 rtm->rtm_flags |= rt->rt_flags; 909 rtm->rtm_errno = error; 910 rtm->rtm_addrs = info.rti_addrs; 911 } 912 rt_dispatch(m, sa); 913 } 914 } 915 916 /* 917 * This is the analogue to the rt_newaddrmsg which performs the same 918 * function but for multicast group memberhips. This is easier since 919 * there is no route state to worry about. 920 */ 921 void 922 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 923 { 924 struct rt_addrinfo info; 925 struct mbuf *m = NULL; 926 struct ifnet *ifp = ifma->ifma_ifp; 927 struct ifma_msghdr *ifmam; 928 929 if (route_cb.any_count == 0) 930 return; 931 932 bzero((caddr_t)&info, sizeof(info)); 933 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 934 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 935 /* 936 * If a link-layer address is present, present it as a ``gateway'' 937 * (similarly to how ARP entries, e.g., are presented). 938 */ 939 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 940 m = rt_msg1(cmd, &info); 941 if (m == NULL) 942 return; 943 ifmam = mtod(m, struct ifma_msghdr *); 944 ifmam->ifmam_index = ifp->if_index; 945 ifmam->ifmam_addrs = info.rti_addrs; 946 rt_dispatch(m, ifma->ifma_addr); 947 } 948 949 static struct mbuf * 950 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 951 struct rt_addrinfo *info) 952 { 953 struct if_announcemsghdr *ifan; 954 struct mbuf *m; 955 956 if (route_cb.any_count == 0) 957 return NULL; 958 bzero((caddr_t)info, sizeof(*info)); 959 m = rt_msg1(type, info); 960 if (m != NULL) { 961 ifan = mtod(m, struct if_announcemsghdr *); 962 ifan->ifan_index = ifp->if_index; 963 strlcpy(ifan->ifan_name, ifp->if_xname, 964 sizeof(ifan->ifan_name)); 965 ifan->ifan_what = what; 966 } 967 return m; 968 } 969 970 /* 971 * This is called to generate routing socket messages indicating 972 * IEEE80211 wireless events. 973 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 974 */ 975 void 976 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 977 { 978 struct mbuf *m; 979 struct rt_addrinfo info; 980 981 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 982 if (m != NULL) { 983 /* 984 * Append the ieee80211 data. Try to stick it in the 985 * mbuf containing the ifannounce msg; otherwise allocate 986 * a new mbuf and append. 987 * 988 * NB: we assume m is a single mbuf. 989 */ 990 if (data_len > M_TRAILINGSPACE(m)) { 991 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 992 if (n == NULL) { 993 m_freem(m); 994 return; 995 } 996 bcopy(data, mtod(n, void *), data_len); 997 n->m_len = data_len; 998 m->m_next = n; 999 } else if (data_len > 0) { 1000 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1001 m->m_len += data_len; 1002 } 1003 if (m->m_flags & M_PKTHDR) 1004 m->m_pkthdr.len += data_len; 1005 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1006 rt_dispatch(m, NULL); 1007 } 1008 } 1009 1010 /* 1011 * This is called to generate routing socket messages indicating 1012 * network interface arrival and departure. 1013 */ 1014 void 1015 rt_ifannouncemsg(struct ifnet *ifp, int what) 1016 { 1017 struct mbuf *m; 1018 struct rt_addrinfo info; 1019 1020 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1021 if (m != NULL) 1022 rt_dispatch(m, NULL); 1023 } 1024 1025 static void 1026 rt_dispatch(struct mbuf *m, const struct sockaddr *sa) 1027 { 1028 struct m_tag *tag; 1029 1030 /* 1031 * Preserve the family from the sockaddr, if any, in an m_tag for 1032 * use when injecting the mbuf into the routing socket buffer from 1033 * the netisr. 1034 */ 1035 if (sa != NULL) { 1036 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1037 M_NOWAIT); 1038 if (tag == NULL) { 1039 m_freem(m); 1040 return; 1041 } 1042 *(unsigned short *)(tag + 1) = sa->sa_family; 1043 m_tag_prepend(m, tag); 1044 } 1045 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1046 } 1047 1048 /* 1049 * This is used in dumping the kernel table via sysctl(). 1050 */ 1051 static int 1052 sysctl_dumpentry(struct radix_node *rn, void *vw) 1053 { 1054 struct walkarg *w = vw; 1055 struct rtentry *rt = (struct rtentry *)rn; 1056 int error = 0, size; 1057 struct rt_addrinfo info; 1058 1059 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1060 return 0; 1061 bzero((caddr_t)&info, sizeof(info)); 1062 info.rti_info[RTAX_DST] = rt_key(rt); 1063 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1064 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1065 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 1066 if (rt->rt_ifp) { 1067 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1068 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1069 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1070 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1071 } 1072 size = rt_msg2(RTM_GET, &info, NULL, w); 1073 if (w->w_req && w->w_tmem) { 1074 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1075 1076 rtm->rtm_flags = rt->rt_flags; 1077 rtm->rtm_use = rt->rt_rmx.rmx_pksent; 1078 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1079 rtm->rtm_index = rt->rt_ifp->if_index; 1080 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1081 rtm->rtm_addrs = info.rti_addrs; 1082 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1083 return (error); 1084 } 1085 return (error); 1086 } 1087 1088 static int 1089 sysctl_iflist(int af, struct walkarg *w) 1090 { 1091 struct ifnet *ifp; 1092 struct ifaddr *ifa; 1093 struct rt_addrinfo info; 1094 int len, error = 0; 1095 1096 bzero((caddr_t)&info, sizeof(info)); 1097 IFNET_RLOCK(); 1098 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1099 if (w->w_arg && w->w_arg != ifp->if_index) 1100 continue; 1101 ifa = ifp->if_addr; 1102 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1103 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1104 info.rti_info[RTAX_IFP] = NULL; 1105 if (w->w_req && w->w_tmem) { 1106 struct if_msghdr *ifm; 1107 1108 ifm = (struct if_msghdr *)w->w_tmem; 1109 ifm->ifm_index = ifp->if_index; 1110 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1111 ifm->ifm_data = ifp->if_data; 1112 ifm->ifm_addrs = info.rti_addrs; 1113 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); 1114 if (error) 1115 goto done; 1116 } 1117 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1118 if (af && af != ifa->ifa_addr->sa_family) 1119 continue; 1120 if (jailed(curthread->td_ucred) && 1121 prison_if(curthread->td_ucred, ifa->ifa_addr)) 1122 continue; 1123 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1124 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1125 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1126 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1127 if (w->w_req && w->w_tmem) { 1128 struct ifa_msghdr *ifam; 1129 1130 ifam = (struct ifa_msghdr *)w->w_tmem; 1131 ifam->ifam_index = ifa->ifa_ifp->if_index; 1132 ifam->ifam_flags = ifa->ifa_flags; 1133 ifam->ifam_metric = ifa->ifa_metric; 1134 ifam->ifam_addrs = info.rti_addrs; 1135 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1136 if (error) 1137 goto done; 1138 } 1139 } 1140 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1141 info.rti_info[RTAX_BRD] = NULL; 1142 } 1143 done: 1144 IFNET_RUNLOCK(); 1145 return (error); 1146 } 1147 1148 int 1149 sysctl_ifmalist(int af, struct walkarg *w) 1150 { 1151 struct ifnet *ifp; 1152 struct ifmultiaddr *ifma; 1153 struct rt_addrinfo info; 1154 int len, error = 0; 1155 struct ifaddr *ifa; 1156 1157 bzero((caddr_t)&info, sizeof(info)); 1158 IFNET_RLOCK(); 1159 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1160 if (w->w_arg && w->w_arg != ifp->if_index) 1161 continue; 1162 ifa = ifp->if_addr; 1163 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1164 IF_ADDR_LOCK(ifp); 1165 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1166 if (af && af != ifma->ifma_addr->sa_family) 1167 continue; 1168 if (jailed(curproc->p_ucred) && 1169 prison_if(curproc->p_ucred, ifma->ifma_addr)) 1170 continue; 1171 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1172 info.rti_info[RTAX_GATEWAY] = 1173 (ifma->ifma_addr->sa_family != AF_LINK) ? 1174 ifma->ifma_lladdr : NULL; 1175 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1176 if (w->w_req && w->w_tmem) { 1177 struct ifma_msghdr *ifmam; 1178 1179 ifmam = (struct ifma_msghdr *)w->w_tmem; 1180 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1181 ifmam->ifmam_flags = 0; 1182 ifmam->ifmam_addrs = info.rti_addrs; 1183 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1184 if (error) { 1185 IF_ADDR_UNLOCK(ifp); 1186 goto done; 1187 } 1188 } 1189 } 1190 IF_ADDR_UNLOCK(ifp); 1191 } 1192 done: 1193 IFNET_RUNLOCK(); 1194 return (error); 1195 } 1196 1197 static int 1198 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1199 { 1200 int *name = (int *)arg1; 1201 u_int namelen = arg2; 1202 struct radix_node_head *rnh; 1203 int i, lim, error = EINVAL; 1204 u_char af; 1205 struct walkarg w; 1206 1207 name ++; 1208 namelen--; 1209 if (req->newptr) 1210 return (EPERM); 1211 if (namelen != 3) 1212 return ((namelen < 3) ? EISDIR : ENOTDIR); 1213 af = name[0]; 1214 if (af > AF_MAX) 1215 return (EINVAL); 1216 bzero(&w, sizeof(w)); 1217 w.w_op = name[1]; 1218 w.w_arg = name[2]; 1219 w.w_req = req; 1220 1221 error = sysctl_wire_old_buffer(req, 0); 1222 if (error) 1223 return (error); 1224 switch (w.w_op) { 1225 1226 case NET_RT_DUMP: 1227 case NET_RT_FLAGS: 1228 if (af == 0) { /* dump all tables */ 1229 i = 1; 1230 lim = AF_MAX; 1231 } else /* dump only one table */ 1232 i = lim = af; 1233 for (error = 0; error == 0 && i <= lim; i++) 1234 if ((rnh = rt_tables[i]) != NULL) { 1235 RADIX_NODE_HEAD_LOCK(rnh); 1236 error = rnh->rnh_walktree(rnh, 1237 sysctl_dumpentry, &w); 1238 RADIX_NODE_HEAD_UNLOCK(rnh); 1239 } else if (af != 0) 1240 error = EAFNOSUPPORT; 1241 break; 1242 1243 case NET_RT_IFLIST: 1244 error = sysctl_iflist(af, &w); 1245 break; 1246 1247 case NET_RT_IFMALIST: 1248 error = sysctl_ifmalist(af, &w); 1249 break; 1250 } 1251 if (w.w_tmem) 1252 free(w.w_tmem, M_RTABLE); 1253 return (error); 1254 } 1255 1256 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1257 1258 /* 1259 * Definitions of protocols supported in the ROUTE domain. 1260 */ 1261 1262 static struct domain routedomain; /* or at least forward */ 1263 1264 static struct protosw routesw[] = { 1265 { 1266 .pr_type = SOCK_RAW, 1267 .pr_domain = &routedomain, 1268 .pr_flags = PR_ATOMIC|PR_ADDR, 1269 .pr_output = route_output, 1270 .pr_ctlinput = raw_ctlinput, 1271 .pr_init = raw_init, 1272 .pr_usrreqs = &route_usrreqs 1273 } 1274 }; 1275 1276 static struct domain routedomain = { 1277 .dom_family = PF_ROUTE, 1278 .dom_name = "route", 1279 .dom_protosw = routesw, 1280 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1281 }; 1282 1283 DOMAIN_SET(route); 1284