1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_ddb.h" 35 #include "opt_route.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/domain.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/rmlock.h> 50 #include <sys/rwlock.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_dl.h> 60 #include <net/if_llatbl.h> 61 #include <net/if_types.h> 62 #include <net/netisr.h> 63 #include <net/raw_cb.h> 64 #include <net/route.h> 65 #include <net/route/route_ctl.h> 66 #include <net/route/route_var.h> 67 #include <net/vnet.h> 68 69 #include <netinet/in.h> 70 #include <netinet/if_ether.h> 71 #include <netinet/ip_carp.h> 72 #ifdef INET6 73 #include <netinet6/ip6_var.h> 74 #include <netinet6/scope6_var.h> 75 #endif 76 #include <net/route/nhop.h> 77 78 #ifdef COMPAT_FREEBSD32 79 #include <sys/mount.h> 80 #include <compat/freebsd32/freebsd32.h> 81 82 struct if_msghdr32 { 83 uint16_t ifm_msglen; 84 uint8_t ifm_version; 85 uint8_t ifm_type; 86 int32_t ifm_addrs; 87 int32_t ifm_flags; 88 uint16_t ifm_index; 89 uint16_t _ifm_spare1; 90 struct if_data ifm_data; 91 }; 92 93 struct if_msghdrl32 { 94 uint16_t ifm_msglen; 95 uint8_t ifm_version; 96 uint8_t ifm_type; 97 int32_t ifm_addrs; 98 int32_t ifm_flags; 99 uint16_t ifm_index; 100 uint16_t _ifm_spare1; 101 uint16_t ifm_len; 102 uint16_t ifm_data_off; 103 uint32_t _ifm_spare2; 104 struct if_data ifm_data; 105 }; 106 107 struct ifa_msghdrl32 { 108 uint16_t ifam_msglen; 109 uint8_t ifam_version; 110 uint8_t ifam_type; 111 int32_t ifam_addrs; 112 int32_t ifam_flags; 113 uint16_t ifam_index; 114 uint16_t _ifam_spare1; 115 uint16_t ifam_len; 116 uint16_t ifam_data_off; 117 int32_t ifam_metric; 118 struct if_data ifam_data; 119 }; 120 121 #define SA_SIZE32(sa) \ 122 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 123 sizeof(int) : \ 124 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 125 126 #endif /* COMPAT_FREEBSD32 */ 127 128 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 129 130 /* NB: these are not modified */ 131 static struct sockaddr route_src = { 2, PF_ROUTE, }; 132 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 133 134 /* These are external hooks for CARP. */ 135 int (*carp_get_vhid_p)(struct ifaddr *); 136 137 /* 138 * Used by rtsock/raw_input callback code to decide whether to filter the update 139 * notification to a socket bound to a particular FIB. 140 */ 141 #define RTS_FILTER_FIB M_PROTO8 142 143 typedef struct { 144 int ip_count; /* attached w/ AF_INET */ 145 int ip6_count; /* attached w/ AF_INET6 */ 146 int any_count; /* total attached */ 147 } route_cb_t; 148 VNET_DEFINE_STATIC(route_cb_t, route_cb); 149 #define V_route_cb VNET(route_cb) 150 151 struct mtx rtsock_mtx; 152 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 153 154 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 155 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 156 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 157 158 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 159 160 struct walkarg { 161 int w_tmemsize; 162 int w_op, w_arg; 163 caddr_t w_tmem; 164 struct sysctl_req *w_req; 165 }; 166 167 static void rts_input(struct mbuf *m); 168 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 169 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 170 struct walkarg *w, int *plen); 171 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 172 struct rt_addrinfo *rtinfo); 173 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 174 static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, 175 uint32_t weight, struct walkarg *w); 176 static int sysctl_iflist(int af, struct walkarg *w); 177 static int sysctl_ifmalist(int af, struct walkarg *w); 178 static int route_output(struct mbuf *m, struct socket *so, ...); 179 static void rt_getmetrics(const struct rtentry *rt, 180 const struct nhop_object *nh, struct rt_metrics *out); 181 static void rt_dispatch(struct mbuf *, sa_family_t); 182 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 183 struct rt_msghdr *rtm, struct rib_cmd_info *rc); 184 static int update_rtm_from_rc(struct rt_addrinfo *info, 185 struct rt_msghdr **prtm, int alloc_len, 186 struct rib_cmd_info *rc, struct nhop_object *nh); 187 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 188 struct mbuf *m, sa_family_t saf, u_int fibnum, 189 int rtm_errno); 190 static int can_export_rte(struct ucred *td_ucred, const struct rtentry *rt); 191 192 static struct netisr_handler rtsock_nh = { 193 .nh_name = "rtsock", 194 .nh_handler = rts_input, 195 .nh_proto = NETISR_ROUTE, 196 .nh_policy = NETISR_POLICY_SOURCE, 197 }; 198 199 static int 200 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 201 { 202 int error, qlimit; 203 204 netisr_getqlimit(&rtsock_nh, &qlimit); 205 error = sysctl_handle_int(oidp, &qlimit, 0, req); 206 if (error || !req->newptr) 207 return (error); 208 if (qlimit < 1) 209 return (EINVAL); 210 return (netisr_setqlimit(&rtsock_nh, qlimit)); 211 } 212 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 213 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 214 0, 0, sysctl_route_netisr_maxqlen, "I", 215 "maximum routing socket dispatch queue length"); 216 217 static void 218 vnet_rts_init(void) 219 { 220 int tmp; 221 222 if (IS_DEFAULT_VNET(curvnet)) { 223 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 224 rtsock_nh.nh_qlimit = tmp; 225 netisr_register(&rtsock_nh); 226 } 227 #ifdef VIMAGE 228 else 229 netisr_register_vnet(&rtsock_nh); 230 #endif 231 } 232 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 233 vnet_rts_init, 0); 234 235 #ifdef VIMAGE 236 static void 237 vnet_rts_uninit(void) 238 { 239 240 netisr_unregister_vnet(&rtsock_nh); 241 } 242 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 243 vnet_rts_uninit, 0); 244 #endif 245 246 static int 247 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 248 struct rawcb *rp) 249 { 250 int fibnum; 251 252 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 253 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 254 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 255 256 /* No filtering requested. */ 257 if ((m->m_flags & RTS_FILTER_FIB) == 0) 258 return (0); 259 260 /* Check if it is a rts and the fib matches the one of the socket. */ 261 fibnum = M_GETFIB(m); 262 if (proto->sp_family != PF_ROUTE || 263 rp->rcb_socket == NULL || 264 rp->rcb_socket->so_fibnum == fibnum) 265 return (0); 266 267 /* Filtering requested and no match, the socket shall be skipped. */ 268 return (1); 269 } 270 271 static void 272 rts_input(struct mbuf *m) 273 { 274 struct sockproto route_proto; 275 unsigned short *family; 276 struct m_tag *tag; 277 278 route_proto.sp_family = PF_ROUTE; 279 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 280 if (tag != NULL) { 281 family = (unsigned short *)(tag + 1); 282 route_proto.sp_protocol = *family; 283 m_tag_delete(m, tag); 284 } else 285 route_proto.sp_protocol = 0; 286 287 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 288 } 289 290 /* 291 * It really doesn't make any sense at all for this code to share much 292 * with raw_usrreq.c, since its functionality is so restricted. XXX 293 */ 294 static void 295 rts_abort(struct socket *so) 296 { 297 298 raw_usrreqs.pru_abort(so); 299 } 300 301 static void 302 rts_close(struct socket *so) 303 { 304 305 raw_usrreqs.pru_close(so); 306 } 307 308 /* pru_accept is EOPNOTSUPP */ 309 310 static int 311 rts_attach(struct socket *so, int proto, struct thread *td) 312 { 313 struct rawcb *rp; 314 int error; 315 316 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 317 318 /* XXX */ 319 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 320 321 so->so_pcb = (caddr_t)rp; 322 so->so_fibnum = td->td_proc->p_fibnum; 323 error = raw_attach(so, proto); 324 rp = sotorawcb(so); 325 if (error) { 326 so->so_pcb = NULL; 327 free(rp, M_PCB); 328 return error; 329 } 330 RTSOCK_LOCK(); 331 switch(rp->rcb_proto.sp_protocol) { 332 case AF_INET: 333 V_route_cb.ip_count++; 334 break; 335 case AF_INET6: 336 V_route_cb.ip6_count++; 337 break; 338 } 339 V_route_cb.any_count++; 340 RTSOCK_UNLOCK(); 341 soisconnected(so); 342 so->so_options |= SO_USELOOPBACK; 343 return 0; 344 } 345 346 static int 347 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 348 { 349 350 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 351 } 352 353 static int 354 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 355 { 356 357 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 358 } 359 360 /* pru_connect2 is EOPNOTSUPP */ 361 /* pru_control is EOPNOTSUPP */ 362 363 static void 364 rts_detach(struct socket *so) 365 { 366 struct rawcb *rp = sotorawcb(so); 367 368 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 369 370 RTSOCK_LOCK(); 371 switch(rp->rcb_proto.sp_protocol) { 372 case AF_INET: 373 V_route_cb.ip_count--; 374 break; 375 case AF_INET6: 376 V_route_cb.ip6_count--; 377 break; 378 } 379 V_route_cb.any_count--; 380 RTSOCK_UNLOCK(); 381 raw_usrreqs.pru_detach(so); 382 } 383 384 static int 385 rts_disconnect(struct socket *so) 386 { 387 388 return (raw_usrreqs.pru_disconnect(so)); 389 } 390 391 /* pru_listen is EOPNOTSUPP */ 392 393 static int 394 rts_peeraddr(struct socket *so, struct sockaddr **nam) 395 { 396 397 return (raw_usrreqs.pru_peeraddr(so, nam)); 398 } 399 400 /* pru_rcvd is EOPNOTSUPP */ 401 /* pru_rcvoob is EOPNOTSUPP */ 402 403 static int 404 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 405 struct mbuf *control, struct thread *td) 406 { 407 408 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 409 } 410 411 /* pru_sense is null */ 412 413 static int 414 rts_shutdown(struct socket *so) 415 { 416 417 return (raw_usrreqs.pru_shutdown(so)); 418 } 419 420 static int 421 rts_sockaddr(struct socket *so, struct sockaddr **nam) 422 { 423 424 return (raw_usrreqs.pru_sockaddr(so, nam)); 425 } 426 427 static struct pr_usrreqs route_usrreqs = { 428 .pru_abort = rts_abort, 429 .pru_attach = rts_attach, 430 .pru_bind = rts_bind, 431 .pru_connect = rts_connect, 432 .pru_detach = rts_detach, 433 .pru_disconnect = rts_disconnect, 434 .pru_peeraddr = rts_peeraddr, 435 .pru_send = rts_send, 436 .pru_shutdown = rts_shutdown, 437 .pru_sockaddr = rts_sockaddr, 438 .pru_close = rts_close, 439 }; 440 441 #ifndef _SOCKADDR_UNION_DEFINED 442 #define _SOCKADDR_UNION_DEFINED 443 /* 444 * The union of all possible address formats we handle. 445 */ 446 union sockaddr_union { 447 struct sockaddr sa; 448 struct sockaddr_in sin; 449 struct sockaddr_in6 sin6; 450 }; 451 #endif /* _SOCKADDR_UNION_DEFINED */ 452 453 static int 454 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 455 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 456 { 457 #if defined(INET) || defined(INET6) 458 struct epoch_tracker et; 459 #endif 460 461 /* First, see if the returned address is part of the jail. */ 462 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 463 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 464 return (0); 465 } 466 467 switch (info->rti_info[RTAX_DST]->sa_family) { 468 #ifdef INET 469 case AF_INET: 470 { 471 struct in_addr ia; 472 struct ifaddr *ifa; 473 int found; 474 475 found = 0; 476 /* 477 * Try to find an address on the given outgoing interface 478 * that belongs to the jail. 479 */ 480 NET_EPOCH_ENTER(et); 481 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 482 struct sockaddr *sa; 483 sa = ifa->ifa_addr; 484 if (sa->sa_family != AF_INET) 485 continue; 486 ia = ((struct sockaddr_in *)sa)->sin_addr; 487 if (prison_check_ip4(cred, &ia) == 0) { 488 found = 1; 489 break; 490 } 491 } 492 NET_EPOCH_EXIT(et); 493 if (!found) { 494 /* 495 * As a last resort return the 'default' jail address. 496 */ 497 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 498 sin_addr; 499 if (prison_get_ip4(cred, &ia) != 0) 500 return (ESRCH); 501 } 502 bzero(&saun->sin, sizeof(struct sockaddr_in)); 503 saun->sin.sin_len = sizeof(struct sockaddr_in); 504 saun->sin.sin_family = AF_INET; 505 saun->sin.sin_addr.s_addr = ia.s_addr; 506 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 507 break; 508 } 509 #endif 510 #ifdef INET6 511 case AF_INET6: 512 { 513 struct in6_addr ia6; 514 struct ifaddr *ifa; 515 int found; 516 517 found = 0; 518 /* 519 * Try to find an address on the given outgoing interface 520 * that belongs to the jail. 521 */ 522 NET_EPOCH_ENTER(et); 523 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 524 struct sockaddr *sa; 525 sa = ifa->ifa_addr; 526 if (sa->sa_family != AF_INET6) 527 continue; 528 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 529 &ia6, sizeof(struct in6_addr)); 530 if (prison_check_ip6(cred, &ia6) == 0) { 531 found = 1; 532 break; 533 } 534 } 535 NET_EPOCH_EXIT(et); 536 if (!found) { 537 /* 538 * As a last resort return the 'default' jail address. 539 */ 540 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 541 sin6_addr; 542 if (prison_get_ip6(cred, &ia6) != 0) 543 return (ESRCH); 544 } 545 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 546 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 547 saun->sin6.sin6_family = AF_INET6; 548 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 549 if (sa6_recoverscope(&saun->sin6) != 0) 550 return (ESRCH); 551 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 552 break; 553 } 554 #endif 555 default: 556 return (ESRCH); 557 } 558 return (0); 559 } 560 561 /* 562 * Fills in @info based on userland-provided @rtm message. 563 * 564 * Returns 0 on success. 565 */ 566 static int 567 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info) 568 { 569 int error; 570 sa_family_t saf; 571 572 rtm->rtm_pid = curproc->p_pid; 573 info->rti_addrs = rtm->rtm_addrs; 574 575 info->rti_mflags = rtm->rtm_inits; 576 info->rti_rmx = &rtm->rtm_rmx; 577 578 /* 579 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 580 * link-local address because rtrequest requires addresses with 581 * embedded scope id. 582 */ 583 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 584 return (EINVAL); 585 586 if (rtm->rtm_flags & RTF_RNH_LOCKED) 587 return (EINVAL); 588 info->rti_flags = rtm->rtm_flags; 589 if (info->rti_info[RTAX_DST] == NULL || 590 info->rti_info[RTAX_DST]->sa_family >= AF_MAX || 591 (info->rti_info[RTAX_GATEWAY] != NULL && 592 info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 593 return (EINVAL); 594 saf = info->rti_info[RTAX_DST]->sa_family; 595 /* 596 * Verify that the caller has the appropriate privilege; RTM_GET 597 * is the only operation the non-superuser is allowed. 598 */ 599 if (rtm->rtm_type != RTM_GET) { 600 error = priv_check(curthread, PRIV_NET_ROUTE); 601 if (error != 0) 602 return (error); 603 } 604 605 /* 606 * The given gateway address may be an interface address. 607 * For example, issuing a "route change" command on a route 608 * entry that was created from a tunnel, and the gateway 609 * address given is the local end point. In this case the 610 * RTF_GATEWAY flag must be cleared or the destination will 611 * not be reachable even though there is no error message. 612 */ 613 if (info->rti_info[RTAX_GATEWAY] != NULL && 614 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 615 struct rt_addrinfo ginfo; 616 struct sockaddr *gdst; 617 struct sockaddr_storage ss; 618 619 bzero(&ginfo, sizeof(ginfo)); 620 bzero(&ss, sizeof(ss)); 621 ss.ss_len = sizeof(ss); 622 623 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 624 gdst = info->rti_info[RTAX_GATEWAY]; 625 626 /* 627 * A host route through the loopback interface is 628 * installed for each interface adddress. In pre 8.0 629 * releases the interface address of a PPP link type 630 * is not reachable locally. This behavior is fixed as 631 * part of the new L2/L3 redesign and rewrite work. The 632 * signature of this interface address route is the 633 * AF_LINK sa_family type of the gateway, and the 634 * rt_ifp has the IFF_LOOPBACK flag set. 635 */ 636 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 637 if (ss.ss_family == AF_LINK && 638 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 639 info->rti_flags &= ~RTF_GATEWAY; 640 info->rti_flags |= RTF_GWFLAG_COMPAT; 641 } 642 rib_free_info(&ginfo); 643 } 644 } 645 646 return (0); 647 } 648 649 static struct nhop_object * 650 select_nhop(struct nhop_object *nh, const struct sockaddr *gw) 651 { 652 if (!NH_IS_NHGRP(nh)) 653 return (nh); 654 #ifdef ROUTE_MPATH 655 struct weightened_nhop *wn; 656 uint32_t num_nhops; 657 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 658 if (gw == NULL) 659 return (wn[0].nh); 660 for (int i = 0; i < num_nhops; i++) { 661 if (match_nhop_gw(wn[i].nh, gw)) 662 return (wn[i].nh); 663 } 664 #endif 665 return (NULL); 666 } 667 668 /* 669 * Handles RTM_GET message from routing socket, returning matching rt. 670 * 671 * Returns: 672 * 0 on success, with locked and referenced matching rt in @rt_nrt 673 * errno of failure 674 */ 675 static int 676 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 677 struct rt_msghdr *rtm, struct rib_cmd_info *rc) 678 { 679 RIB_RLOCK_TRACKER; 680 struct rib_head *rnh; 681 struct nhop_object *nh; 682 sa_family_t saf; 683 684 saf = info->rti_info[RTAX_DST]->sa_family; 685 686 rnh = rt_tables_get_rnh(fibnum, saf); 687 if (rnh == NULL) 688 return (EAFNOSUPPORT); 689 690 RIB_RLOCK(rnh); 691 692 if (info->rti_info[RTAX_NETMASK] == NULL) { 693 /* 694 * Provide longest prefix match for 695 * address lookup (no mask). 696 * 'route -n get addr' 697 */ 698 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( 699 info->rti_info[RTAX_DST], &rnh->head); 700 } else 701 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( 702 info->rti_info[RTAX_DST], 703 info->rti_info[RTAX_NETMASK], &rnh->head); 704 705 if (rc->rc_rt == NULL) { 706 RIB_RUNLOCK(rnh); 707 return (ESRCH); 708 } 709 710 nh = select_nhop(rc->rc_rt->rt_nhop, info->rti_info[RTAX_GATEWAY]); 711 if (nh == NULL) { 712 RIB_RUNLOCK(rnh); 713 return (ESRCH); 714 } 715 /* 716 * If performing proxied L2 entry insertion, and 717 * the actual PPP host entry is found, perform 718 * another search to retrieve the prefix route of 719 * the local end point of the PPP link. 720 * TODO: move this logic to userland. 721 */ 722 if (rtm->rtm_flags & RTF_ANNOUNCE) { 723 struct sockaddr laddr; 724 struct nhop_object *nh; 725 726 nh = rc->rc_rt->rt_nhop; 727 if (nh->nh_ifp != NULL && 728 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 729 struct ifaddr *ifa; 730 731 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 732 RT_ALL_FIBS); 733 if (ifa != NULL) 734 rt_maskedcopy(ifa->ifa_addr, 735 &laddr, 736 ifa->ifa_netmask); 737 } else 738 rt_maskedcopy(nh->nh_ifa->ifa_addr, 739 &laddr, 740 nh->nh_ifa->ifa_netmask); 741 /* 742 * refactor rt and no lock operation necessary 743 */ 744 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 745 &rnh->head); 746 if (rc->rc_rt == NULL) { 747 RIB_RUNLOCK(rnh); 748 return (ESRCH); 749 } 750 nh = select_nhop(rc->rc_rt->rt_nhop, info->rti_info[RTAX_GATEWAY]); 751 if (nh == NULL) { 752 RIB_RUNLOCK(rnh); 753 return (ESRCH); 754 } 755 } 756 rc->rc_nh_new = nh; 757 rc->rc_nh_weight = rc->rc_rt->rt_weight; 758 RIB_RUNLOCK(rnh); 759 760 return (0); 761 } 762 763 /* 764 * Update sockaddrs, flags, etc in @prtm based on @rc data. 765 * rtm can be reallocated. 766 * 767 * Returns 0 on success, along with pointer to (potentially reallocated) 768 * rtm. 769 * 770 */ 771 static int 772 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, 773 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) 774 { 775 struct sockaddr_storage netmask_ss; 776 struct walkarg w; 777 union sockaddr_union saun; 778 struct rt_msghdr *rtm, *orig_rtm = NULL; 779 struct ifnet *ifp; 780 int error, len; 781 782 rtm = *prtm; 783 784 info->rti_info[RTAX_DST] = rt_key(rc->rc_rt); 785 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 786 info->rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rc->rc_rt), 787 rt_mask(rc->rc_rt), &netmask_ss); 788 info->rti_info[RTAX_GENMASK] = 0; 789 ifp = nh->nh_ifp; 790 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 791 if (ifp) { 792 info->rti_info[RTAX_IFP] = 793 ifp->if_addr->ifa_addr; 794 error = rtm_get_jailed(info, ifp, nh, 795 &saun, curthread->td_ucred); 796 if (error != 0) 797 return (error); 798 if (ifp->if_flags & IFF_POINTOPOINT) 799 info->rti_info[RTAX_BRD] = 800 nh->nh_ifa->ifa_dstaddr; 801 rtm->rtm_index = ifp->if_index; 802 } else { 803 info->rti_info[RTAX_IFP] = NULL; 804 info->rti_info[RTAX_IFA] = NULL; 805 } 806 } else if (ifp != NULL) 807 rtm->rtm_index = ifp->if_index; 808 809 /* Check if we need to realloc storage */ 810 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 811 if (len > alloc_len) { 812 struct rt_msghdr *tmp_rtm; 813 814 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 815 if (tmp_rtm == NULL) 816 return (ENOBUFS); 817 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 818 orig_rtm = rtm; 819 rtm = tmp_rtm; 820 alloc_len = len; 821 822 /* 823 * Delay freeing original rtm as info contains 824 * data referencing it. 825 */ 826 } 827 828 w.w_tmem = (caddr_t)rtm; 829 w.w_tmemsize = alloc_len; 830 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 831 832 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); 833 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 834 rtm->rtm_flags = RTF_GATEWAY | 835 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 836 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); 837 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; 838 rtm->rtm_addrs = info->rti_addrs; 839 840 if (orig_rtm != NULL) 841 free(orig_rtm, M_TEMP); 842 *prtm = rtm; 843 844 return (0); 845 } 846 847 #ifdef ROUTE_MPATH 848 static void 849 save_del_notification(struct rib_cmd_info *rc, void *_cbdata) 850 { 851 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 852 853 if (rc->rc_cmd == RTM_DELETE) 854 *rc_new = *rc; 855 } 856 857 static void 858 save_add_notification(struct rib_cmd_info *rc, void *_cbdata) 859 { 860 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 861 862 if (rc->rc_cmd == RTM_ADD) 863 *rc_new = *rc; 864 } 865 #endif 866 867 /*ARGSUSED*/ 868 static int 869 route_output(struct mbuf *m, struct socket *so, ...) 870 { 871 struct rt_msghdr *rtm = NULL; 872 struct rtentry *rt = NULL; 873 struct rt_addrinfo info; 874 struct epoch_tracker et; 875 #ifdef INET6 876 struct sockaddr_storage ss; 877 struct sockaddr_in6 *sin6; 878 int i, rti_need_deembed = 0; 879 #endif 880 int alloc_len = 0, len, error = 0, fibnum; 881 sa_family_t saf = AF_UNSPEC; 882 struct walkarg w; 883 struct rib_cmd_info rc; 884 struct nhop_object *nh; 885 886 fibnum = so->so_fibnum; 887 #define senderr(e) { error = e; goto flush;} 888 if (m == NULL || ((m->m_len < sizeof(long)) && 889 (m = m_pullup(m, sizeof(long))) == NULL)) 890 return (ENOBUFS); 891 if ((m->m_flags & M_PKTHDR) == 0) 892 panic("route_output"); 893 NET_EPOCH_ENTER(et); 894 len = m->m_pkthdr.len; 895 if (len < sizeof(*rtm) || 896 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 897 senderr(EINVAL); 898 899 /* 900 * Most of current messages are in range 200-240 bytes, 901 * minimize possible re-allocation on reply using larger size 902 * buffer aligned on 1k boundaty. 903 */ 904 alloc_len = roundup2(len, 1024); 905 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 906 senderr(ENOBUFS); 907 908 m_copydata(m, 0, len, (caddr_t)rtm); 909 bzero(&info, sizeof(info)); 910 bzero(&w, sizeof(w)); 911 nh = NULL; 912 913 if (rtm->rtm_version != RTM_VERSION) { 914 /* Do not touch message since format is unknown */ 915 free(rtm, M_TEMP); 916 rtm = NULL; 917 senderr(EPROTONOSUPPORT); 918 } 919 920 /* 921 * Starting from here, it is possible 922 * to alter original message and insert 923 * caller PID and error value. 924 */ 925 926 if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) { 927 senderr(error); 928 } 929 930 saf = info.rti_info[RTAX_DST]->sa_family; 931 932 /* support for new ARP code */ 933 if (rtm->rtm_flags & RTF_LLDATA) { 934 error = lla_rt_output(rtm, &info); 935 #ifdef INET6 936 if (error == 0) 937 rti_need_deembed = 1; 938 #endif 939 goto flush; 940 } 941 942 switch (rtm->rtm_type) { 943 case RTM_ADD: 944 case RTM_CHANGE: 945 if (rtm->rtm_type == RTM_ADD) { 946 if (info.rti_info[RTAX_GATEWAY] == NULL) 947 senderr(EINVAL); 948 } 949 error = rib_action(fibnum, rtm->rtm_type, &info, &rc); 950 if (error == 0) { 951 #ifdef INET6 952 rti_need_deembed = 1; 953 #endif 954 #ifdef ROUTE_MPATH 955 if (NH_IS_NHGRP(rc.rc_nh_new) || 956 (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) { 957 struct rib_cmd_info rc_simple = {}; 958 rib_decompose_notification(&rc, 959 save_add_notification, (void *)&rc_simple); 960 rc = rc_simple; 961 } 962 #endif 963 nh = rc.rc_nh_new; 964 rtm->rtm_index = nh->nh_ifp->if_index; 965 rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh); 966 } 967 break; 968 969 case RTM_DELETE: 970 error = rib_action(fibnum, RTM_DELETE, &info, &rc); 971 if (error == 0) { 972 #ifdef ROUTE_MPATH 973 if (NH_IS_NHGRP(rc.rc_nh_old) || 974 (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) { 975 struct rib_cmd_info rc_simple = {}; 976 rib_decompose_notification(&rc, 977 save_del_notification, (void *)&rc_simple); 978 rc = rc_simple; 979 } 980 #endif 981 nh = rc.rc_nh_old; 982 goto report; 983 } 984 #ifdef INET6 985 /* rt_msg2() will not be used when RTM_DELETE fails. */ 986 rti_need_deembed = 1; 987 #endif 988 break; 989 990 case RTM_GET: 991 error = handle_rtm_get(&info, fibnum, rtm, &rc); 992 if (error != 0) 993 senderr(error); 994 nh = rc.rc_nh_new; 995 996 report: 997 if (!can_export_rte(curthread->td_ucred, rc.rc_rt)) { 998 senderr(ESRCH); 999 } 1000 1001 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); 1002 /* 1003 * Note that some sockaddr pointers may have changed to 1004 * point to memory outsize @rtm. Some may be pointing 1005 * to the on-stack variables. 1006 * Given that, any pointer in @info CANNOT BE USED. 1007 */ 1008 1009 /* 1010 * scopeid deembedding has been performed while 1011 * writing updated rtm in rtsock_msg_buffer(). 1012 * With that in mind, skip deembedding procedure below. 1013 */ 1014 #ifdef INET6 1015 rti_need_deembed = 0; 1016 #endif 1017 if (error != 0) 1018 senderr(error); 1019 break; 1020 1021 default: 1022 senderr(EOPNOTSUPP); 1023 } 1024 1025 flush: 1026 NET_EPOCH_EXIT(et); 1027 rt = NULL; 1028 1029 #ifdef INET6 1030 if (rtm != NULL) { 1031 if (rti_need_deembed) { 1032 /* sin6_scope_id is recovered before sending rtm. */ 1033 sin6 = (struct sockaddr_in6 *)&ss; 1034 for (i = 0; i < RTAX_MAX; i++) { 1035 if (info.rti_info[i] == NULL) 1036 continue; 1037 if (info.rti_info[i]->sa_family != AF_INET6) 1038 continue; 1039 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 1040 if (sa6_recoverscope(sin6) == 0) 1041 bcopy(sin6, info.rti_info[i], 1042 sizeof(*sin6)); 1043 } 1044 } 1045 } 1046 #endif 1047 send_rtm_reply(so, rtm, m, saf, fibnum, error); 1048 1049 return (error); 1050 } 1051 1052 /* 1053 * Sends the prepared reply message in @rtm to all rtsock clients. 1054 * Frees @m and @rtm. 1055 * 1056 */ 1057 static void 1058 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1059 sa_family_t saf, u_int fibnum, int rtm_errno) 1060 { 1061 struct rawcb *rp = NULL; 1062 1063 /* 1064 * Check to see if we don't want our own messages. 1065 */ 1066 if ((so->so_options & SO_USELOOPBACK) == 0) { 1067 if (V_route_cb.any_count <= 1) { 1068 if (rtm != NULL) 1069 free(rtm, M_TEMP); 1070 m_freem(m); 1071 return; 1072 } 1073 /* There is another listener, so construct message */ 1074 rp = sotorawcb(so); 1075 } 1076 1077 if (rtm != NULL) { 1078 if (rtm_errno!= 0) 1079 rtm->rtm_errno = rtm_errno; 1080 else 1081 rtm->rtm_flags |= RTF_DONE; 1082 1083 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1084 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1085 m_freem(m); 1086 m = NULL; 1087 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1088 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1089 1090 free(rtm, M_TEMP); 1091 } 1092 if (m != NULL) { 1093 M_SETFIB(m, fibnum); 1094 m->m_flags |= RTS_FILTER_FIB; 1095 if (rp) { 1096 /* 1097 * XXX insure we don't get a copy by 1098 * invalidating our protocol 1099 */ 1100 unsigned short family = rp->rcb_proto.sp_family; 1101 rp->rcb_proto.sp_family = 0; 1102 rt_dispatch(m, saf); 1103 rp->rcb_proto.sp_family = family; 1104 } else 1105 rt_dispatch(m, saf); 1106 } 1107 } 1108 1109 static void 1110 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, 1111 struct rt_metrics *out) 1112 { 1113 1114 bzero(out, sizeof(*out)); 1115 out->rmx_mtu = nh->nh_mtu; 1116 out->rmx_weight = rt->rt_weight; 1117 out->rmx_nhidx = nhop_get_idx(nh); 1118 /* Kernel -> userland timebase conversion. */ 1119 out->rmx_expire = rt->rt_expire ? 1120 rt->rt_expire - time_uptime + time_second : 0; 1121 } 1122 1123 /* 1124 * Extract the addresses of the passed sockaddrs. 1125 * Do a little sanity checking so as to avoid bad memory references. 1126 * This data is derived straight from userland. 1127 */ 1128 static int 1129 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1130 { 1131 struct sockaddr *sa; 1132 int i; 1133 1134 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1135 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1136 continue; 1137 sa = (struct sockaddr *)cp; 1138 /* 1139 * It won't fit. 1140 */ 1141 if (cp + sa->sa_len > cplim) 1142 return (EINVAL); 1143 /* 1144 * there are no more.. quit now 1145 * If there are more bits, they are in error. 1146 * I've seen this. route(1) can evidently generate these. 1147 * This causes kernel to core dump. 1148 * for compatibility, If we see this, point to a safe address. 1149 */ 1150 if (sa->sa_len == 0) { 1151 rtinfo->rti_info[i] = &sa_zero; 1152 return (0); /* should be EINVAL but for compat */ 1153 } 1154 /* accept it */ 1155 #ifdef INET6 1156 if (sa->sa_family == AF_INET6) 1157 sa6_embedscope((struct sockaddr_in6 *)sa, 1158 V_ip6_use_defzone); 1159 #endif 1160 rtinfo->rti_info[i] = sa; 1161 cp += SA_SIZE(sa); 1162 } 1163 return (0); 1164 } 1165 1166 /* 1167 * Fill in @dmask with valid netmask leaving original @smask 1168 * intact. Mostly used with radix netmasks. 1169 */ 1170 struct sockaddr * 1171 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1172 struct sockaddr_storage *dmask) 1173 { 1174 if (dst == NULL || smask == NULL) 1175 return (NULL); 1176 1177 memset(dmask, 0, dst->sa_len); 1178 memcpy(dmask, smask, smask->sa_len); 1179 dmask->ss_len = dst->sa_len; 1180 dmask->ss_family = dst->sa_family; 1181 1182 return ((struct sockaddr *)dmask); 1183 } 1184 1185 /* 1186 * Writes information related to @rtinfo object to newly-allocated mbuf. 1187 * Assumes MCLBYTES is enough to construct any message. 1188 * Used for OS notifications of vaious events (if/ifa announces,etc) 1189 * 1190 * Returns allocated mbuf or NULL on failure. 1191 */ 1192 static struct mbuf * 1193 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1194 { 1195 struct rt_msghdr *rtm; 1196 struct mbuf *m; 1197 int i; 1198 struct sockaddr *sa; 1199 #ifdef INET6 1200 struct sockaddr_storage ss; 1201 struct sockaddr_in6 *sin6; 1202 #endif 1203 int len, dlen; 1204 1205 switch (type) { 1206 case RTM_DELADDR: 1207 case RTM_NEWADDR: 1208 len = sizeof(struct ifa_msghdr); 1209 break; 1210 1211 case RTM_DELMADDR: 1212 case RTM_NEWMADDR: 1213 len = sizeof(struct ifma_msghdr); 1214 break; 1215 1216 case RTM_IFINFO: 1217 len = sizeof(struct if_msghdr); 1218 break; 1219 1220 case RTM_IFANNOUNCE: 1221 case RTM_IEEE80211: 1222 len = sizeof(struct if_announcemsghdr); 1223 break; 1224 1225 default: 1226 len = sizeof(struct rt_msghdr); 1227 } 1228 1229 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1230 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1231 if (len > MHLEN) 1232 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1233 else 1234 m = m_gethdr(M_NOWAIT, MT_DATA); 1235 if (m == NULL) 1236 return (m); 1237 1238 m->m_pkthdr.len = m->m_len = len; 1239 rtm = mtod(m, struct rt_msghdr *); 1240 bzero((caddr_t)rtm, len); 1241 for (i = 0; i < RTAX_MAX; i++) { 1242 if ((sa = rtinfo->rti_info[i]) == NULL) 1243 continue; 1244 rtinfo->rti_addrs |= (1 << i); 1245 dlen = SA_SIZE(sa); 1246 #ifdef INET6 1247 if (sa->sa_family == AF_INET6) { 1248 sin6 = (struct sockaddr_in6 *)&ss; 1249 bcopy(sa, sin6, sizeof(*sin6)); 1250 if (sa6_recoverscope(sin6) == 0) 1251 sa = (struct sockaddr *)sin6; 1252 } 1253 #endif 1254 m_copyback(m, len, dlen, (caddr_t)sa); 1255 len += dlen; 1256 } 1257 if (m->m_pkthdr.len != len) { 1258 m_freem(m); 1259 return (NULL); 1260 } 1261 rtm->rtm_msglen = len; 1262 rtm->rtm_version = RTM_VERSION; 1263 rtm->rtm_type = type; 1264 return (m); 1265 } 1266 1267 /* 1268 * Writes information related to @rtinfo object to preallocated buffer. 1269 * Stores needed size in @plen. If @w is NULL, calculates size without 1270 * writing. 1271 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1272 * 1273 * Returns 0 on success. 1274 * 1275 */ 1276 static int 1277 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1278 { 1279 int i; 1280 int len, buflen = 0, dlen; 1281 caddr_t cp = NULL; 1282 struct rt_msghdr *rtm = NULL; 1283 #ifdef INET6 1284 struct sockaddr_storage ss; 1285 struct sockaddr_in6 *sin6; 1286 #endif 1287 #ifdef COMPAT_FREEBSD32 1288 bool compat32 = false; 1289 #endif 1290 1291 switch (type) { 1292 case RTM_DELADDR: 1293 case RTM_NEWADDR: 1294 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1295 #ifdef COMPAT_FREEBSD32 1296 if (w->w_req->flags & SCTL_MASK32) { 1297 len = sizeof(struct ifa_msghdrl32); 1298 compat32 = true; 1299 } else 1300 #endif 1301 len = sizeof(struct ifa_msghdrl); 1302 } else 1303 len = sizeof(struct ifa_msghdr); 1304 break; 1305 1306 case RTM_IFINFO: 1307 #ifdef COMPAT_FREEBSD32 1308 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1309 if (w->w_op == NET_RT_IFLISTL) 1310 len = sizeof(struct if_msghdrl32); 1311 else 1312 len = sizeof(struct if_msghdr32); 1313 compat32 = true; 1314 break; 1315 } 1316 #endif 1317 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1318 len = sizeof(struct if_msghdrl); 1319 else 1320 len = sizeof(struct if_msghdr); 1321 break; 1322 1323 case RTM_NEWMADDR: 1324 len = sizeof(struct ifma_msghdr); 1325 break; 1326 1327 default: 1328 len = sizeof(struct rt_msghdr); 1329 } 1330 1331 if (w != NULL) { 1332 rtm = (struct rt_msghdr *)w->w_tmem; 1333 buflen = w->w_tmemsize - len; 1334 cp = (caddr_t)w->w_tmem + len; 1335 } 1336 1337 rtinfo->rti_addrs = 0; 1338 for (i = 0; i < RTAX_MAX; i++) { 1339 struct sockaddr *sa; 1340 1341 if ((sa = rtinfo->rti_info[i]) == NULL) 1342 continue; 1343 rtinfo->rti_addrs |= (1 << i); 1344 #ifdef COMPAT_FREEBSD32 1345 if (compat32) 1346 dlen = SA_SIZE32(sa); 1347 else 1348 #endif 1349 dlen = SA_SIZE(sa); 1350 if (cp != NULL && buflen >= dlen) { 1351 #ifdef INET6 1352 if (sa->sa_family == AF_INET6) { 1353 sin6 = (struct sockaddr_in6 *)&ss; 1354 bcopy(sa, sin6, sizeof(*sin6)); 1355 if (sa6_recoverscope(sin6) == 0) 1356 sa = (struct sockaddr *)sin6; 1357 } 1358 #endif 1359 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1360 cp += dlen; 1361 buflen -= dlen; 1362 } else if (cp != NULL) { 1363 /* 1364 * Buffer too small. Count needed size 1365 * and return with error. 1366 */ 1367 cp = NULL; 1368 } 1369 1370 len += dlen; 1371 } 1372 1373 if (cp != NULL) { 1374 dlen = ALIGN(len) - len; 1375 if (buflen < dlen) 1376 cp = NULL; 1377 else { 1378 bzero(cp, dlen); 1379 cp += dlen; 1380 buflen -= dlen; 1381 } 1382 } 1383 len = ALIGN(len); 1384 1385 if (cp != NULL) { 1386 /* fill header iff buffer is large enough */ 1387 rtm->rtm_version = RTM_VERSION; 1388 rtm->rtm_type = type; 1389 rtm->rtm_msglen = len; 1390 } 1391 1392 *plen = len; 1393 1394 if (w != NULL && cp == NULL) 1395 return (ENOBUFS); 1396 1397 return (0); 1398 } 1399 1400 /* 1401 * This routine is called to generate a message from the routing 1402 * socket indicating that a redirect has occurred, a routing lookup 1403 * has failed, or that a protocol has detected timeouts to a particular 1404 * destination. 1405 */ 1406 void 1407 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1408 int fibnum) 1409 { 1410 struct rt_msghdr *rtm; 1411 struct mbuf *m; 1412 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1413 1414 if (V_route_cb.any_count == 0) 1415 return; 1416 m = rtsock_msg_mbuf(type, rtinfo); 1417 if (m == NULL) 1418 return; 1419 1420 if (fibnum != RT_ALL_FIBS) { 1421 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1422 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1423 M_SETFIB(m, fibnum); 1424 m->m_flags |= RTS_FILTER_FIB; 1425 } 1426 1427 rtm = mtod(m, struct rt_msghdr *); 1428 rtm->rtm_flags = RTF_DONE | flags; 1429 rtm->rtm_errno = error; 1430 rtm->rtm_addrs = rtinfo->rti_addrs; 1431 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1432 } 1433 1434 void 1435 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1436 { 1437 1438 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1439 } 1440 1441 /* 1442 * This routine is called to generate a message from the routing 1443 * socket indicating that the status of a network interface has changed. 1444 */ 1445 void 1446 rt_ifmsg(struct ifnet *ifp) 1447 { 1448 struct if_msghdr *ifm; 1449 struct mbuf *m; 1450 struct rt_addrinfo info; 1451 1452 if (V_route_cb.any_count == 0) 1453 return; 1454 bzero((caddr_t)&info, sizeof(info)); 1455 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1456 if (m == NULL) 1457 return; 1458 ifm = mtod(m, struct if_msghdr *); 1459 ifm->ifm_index = ifp->if_index; 1460 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1461 if_data_copy(ifp, &ifm->ifm_data); 1462 ifm->ifm_addrs = 0; 1463 rt_dispatch(m, AF_UNSPEC); 1464 } 1465 1466 /* 1467 * Announce interface address arrival/withdraw. 1468 * Please do not call directly, use rt_addrmsg(). 1469 * Assume input data to be valid. 1470 * Returns 0 on success. 1471 */ 1472 int 1473 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1474 { 1475 struct rt_addrinfo info; 1476 struct sockaddr *sa; 1477 int ncmd; 1478 struct mbuf *m; 1479 struct ifa_msghdr *ifam; 1480 struct ifnet *ifp = ifa->ifa_ifp; 1481 struct sockaddr_storage ss; 1482 1483 if (V_route_cb.any_count == 0) 1484 return (0); 1485 1486 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1487 1488 bzero((caddr_t)&info, sizeof(info)); 1489 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1490 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1491 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1492 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 1493 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1494 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1495 return (ENOBUFS); 1496 ifam = mtod(m, struct ifa_msghdr *); 1497 ifam->ifam_index = ifp->if_index; 1498 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1499 ifam->ifam_flags = ifa->ifa_flags; 1500 ifam->ifam_addrs = info.rti_addrs; 1501 1502 if (fibnum != RT_ALL_FIBS) { 1503 M_SETFIB(m, fibnum); 1504 m->m_flags |= RTS_FILTER_FIB; 1505 } 1506 1507 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1508 1509 return (0); 1510 } 1511 1512 /* 1513 * Announce route addition/removal to rtsock based on @rt data. 1514 * Callers are advives to use rt_routemsg() instead of using this 1515 * function directly. 1516 * Assume @rt data is consistent. 1517 * 1518 * Returns 0 on success. 1519 */ 1520 int 1521 rtsock_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs, 1522 int fibnum) 1523 { 1524 struct sockaddr_storage ss; 1525 struct rt_addrinfo info; 1526 struct nhop_object *nh; 1527 1528 if (V_route_cb.any_count == 0) 1529 return (0); 1530 1531 nh = rt->rt_nhop; 1532 bzero((caddr_t)&info, sizeof(info)); 1533 info.rti_info[RTAX_DST] = rt_key(rt); 1534 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), rt_mask(rt), &ss); 1535 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 1536 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); 1537 info.rti_ifp = ifp; 1538 1539 return (rtsock_routemsg_info(cmd, &info, fibnum)); 1540 } 1541 1542 int 1543 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 1544 { 1545 struct rt_msghdr *rtm; 1546 struct sockaddr *sa; 1547 struct mbuf *m; 1548 1549 if (V_route_cb.any_count == 0) 1550 return (0); 1551 1552 if (info->rti_flags & RTF_HOST) 1553 info->rti_info[RTAX_NETMASK] = NULL; 1554 1555 m = rtsock_msg_mbuf(cmd, info); 1556 if (m == NULL) 1557 return (ENOBUFS); 1558 1559 if (fibnum != RT_ALL_FIBS) { 1560 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1561 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1562 M_SETFIB(m, fibnum); 1563 m->m_flags |= RTS_FILTER_FIB; 1564 } 1565 1566 rtm = mtod(m, struct rt_msghdr *); 1567 rtm->rtm_addrs = info->rti_addrs; 1568 if (info->rti_ifp != NULL) 1569 rtm->rtm_index = info->rti_ifp->if_index; 1570 /* Add RTF_DONE to indicate command 'completion' required by API */ 1571 info->rti_flags |= RTF_DONE; 1572 /* Reported routes has to be up */ 1573 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 1574 info->rti_flags |= RTF_UP; 1575 rtm->rtm_flags = info->rti_flags; 1576 1577 sa = info->rti_info[RTAX_DST]; 1578 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1579 1580 return (0); 1581 } 1582 1583 /* 1584 * This is the analogue to the rt_newaddrmsg which performs the same 1585 * function but for multicast group memberhips. This is easier since 1586 * there is no route state to worry about. 1587 */ 1588 void 1589 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1590 { 1591 struct rt_addrinfo info; 1592 struct mbuf *m = NULL; 1593 struct ifnet *ifp = ifma->ifma_ifp; 1594 struct ifma_msghdr *ifmam; 1595 1596 if (V_route_cb.any_count == 0) 1597 return; 1598 1599 bzero((caddr_t)&info, sizeof(info)); 1600 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1601 if (ifp && ifp->if_addr) 1602 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1603 else 1604 info.rti_info[RTAX_IFP] = NULL; 1605 /* 1606 * If a link-layer address is present, present it as a ``gateway'' 1607 * (similarly to how ARP entries, e.g., are presented). 1608 */ 1609 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1610 m = rtsock_msg_mbuf(cmd, &info); 1611 if (m == NULL) 1612 return; 1613 ifmam = mtod(m, struct ifma_msghdr *); 1614 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1615 __func__)); 1616 ifmam->ifmam_index = ifp->if_index; 1617 ifmam->ifmam_addrs = info.rti_addrs; 1618 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1619 } 1620 1621 static struct mbuf * 1622 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1623 struct rt_addrinfo *info) 1624 { 1625 struct if_announcemsghdr *ifan; 1626 struct mbuf *m; 1627 1628 if (V_route_cb.any_count == 0) 1629 return NULL; 1630 bzero((caddr_t)info, sizeof(*info)); 1631 m = rtsock_msg_mbuf(type, info); 1632 if (m != NULL) { 1633 ifan = mtod(m, struct if_announcemsghdr *); 1634 ifan->ifan_index = ifp->if_index; 1635 strlcpy(ifan->ifan_name, ifp->if_xname, 1636 sizeof(ifan->ifan_name)); 1637 ifan->ifan_what = what; 1638 } 1639 return m; 1640 } 1641 1642 /* 1643 * This is called to generate routing socket messages indicating 1644 * IEEE80211 wireless events. 1645 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1646 */ 1647 void 1648 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1649 { 1650 struct mbuf *m; 1651 struct rt_addrinfo info; 1652 1653 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1654 if (m != NULL) { 1655 /* 1656 * Append the ieee80211 data. Try to stick it in the 1657 * mbuf containing the ifannounce msg; otherwise allocate 1658 * a new mbuf and append. 1659 * 1660 * NB: we assume m is a single mbuf. 1661 */ 1662 if (data_len > M_TRAILINGSPACE(m)) { 1663 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1664 if (n == NULL) { 1665 m_freem(m); 1666 return; 1667 } 1668 bcopy(data, mtod(n, void *), data_len); 1669 n->m_len = data_len; 1670 m->m_next = n; 1671 } else if (data_len > 0) { 1672 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1673 m->m_len += data_len; 1674 } 1675 if (m->m_flags & M_PKTHDR) 1676 m->m_pkthdr.len += data_len; 1677 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1678 rt_dispatch(m, AF_UNSPEC); 1679 } 1680 } 1681 1682 /* 1683 * This is called to generate routing socket messages indicating 1684 * network interface arrival and departure. 1685 */ 1686 void 1687 rt_ifannouncemsg(struct ifnet *ifp, int what) 1688 { 1689 struct mbuf *m; 1690 struct rt_addrinfo info; 1691 1692 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1693 if (m != NULL) 1694 rt_dispatch(m, AF_UNSPEC); 1695 } 1696 1697 static void 1698 rt_dispatch(struct mbuf *m, sa_family_t saf) 1699 { 1700 struct m_tag *tag; 1701 1702 /* 1703 * Preserve the family from the sockaddr, if any, in an m_tag for 1704 * use when injecting the mbuf into the routing socket buffer from 1705 * the netisr. 1706 */ 1707 if (saf != AF_UNSPEC) { 1708 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1709 M_NOWAIT); 1710 if (tag == NULL) { 1711 m_freem(m); 1712 return; 1713 } 1714 *(unsigned short *)(tag + 1) = saf; 1715 m_tag_prepend(m, tag); 1716 } 1717 #ifdef VIMAGE 1718 if (V_loif) 1719 m->m_pkthdr.rcvif = V_loif; 1720 else { 1721 m_freem(m); 1722 return; 1723 } 1724 #endif 1725 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1726 } 1727 1728 /* 1729 * Checks if rte can be exported v.r.t jails/vnets. 1730 * 1731 * Returns 1 if it can, 0 otherwise. 1732 */ 1733 static int 1734 can_export_rte(struct ucred *td_ucred, const struct rtentry *rt) 1735 { 1736 1737 if ((rt->rte_flags & RTF_HOST) == 0 1738 ? jailed_without_vnet(td_ucred) 1739 : prison_if(td_ucred, rt_key_const(rt)) != 0) 1740 return (0); 1741 return (1); 1742 } 1743 1744 /* 1745 * This is used in dumping the kernel table via sysctl(). 1746 */ 1747 static int 1748 sysctl_dumpentry(struct radix_node *rn, void *vw) 1749 { 1750 struct walkarg *w = vw; 1751 struct rtentry *rt = (struct rtentry *)rn; 1752 struct nhop_object *nh; 1753 int error = 0; 1754 1755 NET_EPOCH_ASSERT(); 1756 1757 if (w->w_op == NET_RT_FLAGS && !(rt->rte_flags & w->w_arg)) 1758 return 0; 1759 if (!can_export_rte(w->w_req->td->td_ucred, rt)) 1760 return (0); 1761 nh = rt->rt_nhop; 1762 #ifdef ROUTE_MPATH 1763 if (NH_IS_NHGRP(nh)) { 1764 struct weightened_nhop *wn; 1765 uint32_t num_nhops; 1766 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 1767 for (int i = 0; i < num_nhops; i++) { 1768 error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w); 1769 if (error != 0) 1770 return (error); 1771 } 1772 } else 1773 #endif 1774 error = sysctl_dumpnhop(rt, nh, rt->rt_weight, w); 1775 1776 return (0); 1777 } 1778 1779 1780 static int 1781 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, 1782 struct walkarg *w) 1783 { 1784 struct rt_addrinfo info; 1785 int error = 0, size; 1786 struct sockaddr_storage ss; 1787 1788 bzero((caddr_t)&info, sizeof(info)); 1789 info.rti_info[RTAX_DST] = rt_key(rt); 1790 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 1791 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1792 rt_mask(rt), &ss); 1793 info.rti_info[RTAX_GENMASK] = 0; 1794 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 1795 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 1796 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 1797 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 1798 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 1799 } 1800 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1801 return (error); 1802 if (w->w_req && w->w_tmem) { 1803 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1804 1805 bzero(&rtm->rtm_index, 1806 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 1807 if (rt->rte_flags & RTF_GWFLAG_COMPAT) 1808 rtm->rtm_flags = RTF_GATEWAY | 1809 (rt->rte_flags & ~RTF_GWFLAG_COMPAT); 1810 else 1811 rtm->rtm_flags = rt->rte_flags; 1812 rtm->rtm_flags |= nhop_get_rtflags(nh); 1813 rt_getmetrics(rt, nh, &rtm->rtm_rmx); 1814 rtm->rtm_rmx.rmx_weight = weight; 1815 rtm->rtm_index = nh->nh_ifp->if_index; 1816 rtm->rtm_addrs = info.rti_addrs; 1817 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1818 return (error); 1819 } 1820 return (error); 1821 } 1822 1823 static int 1824 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1825 struct rt_addrinfo *info, struct walkarg *w, int len) 1826 { 1827 struct if_msghdrl *ifm; 1828 struct if_data *ifd; 1829 1830 ifm = (struct if_msghdrl *)w->w_tmem; 1831 1832 #ifdef COMPAT_FREEBSD32 1833 if (w->w_req->flags & SCTL_MASK32) { 1834 struct if_msghdrl32 *ifm32; 1835 1836 ifm32 = (struct if_msghdrl32 *)ifm; 1837 ifm32->ifm_addrs = info->rti_addrs; 1838 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1839 ifm32->ifm_index = ifp->if_index; 1840 ifm32->_ifm_spare1 = 0; 1841 ifm32->ifm_len = sizeof(*ifm32); 1842 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1843 ifm32->_ifm_spare2 = 0; 1844 ifd = &ifm32->ifm_data; 1845 } else 1846 #endif 1847 { 1848 ifm->ifm_addrs = info->rti_addrs; 1849 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1850 ifm->ifm_index = ifp->if_index; 1851 ifm->_ifm_spare1 = 0; 1852 ifm->ifm_len = sizeof(*ifm); 1853 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1854 ifm->_ifm_spare2 = 0; 1855 ifd = &ifm->ifm_data; 1856 } 1857 1858 memcpy(ifd, src_ifd, sizeof(*ifd)); 1859 1860 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1861 } 1862 1863 static int 1864 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 1865 struct rt_addrinfo *info, struct walkarg *w, int len) 1866 { 1867 struct if_msghdr *ifm; 1868 struct if_data *ifd; 1869 1870 ifm = (struct if_msghdr *)w->w_tmem; 1871 1872 #ifdef COMPAT_FREEBSD32 1873 if (w->w_req->flags & SCTL_MASK32) { 1874 struct if_msghdr32 *ifm32; 1875 1876 ifm32 = (struct if_msghdr32 *)ifm; 1877 ifm32->ifm_addrs = info->rti_addrs; 1878 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1879 ifm32->ifm_index = ifp->if_index; 1880 ifm32->_ifm_spare1 = 0; 1881 ifd = &ifm32->ifm_data; 1882 } else 1883 #endif 1884 { 1885 ifm->ifm_addrs = info->rti_addrs; 1886 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1887 ifm->ifm_index = ifp->if_index; 1888 ifm->_ifm_spare1 = 0; 1889 ifd = &ifm->ifm_data; 1890 } 1891 1892 memcpy(ifd, src_ifd, sizeof(*ifd)); 1893 1894 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1895 } 1896 1897 static int 1898 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1899 struct walkarg *w, int len) 1900 { 1901 struct ifa_msghdrl *ifam; 1902 struct if_data *ifd; 1903 1904 ifam = (struct ifa_msghdrl *)w->w_tmem; 1905 1906 #ifdef COMPAT_FREEBSD32 1907 if (w->w_req->flags & SCTL_MASK32) { 1908 struct ifa_msghdrl32 *ifam32; 1909 1910 ifam32 = (struct ifa_msghdrl32 *)ifam; 1911 ifam32->ifam_addrs = info->rti_addrs; 1912 ifam32->ifam_flags = ifa->ifa_flags; 1913 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1914 ifam32->_ifam_spare1 = 0; 1915 ifam32->ifam_len = sizeof(*ifam32); 1916 ifam32->ifam_data_off = 1917 offsetof(struct ifa_msghdrl32, ifam_data); 1918 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1919 ifd = &ifam32->ifam_data; 1920 } else 1921 #endif 1922 { 1923 ifam->ifam_addrs = info->rti_addrs; 1924 ifam->ifam_flags = ifa->ifa_flags; 1925 ifam->ifam_index = ifa->ifa_ifp->if_index; 1926 ifam->_ifam_spare1 = 0; 1927 ifam->ifam_len = sizeof(*ifam); 1928 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1929 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1930 ifd = &ifam->ifam_data; 1931 } 1932 1933 bzero(ifd, sizeof(*ifd)); 1934 ifd->ifi_datalen = sizeof(struct if_data); 1935 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1936 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1937 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1938 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1939 1940 /* Fixup if_data carp(4) vhid. */ 1941 if (carp_get_vhid_p != NULL) 1942 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1943 1944 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1945 } 1946 1947 static int 1948 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1949 struct walkarg *w, int len) 1950 { 1951 struct ifa_msghdr *ifam; 1952 1953 ifam = (struct ifa_msghdr *)w->w_tmem; 1954 ifam->ifam_addrs = info->rti_addrs; 1955 ifam->ifam_flags = ifa->ifa_flags; 1956 ifam->ifam_index = ifa->ifa_ifp->if_index; 1957 ifam->_ifam_spare1 = 0; 1958 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1959 1960 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1961 } 1962 1963 static int 1964 sysctl_iflist(int af, struct walkarg *w) 1965 { 1966 struct ifnet *ifp; 1967 struct ifaddr *ifa; 1968 struct if_data ifd; 1969 struct rt_addrinfo info; 1970 int len, error = 0; 1971 struct sockaddr_storage ss; 1972 1973 bzero((caddr_t)&info, sizeof(info)); 1974 bzero(&ifd, sizeof(ifd)); 1975 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1976 if (w->w_arg && w->w_arg != ifp->if_index) 1977 continue; 1978 if_data_copy(ifp, &ifd); 1979 ifa = ifp->if_addr; 1980 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1981 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1982 if (error != 0) 1983 goto done; 1984 info.rti_info[RTAX_IFP] = NULL; 1985 if (w->w_req && w->w_tmem) { 1986 if (w->w_op == NET_RT_IFLISTL) 1987 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 1988 len); 1989 else 1990 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 1991 len); 1992 if (error) 1993 goto done; 1994 } 1995 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 1996 if (af && af != ifa->ifa_addr->sa_family) 1997 continue; 1998 if (prison_if(w->w_req->td->td_ucred, 1999 ifa->ifa_addr) != 0) 2000 continue; 2001 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 2002 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 2003 ifa->ifa_addr, ifa->ifa_netmask, &ss); 2004 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 2005 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 2006 if (error != 0) 2007 goto done; 2008 if (w->w_req && w->w_tmem) { 2009 if (w->w_op == NET_RT_IFLISTL) 2010 error = sysctl_iflist_ifaml(ifa, &info, 2011 w, len); 2012 else 2013 error = sysctl_iflist_ifam(ifa, &info, 2014 w, len); 2015 if (error) 2016 goto done; 2017 } 2018 } 2019 info.rti_info[RTAX_IFA] = NULL; 2020 info.rti_info[RTAX_NETMASK] = NULL; 2021 info.rti_info[RTAX_BRD] = NULL; 2022 } 2023 done: 2024 return (error); 2025 } 2026 2027 static int 2028 sysctl_ifmalist(int af, struct walkarg *w) 2029 { 2030 struct rt_addrinfo info; 2031 struct ifaddr *ifa; 2032 struct ifmultiaddr *ifma; 2033 struct ifnet *ifp; 2034 int error, len; 2035 2036 NET_EPOCH_ASSERT(); 2037 2038 error = 0; 2039 bzero((caddr_t)&info, sizeof(info)); 2040 2041 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2042 if (w->w_arg && w->w_arg != ifp->if_index) 2043 continue; 2044 ifa = ifp->if_addr; 2045 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 2046 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2047 if (af && af != ifma->ifma_addr->sa_family) 2048 continue; 2049 if (prison_if(w->w_req->td->td_ucred, 2050 ifma->ifma_addr) != 0) 2051 continue; 2052 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2053 info.rti_info[RTAX_GATEWAY] = 2054 (ifma->ifma_addr->sa_family != AF_LINK) ? 2055 ifma->ifma_lladdr : NULL; 2056 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 2057 if (error != 0) 2058 break; 2059 if (w->w_req && w->w_tmem) { 2060 struct ifma_msghdr *ifmam; 2061 2062 ifmam = (struct ifma_msghdr *)w->w_tmem; 2063 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 2064 ifmam->ifmam_flags = 0; 2065 ifmam->ifmam_addrs = info.rti_addrs; 2066 ifmam->_ifmam_spare1 = 0; 2067 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 2068 if (error != 0) 2069 break; 2070 } 2071 } 2072 if (error != 0) 2073 break; 2074 } 2075 return (error); 2076 } 2077 2078 static int 2079 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2080 { 2081 RIB_RLOCK_TRACKER; 2082 struct epoch_tracker et; 2083 int *name = (int *)arg1; 2084 u_int namelen = arg2; 2085 struct rib_head *rnh = NULL; /* silence compiler. */ 2086 int i, lim, error = EINVAL; 2087 int fib = 0; 2088 u_char af; 2089 struct walkarg w; 2090 2091 name ++; 2092 namelen--; 2093 if (req->newptr) 2094 return (EPERM); 2095 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) { 2096 if (namelen == 3) 2097 fib = req->td->td_proc->p_fibnum; 2098 else if (namelen == 4) 2099 fib = (name[3] == RT_ALL_FIBS) ? 2100 req->td->td_proc->p_fibnum : name[3]; 2101 else 2102 return ((namelen < 3) ? EISDIR : ENOTDIR); 2103 if (fib < 0 || fib >= rt_numfibs) 2104 return (EINVAL); 2105 } else if (namelen != 3) 2106 return ((namelen < 3) ? EISDIR : ENOTDIR); 2107 af = name[0]; 2108 if (af > AF_MAX) 2109 return (EINVAL); 2110 bzero(&w, sizeof(w)); 2111 w.w_op = name[1]; 2112 w.w_arg = name[2]; 2113 w.w_req = req; 2114 2115 error = sysctl_wire_old_buffer(req, 0); 2116 if (error) 2117 return (error); 2118 2119 /* 2120 * Allocate reply buffer in advance. 2121 * All rtsock messages has maximum length of u_short. 2122 */ 2123 w.w_tmemsize = 65536; 2124 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2125 2126 NET_EPOCH_ENTER(et); 2127 switch (w.w_op) { 2128 case NET_RT_DUMP: 2129 case NET_RT_FLAGS: 2130 if (af == 0) { /* dump all tables */ 2131 i = 1; 2132 lim = AF_MAX; 2133 } else /* dump only one table */ 2134 i = lim = af; 2135 2136 /* 2137 * take care of llinfo entries, the caller must 2138 * specify an AF 2139 */ 2140 if (w.w_op == NET_RT_FLAGS && 2141 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2142 if (af != 0) 2143 error = lltable_sysctl_dumparp(af, w.w_req); 2144 else 2145 error = EINVAL; 2146 break; 2147 } 2148 /* 2149 * take care of routing entries 2150 */ 2151 for (error = 0; error == 0 && i <= lim; i++) { 2152 rnh = rt_tables_get_rnh(fib, i); 2153 if (rnh != NULL) { 2154 RIB_RLOCK(rnh); 2155 error = rnh->rnh_walktree(&rnh->head, 2156 sysctl_dumpentry, &w); 2157 RIB_RUNLOCK(rnh); 2158 } else if (af != 0) 2159 error = EAFNOSUPPORT; 2160 } 2161 break; 2162 case NET_RT_NHOP: 2163 case NET_RT_NHGRP: 2164 /* Allow dumping one specific af/fib at a time */ 2165 if (namelen < 4) { 2166 error = EINVAL; 2167 break; 2168 } 2169 fib = name[3]; 2170 if (fib < 0 || fib > rt_numfibs) { 2171 error = EINVAL; 2172 break; 2173 } 2174 rnh = rt_tables_get_rnh(fib, af); 2175 if (rnh == NULL) { 2176 error = EAFNOSUPPORT; 2177 break; 2178 } 2179 if (w.w_op == NET_RT_NHOP) 2180 error = nhops_dump_sysctl(rnh, w.w_req); 2181 else 2182 #ifdef ROUTE_MPATH 2183 error = nhgrp_dump_sysctl(rnh, w.w_req); 2184 #else 2185 error = ENOTSUP; 2186 #endif 2187 break; 2188 case NET_RT_IFLIST: 2189 case NET_RT_IFLISTL: 2190 error = sysctl_iflist(af, &w); 2191 break; 2192 2193 case NET_RT_IFMALIST: 2194 error = sysctl_ifmalist(af, &w); 2195 break; 2196 } 2197 NET_EPOCH_EXIT(et); 2198 2199 free(w.w_tmem, M_TEMP); 2200 return (error); 2201 } 2202 2203 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2204 sysctl_rtsock, "Return route tables and interface/address lists"); 2205 2206 /* 2207 * Definitions of protocols supported in the ROUTE domain. 2208 */ 2209 2210 static struct domain routedomain; /* or at least forward */ 2211 2212 static struct protosw routesw[] = { 2213 { 2214 .pr_type = SOCK_RAW, 2215 .pr_domain = &routedomain, 2216 .pr_flags = PR_ATOMIC|PR_ADDR, 2217 .pr_output = route_output, 2218 .pr_ctlinput = raw_ctlinput, 2219 .pr_init = raw_init, 2220 .pr_usrreqs = &route_usrreqs 2221 } 2222 }; 2223 2224 static struct domain routedomain = { 2225 .dom_family = PF_ROUTE, 2226 .dom_name = "route", 2227 .dom_protosw = routesw, 2228 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 2229 }; 2230 2231 VNET_DOMAIN_SET(route); 2232