1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_ddb.h" 35 #include "opt_route.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/domain.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/rmlock.h> 50 #include <sys/rwlock.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_dl.h> 60 #include <net/if_llatbl.h> 61 #include <net/if_types.h> 62 #include <net/netisr.h> 63 #include <net/raw_cb.h> 64 #include <net/route.h> 65 #include <net/route/route_ctl.h> 66 #include <net/route/route_var.h> 67 #include <net/vnet.h> 68 69 #include <netinet/in.h> 70 #include <netinet/if_ether.h> 71 #include <netinet/ip_carp.h> 72 #ifdef INET6 73 #include <netinet6/in6_var.h> 74 #include <netinet6/ip6_var.h> 75 #include <netinet6/scope6_var.h> 76 #endif 77 #include <net/route/nhop.h> 78 79 #ifdef COMPAT_FREEBSD32 80 #include <sys/mount.h> 81 #include <compat/freebsd32/freebsd32.h> 82 83 struct if_msghdr32 { 84 uint16_t ifm_msglen; 85 uint8_t ifm_version; 86 uint8_t ifm_type; 87 int32_t ifm_addrs; 88 int32_t ifm_flags; 89 uint16_t ifm_index; 90 uint16_t _ifm_spare1; 91 struct if_data ifm_data; 92 }; 93 94 struct if_msghdrl32 { 95 uint16_t ifm_msglen; 96 uint8_t ifm_version; 97 uint8_t ifm_type; 98 int32_t ifm_addrs; 99 int32_t ifm_flags; 100 uint16_t ifm_index; 101 uint16_t _ifm_spare1; 102 uint16_t ifm_len; 103 uint16_t ifm_data_off; 104 uint32_t _ifm_spare2; 105 struct if_data ifm_data; 106 }; 107 108 struct ifa_msghdrl32 { 109 uint16_t ifam_msglen; 110 uint8_t ifam_version; 111 uint8_t ifam_type; 112 int32_t ifam_addrs; 113 int32_t ifam_flags; 114 uint16_t ifam_index; 115 uint16_t _ifam_spare1; 116 uint16_t ifam_len; 117 uint16_t ifam_data_off; 118 int32_t ifam_metric; 119 struct if_data ifam_data; 120 }; 121 122 #define SA_SIZE32(sa) \ 123 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 124 sizeof(int) : \ 125 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 126 127 #endif /* COMPAT_FREEBSD32 */ 128 129 struct linear_buffer { 130 char *base; /* Base allocated memory pointer */ 131 uint32_t offset; /* Currently used offset */ 132 uint32_t size; /* Total buffer size */ 133 }; 134 #define SCRATCH_BUFFER_SIZE 1024 135 136 #define RTS_PID_PRINTF(_fmt, ...) \ 137 printf("rtsock:%s(): PID %d: " _fmt "\n", __func__, curproc->p_pid, ## __VA_ARGS__) 138 139 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 140 141 /* NB: these are not modified */ 142 static struct sockaddr route_src = { 2, PF_ROUTE, }; 143 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 144 145 /* These are external hooks for CARP. */ 146 int (*carp_get_vhid_p)(struct ifaddr *); 147 148 /* 149 * Used by rtsock/raw_input callback code to decide whether to filter the update 150 * notification to a socket bound to a particular FIB. 151 */ 152 #define RTS_FILTER_FIB M_PROTO8 153 154 typedef struct { 155 int ip_count; /* attached w/ AF_INET */ 156 int ip6_count; /* attached w/ AF_INET6 */ 157 int any_count; /* total attached */ 158 } route_cb_t; 159 VNET_DEFINE_STATIC(route_cb_t, route_cb); 160 #define V_route_cb VNET(route_cb) 161 162 struct mtx rtsock_mtx; 163 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 164 165 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 166 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 167 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 168 169 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 170 171 struct walkarg { 172 int family; 173 int w_tmemsize; 174 int w_op, w_arg; 175 caddr_t w_tmem; 176 struct sysctl_req *w_req; 177 struct sockaddr *dst; 178 struct sockaddr *mask; 179 }; 180 181 static void rts_input(struct mbuf *m); 182 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 183 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 184 struct walkarg *w, int *plen); 185 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 186 struct rt_addrinfo *rtinfo); 187 static int cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb); 188 static int sysctl_dumpentry(struct rtentry *rt, void *vw); 189 static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, 190 uint32_t weight, struct walkarg *w); 191 static int sysctl_iflist(int af, struct walkarg *w); 192 static int sysctl_ifmalist(int af, struct walkarg *w); 193 static int route_output(struct mbuf *m, struct socket *so, ...); 194 static void rt_getmetrics(const struct rtentry *rt, 195 const struct nhop_object *nh, struct rt_metrics *out); 196 static void rt_dispatch(struct mbuf *, sa_family_t); 197 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 198 struct rt_msghdr *rtm, struct rib_cmd_info *rc); 199 static int update_rtm_from_rc(struct rt_addrinfo *info, 200 struct rt_msghdr **prtm, int alloc_len, 201 struct rib_cmd_info *rc, struct nhop_object *nh); 202 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 203 struct mbuf *m, sa_family_t saf, u_int fibnum, 204 int rtm_errno); 205 static bool can_export_rte(struct ucred *td_ucred, bool rt_is_host, 206 const struct sockaddr *rt_dst); 207 208 static struct netisr_handler rtsock_nh = { 209 .nh_name = "rtsock", 210 .nh_handler = rts_input, 211 .nh_proto = NETISR_ROUTE, 212 .nh_policy = NETISR_POLICY_SOURCE, 213 }; 214 215 static int 216 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 217 { 218 int error, qlimit; 219 220 netisr_getqlimit(&rtsock_nh, &qlimit); 221 error = sysctl_handle_int(oidp, &qlimit, 0, req); 222 if (error || !req->newptr) 223 return (error); 224 if (qlimit < 1) 225 return (EINVAL); 226 return (netisr_setqlimit(&rtsock_nh, qlimit)); 227 } 228 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 229 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 230 0, 0, sysctl_route_netisr_maxqlen, "I", 231 "maximum routing socket dispatch queue length"); 232 233 static void 234 vnet_rts_init(void) 235 { 236 int tmp; 237 238 if (IS_DEFAULT_VNET(curvnet)) { 239 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 240 rtsock_nh.nh_qlimit = tmp; 241 netisr_register(&rtsock_nh); 242 } 243 #ifdef VIMAGE 244 else 245 netisr_register_vnet(&rtsock_nh); 246 #endif 247 } 248 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 249 vnet_rts_init, 0); 250 251 #ifdef VIMAGE 252 static void 253 vnet_rts_uninit(void) 254 { 255 256 netisr_unregister_vnet(&rtsock_nh); 257 } 258 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 259 vnet_rts_uninit, 0); 260 #endif 261 262 static int 263 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 264 struct rawcb *rp) 265 { 266 int fibnum; 267 268 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 269 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 270 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 271 272 /* No filtering requested. */ 273 if ((m->m_flags & RTS_FILTER_FIB) == 0) 274 return (0); 275 276 /* Check if it is a rts and the fib matches the one of the socket. */ 277 fibnum = M_GETFIB(m); 278 if (proto->sp_family != PF_ROUTE || 279 rp->rcb_socket == NULL || 280 rp->rcb_socket->so_fibnum == fibnum) 281 return (0); 282 283 /* Filtering requested and no match, the socket shall be skipped. */ 284 return (1); 285 } 286 287 static void 288 rts_input(struct mbuf *m) 289 { 290 struct sockproto route_proto; 291 unsigned short *family; 292 struct m_tag *tag; 293 294 route_proto.sp_family = PF_ROUTE; 295 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 296 if (tag != NULL) { 297 family = (unsigned short *)(tag + 1); 298 route_proto.sp_protocol = *family; 299 m_tag_delete(m, tag); 300 } else 301 route_proto.sp_protocol = 0; 302 303 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 304 } 305 306 /* 307 * It really doesn't make any sense at all for this code to share much 308 * with raw_usrreq.c, since its functionality is so restricted. XXX 309 */ 310 static void 311 rts_abort(struct socket *so) 312 { 313 314 raw_usrreqs.pru_abort(so); 315 } 316 317 static void 318 rts_close(struct socket *so) 319 { 320 321 raw_usrreqs.pru_close(so); 322 } 323 324 /* pru_accept is EOPNOTSUPP */ 325 326 static int 327 rts_attach(struct socket *so, int proto, struct thread *td) 328 { 329 struct rawcb *rp; 330 int error; 331 332 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 333 334 /* XXX */ 335 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 336 337 so->so_pcb = (caddr_t)rp; 338 so->so_fibnum = td->td_proc->p_fibnum; 339 error = raw_attach(so, proto); 340 rp = sotorawcb(so); 341 if (error) { 342 so->so_pcb = NULL; 343 free(rp, M_PCB); 344 return error; 345 } 346 RTSOCK_LOCK(); 347 switch(rp->rcb_proto.sp_protocol) { 348 case AF_INET: 349 V_route_cb.ip_count++; 350 break; 351 case AF_INET6: 352 V_route_cb.ip6_count++; 353 break; 354 } 355 V_route_cb.any_count++; 356 RTSOCK_UNLOCK(); 357 soisconnected(so); 358 so->so_options |= SO_USELOOPBACK; 359 return 0; 360 } 361 362 static int 363 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 364 { 365 366 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 367 } 368 369 static int 370 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 371 { 372 373 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 374 } 375 376 /* pru_connect2 is EOPNOTSUPP */ 377 /* pru_control is EOPNOTSUPP */ 378 379 static void 380 rts_detach(struct socket *so) 381 { 382 struct rawcb *rp = sotorawcb(so); 383 384 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 385 386 RTSOCK_LOCK(); 387 switch(rp->rcb_proto.sp_protocol) { 388 case AF_INET: 389 V_route_cb.ip_count--; 390 break; 391 case AF_INET6: 392 V_route_cb.ip6_count--; 393 break; 394 } 395 V_route_cb.any_count--; 396 RTSOCK_UNLOCK(); 397 raw_usrreqs.pru_detach(so); 398 } 399 400 static int 401 rts_disconnect(struct socket *so) 402 { 403 404 return (raw_usrreqs.pru_disconnect(so)); 405 } 406 407 /* pru_listen is EOPNOTSUPP */ 408 409 static int 410 rts_peeraddr(struct socket *so, struct sockaddr **nam) 411 { 412 413 return (raw_usrreqs.pru_peeraddr(so, nam)); 414 } 415 416 /* pru_rcvd is EOPNOTSUPP */ 417 /* pru_rcvoob is EOPNOTSUPP */ 418 419 static int 420 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 421 struct mbuf *control, struct thread *td) 422 { 423 424 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 425 } 426 427 /* pru_sense is null */ 428 429 static int 430 rts_shutdown(struct socket *so) 431 { 432 433 return (raw_usrreqs.pru_shutdown(so)); 434 } 435 436 static int 437 rts_sockaddr(struct socket *so, struct sockaddr **nam) 438 { 439 440 return (raw_usrreqs.pru_sockaddr(so, nam)); 441 } 442 443 static struct pr_usrreqs route_usrreqs = { 444 .pru_abort = rts_abort, 445 .pru_attach = rts_attach, 446 .pru_bind = rts_bind, 447 .pru_connect = rts_connect, 448 .pru_detach = rts_detach, 449 .pru_disconnect = rts_disconnect, 450 .pru_peeraddr = rts_peeraddr, 451 .pru_send = rts_send, 452 .pru_shutdown = rts_shutdown, 453 .pru_sockaddr = rts_sockaddr, 454 .pru_close = rts_close, 455 }; 456 457 #ifndef _SOCKADDR_UNION_DEFINED 458 #define _SOCKADDR_UNION_DEFINED 459 /* 460 * The union of all possible address formats we handle. 461 */ 462 union sockaddr_union { 463 struct sockaddr sa; 464 struct sockaddr_in sin; 465 struct sockaddr_in6 sin6; 466 }; 467 #endif /* _SOCKADDR_UNION_DEFINED */ 468 469 static int 470 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 471 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 472 { 473 #if defined(INET) || defined(INET6) 474 struct epoch_tracker et; 475 #endif 476 477 /* First, see if the returned address is part of the jail. */ 478 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 479 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 480 return (0); 481 } 482 483 switch (info->rti_info[RTAX_DST]->sa_family) { 484 #ifdef INET 485 case AF_INET: 486 { 487 struct in_addr ia; 488 struct ifaddr *ifa; 489 int found; 490 491 found = 0; 492 /* 493 * Try to find an address on the given outgoing interface 494 * that belongs to the jail. 495 */ 496 NET_EPOCH_ENTER(et); 497 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 498 struct sockaddr *sa; 499 sa = ifa->ifa_addr; 500 if (sa->sa_family != AF_INET) 501 continue; 502 ia = ((struct sockaddr_in *)sa)->sin_addr; 503 if (prison_check_ip4(cred, &ia) == 0) { 504 found = 1; 505 break; 506 } 507 } 508 NET_EPOCH_EXIT(et); 509 if (!found) { 510 /* 511 * As a last resort return the 'default' jail address. 512 */ 513 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 514 sin_addr; 515 if (prison_get_ip4(cred, &ia) != 0) 516 return (ESRCH); 517 } 518 bzero(&saun->sin, sizeof(struct sockaddr_in)); 519 saun->sin.sin_len = sizeof(struct sockaddr_in); 520 saun->sin.sin_family = AF_INET; 521 saun->sin.sin_addr.s_addr = ia.s_addr; 522 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 523 break; 524 } 525 #endif 526 #ifdef INET6 527 case AF_INET6: 528 { 529 struct in6_addr ia6; 530 struct ifaddr *ifa; 531 int found; 532 533 found = 0; 534 /* 535 * Try to find an address on the given outgoing interface 536 * that belongs to the jail. 537 */ 538 NET_EPOCH_ENTER(et); 539 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 540 struct sockaddr *sa; 541 sa = ifa->ifa_addr; 542 if (sa->sa_family != AF_INET6) 543 continue; 544 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 545 &ia6, sizeof(struct in6_addr)); 546 if (prison_check_ip6(cred, &ia6) == 0) { 547 found = 1; 548 break; 549 } 550 } 551 NET_EPOCH_EXIT(et); 552 if (!found) { 553 /* 554 * As a last resort return the 'default' jail address. 555 */ 556 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 557 sin6_addr; 558 if (prison_get_ip6(cred, &ia6) != 0) 559 return (ESRCH); 560 } 561 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 562 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 563 saun->sin6.sin6_family = AF_INET6; 564 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 565 if (sa6_recoverscope(&saun->sin6) != 0) 566 return (ESRCH); 567 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 568 break; 569 } 570 #endif 571 default: 572 return (ESRCH); 573 } 574 return (0); 575 } 576 577 static int 578 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun) 579 { 580 struct ifaddr *ifa; 581 sa_family_t saf; 582 583 if (V_loif == NULL) { 584 RTS_PID_PRINTF("Unable to add blackhole/reject nhop without loopback"); 585 return (ENOTSUP); 586 } 587 info->rti_ifp = V_loif; 588 589 saf = info->rti_info[RTAX_DST]->sa_family; 590 591 CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) { 592 if (ifa->ifa_addr->sa_family == saf) { 593 info->rti_ifa = ifa; 594 break; 595 } 596 } 597 if (info->rti_ifa == NULL) 598 return (ENOTSUP); 599 600 bzero(saun, sizeof(union sockaddr_union)); 601 switch (saf) { 602 #ifdef INET 603 case AF_INET: 604 saun->sin.sin_family = AF_INET; 605 saun->sin.sin_len = sizeof(struct sockaddr_in); 606 saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); 607 break; 608 #endif 609 #ifdef INET6 610 case AF_INET6: 611 saun->sin6.sin6_family = AF_INET6; 612 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 613 saun->sin6.sin6_addr = in6addr_loopback; 614 break; 615 #endif 616 default: 617 return (ENOTSUP); 618 } 619 info->rti_info[RTAX_GATEWAY] = &saun->sa; 620 info->rti_flags |= RTF_GATEWAY; 621 622 return (0); 623 } 624 625 /* 626 * Fills in @info based on userland-provided @rtm message. 627 * 628 * Returns 0 on success. 629 */ 630 static int 631 fill_addrinfo(struct rt_msghdr *rtm, int len, struct linear_buffer *lb, u_int fibnum, 632 struct rt_addrinfo *info) 633 { 634 int error; 635 sa_family_t saf; 636 637 rtm->rtm_pid = curproc->p_pid; 638 info->rti_addrs = rtm->rtm_addrs; 639 640 info->rti_mflags = rtm->rtm_inits; 641 info->rti_rmx = &rtm->rtm_rmx; 642 643 /* 644 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 645 * link-local address because rtrequest requires addresses with 646 * embedded scope id. 647 */ 648 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 649 return (EINVAL); 650 651 info->rti_flags = rtm->rtm_flags; 652 error = cleanup_xaddrs(info, lb); 653 if (error != 0) 654 return (error); 655 saf = info->rti_info[RTAX_DST]->sa_family; 656 /* 657 * Verify that the caller has the appropriate privilege; RTM_GET 658 * is the only operation the non-superuser is allowed. 659 */ 660 if (rtm->rtm_type != RTM_GET) { 661 error = priv_check(curthread, PRIV_NET_ROUTE); 662 if (error != 0) 663 return (error); 664 } 665 666 /* 667 * The given gateway address may be an interface address. 668 * For example, issuing a "route change" command on a route 669 * entry that was created from a tunnel, and the gateway 670 * address given is the local end point. In this case the 671 * RTF_GATEWAY flag must be cleared or the destination will 672 * not be reachable even though there is no error message. 673 */ 674 if (info->rti_info[RTAX_GATEWAY] != NULL && 675 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 676 struct rt_addrinfo ginfo; 677 struct sockaddr *gdst; 678 struct sockaddr_storage ss; 679 680 bzero(&ginfo, sizeof(ginfo)); 681 bzero(&ss, sizeof(ss)); 682 ss.ss_len = sizeof(ss); 683 684 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 685 gdst = info->rti_info[RTAX_GATEWAY]; 686 687 /* 688 * A host route through the loopback interface is 689 * installed for each interface adddress. In pre 8.0 690 * releases the interface address of a PPP link type 691 * is not reachable locally. This behavior is fixed as 692 * part of the new L2/L3 redesign and rewrite work. The 693 * signature of this interface address route is the 694 * AF_LINK sa_family type of the gateway, and the 695 * rt_ifp has the IFF_LOOPBACK flag set. 696 */ 697 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 698 if (ss.ss_family == AF_LINK && 699 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 700 info->rti_flags &= ~RTF_GATEWAY; 701 info->rti_flags |= RTF_GWFLAG_COMPAT; 702 } 703 rib_free_info(&ginfo); 704 } 705 } 706 707 return (0); 708 } 709 710 static struct nhop_object * 711 select_nhop(struct nhop_object *nh, const struct sockaddr *gw) 712 { 713 if (!NH_IS_NHGRP(nh)) 714 return (nh); 715 #ifdef ROUTE_MPATH 716 struct weightened_nhop *wn; 717 uint32_t num_nhops; 718 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 719 if (gw == NULL) 720 return (wn[0].nh); 721 for (int i = 0; i < num_nhops; i++) { 722 if (match_nhop_gw(wn[i].nh, gw)) 723 return (wn[i].nh); 724 } 725 #endif 726 return (NULL); 727 } 728 729 /* 730 * Handles RTM_GET message from routing socket, returning matching rt. 731 * 732 * Returns: 733 * 0 on success, with locked and referenced matching rt in @rt_nrt 734 * errno of failure 735 */ 736 static int 737 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 738 struct rt_msghdr *rtm, struct rib_cmd_info *rc) 739 { 740 RIB_RLOCK_TRACKER; 741 struct rib_head *rnh; 742 struct nhop_object *nh; 743 sa_family_t saf; 744 745 saf = info->rti_info[RTAX_DST]->sa_family; 746 747 rnh = rt_tables_get_rnh(fibnum, saf); 748 if (rnh == NULL) 749 return (EAFNOSUPPORT); 750 751 RIB_RLOCK(rnh); 752 753 /* 754 * By (implicit) convention host route (one without netmask) 755 * means longest-prefix-match request and the route with netmask 756 * means exact-match lookup. 757 * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128 758 * prefixes, use original data to check for the netmask presence. 759 */ 760 if ((rtm->rtm_addrs & RTA_NETMASK) == 0) { 761 /* 762 * Provide longest prefix match for 763 * address lookup (no mask). 764 * 'route -n get addr' 765 */ 766 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( 767 info->rti_info[RTAX_DST], &rnh->head); 768 } else 769 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( 770 info->rti_info[RTAX_DST], 771 info->rti_info[RTAX_NETMASK], &rnh->head); 772 773 if (rc->rc_rt == NULL) { 774 RIB_RUNLOCK(rnh); 775 return (ESRCH); 776 } 777 778 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 779 if (nh == NULL) { 780 RIB_RUNLOCK(rnh); 781 return (ESRCH); 782 } 783 /* 784 * If performing proxied L2 entry insertion, and 785 * the actual PPP host entry is found, perform 786 * another search to retrieve the prefix route of 787 * the local end point of the PPP link. 788 * TODO: move this logic to userland. 789 */ 790 if (rtm->rtm_flags & RTF_ANNOUNCE) { 791 struct sockaddr laddr; 792 793 if (nh->nh_ifp != NULL && 794 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 795 struct ifaddr *ifa; 796 797 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 798 RT_ALL_FIBS); 799 if (ifa != NULL) 800 rt_maskedcopy(ifa->ifa_addr, 801 &laddr, 802 ifa->ifa_netmask); 803 } else 804 rt_maskedcopy(nh->nh_ifa->ifa_addr, 805 &laddr, 806 nh->nh_ifa->ifa_netmask); 807 /* 808 * refactor rt and no lock operation necessary 809 */ 810 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 811 &rnh->head); 812 if (rc->rc_rt == NULL) { 813 RIB_RUNLOCK(rnh); 814 return (ESRCH); 815 } 816 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 817 if (nh == NULL) { 818 RIB_RUNLOCK(rnh); 819 return (ESRCH); 820 } 821 } 822 rc->rc_nh_new = nh; 823 rc->rc_nh_weight = rc->rc_rt->rt_weight; 824 RIB_RUNLOCK(rnh); 825 826 return (0); 827 } 828 829 static void 830 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask) 831 { 832 #ifdef INET 833 if (family == AF_INET) { 834 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 835 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 836 837 bzero(dst4, sizeof(struct sockaddr_in)); 838 bzero(mask4, sizeof(struct sockaddr_in)); 839 840 dst4->sin_family = AF_INET; 841 dst4->sin_len = sizeof(struct sockaddr_in); 842 mask4->sin_family = AF_INET; 843 mask4->sin_len = sizeof(struct sockaddr_in); 844 } 845 #endif 846 #ifdef INET6 847 if (family == AF_INET6) { 848 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 849 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 850 851 bzero(dst6, sizeof(struct sockaddr_in6)); 852 bzero(mask6, sizeof(struct sockaddr_in6)); 853 854 dst6->sin6_family = AF_INET6; 855 dst6->sin6_len = sizeof(struct sockaddr_in6); 856 mask6->sin6_family = AF_INET6; 857 mask6->sin6_len = sizeof(struct sockaddr_in6); 858 } 859 #endif 860 } 861 862 static void 863 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst, 864 struct sockaddr *mask) 865 { 866 #ifdef INET 867 if (dst->sa_family == AF_INET) { 868 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 869 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 870 uint32_t scopeid = 0; 871 rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr, 872 &scopeid); 873 return; 874 } 875 #endif 876 #ifdef INET6 877 if (dst->sa_family == AF_INET6) { 878 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 879 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 880 uint32_t scopeid = 0; 881 rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr, 882 &mask6->sin6_addr, &scopeid); 883 dst6->sin6_scope_id = scopeid; 884 return; 885 } 886 #endif 887 } 888 889 static int 890 update_rtm_from_info(struct rt_addrinfo *info, struct rt_msghdr **prtm, 891 int alloc_len) 892 { 893 struct rt_msghdr *rtm, *orig_rtm = NULL; 894 struct walkarg w; 895 int len; 896 897 rtm = *prtm; 898 /* Check if we need to realloc storage */ 899 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 900 if (len > alloc_len) { 901 struct rt_msghdr *tmp_rtm; 902 903 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 904 if (tmp_rtm == NULL) 905 return (ENOBUFS); 906 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 907 orig_rtm = rtm; 908 rtm = tmp_rtm; 909 alloc_len = len; 910 911 /* 912 * Delay freeing original rtm as info contains 913 * data referencing it. 914 */ 915 } 916 917 w.w_tmem = (caddr_t)rtm; 918 w.w_tmemsize = alloc_len; 919 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 920 rtm->rtm_addrs = info->rti_addrs; 921 922 if (orig_rtm != NULL) 923 free(orig_rtm, M_TEMP); 924 *prtm = rtm; 925 return (0); 926 } 927 928 929 /* 930 * Update sockaddrs, flags, etc in @prtm based on @rc data. 931 * rtm can be reallocated. 932 * 933 * Returns 0 on success, along with pointer to (potentially reallocated) 934 * rtm. 935 * 936 */ 937 static int 938 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, 939 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) 940 { 941 union sockaddr_union saun; 942 struct rt_msghdr *rtm; 943 struct ifnet *ifp; 944 int error; 945 946 rtm = *prtm; 947 union sockaddr_union sa_dst, sa_mask; 948 int family = info->rti_info[RTAX_DST]->sa_family; 949 init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa); 950 export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa); 951 952 info->rti_info[RTAX_DST] = &sa_dst.sa; 953 info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa; 954 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 955 info->rti_info[RTAX_GENMASK] = 0; 956 ifp = nh->nh_ifp; 957 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 958 if (ifp) { 959 info->rti_info[RTAX_IFP] = 960 ifp->if_addr->ifa_addr; 961 error = rtm_get_jailed(info, ifp, nh, 962 &saun, curthread->td_ucred); 963 if (error != 0) 964 return (error); 965 if (ifp->if_flags & IFF_POINTOPOINT) 966 info->rti_info[RTAX_BRD] = 967 nh->nh_ifa->ifa_dstaddr; 968 rtm->rtm_index = ifp->if_index; 969 } else { 970 info->rti_info[RTAX_IFP] = NULL; 971 info->rti_info[RTAX_IFA] = NULL; 972 } 973 } else if (ifp != NULL) 974 rtm->rtm_index = ifp->if_index; 975 976 if ((error = update_rtm_from_info(info, prtm, alloc_len)) != 0) 977 return (error); 978 979 rtm = *prtm; 980 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); 981 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 982 rtm->rtm_flags = RTF_GATEWAY | 983 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 984 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); 985 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; 986 987 return (0); 988 } 989 990 #ifdef ROUTE_MPATH 991 static void 992 save_del_notification(struct rib_cmd_info *rc, void *_cbdata) 993 { 994 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 995 996 if (rc->rc_cmd == RTM_DELETE) 997 *rc_new = *rc; 998 } 999 1000 static void 1001 save_add_notification(struct rib_cmd_info *rc, void *_cbdata) 1002 { 1003 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 1004 1005 if (rc->rc_cmd == RTM_ADD) 1006 *rc_new = *rc; 1007 } 1008 #endif 1009 1010 #if defined(INET6) || defined(INET) 1011 static struct sockaddr * 1012 alloc_sockaddr_aligned(struct linear_buffer *lb, int len) 1013 { 1014 len = roundup2(len, sizeof(uint64_t)); 1015 if (lb->offset + len > lb->size) 1016 return (NULL); 1017 struct sockaddr *sa = (struct sockaddr *)(lb->base + lb->offset); 1018 lb->offset += len; 1019 return (sa); 1020 } 1021 #endif 1022 1023 /*ARGSUSED*/ 1024 static int 1025 route_output(struct mbuf *m, struct socket *so, ...) 1026 { 1027 struct rt_msghdr *rtm = NULL; 1028 struct rtentry *rt = NULL; 1029 struct rt_addrinfo info; 1030 struct epoch_tracker et; 1031 #ifdef INET6 1032 struct sockaddr_storage ss; 1033 struct sockaddr_in6 *sin6; 1034 int i, rti_need_deembed = 0; 1035 #endif 1036 int alloc_len = 0, len, error = 0, fibnum; 1037 sa_family_t saf = AF_UNSPEC; 1038 struct rib_cmd_info rc; 1039 struct nhop_object *nh; 1040 1041 fibnum = so->so_fibnum; 1042 #define senderr(e) { error = e; goto flush;} 1043 if (m == NULL || ((m->m_len < sizeof(long)) && 1044 (m = m_pullup(m, sizeof(long))) == NULL)) 1045 return (ENOBUFS); 1046 if ((m->m_flags & M_PKTHDR) == 0) 1047 panic("route_output"); 1048 NET_EPOCH_ENTER(et); 1049 len = m->m_pkthdr.len; 1050 if (len < sizeof(*rtm) || 1051 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 1052 senderr(EINVAL); 1053 1054 /* 1055 * Most of current messages are in range 200-240 bytes, 1056 * minimize possible re-allocation on reply using larger size 1057 * buffer aligned on 1k boundaty. 1058 */ 1059 alloc_len = roundup2(len, 1024); 1060 int total_len = alloc_len + SCRATCH_BUFFER_SIZE; 1061 if ((rtm = malloc(total_len, M_TEMP, M_NOWAIT)) == NULL) 1062 senderr(ENOBUFS); 1063 1064 m_copydata(m, 0, len, (caddr_t)rtm); 1065 bzero(&info, sizeof(info)); 1066 nh = NULL; 1067 struct linear_buffer lb = { 1068 .base = (char *)rtm + alloc_len, 1069 .size = SCRATCH_BUFFER_SIZE, 1070 }; 1071 1072 if (rtm->rtm_version != RTM_VERSION) { 1073 /* Do not touch message since format is unknown */ 1074 free(rtm, M_TEMP); 1075 rtm = NULL; 1076 senderr(EPROTONOSUPPORT); 1077 } 1078 1079 /* 1080 * Starting from here, it is possible 1081 * to alter original message and insert 1082 * caller PID and error value. 1083 */ 1084 1085 if ((error = fill_addrinfo(rtm, len, &lb, fibnum, &info)) != 0) { 1086 senderr(error); 1087 } 1088 /* fill_addringo() embeds scope into IPv6 addresses */ 1089 #ifdef INET6 1090 rti_need_deembed = 1; 1091 #endif 1092 1093 saf = info.rti_info[RTAX_DST]->sa_family; 1094 1095 /* support for new ARP code */ 1096 if (rtm->rtm_flags & RTF_LLDATA) { 1097 error = lla_rt_output(rtm, &info); 1098 goto flush; 1099 } 1100 1101 union sockaddr_union gw_saun; 1102 int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT); 1103 if (blackhole_flags != 0) { 1104 if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT)) 1105 error = fill_blackholeinfo(&info, &gw_saun); 1106 else 1107 error = EINVAL; 1108 if (error != 0) 1109 senderr(error); 1110 } 1111 1112 switch (rtm->rtm_type) { 1113 case RTM_ADD: 1114 case RTM_CHANGE: 1115 if (rtm->rtm_type == RTM_ADD) { 1116 if (info.rti_info[RTAX_GATEWAY] == NULL) 1117 senderr(EINVAL); 1118 } 1119 error = rib_action(fibnum, rtm->rtm_type, &info, &rc); 1120 if (error == 0) { 1121 #ifdef ROUTE_MPATH 1122 if (NH_IS_NHGRP(rc.rc_nh_new) || 1123 (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) { 1124 struct rib_cmd_info rc_simple = {}; 1125 rib_decompose_notification(&rc, 1126 save_add_notification, (void *)&rc_simple); 1127 rc = rc_simple; 1128 } 1129 #endif 1130 nh = rc.rc_nh_new; 1131 rtm->rtm_index = nh->nh_ifp->if_index; 1132 rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh); 1133 } 1134 break; 1135 1136 case RTM_DELETE: 1137 error = rib_action(fibnum, RTM_DELETE, &info, &rc); 1138 if (error == 0) { 1139 #ifdef ROUTE_MPATH 1140 if (NH_IS_NHGRP(rc.rc_nh_old) || 1141 (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) { 1142 struct rib_cmd_info rc_simple = {}; 1143 rib_decompose_notification(&rc, 1144 save_del_notification, (void *)&rc_simple); 1145 rc = rc_simple; 1146 } 1147 #endif 1148 nh = rc.rc_nh_old; 1149 } 1150 break; 1151 1152 case RTM_GET: 1153 error = handle_rtm_get(&info, fibnum, rtm, &rc); 1154 if (error != 0) 1155 senderr(error); 1156 nh = rc.rc_nh_new; 1157 1158 if (!can_export_rte(curthread->td_ucred, 1159 info.rti_info[RTAX_NETMASK] == NULL, 1160 info.rti_info[RTAX_DST])) { 1161 senderr(ESRCH); 1162 } 1163 break; 1164 1165 default: 1166 senderr(EOPNOTSUPP); 1167 } 1168 1169 if (error == 0) { 1170 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); 1171 /* 1172 * Note that some sockaddr pointers may have changed to 1173 * point to memory outsize @rtm. Some may be pointing 1174 * to the on-stack variables. 1175 * Given that, any pointer in @info CANNOT BE USED. 1176 */ 1177 1178 /* 1179 * scopeid deembedding has been performed while 1180 * writing updated rtm in rtsock_msg_buffer(). 1181 * With that in mind, skip deembedding procedure below. 1182 */ 1183 #ifdef INET6 1184 rti_need_deembed = 0; 1185 #endif 1186 } 1187 1188 flush: 1189 NET_EPOCH_EXIT(et); 1190 rt = NULL; 1191 1192 #ifdef INET6 1193 if (rtm != NULL) { 1194 if (rti_need_deembed) { 1195 /* sin6_scope_id is recovered before sending rtm. */ 1196 sin6 = (struct sockaddr_in6 *)&ss; 1197 for (i = 0; i < RTAX_MAX; i++) { 1198 if (info.rti_info[i] == NULL) 1199 continue; 1200 if (info.rti_info[i]->sa_family != AF_INET6) 1201 continue; 1202 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 1203 if (sa6_recoverscope(sin6) == 0) 1204 bcopy(sin6, info.rti_info[i], 1205 sizeof(*sin6)); 1206 } 1207 if (update_rtm_from_info(&info, &rtm, alloc_len) != 0) { 1208 if (error != 0) 1209 error = ENOBUFS; 1210 } 1211 } 1212 } 1213 #endif 1214 send_rtm_reply(so, rtm, m, saf, fibnum, error); 1215 1216 return (error); 1217 } 1218 1219 /* 1220 * Sends the prepared reply message in @rtm to all rtsock clients. 1221 * Frees @m and @rtm. 1222 * 1223 */ 1224 static void 1225 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1226 sa_family_t saf, u_int fibnum, int rtm_errno) 1227 { 1228 struct rawcb *rp = NULL; 1229 1230 /* 1231 * Check to see if we don't want our own messages. 1232 */ 1233 if ((so->so_options & SO_USELOOPBACK) == 0) { 1234 if (V_route_cb.any_count <= 1) { 1235 if (rtm != NULL) 1236 free(rtm, M_TEMP); 1237 m_freem(m); 1238 return; 1239 } 1240 /* There is another listener, so construct message */ 1241 rp = sotorawcb(so); 1242 } 1243 1244 if (rtm != NULL) { 1245 if (rtm_errno!= 0) 1246 rtm->rtm_errno = rtm_errno; 1247 else 1248 rtm->rtm_flags |= RTF_DONE; 1249 1250 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1251 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1252 m_freem(m); 1253 m = NULL; 1254 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1255 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1256 1257 free(rtm, M_TEMP); 1258 } 1259 if (m != NULL) { 1260 M_SETFIB(m, fibnum); 1261 m->m_flags |= RTS_FILTER_FIB; 1262 if (rp) { 1263 /* 1264 * XXX insure we don't get a copy by 1265 * invalidating our protocol 1266 */ 1267 unsigned short family = rp->rcb_proto.sp_family; 1268 rp->rcb_proto.sp_family = 0; 1269 rt_dispatch(m, saf); 1270 rp->rcb_proto.sp_family = family; 1271 } else 1272 rt_dispatch(m, saf); 1273 } 1274 } 1275 1276 static void 1277 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, 1278 struct rt_metrics *out) 1279 { 1280 1281 bzero(out, sizeof(*out)); 1282 out->rmx_mtu = nh->nh_mtu; 1283 out->rmx_weight = rt->rt_weight; 1284 out->rmx_nhidx = nhop_get_idx(nh); 1285 /* Kernel -> userland timebase conversion. */ 1286 out->rmx_expire = rt->rt_expire ? 1287 rt->rt_expire - time_uptime + time_second : 0; 1288 } 1289 1290 /* 1291 * Extract the addresses of the passed sockaddrs. 1292 * Do a little sanity checking so as to avoid bad memory references. 1293 * This data is derived straight from userland. 1294 */ 1295 static int 1296 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1297 { 1298 struct sockaddr *sa; 1299 int i; 1300 1301 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1302 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1303 continue; 1304 sa = (struct sockaddr *)cp; 1305 /* 1306 * It won't fit. 1307 */ 1308 if (cp + sa->sa_len > cplim) 1309 return (EINVAL); 1310 /* 1311 * there are no more.. quit now 1312 * If there are more bits, they are in error. 1313 * I've seen this. route(1) can evidently generate these. 1314 * This causes kernel to core dump. 1315 * for compatibility, If we see this, point to a safe address. 1316 */ 1317 if (sa->sa_len == 0) { 1318 rtinfo->rti_info[i] = &sa_zero; 1319 return (0); /* should be EINVAL but for compat */ 1320 } 1321 /* accept it */ 1322 #ifdef INET6 1323 if (sa->sa_family == AF_INET6) 1324 sa6_embedscope((struct sockaddr_in6 *)sa, 1325 V_ip6_use_defzone); 1326 #endif 1327 rtinfo->rti_info[i] = sa; 1328 cp += SA_SIZE(sa); 1329 } 1330 return (0); 1331 } 1332 1333 #ifdef INET 1334 static inline void 1335 fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr) 1336 { 1337 1338 const struct sockaddr_in nsin = { 1339 .sin_family = AF_INET, 1340 .sin_len = sizeof(struct sockaddr_in), 1341 .sin_addr = addr, 1342 }; 1343 *sin = nsin; 1344 } 1345 #endif 1346 1347 #ifdef INET6 1348 static inline void 1349 fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6, 1350 uint32_t scopeid) 1351 { 1352 1353 const struct sockaddr_in6 nsin6 = { 1354 .sin6_family = AF_INET6, 1355 .sin6_len = sizeof(struct sockaddr_in6), 1356 .sin6_addr = *addr6, 1357 .sin6_scope_id = scopeid, 1358 }; 1359 *sin6 = nsin6; 1360 } 1361 #endif 1362 1363 #if defined(INET6) || defined(INET) 1364 /* 1365 * Checks if gateway is suitable for lltable operations. 1366 * Lltable code requires AF_LINK gateway with ifindex 1367 * and mac address specified. 1368 * Returns 0 on success. 1369 */ 1370 static int 1371 cleanup_xaddrs_lladdr(struct rt_addrinfo *info) 1372 { 1373 struct sockaddr_dl *sdl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY]; 1374 1375 if (sdl->sdl_family != AF_LINK) 1376 return (EINVAL); 1377 1378 if (sdl->sdl_index == 0) 1379 return (EINVAL); 1380 1381 if (offsetof(struct sockaddr_dl, sdl_data) + sdl->sdl_nlen + sdl->sdl_alen > sdl->sdl_len) 1382 return (EINVAL); 1383 1384 return (0); 1385 } 1386 1387 static int 1388 cleanup_xaddrs_gateway(struct rt_addrinfo *info, struct linear_buffer *lb) 1389 { 1390 struct sockaddr *gw = info->rti_info[RTAX_GATEWAY]; 1391 struct sockaddr *sa; 1392 1393 if (info->rti_flags & RTF_LLDATA) 1394 return (cleanup_xaddrs_lladdr(info)); 1395 1396 switch (gw->sa_family) { 1397 #ifdef INET 1398 case AF_INET: 1399 { 1400 struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw; 1401 1402 /* Ensure reads do not go beyoud SA boundary */ 1403 if (SA_SIZE(gw) < offsetof(struct sockaddr_in, sin_zero)) { 1404 RTS_PID_PRINTF("gateway sin_len too small: %d", gw->sa_len); 1405 return (EINVAL); 1406 } 1407 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_in)); 1408 if (sa == NULL) 1409 return (ENOBUFS); 1410 fill_sockaddr_inet((struct sockaddr_in *)sa, gw_sin->sin_addr); 1411 info->rti_info[RTAX_GATEWAY] = sa; 1412 } 1413 break; 1414 #endif 1415 #ifdef INET6 1416 case AF_INET6: 1417 { 1418 struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw; 1419 if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) { 1420 RTS_PID_PRINTF("gateway sin6_len too small: %d", gw->sa_len); 1421 return (EINVAL); 1422 } 1423 fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0); 1424 break; 1425 } 1426 #endif 1427 case AF_LINK: 1428 { 1429 struct sockaddr_dl *gw_sdl; 1430 1431 size_t sdl_min_len = offsetof(struct sockaddr_dl, sdl_data); 1432 gw_sdl = (struct sockaddr_dl *)gw; 1433 if (gw_sdl->sdl_len < sdl_min_len) { 1434 RTS_PID_PRINTF("gateway sdl_len too small: %d", gw_sdl->sdl_len); 1435 return (EINVAL); 1436 } 1437 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_dl_short)); 1438 if (sa == NULL) 1439 return (ENOBUFS); 1440 1441 const struct sockaddr_dl_short sdl = { 1442 .sdl_family = AF_LINK, 1443 .sdl_len = sizeof(struct sockaddr_dl_short), 1444 .sdl_index = gw_sdl->sdl_index, 1445 }; 1446 *((struct sockaddr_dl_short *)sa) = sdl; 1447 info->rti_info[RTAX_GATEWAY] = sa; 1448 break; 1449 } 1450 } 1451 1452 return (0); 1453 } 1454 #endif 1455 1456 static void 1457 remove_netmask(struct rt_addrinfo *info) 1458 { 1459 info->rti_info[RTAX_NETMASK] = NULL; 1460 info->rti_flags |= RTF_HOST; 1461 info->rti_addrs &= ~RTA_NETMASK; 1462 } 1463 1464 #ifdef INET 1465 static int 1466 cleanup_xaddrs_inet(struct rt_addrinfo *info, struct linear_buffer *lb) 1467 { 1468 struct sockaddr_in *dst_sa, *mask_sa; 1469 const int sa_len = sizeof(struct sockaddr_in); 1470 struct in_addr dst, mask; 1471 1472 /* Check & fixup dst/netmask combination first */ 1473 dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST]; 1474 mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK]; 1475 1476 /* Ensure reads do not go beyound the buffer size */ 1477 if (SA_SIZE(dst_sa) < offsetof(struct sockaddr_in, sin_zero)) 1478 return (EINVAL); 1479 1480 if ((mask_sa != NULL) && mask_sa->sin_len < sizeof(struct sockaddr_in)) { 1481 /* 1482 * Some older routing software encode mask length into the 1483 * sin_len, thus resulting in "truncated" sockaddr. 1484 */ 1485 int len = mask_sa->sin_len - offsetof(struct sockaddr_in, sin_addr); 1486 if (len >= 0) { 1487 mask.s_addr = 0; 1488 if (len > sizeof(struct in_addr)) 1489 len = sizeof(struct in_addr); 1490 memcpy(&mask, &mask_sa->sin_addr, len); 1491 } else { 1492 RTS_PID_PRINTF("prefix mask sin_len too small: %d", mask_sa->sin_len); 1493 return (EINVAL); 1494 } 1495 } else 1496 mask.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST; 1497 1498 dst.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr)); 1499 1500 /* Construct new "clean" dst/mask sockaddresses */ 1501 if ((dst_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1502 return (ENOBUFS); 1503 fill_sockaddr_inet(dst_sa, dst); 1504 info->rti_info[RTAX_DST] = (struct sockaddr *)dst_sa; 1505 1506 if (mask.s_addr != INADDR_BROADCAST) { 1507 if ((mask_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1508 return (ENOBUFS); 1509 fill_sockaddr_inet(mask_sa, mask); 1510 info->rti_info[RTAX_NETMASK] = (struct sockaddr *)mask_sa; 1511 info->rti_flags &= ~RTF_HOST; 1512 } else 1513 remove_netmask(info); 1514 1515 /* Check gateway */ 1516 if (info->rti_info[RTAX_GATEWAY] != NULL) 1517 return (cleanup_xaddrs_gateway(info, lb)); 1518 1519 return (0); 1520 } 1521 #endif 1522 1523 #ifdef INET6 1524 static int 1525 cleanup_xaddrs_inet6(struct rt_addrinfo *info, struct linear_buffer *lb) 1526 { 1527 struct sockaddr *sa; 1528 struct sockaddr_in6 *dst_sa, *mask_sa; 1529 struct in6_addr mask, *dst; 1530 const int sa_len = sizeof(struct sockaddr_in6); 1531 1532 /* Check & fixup dst/netmask combination first */ 1533 dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST]; 1534 mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK]; 1535 1536 if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1537 RTS_PID_PRINTF("prefix dst sin6_len too small: %d", dst_sa->sin6_len); 1538 return (EINVAL); 1539 } 1540 1541 if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1542 /* 1543 * Some older routing software encode mask length into the 1544 * sin6_len, thus resulting in "truncated" sockaddr. 1545 */ 1546 int len = mask_sa->sin6_len - offsetof(struct sockaddr_in6, sin6_addr); 1547 if (len >= 0) { 1548 bzero(&mask, sizeof(mask)); 1549 if (len > sizeof(struct in6_addr)) 1550 len = sizeof(struct in6_addr); 1551 memcpy(&mask, &mask_sa->sin6_addr, len); 1552 } else { 1553 RTS_PID_PRINTF("rtsock: prefix mask sin6_len too small: %d", mask_sa->sin6_len); 1554 return (EINVAL); 1555 } 1556 } else 1557 mask = mask_sa ? mask_sa->sin6_addr : in6mask128; 1558 1559 dst = &dst_sa->sin6_addr; 1560 IN6_MASK_ADDR(dst, &mask); 1561 1562 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1563 return (ENOBUFS); 1564 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, dst, 0); 1565 info->rti_info[RTAX_DST] = sa; 1566 1567 if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) { 1568 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1569 return (ENOBUFS); 1570 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, &mask, 0); 1571 info->rti_info[RTAX_NETMASK] = sa; 1572 info->rti_flags &= ~RTF_HOST; 1573 } else 1574 remove_netmask(info); 1575 1576 /* Check gateway */ 1577 if (info->rti_info[RTAX_GATEWAY] != NULL) 1578 return (cleanup_xaddrs_gateway(info, lb)); 1579 1580 return (0); 1581 } 1582 #endif 1583 1584 static int 1585 cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb) 1586 { 1587 int error = EAFNOSUPPORT; 1588 1589 if (info->rti_info[RTAX_DST] == NULL) 1590 return (EINVAL); 1591 1592 if (info->rti_flags & RTF_LLDATA) { 1593 /* 1594 * arp(8)/ndp(8) sends RTA_NETMASK for the associated 1595 * prefix along with the actual address in RTA_DST. 1596 * Remove netmask to avoid unnecessary address masking. 1597 */ 1598 remove_netmask(info); 1599 } 1600 1601 switch (info->rti_info[RTAX_DST]->sa_family) { 1602 #ifdef INET 1603 case AF_INET: 1604 error = cleanup_xaddrs_inet(info, lb); 1605 break; 1606 #endif 1607 #ifdef INET6 1608 case AF_INET6: 1609 error = cleanup_xaddrs_inet6(info, lb); 1610 break; 1611 #endif 1612 } 1613 1614 return (error); 1615 } 1616 1617 /* 1618 * Fill in @dmask with valid netmask leaving original @smask 1619 * intact. Mostly used with radix netmasks. 1620 */ 1621 struct sockaddr * 1622 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1623 struct sockaddr_storage *dmask) 1624 { 1625 if (dst == NULL || smask == NULL) 1626 return (NULL); 1627 1628 memset(dmask, 0, dst->sa_len); 1629 memcpy(dmask, smask, smask->sa_len); 1630 dmask->ss_len = dst->sa_len; 1631 dmask->ss_family = dst->sa_family; 1632 1633 return ((struct sockaddr *)dmask); 1634 } 1635 1636 /* 1637 * Writes information related to @rtinfo object to newly-allocated mbuf. 1638 * Assumes MCLBYTES is enough to construct any message. 1639 * Used for OS notifications of vaious events (if/ifa announces,etc) 1640 * 1641 * Returns allocated mbuf or NULL on failure. 1642 */ 1643 static struct mbuf * 1644 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1645 { 1646 struct sockaddr_storage ss; 1647 struct rt_msghdr *rtm; 1648 struct mbuf *m; 1649 int i; 1650 struct sockaddr *sa; 1651 #ifdef INET6 1652 struct sockaddr_in6 *sin6; 1653 #endif 1654 int len, dlen; 1655 1656 switch (type) { 1657 case RTM_DELADDR: 1658 case RTM_NEWADDR: 1659 len = sizeof(struct ifa_msghdr); 1660 break; 1661 1662 case RTM_DELMADDR: 1663 case RTM_NEWMADDR: 1664 len = sizeof(struct ifma_msghdr); 1665 break; 1666 1667 case RTM_IFINFO: 1668 len = sizeof(struct if_msghdr); 1669 break; 1670 1671 case RTM_IFANNOUNCE: 1672 case RTM_IEEE80211: 1673 len = sizeof(struct if_announcemsghdr); 1674 break; 1675 1676 default: 1677 len = sizeof(struct rt_msghdr); 1678 } 1679 1680 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1681 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1682 if (len > MHLEN) 1683 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1684 else 1685 m = m_gethdr(M_NOWAIT, MT_DATA); 1686 if (m == NULL) 1687 return (m); 1688 1689 m->m_pkthdr.len = m->m_len = len; 1690 rtm = mtod(m, struct rt_msghdr *); 1691 bzero((caddr_t)rtm, len); 1692 for (i = 0; i < RTAX_MAX; i++) { 1693 if ((sa = rtinfo->rti_info[i]) == NULL) 1694 continue; 1695 rtinfo->rti_addrs |= (1 << i); 1696 1697 dlen = SA_SIZE(sa); 1698 KASSERT(dlen <= sizeof(ss), 1699 ("%s: sockaddr size overflow", __func__)); 1700 bzero(&ss, sizeof(ss)); 1701 bcopy(sa, &ss, sa->sa_len); 1702 sa = (struct sockaddr *)&ss; 1703 #ifdef INET6 1704 if (sa->sa_family == AF_INET6) { 1705 sin6 = (struct sockaddr_in6 *)sa; 1706 (void)sa6_recoverscope(sin6); 1707 } 1708 #endif 1709 m_copyback(m, len, dlen, (caddr_t)sa); 1710 len += dlen; 1711 } 1712 if (m->m_pkthdr.len != len) { 1713 m_freem(m); 1714 return (NULL); 1715 } 1716 rtm->rtm_msglen = len; 1717 rtm->rtm_version = RTM_VERSION; 1718 rtm->rtm_type = type; 1719 return (m); 1720 } 1721 1722 /* 1723 * Writes information related to @rtinfo object to preallocated buffer. 1724 * Stores needed size in @plen. If @w is NULL, calculates size without 1725 * writing. 1726 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1727 * 1728 * Returns 0 on success. 1729 * 1730 */ 1731 static int 1732 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1733 { 1734 struct sockaddr_storage ss; 1735 int len, buflen = 0, dlen, i; 1736 caddr_t cp = NULL; 1737 struct rt_msghdr *rtm = NULL; 1738 #ifdef INET6 1739 struct sockaddr_in6 *sin6; 1740 #endif 1741 #ifdef COMPAT_FREEBSD32 1742 bool compat32 = false; 1743 #endif 1744 1745 switch (type) { 1746 case RTM_DELADDR: 1747 case RTM_NEWADDR: 1748 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1749 #ifdef COMPAT_FREEBSD32 1750 if (w->w_req->flags & SCTL_MASK32) { 1751 len = sizeof(struct ifa_msghdrl32); 1752 compat32 = true; 1753 } else 1754 #endif 1755 len = sizeof(struct ifa_msghdrl); 1756 } else 1757 len = sizeof(struct ifa_msghdr); 1758 break; 1759 1760 case RTM_IFINFO: 1761 #ifdef COMPAT_FREEBSD32 1762 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1763 if (w->w_op == NET_RT_IFLISTL) 1764 len = sizeof(struct if_msghdrl32); 1765 else 1766 len = sizeof(struct if_msghdr32); 1767 compat32 = true; 1768 break; 1769 } 1770 #endif 1771 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1772 len = sizeof(struct if_msghdrl); 1773 else 1774 len = sizeof(struct if_msghdr); 1775 break; 1776 1777 case RTM_NEWMADDR: 1778 len = sizeof(struct ifma_msghdr); 1779 break; 1780 1781 default: 1782 len = sizeof(struct rt_msghdr); 1783 } 1784 1785 if (w != NULL) { 1786 rtm = (struct rt_msghdr *)w->w_tmem; 1787 buflen = w->w_tmemsize - len; 1788 cp = (caddr_t)w->w_tmem + len; 1789 } 1790 1791 rtinfo->rti_addrs = 0; 1792 for (i = 0; i < RTAX_MAX; i++) { 1793 struct sockaddr *sa; 1794 1795 if ((sa = rtinfo->rti_info[i]) == NULL) 1796 continue; 1797 rtinfo->rti_addrs |= (1 << i); 1798 #ifdef COMPAT_FREEBSD32 1799 if (compat32) 1800 dlen = SA_SIZE32(sa); 1801 else 1802 #endif 1803 dlen = SA_SIZE(sa); 1804 if (cp != NULL && buflen >= dlen) { 1805 KASSERT(dlen <= sizeof(ss), 1806 ("%s: sockaddr size overflow", __func__)); 1807 bzero(&ss, sizeof(ss)); 1808 bcopy(sa, &ss, sa->sa_len); 1809 sa = (struct sockaddr *)&ss; 1810 #ifdef INET6 1811 if (sa->sa_family == AF_INET6) { 1812 sin6 = (struct sockaddr_in6 *)sa; 1813 (void)sa6_recoverscope(sin6); 1814 } 1815 #endif 1816 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1817 cp += dlen; 1818 buflen -= dlen; 1819 } else if (cp != NULL) { 1820 /* 1821 * Buffer too small. Count needed size 1822 * and return with error. 1823 */ 1824 cp = NULL; 1825 } 1826 1827 len += dlen; 1828 } 1829 1830 if (cp != NULL) { 1831 dlen = ALIGN(len) - len; 1832 if (buflen < dlen) 1833 cp = NULL; 1834 else { 1835 bzero(cp, dlen); 1836 cp += dlen; 1837 buflen -= dlen; 1838 } 1839 } 1840 len = ALIGN(len); 1841 1842 if (cp != NULL) { 1843 /* fill header iff buffer is large enough */ 1844 rtm->rtm_version = RTM_VERSION; 1845 rtm->rtm_type = type; 1846 rtm->rtm_msglen = len; 1847 } 1848 1849 *plen = len; 1850 1851 if (w != NULL && cp == NULL) 1852 return (ENOBUFS); 1853 1854 return (0); 1855 } 1856 1857 /* 1858 * This routine is called to generate a message from the routing 1859 * socket indicating that a redirect has occurred, a routing lookup 1860 * has failed, or that a protocol has detected timeouts to a particular 1861 * destination. 1862 */ 1863 void 1864 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1865 int fibnum) 1866 { 1867 struct rt_msghdr *rtm; 1868 struct mbuf *m; 1869 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1870 1871 if (V_route_cb.any_count == 0) 1872 return; 1873 m = rtsock_msg_mbuf(type, rtinfo); 1874 if (m == NULL) 1875 return; 1876 1877 if (fibnum != RT_ALL_FIBS) { 1878 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1879 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1880 M_SETFIB(m, fibnum); 1881 m->m_flags |= RTS_FILTER_FIB; 1882 } 1883 1884 rtm = mtod(m, struct rt_msghdr *); 1885 rtm->rtm_flags = RTF_DONE | flags; 1886 rtm->rtm_errno = error; 1887 rtm->rtm_addrs = rtinfo->rti_addrs; 1888 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1889 } 1890 1891 void 1892 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1893 { 1894 1895 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1896 } 1897 1898 /* 1899 * This routine is called to generate a message from the routing 1900 * socket indicating that the status of a network interface has changed. 1901 */ 1902 void 1903 rt_ifmsg(struct ifnet *ifp) 1904 { 1905 struct if_msghdr *ifm; 1906 struct mbuf *m; 1907 struct rt_addrinfo info; 1908 1909 if (V_route_cb.any_count == 0) 1910 return; 1911 bzero((caddr_t)&info, sizeof(info)); 1912 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1913 if (m == NULL) 1914 return; 1915 ifm = mtod(m, struct if_msghdr *); 1916 ifm->ifm_index = ifp->if_index; 1917 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1918 if_data_copy(ifp, &ifm->ifm_data); 1919 ifm->ifm_addrs = 0; 1920 rt_dispatch(m, AF_UNSPEC); 1921 } 1922 1923 /* 1924 * Announce interface address arrival/withdraw. 1925 * Please do not call directly, use rt_addrmsg(). 1926 * Assume input data to be valid. 1927 * Returns 0 on success. 1928 */ 1929 int 1930 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1931 { 1932 struct rt_addrinfo info; 1933 struct sockaddr *sa; 1934 int ncmd; 1935 struct mbuf *m; 1936 struct ifa_msghdr *ifam; 1937 struct ifnet *ifp = ifa->ifa_ifp; 1938 struct sockaddr_storage ss; 1939 1940 if (V_route_cb.any_count == 0) 1941 return (0); 1942 1943 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1944 1945 bzero((caddr_t)&info, sizeof(info)); 1946 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1947 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1948 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1949 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 1950 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1951 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1952 return (ENOBUFS); 1953 ifam = mtod(m, struct ifa_msghdr *); 1954 ifam->ifam_index = ifp->if_index; 1955 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1956 ifam->ifam_flags = ifa->ifa_flags; 1957 ifam->ifam_addrs = info.rti_addrs; 1958 1959 if (fibnum != RT_ALL_FIBS) { 1960 M_SETFIB(m, fibnum); 1961 m->m_flags |= RTS_FILTER_FIB; 1962 } 1963 1964 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1965 1966 return (0); 1967 } 1968 1969 /* 1970 * Announce route addition/removal to rtsock based on @rt data. 1971 * Callers are advives to use rt_routemsg() instead of using this 1972 * function directly. 1973 * Assume @rt data is consistent. 1974 * 1975 * Returns 0 on success. 1976 */ 1977 int 1978 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh, 1979 int fibnum) 1980 { 1981 union sockaddr_union dst, mask; 1982 struct rt_addrinfo info; 1983 1984 if (V_route_cb.any_count == 0) 1985 return (0); 1986 1987 int family = rt_get_family(rt); 1988 init_sockaddrs_family(family, &dst.sa, &mask.sa); 1989 export_rtaddrs(rt, &dst.sa, &mask.sa); 1990 1991 bzero((caddr_t)&info, sizeof(info)); 1992 info.rti_info[RTAX_DST] = &dst.sa; 1993 info.rti_info[RTAX_NETMASK] = &mask.sa; 1994 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 1995 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); 1996 info.rti_ifp = nh->nh_ifp; 1997 1998 return (rtsock_routemsg_info(cmd, &info, fibnum)); 1999 } 2000 2001 int 2002 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 2003 { 2004 struct rt_msghdr *rtm; 2005 struct sockaddr *sa; 2006 struct mbuf *m; 2007 2008 if (V_route_cb.any_count == 0) 2009 return (0); 2010 2011 if (info->rti_flags & RTF_HOST) 2012 info->rti_info[RTAX_NETMASK] = NULL; 2013 2014 m = rtsock_msg_mbuf(cmd, info); 2015 if (m == NULL) 2016 return (ENOBUFS); 2017 2018 if (fibnum != RT_ALL_FIBS) { 2019 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 2020 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 2021 M_SETFIB(m, fibnum); 2022 m->m_flags |= RTS_FILTER_FIB; 2023 } 2024 2025 rtm = mtod(m, struct rt_msghdr *); 2026 rtm->rtm_addrs = info->rti_addrs; 2027 if (info->rti_ifp != NULL) 2028 rtm->rtm_index = info->rti_ifp->if_index; 2029 /* Add RTF_DONE to indicate command 'completion' required by API */ 2030 info->rti_flags |= RTF_DONE; 2031 /* Reported routes has to be up */ 2032 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 2033 info->rti_flags |= RTF_UP; 2034 rtm->rtm_flags = info->rti_flags; 2035 2036 sa = info->rti_info[RTAX_DST]; 2037 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 2038 2039 return (0); 2040 } 2041 2042 /* 2043 * This is the analogue to the rt_newaddrmsg which performs the same 2044 * function but for multicast group memberhips. This is easier since 2045 * there is no route state to worry about. 2046 */ 2047 void 2048 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 2049 { 2050 struct rt_addrinfo info; 2051 struct mbuf *m = NULL; 2052 struct ifnet *ifp = ifma->ifma_ifp; 2053 struct ifma_msghdr *ifmam; 2054 2055 if (V_route_cb.any_count == 0) 2056 return; 2057 2058 bzero((caddr_t)&info, sizeof(info)); 2059 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2060 if (ifp && ifp->if_addr) 2061 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 2062 else 2063 info.rti_info[RTAX_IFP] = NULL; 2064 /* 2065 * If a link-layer address is present, present it as a ``gateway'' 2066 * (similarly to how ARP entries, e.g., are presented). 2067 */ 2068 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 2069 m = rtsock_msg_mbuf(cmd, &info); 2070 if (m == NULL) 2071 return; 2072 ifmam = mtod(m, struct ifma_msghdr *); 2073 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 2074 __func__)); 2075 ifmam->ifmam_index = ifp->if_index; 2076 ifmam->ifmam_addrs = info.rti_addrs; 2077 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 2078 } 2079 2080 static struct mbuf * 2081 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 2082 struct rt_addrinfo *info) 2083 { 2084 struct if_announcemsghdr *ifan; 2085 struct mbuf *m; 2086 2087 if (V_route_cb.any_count == 0) 2088 return NULL; 2089 bzero((caddr_t)info, sizeof(*info)); 2090 m = rtsock_msg_mbuf(type, info); 2091 if (m != NULL) { 2092 ifan = mtod(m, struct if_announcemsghdr *); 2093 ifan->ifan_index = ifp->if_index; 2094 strlcpy(ifan->ifan_name, ifp->if_xname, 2095 sizeof(ifan->ifan_name)); 2096 ifan->ifan_what = what; 2097 } 2098 return m; 2099 } 2100 2101 /* 2102 * This is called to generate routing socket messages indicating 2103 * IEEE80211 wireless events. 2104 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 2105 */ 2106 void 2107 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 2108 { 2109 struct mbuf *m; 2110 struct rt_addrinfo info; 2111 2112 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 2113 if (m != NULL) { 2114 /* 2115 * Append the ieee80211 data. Try to stick it in the 2116 * mbuf containing the ifannounce msg; otherwise allocate 2117 * a new mbuf and append. 2118 * 2119 * NB: we assume m is a single mbuf. 2120 */ 2121 if (data_len > M_TRAILINGSPACE(m)) { 2122 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 2123 if (n == NULL) { 2124 m_freem(m); 2125 return; 2126 } 2127 bcopy(data, mtod(n, void *), data_len); 2128 n->m_len = data_len; 2129 m->m_next = n; 2130 } else if (data_len > 0) { 2131 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 2132 m->m_len += data_len; 2133 } 2134 if (m->m_flags & M_PKTHDR) 2135 m->m_pkthdr.len += data_len; 2136 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 2137 rt_dispatch(m, AF_UNSPEC); 2138 } 2139 } 2140 2141 /* 2142 * This is called to generate routing socket messages indicating 2143 * network interface arrival and departure. 2144 */ 2145 void 2146 rt_ifannouncemsg(struct ifnet *ifp, int what) 2147 { 2148 struct mbuf *m; 2149 struct rt_addrinfo info; 2150 2151 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 2152 if (m != NULL) 2153 rt_dispatch(m, AF_UNSPEC); 2154 } 2155 2156 static void 2157 rt_dispatch(struct mbuf *m, sa_family_t saf) 2158 { 2159 struct m_tag *tag; 2160 2161 /* 2162 * Preserve the family from the sockaddr, if any, in an m_tag for 2163 * use when injecting the mbuf into the routing socket buffer from 2164 * the netisr. 2165 */ 2166 if (saf != AF_UNSPEC) { 2167 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 2168 M_NOWAIT); 2169 if (tag == NULL) { 2170 m_freem(m); 2171 return; 2172 } 2173 *(unsigned short *)(tag + 1) = saf; 2174 m_tag_prepend(m, tag); 2175 } 2176 #ifdef VIMAGE 2177 if (V_loif) 2178 m->m_pkthdr.rcvif = V_loif; 2179 else { 2180 m_freem(m); 2181 return; 2182 } 2183 #endif 2184 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 2185 } 2186 2187 /* 2188 * Checks if rte can be exported w.r.t jails/vnets. 2189 * 2190 * Returns true if it can, false otherwise. 2191 */ 2192 static bool 2193 can_export_rte(struct ucred *td_ucred, bool rt_is_host, 2194 const struct sockaddr *rt_dst) 2195 { 2196 2197 if ((!rt_is_host) ? jailed_without_vnet(td_ucred) 2198 : prison_if(td_ucred, rt_dst) != 0) 2199 return (false); 2200 return (true); 2201 } 2202 2203 2204 /* 2205 * This is used in dumping the kernel table via sysctl(). 2206 */ 2207 static int 2208 sysctl_dumpentry(struct rtentry *rt, void *vw) 2209 { 2210 struct walkarg *w = vw; 2211 struct nhop_object *nh; 2212 int error = 0; 2213 2214 NET_EPOCH_ASSERT(); 2215 2216 export_rtaddrs(rt, w->dst, w->mask); 2217 if (!can_export_rte(w->w_req->td->td_ucred, rt_is_host(rt), w->dst)) 2218 return (0); 2219 nh = rt_get_raw_nhop(rt); 2220 #ifdef ROUTE_MPATH 2221 if (NH_IS_NHGRP(nh)) { 2222 struct weightened_nhop *wn; 2223 uint32_t num_nhops; 2224 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 2225 for (int i = 0; i < num_nhops; i++) { 2226 error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w); 2227 if (error != 0) 2228 return (error); 2229 } 2230 } else 2231 #endif 2232 error = sysctl_dumpnhop(rt, nh, rt->rt_weight, w); 2233 2234 return (0); 2235 } 2236 2237 2238 static int 2239 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, 2240 struct walkarg *w) 2241 { 2242 struct rt_addrinfo info; 2243 int error = 0, size; 2244 uint32_t rtflags; 2245 2246 rtflags = nhop_get_rtflags(nh); 2247 2248 if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg)) 2249 return (0); 2250 2251 bzero((caddr_t)&info, sizeof(info)); 2252 info.rti_info[RTAX_DST] = w->dst; 2253 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2254 info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask; 2255 info.rti_info[RTAX_GENMASK] = 0; 2256 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 2257 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 2258 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 2259 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 2260 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 2261 } 2262 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 2263 return (error); 2264 if (w->w_req && w->w_tmem) { 2265 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 2266 2267 bzero(&rtm->rtm_index, 2268 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 2269 2270 /* 2271 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags) 2272 * and RTF_UP (if entry is linked, which is always true here). 2273 * Given that, use nhop rtflags & add RTF_UP. 2274 */ 2275 rtm->rtm_flags = rtflags | RTF_UP; 2276 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 2277 rtm->rtm_flags = RTF_GATEWAY | 2278 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 2279 rt_getmetrics(rt, nh, &rtm->rtm_rmx); 2280 rtm->rtm_rmx.rmx_weight = weight; 2281 rtm->rtm_index = nh->nh_ifp->if_index; 2282 rtm->rtm_addrs = info.rti_addrs; 2283 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 2284 return (error); 2285 } 2286 return (error); 2287 } 2288 2289 static int 2290 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 2291 struct rt_addrinfo *info, struct walkarg *w, int len) 2292 { 2293 struct if_msghdrl *ifm; 2294 struct if_data *ifd; 2295 2296 ifm = (struct if_msghdrl *)w->w_tmem; 2297 2298 #ifdef COMPAT_FREEBSD32 2299 if (w->w_req->flags & SCTL_MASK32) { 2300 struct if_msghdrl32 *ifm32; 2301 2302 ifm32 = (struct if_msghdrl32 *)ifm; 2303 ifm32->ifm_addrs = info->rti_addrs; 2304 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2305 ifm32->ifm_index = ifp->if_index; 2306 ifm32->_ifm_spare1 = 0; 2307 ifm32->ifm_len = sizeof(*ifm32); 2308 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 2309 ifm32->_ifm_spare2 = 0; 2310 ifd = &ifm32->ifm_data; 2311 } else 2312 #endif 2313 { 2314 ifm->ifm_addrs = info->rti_addrs; 2315 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2316 ifm->ifm_index = ifp->if_index; 2317 ifm->_ifm_spare1 = 0; 2318 ifm->ifm_len = sizeof(*ifm); 2319 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 2320 ifm->_ifm_spare2 = 0; 2321 ifd = &ifm->ifm_data; 2322 } 2323 2324 memcpy(ifd, src_ifd, sizeof(*ifd)); 2325 2326 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2327 } 2328 2329 static int 2330 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 2331 struct rt_addrinfo *info, struct walkarg *w, int len) 2332 { 2333 struct if_msghdr *ifm; 2334 struct if_data *ifd; 2335 2336 ifm = (struct if_msghdr *)w->w_tmem; 2337 2338 #ifdef COMPAT_FREEBSD32 2339 if (w->w_req->flags & SCTL_MASK32) { 2340 struct if_msghdr32 *ifm32; 2341 2342 ifm32 = (struct if_msghdr32 *)ifm; 2343 ifm32->ifm_addrs = info->rti_addrs; 2344 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2345 ifm32->ifm_index = ifp->if_index; 2346 ifm32->_ifm_spare1 = 0; 2347 ifd = &ifm32->ifm_data; 2348 } else 2349 #endif 2350 { 2351 ifm->ifm_addrs = info->rti_addrs; 2352 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2353 ifm->ifm_index = ifp->if_index; 2354 ifm->_ifm_spare1 = 0; 2355 ifd = &ifm->ifm_data; 2356 } 2357 2358 memcpy(ifd, src_ifd, sizeof(*ifd)); 2359 2360 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2361 } 2362 2363 static int 2364 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 2365 struct walkarg *w, int len) 2366 { 2367 struct ifa_msghdrl *ifam; 2368 struct if_data *ifd; 2369 2370 ifam = (struct ifa_msghdrl *)w->w_tmem; 2371 2372 #ifdef COMPAT_FREEBSD32 2373 if (w->w_req->flags & SCTL_MASK32) { 2374 struct ifa_msghdrl32 *ifam32; 2375 2376 ifam32 = (struct ifa_msghdrl32 *)ifam; 2377 ifam32->ifam_addrs = info->rti_addrs; 2378 ifam32->ifam_flags = ifa->ifa_flags; 2379 ifam32->ifam_index = ifa->ifa_ifp->if_index; 2380 ifam32->_ifam_spare1 = 0; 2381 ifam32->ifam_len = sizeof(*ifam32); 2382 ifam32->ifam_data_off = 2383 offsetof(struct ifa_msghdrl32, ifam_data); 2384 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 2385 ifd = &ifam32->ifam_data; 2386 } else 2387 #endif 2388 { 2389 ifam->ifam_addrs = info->rti_addrs; 2390 ifam->ifam_flags = ifa->ifa_flags; 2391 ifam->ifam_index = ifa->ifa_ifp->if_index; 2392 ifam->_ifam_spare1 = 0; 2393 ifam->ifam_len = sizeof(*ifam); 2394 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 2395 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2396 ifd = &ifam->ifam_data; 2397 } 2398 2399 bzero(ifd, sizeof(*ifd)); 2400 ifd->ifi_datalen = sizeof(struct if_data); 2401 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 2402 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 2403 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 2404 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 2405 2406 /* Fixup if_data carp(4) vhid. */ 2407 if (carp_get_vhid_p != NULL) 2408 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 2409 2410 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2411 } 2412 2413 static int 2414 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 2415 struct walkarg *w, int len) 2416 { 2417 struct ifa_msghdr *ifam; 2418 2419 ifam = (struct ifa_msghdr *)w->w_tmem; 2420 ifam->ifam_addrs = info->rti_addrs; 2421 ifam->ifam_flags = ifa->ifa_flags; 2422 ifam->ifam_index = ifa->ifa_ifp->if_index; 2423 ifam->_ifam_spare1 = 0; 2424 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2425 2426 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2427 } 2428 2429 static int 2430 sysctl_iflist(int af, struct walkarg *w) 2431 { 2432 struct ifnet *ifp; 2433 struct ifaddr *ifa; 2434 struct if_data ifd; 2435 struct rt_addrinfo info; 2436 int len, error = 0; 2437 struct sockaddr_storage ss; 2438 2439 bzero((caddr_t)&info, sizeof(info)); 2440 bzero(&ifd, sizeof(ifd)); 2441 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2442 if (w->w_arg && w->w_arg != ifp->if_index) 2443 continue; 2444 if_data_copy(ifp, &ifd); 2445 ifa = ifp->if_addr; 2446 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 2447 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 2448 if (error != 0) 2449 goto done; 2450 info.rti_info[RTAX_IFP] = NULL; 2451 if (w->w_req && w->w_tmem) { 2452 if (w->w_op == NET_RT_IFLISTL) 2453 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 2454 len); 2455 else 2456 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 2457 len); 2458 if (error) 2459 goto done; 2460 } 2461 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 2462 if (af && af != ifa->ifa_addr->sa_family) 2463 continue; 2464 if (prison_if(w->w_req->td->td_ucred, 2465 ifa->ifa_addr) != 0) 2466 continue; 2467 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 2468 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 2469 ifa->ifa_addr, ifa->ifa_netmask, &ss); 2470 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 2471 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 2472 if (error != 0) 2473 goto done; 2474 if (w->w_req && w->w_tmem) { 2475 if (w->w_op == NET_RT_IFLISTL) 2476 error = sysctl_iflist_ifaml(ifa, &info, 2477 w, len); 2478 else 2479 error = sysctl_iflist_ifam(ifa, &info, 2480 w, len); 2481 if (error) 2482 goto done; 2483 } 2484 } 2485 info.rti_info[RTAX_IFA] = NULL; 2486 info.rti_info[RTAX_NETMASK] = NULL; 2487 info.rti_info[RTAX_BRD] = NULL; 2488 } 2489 done: 2490 return (error); 2491 } 2492 2493 static int 2494 sysctl_ifmalist(int af, struct walkarg *w) 2495 { 2496 struct rt_addrinfo info; 2497 struct ifaddr *ifa; 2498 struct ifmultiaddr *ifma; 2499 struct ifnet *ifp; 2500 int error, len; 2501 2502 NET_EPOCH_ASSERT(); 2503 2504 error = 0; 2505 bzero((caddr_t)&info, sizeof(info)); 2506 2507 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2508 if (w->w_arg && w->w_arg != ifp->if_index) 2509 continue; 2510 ifa = ifp->if_addr; 2511 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 2512 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2513 if (af && af != ifma->ifma_addr->sa_family) 2514 continue; 2515 if (prison_if(w->w_req->td->td_ucred, 2516 ifma->ifma_addr) != 0) 2517 continue; 2518 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2519 info.rti_info[RTAX_GATEWAY] = 2520 (ifma->ifma_addr->sa_family != AF_LINK) ? 2521 ifma->ifma_lladdr : NULL; 2522 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 2523 if (error != 0) 2524 break; 2525 if (w->w_req && w->w_tmem) { 2526 struct ifma_msghdr *ifmam; 2527 2528 ifmam = (struct ifma_msghdr *)w->w_tmem; 2529 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 2530 ifmam->ifmam_flags = 0; 2531 ifmam->ifmam_addrs = info.rti_addrs; 2532 ifmam->_ifmam_spare1 = 0; 2533 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 2534 if (error != 0) 2535 break; 2536 } 2537 } 2538 if (error != 0) 2539 break; 2540 } 2541 return (error); 2542 } 2543 2544 static void 2545 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w) 2546 { 2547 union sockaddr_union sa_dst, sa_mask; 2548 2549 w->family = family; 2550 w->dst = (struct sockaddr *)&sa_dst; 2551 w->mask = (struct sockaddr *)&sa_mask; 2552 2553 init_sockaddrs_family(family, w->dst, w->mask); 2554 2555 rib_walk(fibnum, family, false, sysctl_dumpentry, w); 2556 } 2557 2558 static int 2559 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2560 { 2561 struct epoch_tracker et; 2562 int *name = (int *)arg1; 2563 u_int namelen = arg2; 2564 struct rib_head *rnh = NULL; /* silence compiler. */ 2565 int i, lim, error = EINVAL; 2566 int fib = 0; 2567 u_char af; 2568 struct walkarg w; 2569 2570 if (namelen < 3) 2571 return (EINVAL); 2572 2573 name++; 2574 namelen--; 2575 if (req->newptr) 2576 return (EPERM); 2577 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) { 2578 if (namelen == 3) 2579 fib = req->td->td_proc->p_fibnum; 2580 else if (namelen == 4) 2581 fib = (name[3] == RT_ALL_FIBS) ? 2582 req->td->td_proc->p_fibnum : name[3]; 2583 else 2584 return ((namelen < 3) ? EISDIR : ENOTDIR); 2585 if (fib < 0 || fib >= rt_numfibs) 2586 return (EINVAL); 2587 } else if (namelen != 3) 2588 return ((namelen < 3) ? EISDIR : ENOTDIR); 2589 af = name[0]; 2590 if (af > AF_MAX) 2591 return (EINVAL); 2592 bzero(&w, sizeof(w)); 2593 w.w_op = name[1]; 2594 w.w_arg = name[2]; 2595 w.w_req = req; 2596 2597 error = sysctl_wire_old_buffer(req, 0); 2598 if (error) 2599 return (error); 2600 2601 /* 2602 * Allocate reply buffer in advance. 2603 * All rtsock messages has maximum length of u_short. 2604 */ 2605 w.w_tmemsize = 65536; 2606 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2607 2608 NET_EPOCH_ENTER(et); 2609 switch (w.w_op) { 2610 case NET_RT_DUMP: 2611 case NET_RT_FLAGS: 2612 if (af == 0) { /* dump all tables */ 2613 i = 1; 2614 lim = AF_MAX; 2615 } else /* dump only one table */ 2616 i = lim = af; 2617 2618 /* 2619 * take care of llinfo entries, the caller must 2620 * specify an AF 2621 */ 2622 if (w.w_op == NET_RT_FLAGS && 2623 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2624 if (af != 0) 2625 error = lltable_sysctl_dumparp(af, w.w_req); 2626 else 2627 error = EINVAL; 2628 break; 2629 } 2630 /* 2631 * take care of routing entries 2632 */ 2633 for (error = 0; error == 0 && i <= lim; i++) { 2634 rnh = rt_tables_get_rnh(fib, i); 2635 if (rnh != NULL) { 2636 rtable_sysctl_dump(fib, i, &w); 2637 } else if (af != 0) 2638 error = EAFNOSUPPORT; 2639 } 2640 break; 2641 case NET_RT_NHOP: 2642 case NET_RT_NHGRP: 2643 /* Allow dumping one specific af/fib at a time */ 2644 if (namelen < 4) { 2645 error = EINVAL; 2646 break; 2647 } 2648 fib = name[3]; 2649 if (fib < 0 || fib > rt_numfibs) { 2650 error = EINVAL; 2651 break; 2652 } 2653 rnh = rt_tables_get_rnh(fib, af); 2654 if (rnh == NULL) { 2655 error = EAFNOSUPPORT; 2656 break; 2657 } 2658 if (w.w_op == NET_RT_NHOP) 2659 error = nhops_dump_sysctl(rnh, w.w_req); 2660 else 2661 #ifdef ROUTE_MPATH 2662 error = nhgrp_dump_sysctl(rnh, w.w_req); 2663 #else 2664 error = ENOTSUP; 2665 #endif 2666 break; 2667 case NET_RT_IFLIST: 2668 case NET_RT_IFLISTL: 2669 error = sysctl_iflist(af, &w); 2670 break; 2671 2672 case NET_RT_IFMALIST: 2673 error = sysctl_ifmalist(af, &w); 2674 break; 2675 } 2676 NET_EPOCH_EXIT(et); 2677 2678 free(w.w_tmem, M_TEMP); 2679 return (error); 2680 } 2681 2682 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2683 sysctl_rtsock, "Return route tables and interface/address lists"); 2684 2685 /* 2686 * Definitions of protocols supported in the ROUTE domain. 2687 */ 2688 2689 static struct domain routedomain; /* or at least forward */ 2690 2691 static struct protosw routesw[] = { 2692 { 2693 .pr_type = SOCK_RAW, 2694 .pr_domain = &routedomain, 2695 .pr_flags = PR_ATOMIC|PR_ADDR, 2696 .pr_output = route_output, 2697 .pr_ctlinput = raw_ctlinput, 2698 .pr_init = raw_init, 2699 .pr_usrreqs = &route_usrreqs 2700 } 2701 }; 2702 2703 static struct domain routedomain = { 2704 .dom_family = PF_ROUTE, 2705 .dom_name = "route", 2706 .dom_protosw = routesw, 2707 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 2708 }; 2709 2710 VNET_DOMAIN_SET(route); 2711