1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 33 #include <sys/param.h> 34 #include <sys/domain.h> 35 #include <sys/kernel.h> 36 #include <sys/jail.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/proc.h> 40 #include <sys/protosw.h> 41 #include <sys/signalvar.h> 42 #include <sys/socket.h> 43 #include <sys/socketvar.h> 44 #include <sys/sysctl.h> 45 #include <sys/systm.h> 46 47 #include <net/if.h> 48 #include <net/netisr.h> 49 #include <net/raw_cb.h> 50 #include <net/route.h> 51 52 #include <netinet/in.h> 53 54 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 55 56 /* NB: these are not modified */ 57 static struct sockaddr route_dst = { 2, PF_ROUTE, }; 58 static struct sockaddr route_src = { 2, PF_ROUTE, }; 59 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 60 61 static struct { 62 int ip_count; /* attached w/ AF_INET */ 63 int ip6_count; /* attached w/ AF_INET6 */ 64 int ipx_count; /* attached w/ AF_IPX */ 65 int any_count; /* total attached */ 66 } route_cb; 67 68 struct mtx rtsock_mtx; 69 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 70 71 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 72 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 73 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 74 75 static struct ifqueue rtsintrq; 76 77 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 78 SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW, 79 &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length"); 80 81 struct walkarg { 82 int w_tmemsize; 83 int w_op, w_arg; 84 caddr_t w_tmem; 85 struct sysctl_req *w_req; 86 }; 87 88 static void rts_input(struct mbuf *m); 89 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 90 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 91 caddr_t cp, struct walkarg *w); 92 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 93 struct rt_addrinfo *rtinfo); 94 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 95 static int sysctl_iflist(int af, struct walkarg *w); 96 static int sysctl_ifmalist(int af, struct walkarg *w); 97 static int route_output(struct mbuf *m, struct socket *so); 98 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 99 struct rt_metrics_lite *out); 100 static void rt_getmetrics(const struct rt_metrics_lite *in, 101 struct rt_metrics *out); 102 static void rt_dispatch(struct mbuf *, const struct sockaddr *); 103 104 static void 105 rts_init(void) 106 { 107 int tmp; 108 109 rtsintrq.ifq_maxlen = 256; 110 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 111 rtsintrq.ifq_maxlen = tmp; 112 mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF); 113 netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, NETISR_MPSAFE); 114 } 115 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0) 116 117 static void 118 rts_input(struct mbuf *m) 119 { 120 struct sockproto route_proto; 121 unsigned short *family; 122 struct m_tag *tag; 123 124 route_proto.sp_family = PF_ROUTE; 125 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 126 if (tag != NULL) { 127 family = (unsigned short *)(tag + 1); 128 route_proto.sp_protocol = *family; 129 m_tag_delete(m, tag); 130 } else 131 route_proto.sp_protocol = 0; 132 133 raw_input(m, &route_proto, &route_src, &route_dst); 134 } 135 136 /* 137 * It really doesn't make any sense at all for this code to share much 138 * with raw_usrreq.c, since its functionality is so restricted. XXX 139 */ 140 static void 141 rts_abort(struct socket *so) 142 { 143 144 raw_usrreqs.pru_abort(so); 145 } 146 147 /* pru_accept is EOPNOTSUPP */ 148 149 static int 150 rts_attach(struct socket *so, int proto, struct thread *td) 151 { 152 struct rawcb *rp; 153 int s, error; 154 155 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 156 157 /* XXX */ 158 MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 159 if (rp == NULL) 160 return ENOBUFS; 161 162 /* 163 * The splnet() is necessary to block protocols from sending 164 * error notifications (like RTM_REDIRECT or RTM_LOSING) while 165 * this PCB is extant but incompletely initialized. 166 * Probably we should try to do more of this work beforehand and 167 * eliminate the spl. 168 */ 169 s = splnet(); 170 so->so_pcb = (caddr_t)rp; 171 error = raw_attach(so, proto); 172 rp = sotorawcb(so); 173 if (error) { 174 splx(s); 175 so->so_pcb = NULL; 176 free(rp, M_PCB); 177 return error; 178 } 179 RTSOCK_LOCK(); 180 switch(rp->rcb_proto.sp_protocol) { 181 case AF_INET: 182 route_cb.ip_count++; 183 break; 184 case AF_INET6: 185 route_cb.ip6_count++; 186 break; 187 case AF_IPX: 188 route_cb.ipx_count++; 189 break; 190 } 191 rp->rcb_faddr = &route_src; 192 route_cb.any_count++; 193 RTSOCK_UNLOCK(); 194 soisconnected(so); 195 so->so_options |= SO_USELOOPBACK; 196 splx(s); 197 return 0; 198 } 199 200 static int 201 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 202 { 203 204 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 205 } 206 207 static int 208 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 209 { 210 211 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 212 } 213 214 /* pru_connect2 is EOPNOTSUPP */ 215 /* pru_control is EOPNOTSUPP */ 216 217 static void 218 rts_detach(struct socket *so) 219 { 220 struct rawcb *rp = sotorawcb(so); 221 222 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 223 224 RTSOCK_LOCK(); 225 switch(rp->rcb_proto.sp_protocol) { 226 case AF_INET: 227 route_cb.ip_count--; 228 break; 229 case AF_INET6: 230 route_cb.ip6_count--; 231 break; 232 case AF_IPX: 233 route_cb.ipx_count--; 234 break; 235 } 236 route_cb.any_count--; 237 RTSOCK_UNLOCK(); 238 raw_usrreqs.pru_detach(so); 239 } 240 241 static int 242 rts_disconnect(struct socket *so) 243 { 244 245 return (raw_usrreqs.pru_disconnect(so)); 246 } 247 248 /* pru_listen is EOPNOTSUPP */ 249 250 static int 251 rts_peeraddr(struct socket *so, struct sockaddr **nam) 252 { 253 254 return (raw_usrreqs.pru_peeraddr(so, nam)); 255 } 256 257 /* pru_rcvd is EOPNOTSUPP */ 258 /* pru_rcvoob is EOPNOTSUPP */ 259 260 static int 261 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 262 struct mbuf *control, struct thread *td) 263 { 264 265 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 266 } 267 268 /* pru_sense is null */ 269 270 static int 271 rts_shutdown(struct socket *so) 272 { 273 274 return (raw_usrreqs.pru_shutdown(so)); 275 } 276 277 static int 278 rts_sockaddr(struct socket *so, struct sockaddr **nam) 279 { 280 281 return (raw_usrreqs.pru_sockaddr(so, nam)); 282 } 283 284 static struct pr_usrreqs route_usrreqs = { 285 .pru_abort = rts_abort, 286 .pru_attach = rts_attach, 287 .pru_bind = rts_bind, 288 .pru_connect = rts_connect, 289 .pru_detach = rts_detach, 290 .pru_disconnect = rts_disconnect, 291 .pru_peeraddr = rts_peeraddr, 292 .pru_send = rts_send, 293 .pru_shutdown = rts_shutdown, 294 .pru_sockaddr = rts_sockaddr, 295 }; 296 297 /*ARGSUSED*/ 298 static int 299 route_output(struct mbuf *m, struct socket *so) 300 { 301 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 302 struct rt_msghdr *rtm = NULL; 303 struct rtentry *rt = NULL; 304 struct radix_node_head *rnh; 305 struct rt_addrinfo info; 306 int len, error = 0; 307 struct ifnet *ifp = NULL; 308 struct ifaddr *ifa = NULL; 309 struct sockaddr_in jail; 310 311 #define senderr(e) { error = e; goto flush;} 312 if (m == NULL || ((m->m_len < sizeof(long)) && 313 (m = m_pullup(m, sizeof(long))) == NULL)) 314 return (ENOBUFS); 315 if ((m->m_flags & M_PKTHDR) == 0) 316 panic("route_output"); 317 len = m->m_pkthdr.len; 318 if (len < sizeof(*rtm) || 319 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 320 info.rti_info[RTAX_DST] = NULL; 321 senderr(EINVAL); 322 } 323 R_Malloc(rtm, struct rt_msghdr *, len); 324 if (rtm == NULL) { 325 info.rti_info[RTAX_DST] = NULL; 326 senderr(ENOBUFS); 327 } 328 m_copydata(m, 0, len, (caddr_t)rtm); 329 if (rtm->rtm_version != RTM_VERSION) { 330 info.rti_info[RTAX_DST] = NULL; 331 senderr(EPROTONOSUPPORT); 332 } 333 rtm->rtm_pid = curproc->p_pid; 334 bzero(&info, sizeof(info)); 335 info.rti_addrs = rtm->rtm_addrs; 336 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 337 info.rti_info[RTAX_DST] = NULL; 338 senderr(EINVAL); 339 } 340 info.rti_flags = rtm->rtm_flags; 341 if (info.rti_info[RTAX_DST] == NULL || 342 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 343 (info.rti_info[RTAX_GATEWAY] != NULL && 344 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 345 senderr(EINVAL); 346 if (info.rti_info[RTAX_GENMASK]) { 347 struct radix_node *t; 348 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1); 349 if (t != NULL && 350 bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1, 351 (char *)(void *)t->rn_key + 1, 352 ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0) 353 info.rti_info[RTAX_GENMASK] = 354 (struct sockaddr *)t->rn_key; 355 else 356 senderr(ENOBUFS); 357 } 358 359 /* 360 * Verify that the caller has the appropriate privilege; RTM_GET 361 * is the only operation the non-superuser is allowed. 362 */ 363 if (rtm->rtm_type != RTM_GET && (error = suser(curthread)) != 0) 364 senderr(error); 365 366 switch (rtm->rtm_type) { 367 struct rtentry *saved_nrt; 368 369 case RTM_ADD: 370 if (info.rti_info[RTAX_GATEWAY] == NULL) 371 senderr(EINVAL); 372 saved_nrt = NULL; 373 error = rtrequest1(RTM_ADD, &info, &saved_nrt); 374 if (error == 0 && saved_nrt) { 375 RT_LOCK(saved_nrt); 376 rt_setmetrics(rtm->rtm_inits, 377 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 378 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 379 RT_REMREF(saved_nrt); 380 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; 381 RT_UNLOCK(saved_nrt); 382 } 383 break; 384 385 case RTM_DELETE: 386 saved_nrt = NULL; 387 error = rtrequest1(RTM_DELETE, &info, &saved_nrt); 388 if (error == 0) { 389 RT_LOCK(saved_nrt); 390 rt = saved_nrt; 391 goto report; 392 } 393 break; 394 395 case RTM_GET: 396 case RTM_CHANGE: 397 case RTM_LOCK: 398 rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family]; 399 if (rnh == NULL) 400 senderr(EAFNOSUPPORT); 401 RADIX_NODE_HEAD_LOCK(rnh); 402 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 403 info.rti_info[RTAX_NETMASK], rnh); 404 if (rt == NULL) { /* XXX looks bogus */ 405 RADIX_NODE_HEAD_UNLOCK(rnh); 406 senderr(ESRCH); 407 } 408 RT_LOCK(rt); 409 RT_ADDREF(rt); 410 RADIX_NODE_HEAD_UNLOCK(rnh); 411 412 /* 413 * Fix for PR: 82974 414 * 415 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 416 * returns a perfect match in case a netmask is 417 * specified. For host routes only a longest prefix 418 * match is returned so it is necessary to compare the 419 * existence of the netmask. If both have a netmask 420 * rnh_lookup() did a perfect match and if none of them 421 * have a netmask both are host routes which is also a 422 * perfect match. 423 */ 424 425 if (rtm->rtm_type != RTM_GET && 426 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 427 RT_UNLOCK(rt); 428 senderr(ESRCH); 429 } 430 431 switch(rtm->rtm_type) { 432 433 case RTM_GET: 434 report: 435 RT_LOCK_ASSERT(rt); 436 info.rti_info[RTAX_DST] = rt_key(rt); 437 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 438 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 439 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 440 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 441 ifp = rt->rt_ifp; 442 if (ifp) { 443 info.rti_info[RTAX_IFP] = 444 ifp->if_addr->ifa_addr; 445 if (jailed(so->so_cred)) { 446 bzero(&jail, sizeof(jail)); 447 jail.sin_family = PF_INET; 448 jail.sin_len = sizeof(jail); 449 jail.sin_addr.s_addr = 450 htonl(prison_getip(so->so_cred)); 451 info.rti_info[RTAX_IFA] = 452 (struct sockaddr *)&jail; 453 } else 454 info.rti_info[RTAX_IFA] = 455 rt->rt_ifa->ifa_addr; 456 if (ifp->if_flags & IFF_POINTOPOINT) 457 info.rti_info[RTAX_BRD] = 458 rt->rt_ifa->ifa_dstaddr; 459 rtm->rtm_index = ifp->if_index; 460 } else { 461 info.rti_info[RTAX_IFP] = NULL; 462 info.rti_info[RTAX_IFA] = NULL; 463 } 464 } else if ((ifp = rt->rt_ifp) != NULL) { 465 rtm->rtm_index = ifp->if_index; 466 } 467 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 468 if (len > rtm->rtm_msglen) { 469 struct rt_msghdr *new_rtm; 470 R_Malloc(new_rtm, struct rt_msghdr *, len); 471 if (new_rtm == NULL) { 472 RT_UNLOCK(rt); 473 senderr(ENOBUFS); 474 } 475 bcopy(rtm, new_rtm, rtm->rtm_msglen); 476 Free(rtm); rtm = new_rtm; 477 } 478 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 479 rtm->rtm_flags = rt->rt_flags; 480 rtm->rtm_use = 0; 481 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 482 rtm->rtm_addrs = info.rti_addrs; 483 break; 484 485 case RTM_CHANGE: 486 /* 487 * New gateway could require new ifaddr, ifp; 488 * flags may also be different; ifp may be specified 489 * by ll sockaddr when protocol address is ambiguous 490 */ 491 if (((rt->rt_flags & RTF_GATEWAY) && 492 info.rti_info[RTAX_GATEWAY] != NULL) || 493 info.rti_info[RTAX_IFP] != NULL || 494 (info.rti_info[RTAX_IFA] != NULL && 495 !sa_equal(info.rti_info[RTAX_IFA], 496 rt->rt_ifa->ifa_addr))) { 497 RT_UNLOCK(rt); 498 if ((error = rt_getifa(&info)) != 0) 499 senderr(error); 500 RT_LOCK(rt); 501 } 502 if (info.rti_info[RTAX_GATEWAY] != NULL && 503 (error = rt_setgate(rt, rt_key(rt), 504 info.rti_info[RTAX_GATEWAY])) != 0) { 505 RT_UNLOCK(rt); 506 senderr(error); 507 } 508 if ((ifa = info.rti_ifa) != NULL) { 509 struct ifaddr *oifa = rt->rt_ifa; 510 if (oifa != ifa) { 511 if (oifa) { 512 if (oifa->ifa_rtrequest) 513 oifa->ifa_rtrequest( 514 RTM_DELETE, rt, 515 &info); 516 IFAFREE(oifa); 517 } 518 IFAREF(ifa); 519 rt->rt_ifa = ifa; 520 rt->rt_ifp = info.rti_ifp; 521 } 522 } 523 /* Allow some flags to be toggled on change. */ 524 if (rtm->rtm_fmask & RTF_FMASK) 525 rt->rt_flags = (rt->rt_flags & 526 ~rtm->rtm_fmask) | 527 (rtm->rtm_flags & rtm->rtm_fmask); 528 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 529 &rt->rt_rmx); 530 rtm->rtm_index = rt->rt_ifp->if_index; 531 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 532 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 533 if (info.rti_info[RTAX_GENMASK]) 534 rt->rt_genmask = info.rti_info[RTAX_GENMASK]; 535 /* FALLTHROUGH */ 536 case RTM_LOCK: 537 /* We don't support locks anymore */ 538 break; 539 } 540 RT_UNLOCK(rt); 541 break; 542 543 default: 544 senderr(EOPNOTSUPP); 545 } 546 547 flush: 548 if (rtm) { 549 if (error) 550 rtm->rtm_errno = error; 551 else 552 rtm->rtm_flags |= RTF_DONE; 553 } 554 if (rt) /* XXX can this be true? */ 555 RTFREE(rt); 556 { 557 struct rawcb *rp = NULL; 558 /* 559 * Check to see if we don't want our own messages. 560 */ 561 if ((so->so_options & SO_USELOOPBACK) == 0) { 562 if (route_cb.any_count <= 1) { 563 if (rtm) 564 Free(rtm); 565 m_freem(m); 566 return (error); 567 } 568 /* There is another listener, so construct message */ 569 rp = sotorawcb(so); 570 } 571 if (rtm) { 572 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 573 if (m->m_pkthdr.len < rtm->rtm_msglen) { 574 m_freem(m); 575 m = NULL; 576 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 577 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 578 Free(rtm); 579 } 580 if (m) { 581 if (rp) { 582 /* 583 * XXX insure we don't get a copy by 584 * invalidating our protocol 585 */ 586 unsigned short family = rp->rcb_proto.sp_family; 587 rp->rcb_proto.sp_family = 0; 588 rt_dispatch(m, info.rti_info[RTAX_DST]); 589 rp->rcb_proto.sp_family = family; 590 } else 591 rt_dispatch(m, info.rti_info[RTAX_DST]); 592 } 593 } 594 return (error); 595 #undef sa_equal 596 } 597 598 static void 599 rt_setmetrics(u_long which, const struct rt_metrics *in, 600 struct rt_metrics_lite *out) 601 { 602 #define metric(f, e) if (which & (f)) out->e = in->e; 603 /* 604 * Only these are stored in the routing entry since introduction 605 * of tcp hostcache. The rest is ignored. 606 */ 607 metric(RTV_MTU, rmx_mtu); 608 /* Userland -> kernel timebase conversion. */ 609 if (which & RTV_EXPIRE) 610 out->rmx_expire = in->rmx_expire ? 611 in->rmx_expire - time_second + time_uptime : 0; 612 #undef metric 613 } 614 615 static void 616 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 617 { 618 #define metric(e) out->e = in->e; 619 bzero(out, sizeof(*out)); 620 metric(rmx_mtu); 621 /* Kernel -> userland timebase conversion. */ 622 out->rmx_expire = in->rmx_expire ? 623 in->rmx_expire - time_uptime + time_second : 0; 624 #undef metric 625 } 626 627 /* 628 * Extract the addresses of the passed sockaddrs. 629 * Do a little sanity checking so as to avoid bad memory references. 630 * This data is derived straight from userland. 631 */ 632 static int 633 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 634 { 635 struct sockaddr *sa; 636 int i; 637 638 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 639 if ((rtinfo->rti_addrs & (1 << i)) == 0) 640 continue; 641 sa = (struct sockaddr *)cp; 642 /* 643 * It won't fit. 644 */ 645 if (cp + sa->sa_len > cplim) 646 return (EINVAL); 647 /* 648 * there are no more.. quit now 649 * If there are more bits, they are in error. 650 * I've seen this. route(1) can evidently generate these. 651 * This causes kernel to core dump. 652 * for compatibility, If we see this, point to a safe address. 653 */ 654 if (sa->sa_len == 0) { 655 rtinfo->rti_info[i] = &sa_zero; 656 return (0); /* should be EINVAL but for compat */ 657 } 658 /* accept it */ 659 rtinfo->rti_info[i] = sa; 660 cp += SA_SIZE(sa); 661 } 662 return (0); 663 } 664 665 static struct mbuf * 666 rt_msg1(int type, struct rt_addrinfo *rtinfo) 667 { 668 struct rt_msghdr *rtm; 669 struct mbuf *m; 670 int i; 671 struct sockaddr *sa; 672 int len, dlen; 673 674 switch (type) { 675 676 case RTM_DELADDR: 677 case RTM_NEWADDR: 678 len = sizeof(struct ifa_msghdr); 679 break; 680 681 case RTM_DELMADDR: 682 case RTM_NEWMADDR: 683 len = sizeof(struct ifma_msghdr); 684 break; 685 686 case RTM_IFINFO: 687 len = sizeof(struct if_msghdr); 688 break; 689 690 case RTM_IFANNOUNCE: 691 case RTM_IEEE80211: 692 len = sizeof(struct if_announcemsghdr); 693 break; 694 695 default: 696 len = sizeof(struct rt_msghdr); 697 } 698 if (len > MCLBYTES) 699 panic("rt_msg1"); 700 m = m_gethdr(M_DONTWAIT, MT_DATA); 701 if (m && len > MHLEN) { 702 MCLGET(m, M_DONTWAIT); 703 if ((m->m_flags & M_EXT) == 0) { 704 m_free(m); 705 m = NULL; 706 } 707 } 708 if (m == NULL) 709 return (m); 710 m->m_pkthdr.len = m->m_len = len; 711 m->m_pkthdr.rcvif = NULL; 712 rtm = mtod(m, struct rt_msghdr *); 713 bzero((caddr_t)rtm, len); 714 for (i = 0; i < RTAX_MAX; i++) { 715 if ((sa = rtinfo->rti_info[i]) == NULL) 716 continue; 717 rtinfo->rti_addrs |= (1 << i); 718 dlen = SA_SIZE(sa); 719 m_copyback(m, len, dlen, (caddr_t)sa); 720 len += dlen; 721 } 722 if (m->m_pkthdr.len != len) { 723 m_freem(m); 724 return (NULL); 725 } 726 rtm->rtm_msglen = len; 727 rtm->rtm_version = RTM_VERSION; 728 rtm->rtm_type = type; 729 return (m); 730 } 731 732 static int 733 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 734 { 735 int i; 736 int len, dlen, second_time = 0; 737 caddr_t cp0; 738 739 rtinfo->rti_addrs = 0; 740 again: 741 switch (type) { 742 743 case RTM_DELADDR: 744 case RTM_NEWADDR: 745 len = sizeof(struct ifa_msghdr); 746 break; 747 748 case RTM_IFINFO: 749 len = sizeof(struct if_msghdr); 750 break; 751 752 case RTM_NEWMADDR: 753 len = sizeof(struct ifma_msghdr); 754 break; 755 756 default: 757 len = sizeof(struct rt_msghdr); 758 } 759 cp0 = cp; 760 if (cp0) 761 cp += len; 762 for (i = 0; i < RTAX_MAX; i++) { 763 struct sockaddr *sa; 764 765 if ((sa = rtinfo->rti_info[i]) == NULL) 766 continue; 767 rtinfo->rti_addrs |= (1 << i); 768 dlen = SA_SIZE(sa); 769 if (cp) { 770 bcopy((caddr_t)sa, cp, (unsigned)dlen); 771 cp += dlen; 772 } 773 len += dlen; 774 } 775 len = ALIGN(len); 776 if (cp == NULL && w != NULL && !second_time) { 777 struct walkarg *rw = w; 778 779 if (rw->w_req) { 780 if (rw->w_tmemsize < len) { 781 if (rw->w_tmem) 782 free(rw->w_tmem, M_RTABLE); 783 rw->w_tmem = (caddr_t) 784 malloc(len, M_RTABLE, M_NOWAIT); 785 if (rw->w_tmem) 786 rw->w_tmemsize = len; 787 } 788 if (rw->w_tmem) { 789 cp = rw->w_tmem; 790 second_time = 1; 791 goto again; 792 } 793 } 794 } 795 if (cp) { 796 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 797 798 rtm->rtm_version = RTM_VERSION; 799 rtm->rtm_type = type; 800 rtm->rtm_msglen = len; 801 } 802 return (len); 803 } 804 805 /* 806 * This routine is called to generate a message from the routing 807 * socket indicating that a redirect has occured, a routing lookup 808 * has failed, or that a protocol has detected timeouts to a particular 809 * destination. 810 */ 811 void 812 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 813 { 814 struct rt_msghdr *rtm; 815 struct mbuf *m; 816 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 817 818 if (route_cb.any_count == 0) 819 return; 820 m = rt_msg1(type, rtinfo); 821 if (m == NULL) 822 return; 823 rtm = mtod(m, struct rt_msghdr *); 824 rtm->rtm_flags = RTF_DONE | flags; 825 rtm->rtm_errno = error; 826 rtm->rtm_addrs = rtinfo->rti_addrs; 827 rt_dispatch(m, sa); 828 } 829 830 /* 831 * This routine is called to generate a message from the routing 832 * socket indicating that the status of a network interface has changed. 833 */ 834 void 835 rt_ifmsg(struct ifnet *ifp) 836 { 837 struct if_msghdr *ifm; 838 struct mbuf *m; 839 struct rt_addrinfo info; 840 841 if (route_cb.any_count == 0) 842 return; 843 bzero((caddr_t)&info, sizeof(info)); 844 m = rt_msg1(RTM_IFINFO, &info); 845 if (m == NULL) 846 return; 847 ifm = mtod(m, struct if_msghdr *); 848 ifm->ifm_index = ifp->if_index; 849 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 850 ifm->ifm_data = ifp->if_data; 851 ifm->ifm_addrs = 0; 852 rt_dispatch(m, NULL); 853 } 854 855 /* 856 * This is called to generate messages from the routing socket 857 * indicating a network interface has had addresses associated with it. 858 * if we ever reverse the logic and replace messages TO the routing 859 * socket indicate a request to configure interfaces, then it will 860 * be unnecessary as the routing socket will automatically generate 861 * copies of it. 862 */ 863 void 864 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 865 { 866 struct rt_addrinfo info; 867 struct sockaddr *sa = NULL; 868 int pass; 869 struct mbuf *m = NULL; 870 struct ifnet *ifp = ifa->ifa_ifp; 871 872 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 873 ("unexpected cmd %u", cmd)); 874 875 if (route_cb.any_count == 0) 876 return; 877 for (pass = 1; pass < 3; pass++) { 878 bzero((caddr_t)&info, sizeof(info)); 879 if ((cmd == RTM_ADD && pass == 1) || 880 (cmd == RTM_DELETE && pass == 2)) { 881 struct ifa_msghdr *ifam; 882 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 883 884 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 885 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 886 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 887 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 888 if ((m = rt_msg1(ncmd, &info)) == NULL) 889 continue; 890 ifam = mtod(m, struct ifa_msghdr *); 891 ifam->ifam_index = ifp->if_index; 892 ifam->ifam_metric = ifa->ifa_metric; 893 ifam->ifam_flags = ifa->ifa_flags; 894 ifam->ifam_addrs = info.rti_addrs; 895 } 896 if ((cmd == RTM_ADD && pass == 2) || 897 (cmd == RTM_DELETE && pass == 1)) { 898 struct rt_msghdr *rtm; 899 900 if (rt == NULL) 901 continue; 902 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 903 info.rti_info[RTAX_DST] = sa = rt_key(rt); 904 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 905 if ((m = rt_msg1(cmd, &info)) == NULL) 906 continue; 907 rtm = mtod(m, struct rt_msghdr *); 908 rtm->rtm_index = ifp->if_index; 909 rtm->rtm_flags |= rt->rt_flags; 910 rtm->rtm_errno = error; 911 rtm->rtm_addrs = info.rti_addrs; 912 } 913 rt_dispatch(m, sa); 914 } 915 } 916 917 /* 918 * This is the analogue to the rt_newaddrmsg which performs the same 919 * function but for multicast group memberhips. This is easier since 920 * there is no route state to worry about. 921 */ 922 void 923 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 924 { 925 struct rt_addrinfo info; 926 struct mbuf *m = NULL; 927 struct ifnet *ifp = ifma->ifma_ifp; 928 struct ifma_msghdr *ifmam; 929 930 if (route_cb.any_count == 0) 931 return; 932 933 bzero((caddr_t)&info, sizeof(info)); 934 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 935 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 936 /* 937 * If a link-layer address is present, present it as a ``gateway'' 938 * (similarly to how ARP entries, e.g., are presented). 939 */ 940 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 941 m = rt_msg1(cmd, &info); 942 if (m == NULL) 943 return; 944 ifmam = mtod(m, struct ifma_msghdr *); 945 ifmam->ifmam_index = ifp->if_index; 946 ifmam->ifmam_addrs = info.rti_addrs; 947 rt_dispatch(m, ifma->ifma_addr); 948 } 949 950 static struct mbuf * 951 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 952 struct rt_addrinfo *info) 953 { 954 struct if_announcemsghdr *ifan; 955 struct mbuf *m; 956 957 if (route_cb.any_count == 0) 958 return NULL; 959 bzero((caddr_t)info, sizeof(*info)); 960 m = rt_msg1(type, info); 961 if (m != NULL) { 962 ifan = mtod(m, struct if_announcemsghdr *); 963 ifan->ifan_index = ifp->if_index; 964 strlcpy(ifan->ifan_name, ifp->if_xname, 965 sizeof(ifan->ifan_name)); 966 ifan->ifan_what = what; 967 } 968 return m; 969 } 970 971 /* 972 * This is called to generate routing socket messages indicating 973 * IEEE80211 wireless events. 974 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 975 */ 976 void 977 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 978 { 979 struct mbuf *m; 980 struct rt_addrinfo info; 981 982 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 983 if (m != NULL) { 984 /* 985 * Append the ieee80211 data. Try to stick it in the 986 * mbuf containing the ifannounce msg; otherwise allocate 987 * a new mbuf and append. 988 * 989 * NB: we assume m is a single mbuf. 990 */ 991 if (data_len > M_TRAILINGSPACE(m)) { 992 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 993 if (n == NULL) { 994 m_freem(m); 995 return; 996 } 997 bcopy(data, mtod(n, void *), data_len); 998 n->m_len = data_len; 999 m->m_next = n; 1000 } else if (data_len > 0) { 1001 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1002 m->m_len += data_len; 1003 } 1004 if (m->m_flags & M_PKTHDR) 1005 m->m_pkthdr.len += data_len; 1006 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1007 rt_dispatch(m, NULL); 1008 } 1009 } 1010 1011 /* 1012 * This is called to generate routing socket messages indicating 1013 * network interface arrival and departure. 1014 */ 1015 void 1016 rt_ifannouncemsg(struct ifnet *ifp, int what) 1017 { 1018 struct mbuf *m; 1019 struct rt_addrinfo info; 1020 1021 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1022 if (m != NULL) 1023 rt_dispatch(m, NULL); 1024 } 1025 1026 static void 1027 rt_dispatch(struct mbuf *m, const struct sockaddr *sa) 1028 { 1029 struct m_tag *tag; 1030 1031 /* 1032 * Preserve the family from the sockaddr, if any, in an m_tag for 1033 * use when injecting the mbuf into the routing socket buffer from 1034 * the netisr. 1035 */ 1036 if (sa != NULL) { 1037 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1038 M_NOWAIT); 1039 if (tag == NULL) { 1040 m_freem(m); 1041 return; 1042 } 1043 *(unsigned short *)(tag + 1) = sa->sa_family; 1044 m_tag_prepend(m, tag); 1045 } 1046 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1047 } 1048 1049 /* 1050 * This is used in dumping the kernel table via sysctl(). 1051 */ 1052 static int 1053 sysctl_dumpentry(struct radix_node *rn, void *vw) 1054 { 1055 struct walkarg *w = vw; 1056 struct rtentry *rt = (struct rtentry *)rn; 1057 int error = 0, size; 1058 struct rt_addrinfo info; 1059 1060 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1061 return 0; 1062 bzero((caddr_t)&info, sizeof(info)); 1063 info.rti_info[RTAX_DST] = rt_key(rt); 1064 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1065 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1066 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 1067 if (rt->rt_ifp) { 1068 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1069 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1070 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1071 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1072 } 1073 size = rt_msg2(RTM_GET, &info, NULL, w); 1074 if (w->w_req && w->w_tmem) { 1075 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1076 1077 rtm->rtm_flags = rt->rt_flags; 1078 rtm->rtm_use = rt->rt_rmx.rmx_pksent; 1079 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1080 rtm->rtm_index = rt->rt_ifp->if_index; 1081 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1082 rtm->rtm_addrs = info.rti_addrs; 1083 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1084 return (error); 1085 } 1086 return (error); 1087 } 1088 1089 static int 1090 sysctl_iflist(int af, struct walkarg *w) 1091 { 1092 struct ifnet *ifp; 1093 struct ifaddr *ifa; 1094 struct rt_addrinfo info; 1095 int len, error = 0; 1096 1097 bzero((caddr_t)&info, sizeof(info)); 1098 IFNET_RLOCK(); 1099 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1100 if (w->w_arg && w->w_arg != ifp->if_index) 1101 continue; 1102 ifa = ifp->if_addr; 1103 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1104 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1105 info.rti_info[RTAX_IFP] = NULL; 1106 if (w->w_req && w->w_tmem) { 1107 struct if_msghdr *ifm; 1108 1109 ifm = (struct if_msghdr *)w->w_tmem; 1110 ifm->ifm_index = ifp->if_index; 1111 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1112 ifm->ifm_data = ifp->if_data; 1113 ifm->ifm_addrs = info.rti_addrs; 1114 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); 1115 if (error) 1116 goto done; 1117 } 1118 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1119 if (af && af != ifa->ifa_addr->sa_family) 1120 continue; 1121 if (jailed(curthread->td_ucred) && 1122 prison_if(curthread->td_ucred, ifa->ifa_addr)) 1123 continue; 1124 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1125 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1126 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1127 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1128 if (w->w_req && w->w_tmem) { 1129 struct ifa_msghdr *ifam; 1130 1131 ifam = (struct ifa_msghdr *)w->w_tmem; 1132 ifam->ifam_index = ifa->ifa_ifp->if_index; 1133 ifam->ifam_flags = ifa->ifa_flags; 1134 ifam->ifam_metric = ifa->ifa_metric; 1135 ifam->ifam_addrs = info.rti_addrs; 1136 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1137 if (error) 1138 goto done; 1139 } 1140 } 1141 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1142 info.rti_info[RTAX_BRD] = NULL; 1143 } 1144 done: 1145 IFNET_RUNLOCK(); 1146 return (error); 1147 } 1148 1149 int 1150 sysctl_ifmalist(int af, struct walkarg *w) 1151 { 1152 struct ifnet *ifp; 1153 struct ifmultiaddr *ifma; 1154 struct rt_addrinfo info; 1155 int len, error = 0; 1156 struct ifaddr *ifa; 1157 1158 bzero((caddr_t)&info, sizeof(info)); 1159 IFNET_RLOCK(); 1160 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1161 if (w->w_arg && w->w_arg != ifp->if_index) 1162 continue; 1163 ifa = ifp->if_addr; 1164 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1165 IF_ADDR_LOCK(ifp); 1166 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1167 if (af && af != ifma->ifma_addr->sa_family) 1168 continue; 1169 if (jailed(curproc->p_ucred) && 1170 prison_if(curproc->p_ucred, ifma->ifma_addr)) 1171 continue; 1172 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1173 info.rti_info[RTAX_GATEWAY] = 1174 (ifma->ifma_addr->sa_family != AF_LINK) ? 1175 ifma->ifma_lladdr : NULL; 1176 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1177 if (w->w_req && w->w_tmem) { 1178 struct ifma_msghdr *ifmam; 1179 1180 ifmam = (struct ifma_msghdr *)w->w_tmem; 1181 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1182 ifmam->ifmam_flags = 0; 1183 ifmam->ifmam_addrs = info.rti_addrs; 1184 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1185 if (error) { 1186 IF_ADDR_UNLOCK(ifp); 1187 goto done; 1188 } 1189 } 1190 } 1191 IF_ADDR_UNLOCK(ifp); 1192 } 1193 done: 1194 IFNET_RUNLOCK(); 1195 return (error); 1196 } 1197 1198 static int 1199 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1200 { 1201 int *name = (int *)arg1; 1202 u_int namelen = arg2; 1203 struct radix_node_head *rnh; 1204 int i, lim, error = EINVAL; 1205 u_char af; 1206 struct walkarg w; 1207 1208 name ++; 1209 namelen--; 1210 if (req->newptr) 1211 return (EPERM); 1212 if (namelen != 3) 1213 return ((namelen < 3) ? EISDIR : ENOTDIR); 1214 af = name[0]; 1215 if (af > AF_MAX) 1216 return (EINVAL); 1217 bzero(&w, sizeof(w)); 1218 w.w_op = name[1]; 1219 w.w_arg = name[2]; 1220 w.w_req = req; 1221 1222 error = sysctl_wire_old_buffer(req, 0); 1223 if (error) 1224 return (error); 1225 switch (w.w_op) { 1226 1227 case NET_RT_DUMP: 1228 case NET_RT_FLAGS: 1229 if (af == 0) { /* dump all tables */ 1230 i = 1; 1231 lim = AF_MAX; 1232 } else /* dump only one table */ 1233 i = lim = af; 1234 for (error = 0; error == 0 && i <= lim; i++) 1235 if ((rnh = rt_tables[i]) != NULL) { 1236 RADIX_NODE_HEAD_LOCK(rnh); 1237 error = rnh->rnh_walktree(rnh, 1238 sysctl_dumpentry, &w); 1239 RADIX_NODE_HEAD_UNLOCK(rnh); 1240 } else if (af != 0) 1241 error = EAFNOSUPPORT; 1242 break; 1243 1244 case NET_RT_IFLIST: 1245 error = sysctl_iflist(af, &w); 1246 break; 1247 1248 case NET_RT_IFMALIST: 1249 error = sysctl_ifmalist(af, &w); 1250 break; 1251 } 1252 if (w.w_tmem) 1253 free(w.w_tmem, M_RTABLE); 1254 return (error); 1255 } 1256 1257 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1258 1259 /* 1260 * Definitions of protocols supported in the ROUTE domain. 1261 */ 1262 1263 static struct domain routedomain; /* or at least forward */ 1264 1265 static struct protosw routesw[] = { 1266 { 1267 .pr_type = SOCK_RAW, 1268 .pr_domain = &routedomain, 1269 .pr_flags = PR_ATOMIC|PR_ADDR, 1270 .pr_output = route_output, 1271 .pr_ctlinput = raw_ctlinput, 1272 .pr_init = raw_init, 1273 .pr_usrreqs = &route_usrreqs 1274 } 1275 }; 1276 1277 static struct domain routedomain = { 1278 .dom_family = PF_ROUTE, 1279 .dom_name = "route", 1280 .dom_protosw = routesw, 1281 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1282 }; 1283 1284 DOMAIN_SET(route); 1285