1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_sctp.h" 33 #include "opt_mpath.h" 34 35 #include <sys/param.h> 36 #include <sys/domain.h> 37 #include <sys/kernel.h> 38 #include <sys/jail.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/priv.h> 42 #include <sys/proc.h> 43 #include <sys/protosw.h> 44 #include <sys/signalvar.h> 45 #include <sys/socket.h> 46 #include <sys/socketvar.h> 47 #include <sys/sysctl.h> 48 #include <sys/systm.h> 49 50 #include <net/if.h> 51 #include <net/netisr.h> 52 #include <net/raw_cb.h> 53 #include <net/route.h> 54 55 #include <netinet/in.h> 56 57 #ifdef SCTP 58 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 59 #endif /* SCTP */ 60 61 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 62 63 /* NB: these are not modified */ 64 static struct sockaddr route_src = { 2, PF_ROUTE, }; 65 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 66 67 static struct { 68 int ip_count; /* attached w/ AF_INET */ 69 int ip6_count; /* attached w/ AF_INET6 */ 70 int ipx_count; /* attached w/ AF_IPX */ 71 int any_count; /* total attached */ 72 } route_cb; 73 74 struct mtx rtsock_mtx; 75 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 76 77 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 78 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 79 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 80 81 static struct ifqueue rtsintrq; 82 83 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 84 SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW, 85 &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length"); 86 87 struct walkarg { 88 int w_tmemsize; 89 int w_op, w_arg; 90 caddr_t w_tmem; 91 struct sysctl_req *w_req; 92 }; 93 94 static void rts_input(struct mbuf *m); 95 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 96 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 97 caddr_t cp, struct walkarg *w); 98 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 99 struct rt_addrinfo *rtinfo); 100 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 101 static int sysctl_iflist(int af, struct walkarg *w); 102 static int sysctl_ifmalist(int af, struct walkarg *w); 103 static int route_output(struct mbuf *m, struct socket *so); 104 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 105 struct rt_metrics_lite *out); 106 static void rt_getmetrics(const struct rt_metrics_lite *in, 107 struct rt_metrics *out); 108 static void rt_dispatch(struct mbuf *, const struct sockaddr *); 109 110 static void 111 rts_init(void) 112 { 113 int tmp; 114 115 rtsintrq.ifq_maxlen = 256; 116 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 117 rtsintrq.ifq_maxlen = tmp; 118 mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF); 119 netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, 0); 120 } 121 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 122 123 static void 124 rts_input(struct mbuf *m) 125 { 126 struct sockproto route_proto; 127 unsigned short *family; 128 struct m_tag *tag; 129 130 route_proto.sp_family = PF_ROUTE; 131 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 132 if (tag != NULL) { 133 family = (unsigned short *)(tag + 1); 134 route_proto.sp_protocol = *family; 135 m_tag_delete(m, tag); 136 } else 137 route_proto.sp_protocol = 0; 138 139 raw_input(m, &route_proto, &route_src); 140 } 141 142 /* 143 * It really doesn't make any sense at all for this code to share much 144 * with raw_usrreq.c, since its functionality is so restricted. XXX 145 */ 146 static void 147 rts_abort(struct socket *so) 148 { 149 150 raw_usrreqs.pru_abort(so); 151 } 152 153 static void 154 rts_close(struct socket *so) 155 { 156 157 raw_usrreqs.pru_close(so); 158 } 159 160 /* pru_accept is EOPNOTSUPP */ 161 162 static int 163 rts_attach(struct socket *so, int proto, struct thread *td) 164 { 165 struct rawcb *rp; 166 int s, error; 167 168 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 169 170 /* XXX */ 171 MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 172 if (rp == NULL) 173 return ENOBUFS; 174 175 /* 176 * The splnet() is necessary to block protocols from sending 177 * error notifications (like RTM_REDIRECT or RTM_LOSING) while 178 * this PCB is extant but incompletely initialized. 179 * Probably we should try to do more of this work beforehand and 180 * eliminate the spl. 181 */ 182 s = splnet(); 183 so->so_pcb = (caddr_t)rp; 184 so->so_fibnum = td->td_proc->p_fibnum; 185 error = raw_attach(so, proto); 186 rp = sotorawcb(so); 187 if (error) { 188 splx(s); 189 so->so_pcb = NULL; 190 free(rp, M_PCB); 191 return error; 192 } 193 RTSOCK_LOCK(); 194 switch(rp->rcb_proto.sp_protocol) { 195 case AF_INET: 196 route_cb.ip_count++; 197 break; 198 case AF_INET6: 199 route_cb.ip6_count++; 200 break; 201 case AF_IPX: 202 route_cb.ipx_count++; 203 break; 204 } 205 route_cb.any_count++; 206 RTSOCK_UNLOCK(); 207 soisconnected(so); 208 so->so_options |= SO_USELOOPBACK; 209 splx(s); 210 return 0; 211 } 212 213 static int 214 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 215 { 216 217 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 218 } 219 220 static int 221 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 222 { 223 224 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 225 } 226 227 /* pru_connect2 is EOPNOTSUPP */ 228 /* pru_control is EOPNOTSUPP */ 229 230 static void 231 rts_detach(struct socket *so) 232 { 233 struct rawcb *rp = sotorawcb(so); 234 235 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 236 237 RTSOCK_LOCK(); 238 switch(rp->rcb_proto.sp_protocol) { 239 case AF_INET: 240 route_cb.ip_count--; 241 break; 242 case AF_INET6: 243 route_cb.ip6_count--; 244 break; 245 case AF_IPX: 246 route_cb.ipx_count--; 247 break; 248 } 249 route_cb.any_count--; 250 RTSOCK_UNLOCK(); 251 raw_usrreqs.pru_detach(so); 252 } 253 254 static int 255 rts_disconnect(struct socket *so) 256 { 257 258 return (raw_usrreqs.pru_disconnect(so)); 259 } 260 261 /* pru_listen is EOPNOTSUPP */ 262 263 static int 264 rts_peeraddr(struct socket *so, struct sockaddr **nam) 265 { 266 267 return (raw_usrreqs.pru_peeraddr(so, nam)); 268 } 269 270 /* pru_rcvd is EOPNOTSUPP */ 271 /* pru_rcvoob is EOPNOTSUPP */ 272 273 static int 274 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 275 struct mbuf *control, struct thread *td) 276 { 277 278 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 279 } 280 281 /* pru_sense is null */ 282 283 static int 284 rts_shutdown(struct socket *so) 285 { 286 287 return (raw_usrreqs.pru_shutdown(so)); 288 } 289 290 static int 291 rts_sockaddr(struct socket *so, struct sockaddr **nam) 292 { 293 294 return (raw_usrreqs.pru_sockaddr(so, nam)); 295 } 296 297 static struct pr_usrreqs route_usrreqs = { 298 .pru_abort = rts_abort, 299 .pru_attach = rts_attach, 300 .pru_bind = rts_bind, 301 .pru_connect = rts_connect, 302 .pru_detach = rts_detach, 303 .pru_disconnect = rts_disconnect, 304 .pru_peeraddr = rts_peeraddr, 305 .pru_send = rts_send, 306 .pru_shutdown = rts_shutdown, 307 .pru_sockaddr = rts_sockaddr, 308 .pru_close = rts_close, 309 }; 310 311 /*ARGSUSED*/ 312 static int 313 route_output(struct mbuf *m, struct socket *so) 314 { 315 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 316 struct rt_msghdr *rtm = NULL; 317 struct rtentry *rt = NULL; 318 struct radix_node_head *rnh; 319 struct rt_addrinfo info; 320 int len, error = 0; 321 struct ifnet *ifp = NULL; 322 struct sockaddr_in jail; 323 324 #define senderr(e) { error = e; goto flush;} 325 if (m == NULL || ((m->m_len < sizeof(long)) && 326 (m = m_pullup(m, sizeof(long))) == NULL)) 327 return (ENOBUFS); 328 if ((m->m_flags & M_PKTHDR) == 0) 329 panic("route_output"); 330 len = m->m_pkthdr.len; 331 if (len < sizeof(*rtm) || 332 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 333 info.rti_info[RTAX_DST] = NULL; 334 senderr(EINVAL); 335 } 336 R_Malloc(rtm, struct rt_msghdr *, len); 337 if (rtm == NULL) { 338 info.rti_info[RTAX_DST] = NULL; 339 senderr(ENOBUFS); 340 } 341 m_copydata(m, 0, len, (caddr_t)rtm); 342 if (rtm->rtm_version != RTM_VERSION) { 343 info.rti_info[RTAX_DST] = NULL; 344 senderr(EPROTONOSUPPORT); 345 } 346 rtm->rtm_pid = curproc->p_pid; 347 bzero(&info, sizeof(info)); 348 info.rti_addrs = rtm->rtm_addrs; 349 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 350 info.rti_info[RTAX_DST] = NULL; 351 senderr(EINVAL); 352 } 353 info.rti_flags = rtm->rtm_flags; 354 if (info.rti_info[RTAX_DST] == NULL || 355 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 356 (info.rti_info[RTAX_GATEWAY] != NULL && 357 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 358 senderr(EINVAL); 359 if (info.rti_info[RTAX_GENMASK]) { 360 struct radix_node *t; 361 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1); 362 if (t != NULL && 363 bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1, 364 (char *)(void *)t->rn_key + 1, 365 ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0) 366 info.rti_info[RTAX_GENMASK] = 367 (struct sockaddr *)t->rn_key; 368 else 369 senderr(ENOBUFS); 370 } 371 372 /* 373 * Verify that the caller has the appropriate privilege; RTM_GET 374 * is the only operation the non-superuser is allowed. 375 */ 376 if (rtm->rtm_type != RTM_GET) { 377 error = priv_check(curthread, PRIV_NET_ROUTE); 378 if (error) 379 senderr(error); 380 } 381 382 switch (rtm->rtm_type) { 383 struct rtentry *saved_nrt; 384 385 case RTM_ADD: 386 if (info.rti_info[RTAX_GATEWAY] == NULL) 387 senderr(EINVAL); 388 saved_nrt = NULL; 389 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 390 so->so_fibnum); 391 if (error == 0 && saved_nrt) { 392 RT_LOCK(saved_nrt); 393 rt_setmetrics(rtm->rtm_inits, 394 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 395 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 396 RT_REMREF(saved_nrt); 397 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; 398 RT_UNLOCK(saved_nrt); 399 } 400 break; 401 402 case RTM_DELETE: 403 saved_nrt = NULL; 404 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 405 so->so_fibnum); 406 if (error == 0) { 407 RT_LOCK(saved_nrt); 408 rt = saved_nrt; 409 goto report; 410 } 411 break; 412 413 case RTM_GET: 414 case RTM_CHANGE: 415 case RTM_LOCK: 416 rnh = rt_tables[so->so_fibnum][info.rti_info[RTAX_DST]->sa_family]; 417 if (rnh == NULL) 418 senderr(EAFNOSUPPORT); 419 RADIX_NODE_HEAD_LOCK(rnh); 420 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 421 info.rti_info[RTAX_NETMASK], rnh); 422 if (rt == NULL) { /* XXX looks bogus */ 423 RADIX_NODE_HEAD_UNLOCK(rnh); 424 senderr(ESRCH); 425 } 426 #ifdef RADIX_MPATH 427 /* 428 * for RTM_CHANGE/LOCK, if we got multipath routes, 429 * we require users to specify a matching RTAX_GATEWAY. 430 * 431 * for RTM_GET, gate is optional even with multipath. 432 * if gate == NULL the first match is returned. 433 * (no need to call rt_mpath_matchgate if gate == NULL) 434 */ 435 if (rn_mpath_capable(rnh) && 436 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 437 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 438 if (!rt) { 439 RADIX_NODE_HEAD_UNLOCK(rnh); 440 senderr(ESRCH); 441 } 442 } 443 #endif 444 RT_LOCK(rt); 445 RT_ADDREF(rt); 446 RADIX_NODE_HEAD_UNLOCK(rnh); 447 448 /* 449 * Fix for PR: 82974 450 * 451 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 452 * returns a perfect match in case a netmask is 453 * specified. For host routes only a longest prefix 454 * match is returned so it is necessary to compare the 455 * existence of the netmask. If both have a netmask 456 * rnh_lookup() did a perfect match and if none of them 457 * have a netmask both are host routes which is also a 458 * perfect match. 459 */ 460 461 if (rtm->rtm_type != RTM_GET && 462 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 463 RT_UNLOCK(rt); 464 senderr(ESRCH); 465 } 466 467 switch(rtm->rtm_type) { 468 469 case RTM_GET: 470 report: 471 RT_LOCK_ASSERT(rt); 472 info.rti_info[RTAX_DST] = rt_key(rt); 473 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 474 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 475 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 476 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 477 ifp = rt->rt_ifp; 478 if (ifp) { 479 info.rti_info[RTAX_IFP] = 480 ifp->if_addr->ifa_addr; 481 if (jailed(so->so_cred)) { 482 bzero(&jail, sizeof(jail)); 483 jail.sin_family = PF_INET; 484 jail.sin_len = sizeof(jail); 485 jail.sin_addr.s_addr = 486 htonl(prison_getip(so->so_cred)); 487 info.rti_info[RTAX_IFA] = 488 (struct sockaddr *)&jail; 489 } else 490 info.rti_info[RTAX_IFA] = 491 rt->rt_ifa->ifa_addr; 492 if (ifp->if_flags & IFF_POINTOPOINT) 493 info.rti_info[RTAX_BRD] = 494 rt->rt_ifa->ifa_dstaddr; 495 rtm->rtm_index = ifp->if_index; 496 } else { 497 info.rti_info[RTAX_IFP] = NULL; 498 info.rti_info[RTAX_IFA] = NULL; 499 } 500 } else if ((ifp = rt->rt_ifp) != NULL) { 501 rtm->rtm_index = ifp->if_index; 502 } 503 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 504 if (len > rtm->rtm_msglen) { 505 struct rt_msghdr *new_rtm; 506 R_Malloc(new_rtm, struct rt_msghdr *, len); 507 if (new_rtm == NULL) { 508 RT_UNLOCK(rt); 509 senderr(ENOBUFS); 510 } 511 bcopy(rtm, new_rtm, rtm->rtm_msglen); 512 Free(rtm); rtm = new_rtm; 513 } 514 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 515 rtm->rtm_flags = rt->rt_flags; 516 rtm->rtm_use = 0; 517 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 518 rtm->rtm_addrs = info.rti_addrs; 519 break; 520 521 case RTM_CHANGE: 522 /* 523 * New gateway could require new ifaddr, ifp; 524 * flags may also be different; ifp may be specified 525 * by ll sockaddr when protocol address is ambiguous 526 */ 527 if (((rt->rt_flags & RTF_GATEWAY) && 528 info.rti_info[RTAX_GATEWAY] != NULL) || 529 info.rti_info[RTAX_IFP] != NULL || 530 (info.rti_info[RTAX_IFA] != NULL && 531 !sa_equal(info.rti_info[RTAX_IFA], 532 rt->rt_ifa->ifa_addr))) { 533 RT_UNLOCK(rt); 534 if ((error = rt_getifa_fib(&info, 535 rt->rt_fibnum)) != 0) 536 senderr(error); 537 RT_LOCK(rt); 538 } 539 if (info.rti_ifa != NULL && 540 info.rti_ifa != rt->rt_ifa && 541 rt->rt_ifa != NULL && 542 rt->rt_ifa->ifa_rtrequest != NULL) { 543 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 544 &info); 545 IFAFREE(rt->rt_ifa); 546 } 547 if (info.rti_info[RTAX_GATEWAY] != NULL) { 548 if ((error = rt_setgate(rt, rt_key(rt), 549 info.rti_info[RTAX_GATEWAY])) != 0) { 550 RT_UNLOCK(rt); 551 senderr(error); 552 } 553 if (!(rt->rt_flags & RTF_LLINFO)) 554 rt->rt_flags |= RTF_GATEWAY; 555 } 556 if (info.rti_ifa != NULL && 557 info.rti_ifa != rt->rt_ifa) { 558 IFAREF(info.rti_ifa); 559 rt->rt_ifa = info.rti_ifa; 560 rt->rt_ifp = info.rti_ifp; 561 } 562 /* Allow some flags to be toggled on change. */ 563 if (rtm->rtm_fmask & RTF_FMASK) 564 rt->rt_flags = (rt->rt_flags & 565 ~rtm->rtm_fmask) | 566 (rtm->rtm_flags & rtm->rtm_fmask); 567 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 568 &rt->rt_rmx); 569 rtm->rtm_index = rt->rt_ifp->if_index; 570 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 571 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 572 if (info.rti_info[RTAX_GENMASK]) 573 rt->rt_genmask = info.rti_info[RTAX_GENMASK]; 574 /* FALLTHROUGH */ 575 case RTM_LOCK: 576 /* We don't support locks anymore */ 577 break; 578 } 579 RT_UNLOCK(rt); 580 break; 581 582 default: 583 senderr(EOPNOTSUPP); 584 } 585 586 flush: 587 if (rtm) { 588 if (error) 589 rtm->rtm_errno = error; 590 else 591 rtm->rtm_flags |= RTF_DONE; 592 } 593 if (rt) /* XXX can this be true? */ 594 RTFREE(rt); 595 { 596 struct rawcb *rp = NULL; 597 /* 598 * Check to see if we don't want our own messages. 599 */ 600 if ((so->so_options & SO_USELOOPBACK) == 0) { 601 if (route_cb.any_count <= 1) { 602 if (rtm) 603 Free(rtm); 604 m_freem(m); 605 return (error); 606 } 607 /* There is another listener, so construct message */ 608 rp = sotorawcb(so); 609 } 610 if (rtm) { 611 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 612 if (m->m_pkthdr.len < rtm->rtm_msglen) { 613 m_freem(m); 614 m = NULL; 615 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 616 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 617 Free(rtm); 618 } 619 if (m) { 620 if (rp) { 621 /* 622 * XXX insure we don't get a copy by 623 * invalidating our protocol 624 */ 625 unsigned short family = rp->rcb_proto.sp_family; 626 rp->rcb_proto.sp_family = 0; 627 rt_dispatch(m, info.rti_info[RTAX_DST]); 628 rp->rcb_proto.sp_family = family; 629 } else 630 rt_dispatch(m, info.rti_info[RTAX_DST]); 631 } 632 } 633 return (error); 634 #undef sa_equal 635 } 636 637 static void 638 rt_setmetrics(u_long which, const struct rt_metrics *in, 639 struct rt_metrics_lite *out) 640 { 641 #define metric(f, e) if (which & (f)) out->e = in->e; 642 /* 643 * Only these are stored in the routing entry since introduction 644 * of tcp hostcache. The rest is ignored. 645 */ 646 metric(RTV_MTU, rmx_mtu); 647 /* Userland -> kernel timebase conversion. */ 648 if (which & RTV_EXPIRE) 649 out->rmx_expire = in->rmx_expire ? 650 in->rmx_expire - time_second + time_uptime : 0; 651 #undef metric 652 } 653 654 static void 655 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 656 { 657 #define metric(e) out->e = in->e; 658 bzero(out, sizeof(*out)); 659 metric(rmx_mtu); 660 /* Kernel -> userland timebase conversion. */ 661 out->rmx_expire = in->rmx_expire ? 662 in->rmx_expire - time_uptime + time_second : 0; 663 #undef metric 664 } 665 666 /* 667 * Extract the addresses of the passed sockaddrs. 668 * Do a little sanity checking so as to avoid bad memory references. 669 * This data is derived straight from userland. 670 */ 671 static int 672 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 673 { 674 struct sockaddr *sa; 675 int i; 676 677 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 678 if ((rtinfo->rti_addrs & (1 << i)) == 0) 679 continue; 680 sa = (struct sockaddr *)cp; 681 /* 682 * It won't fit. 683 */ 684 if (cp + sa->sa_len > cplim) 685 return (EINVAL); 686 /* 687 * there are no more.. quit now 688 * If there are more bits, they are in error. 689 * I've seen this. route(1) can evidently generate these. 690 * This causes kernel to core dump. 691 * for compatibility, If we see this, point to a safe address. 692 */ 693 if (sa->sa_len == 0) { 694 rtinfo->rti_info[i] = &sa_zero; 695 return (0); /* should be EINVAL but for compat */ 696 } 697 /* accept it */ 698 rtinfo->rti_info[i] = sa; 699 cp += SA_SIZE(sa); 700 } 701 return (0); 702 } 703 704 static struct mbuf * 705 rt_msg1(int type, struct rt_addrinfo *rtinfo) 706 { 707 struct rt_msghdr *rtm; 708 struct mbuf *m; 709 int i; 710 struct sockaddr *sa; 711 int len, dlen; 712 713 switch (type) { 714 715 case RTM_DELADDR: 716 case RTM_NEWADDR: 717 len = sizeof(struct ifa_msghdr); 718 break; 719 720 case RTM_DELMADDR: 721 case RTM_NEWMADDR: 722 len = sizeof(struct ifma_msghdr); 723 break; 724 725 case RTM_IFINFO: 726 len = sizeof(struct if_msghdr); 727 break; 728 729 case RTM_IFANNOUNCE: 730 case RTM_IEEE80211: 731 len = sizeof(struct if_announcemsghdr); 732 break; 733 734 default: 735 len = sizeof(struct rt_msghdr); 736 } 737 if (len > MCLBYTES) 738 panic("rt_msg1"); 739 m = m_gethdr(M_DONTWAIT, MT_DATA); 740 if (m && len > MHLEN) { 741 MCLGET(m, M_DONTWAIT); 742 if ((m->m_flags & M_EXT) == 0) { 743 m_free(m); 744 m = NULL; 745 } 746 } 747 if (m == NULL) 748 return (m); 749 m->m_pkthdr.len = m->m_len = len; 750 m->m_pkthdr.rcvif = NULL; 751 rtm = mtod(m, struct rt_msghdr *); 752 bzero((caddr_t)rtm, len); 753 for (i = 0; i < RTAX_MAX; i++) { 754 if ((sa = rtinfo->rti_info[i]) == NULL) 755 continue; 756 rtinfo->rti_addrs |= (1 << i); 757 dlen = SA_SIZE(sa); 758 m_copyback(m, len, dlen, (caddr_t)sa); 759 len += dlen; 760 } 761 if (m->m_pkthdr.len != len) { 762 m_freem(m); 763 return (NULL); 764 } 765 rtm->rtm_msglen = len; 766 rtm->rtm_version = RTM_VERSION; 767 rtm->rtm_type = type; 768 return (m); 769 } 770 771 static int 772 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 773 { 774 int i; 775 int len, dlen, second_time = 0; 776 caddr_t cp0; 777 778 rtinfo->rti_addrs = 0; 779 again: 780 switch (type) { 781 782 case RTM_DELADDR: 783 case RTM_NEWADDR: 784 len = sizeof(struct ifa_msghdr); 785 break; 786 787 case RTM_IFINFO: 788 len = sizeof(struct if_msghdr); 789 break; 790 791 case RTM_NEWMADDR: 792 len = sizeof(struct ifma_msghdr); 793 break; 794 795 default: 796 len = sizeof(struct rt_msghdr); 797 } 798 cp0 = cp; 799 if (cp0) 800 cp += len; 801 for (i = 0; i < RTAX_MAX; i++) { 802 struct sockaddr *sa; 803 804 if ((sa = rtinfo->rti_info[i]) == NULL) 805 continue; 806 rtinfo->rti_addrs |= (1 << i); 807 dlen = SA_SIZE(sa); 808 if (cp) { 809 bcopy((caddr_t)sa, cp, (unsigned)dlen); 810 cp += dlen; 811 } 812 len += dlen; 813 } 814 len = ALIGN(len); 815 if (cp == NULL && w != NULL && !second_time) { 816 struct walkarg *rw = w; 817 818 if (rw->w_req) { 819 if (rw->w_tmemsize < len) { 820 if (rw->w_tmem) 821 free(rw->w_tmem, M_RTABLE); 822 rw->w_tmem = (caddr_t) 823 malloc(len, M_RTABLE, M_NOWAIT); 824 if (rw->w_tmem) 825 rw->w_tmemsize = len; 826 } 827 if (rw->w_tmem) { 828 cp = rw->w_tmem; 829 second_time = 1; 830 goto again; 831 } 832 } 833 } 834 if (cp) { 835 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 836 837 rtm->rtm_version = RTM_VERSION; 838 rtm->rtm_type = type; 839 rtm->rtm_msglen = len; 840 } 841 return (len); 842 } 843 844 /* 845 * This routine is called to generate a message from the routing 846 * socket indicating that a redirect has occured, a routing lookup 847 * has failed, or that a protocol has detected timeouts to a particular 848 * destination. 849 */ 850 void 851 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 852 { 853 struct rt_msghdr *rtm; 854 struct mbuf *m; 855 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 856 857 if (route_cb.any_count == 0) 858 return; 859 m = rt_msg1(type, rtinfo); 860 if (m == NULL) 861 return; 862 rtm = mtod(m, struct rt_msghdr *); 863 rtm->rtm_flags = RTF_DONE | flags; 864 rtm->rtm_errno = error; 865 rtm->rtm_addrs = rtinfo->rti_addrs; 866 rt_dispatch(m, sa); 867 } 868 869 /* 870 * This routine is called to generate a message from the routing 871 * socket indicating that the status of a network interface has changed. 872 */ 873 void 874 rt_ifmsg(struct ifnet *ifp) 875 { 876 struct if_msghdr *ifm; 877 struct mbuf *m; 878 struct rt_addrinfo info; 879 880 if (route_cb.any_count == 0) 881 return; 882 bzero((caddr_t)&info, sizeof(info)); 883 m = rt_msg1(RTM_IFINFO, &info); 884 if (m == NULL) 885 return; 886 ifm = mtod(m, struct if_msghdr *); 887 ifm->ifm_index = ifp->if_index; 888 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 889 ifm->ifm_data = ifp->if_data; 890 ifm->ifm_addrs = 0; 891 rt_dispatch(m, NULL); 892 } 893 894 /* 895 * This is called to generate messages from the routing socket 896 * indicating a network interface has had addresses associated with it. 897 * if we ever reverse the logic and replace messages TO the routing 898 * socket indicate a request to configure interfaces, then it will 899 * be unnecessary as the routing socket will automatically generate 900 * copies of it. 901 */ 902 void 903 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 904 { 905 struct rt_addrinfo info; 906 struct sockaddr *sa = NULL; 907 int pass; 908 struct mbuf *m = NULL; 909 struct ifnet *ifp = ifa->ifa_ifp; 910 911 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 912 ("unexpected cmd %u", cmd)); 913 #ifdef SCTP 914 /* 915 * notify the SCTP stack 916 * this will only get called when an address is added/deleted 917 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 918 */ 919 sctp_addr_change(ifa, cmd); 920 #endif /* SCTP */ 921 if (route_cb.any_count == 0) 922 return; 923 for (pass = 1; pass < 3; pass++) { 924 bzero((caddr_t)&info, sizeof(info)); 925 if ((cmd == RTM_ADD && pass == 1) || 926 (cmd == RTM_DELETE && pass == 2)) { 927 struct ifa_msghdr *ifam; 928 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 929 930 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 931 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 932 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 933 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 934 if ((m = rt_msg1(ncmd, &info)) == NULL) 935 continue; 936 ifam = mtod(m, struct ifa_msghdr *); 937 ifam->ifam_index = ifp->if_index; 938 ifam->ifam_metric = ifa->ifa_metric; 939 ifam->ifam_flags = ifa->ifa_flags; 940 ifam->ifam_addrs = info.rti_addrs; 941 } 942 if ((cmd == RTM_ADD && pass == 2) || 943 (cmd == RTM_DELETE && pass == 1)) { 944 struct rt_msghdr *rtm; 945 946 if (rt == NULL) 947 continue; 948 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 949 info.rti_info[RTAX_DST] = sa = rt_key(rt); 950 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 951 if ((m = rt_msg1(cmd, &info)) == NULL) 952 continue; 953 rtm = mtod(m, struct rt_msghdr *); 954 rtm->rtm_index = ifp->if_index; 955 rtm->rtm_flags |= rt->rt_flags; 956 rtm->rtm_errno = error; 957 rtm->rtm_addrs = info.rti_addrs; 958 } 959 rt_dispatch(m, sa); 960 } 961 } 962 963 /* 964 * This is the analogue to the rt_newaddrmsg which performs the same 965 * function but for multicast group memberhips. This is easier since 966 * there is no route state to worry about. 967 */ 968 void 969 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 970 { 971 struct rt_addrinfo info; 972 struct mbuf *m = NULL; 973 struct ifnet *ifp = ifma->ifma_ifp; 974 struct ifma_msghdr *ifmam; 975 976 if (route_cb.any_count == 0) 977 return; 978 979 bzero((caddr_t)&info, sizeof(info)); 980 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 981 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 982 /* 983 * If a link-layer address is present, present it as a ``gateway'' 984 * (similarly to how ARP entries, e.g., are presented). 985 */ 986 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 987 m = rt_msg1(cmd, &info); 988 if (m == NULL) 989 return; 990 ifmam = mtod(m, struct ifma_msghdr *); 991 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 992 __func__)); 993 ifmam->ifmam_index = ifp->if_index; 994 ifmam->ifmam_addrs = info.rti_addrs; 995 rt_dispatch(m, ifma->ifma_addr); 996 } 997 998 static struct mbuf * 999 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1000 struct rt_addrinfo *info) 1001 { 1002 struct if_announcemsghdr *ifan; 1003 struct mbuf *m; 1004 1005 if (route_cb.any_count == 0) 1006 return NULL; 1007 bzero((caddr_t)info, sizeof(*info)); 1008 m = rt_msg1(type, info); 1009 if (m != NULL) { 1010 ifan = mtod(m, struct if_announcemsghdr *); 1011 ifan->ifan_index = ifp->if_index; 1012 strlcpy(ifan->ifan_name, ifp->if_xname, 1013 sizeof(ifan->ifan_name)); 1014 ifan->ifan_what = what; 1015 } 1016 return m; 1017 } 1018 1019 /* 1020 * This is called to generate routing socket messages indicating 1021 * IEEE80211 wireless events. 1022 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1023 */ 1024 void 1025 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1026 { 1027 struct mbuf *m; 1028 struct rt_addrinfo info; 1029 1030 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1031 if (m != NULL) { 1032 /* 1033 * Append the ieee80211 data. Try to stick it in the 1034 * mbuf containing the ifannounce msg; otherwise allocate 1035 * a new mbuf and append. 1036 * 1037 * NB: we assume m is a single mbuf. 1038 */ 1039 if (data_len > M_TRAILINGSPACE(m)) { 1040 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1041 if (n == NULL) { 1042 m_freem(m); 1043 return; 1044 } 1045 bcopy(data, mtod(n, void *), data_len); 1046 n->m_len = data_len; 1047 m->m_next = n; 1048 } else if (data_len > 0) { 1049 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1050 m->m_len += data_len; 1051 } 1052 if (m->m_flags & M_PKTHDR) 1053 m->m_pkthdr.len += data_len; 1054 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1055 rt_dispatch(m, NULL); 1056 } 1057 } 1058 1059 /* 1060 * This is called to generate routing socket messages indicating 1061 * network interface arrival and departure. 1062 */ 1063 void 1064 rt_ifannouncemsg(struct ifnet *ifp, int what) 1065 { 1066 struct mbuf *m; 1067 struct rt_addrinfo info; 1068 1069 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1070 if (m != NULL) 1071 rt_dispatch(m, NULL); 1072 } 1073 1074 static void 1075 rt_dispatch(struct mbuf *m, const struct sockaddr *sa) 1076 { 1077 struct m_tag *tag; 1078 1079 /* 1080 * Preserve the family from the sockaddr, if any, in an m_tag for 1081 * use when injecting the mbuf into the routing socket buffer from 1082 * the netisr. 1083 */ 1084 if (sa != NULL) { 1085 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1086 M_NOWAIT); 1087 if (tag == NULL) { 1088 m_freem(m); 1089 return; 1090 } 1091 *(unsigned short *)(tag + 1) = sa->sa_family; 1092 m_tag_prepend(m, tag); 1093 } 1094 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1095 } 1096 1097 /* 1098 * This is used in dumping the kernel table via sysctl(). 1099 */ 1100 static int 1101 sysctl_dumpentry(struct radix_node *rn, void *vw) 1102 { 1103 struct walkarg *w = vw; 1104 struct rtentry *rt = (struct rtentry *)rn; 1105 int error = 0, size; 1106 struct rt_addrinfo info; 1107 1108 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1109 return 0; 1110 bzero((caddr_t)&info, sizeof(info)); 1111 info.rti_info[RTAX_DST] = rt_key(rt); 1112 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1113 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1114 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 1115 if (rt->rt_ifp) { 1116 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1117 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1118 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1119 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1120 } 1121 size = rt_msg2(RTM_GET, &info, NULL, w); 1122 if (w->w_req && w->w_tmem) { 1123 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1124 1125 rtm->rtm_flags = rt->rt_flags; 1126 rtm->rtm_use = rt->rt_rmx.rmx_pksent; 1127 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1128 rtm->rtm_index = rt->rt_ifp->if_index; 1129 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1130 rtm->rtm_addrs = info.rti_addrs; 1131 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1132 return (error); 1133 } 1134 return (error); 1135 } 1136 1137 static int 1138 sysctl_iflist(int af, struct walkarg *w) 1139 { 1140 struct ifnet *ifp; 1141 struct ifaddr *ifa; 1142 struct rt_addrinfo info; 1143 int len, error = 0; 1144 1145 bzero((caddr_t)&info, sizeof(info)); 1146 IFNET_RLOCK(); 1147 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1148 if (w->w_arg && w->w_arg != ifp->if_index) 1149 continue; 1150 ifa = ifp->if_addr; 1151 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1152 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1153 info.rti_info[RTAX_IFP] = NULL; 1154 if (w->w_req && w->w_tmem) { 1155 struct if_msghdr *ifm; 1156 1157 ifm = (struct if_msghdr *)w->w_tmem; 1158 ifm->ifm_index = ifp->if_index; 1159 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1160 ifm->ifm_data = ifp->if_data; 1161 ifm->ifm_addrs = info.rti_addrs; 1162 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); 1163 if (error) 1164 goto done; 1165 } 1166 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1167 if (af && af != ifa->ifa_addr->sa_family) 1168 continue; 1169 if (jailed(curthread->td_ucred) && 1170 prison_if(curthread->td_ucred, ifa->ifa_addr)) 1171 continue; 1172 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1173 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1174 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1175 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1176 if (w->w_req && w->w_tmem) { 1177 struct ifa_msghdr *ifam; 1178 1179 ifam = (struct ifa_msghdr *)w->w_tmem; 1180 ifam->ifam_index = ifa->ifa_ifp->if_index; 1181 ifam->ifam_flags = ifa->ifa_flags; 1182 ifam->ifam_metric = ifa->ifa_metric; 1183 ifam->ifam_addrs = info.rti_addrs; 1184 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1185 if (error) 1186 goto done; 1187 } 1188 } 1189 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1190 info.rti_info[RTAX_BRD] = NULL; 1191 } 1192 done: 1193 IFNET_RUNLOCK(); 1194 return (error); 1195 } 1196 1197 int 1198 sysctl_ifmalist(int af, struct walkarg *w) 1199 { 1200 struct ifnet *ifp; 1201 struct ifmultiaddr *ifma; 1202 struct rt_addrinfo info; 1203 int len, error = 0; 1204 struct ifaddr *ifa; 1205 1206 bzero((caddr_t)&info, sizeof(info)); 1207 IFNET_RLOCK(); 1208 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1209 if (w->w_arg && w->w_arg != ifp->if_index) 1210 continue; 1211 ifa = ifp->if_addr; 1212 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1213 IF_ADDR_LOCK(ifp); 1214 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1215 if (af && af != ifma->ifma_addr->sa_family) 1216 continue; 1217 if (jailed(curproc->p_ucred) && 1218 prison_if(curproc->p_ucred, ifma->ifma_addr)) 1219 continue; 1220 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1221 info.rti_info[RTAX_GATEWAY] = 1222 (ifma->ifma_addr->sa_family != AF_LINK) ? 1223 ifma->ifma_lladdr : NULL; 1224 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1225 if (w->w_req && w->w_tmem) { 1226 struct ifma_msghdr *ifmam; 1227 1228 ifmam = (struct ifma_msghdr *)w->w_tmem; 1229 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1230 ifmam->ifmam_flags = 0; 1231 ifmam->ifmam_addrs = info.rti_addrs; 1232 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1233 if (error) { 1234 IF_ADDR_UNLOCK(ifp); 1235 goto done; 1236 } 1237 } 1238 } 1239 IF_ADDR_UNLOCK(ifp); 1240 } 1241 done: 1242 IFNET_RUNLOCK(); 1243 return (error); 1244 } 1245 1246 static int 1247 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1248 { 1249 int *name = (int *)arg1; 1250 u_int namelen = arg2; 1251 struct radix_node_head *rnh; 1252 int i, lim, error = EINVAL; 1253 u_char af; 1254 struct walkarg w; 1255 1256 name ++; 1257 namelen--; 1258 if (req->newptr) 1259 return (EPERM); 1260 if (namelen != 3) 1261 return ((namelen < 3) ? EISDIR : ENOTDIR); 1262 af = name[0]; 1263 if (af > AF_MAX) 1264 return (EINVAL); 1265 bzero(&w, sizeof(w)); 1266 w.w_op = name[1]; 1267 w.w_arg = name[2]; 1268 w.w_req = req; 1269 1270 error = sysctl_wire_old_buffer(req, 0); 1271 if (error) 1272 return (error); 1273 switch (w.w_op) { 1274 1275 case NET_RT_DUMP: 1276 case NET_RT_FLAGS: 1277 if (af == 0) { /* dump all tables */ 1278 i = 1; 1279 lim = AF_MAX; 1280 } else /* dump only one table */ 1281 i = lim = af; 1282 for (error = 0; error == 0 && i <= lim; i++) 1283 if ((rnh = rt_tables[curthread->td_proc->p_fibnum][i]) != NULL) { 1284 RADIX_NODE_HEAD_LOCK(rnh); 1285 error = rnh->rnh_walktree(rnh, 1286 sysctl_dumpentry, &w); 1287 RADIX_NODE_HEAD_UNLOCK(rnh); 1288 } else if (af != 0) 1289 error = EAFNOSUPPORT; 1290 break; 1291 1292 case NET_RT_IFLIST: 1293 error = sysctl_iflist(af, &w); 1294 break; 1295 1296 case NET_RT_IFMALIST: 1297 error = sysctl_ifmalist(af, &w); 1298 break; 1299 } 1300 if (w.w_tmem) 1301 free(w.w_tmem, M_RTABLE); 1302 return (error); 1303 } 1304 1305 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1306 1307 /* 1308 * Definitions of protocols supported in the ROUTE domain. 1309 */ 1310 1311 static struct domain routedomain; /* or at least forward */ 1312 1313 static struct protosw routesw[] = { 1314 { 1315 .pr_type = SOCK_RAW, 1316 .pr_domain = &routedomain, 1317 .pr_flags = PR_ATOMIC|PR_ADDR, 1318 .pr_output = route_output, 1319 .pr_ctlinput = raw_ctlinput, 1320 .pr_init = raw_init, 1321 .pr_usrreqs = &route_usrreqs 1322 } 1323 }; 1324 1325 static struct domain routedomain = { 1326 .dom_family = PF_ROUTE, 1327 .dom_name = "route", 1328 .dom_protosw = routesw, 1329 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1330 }; 1331 1332 DOMAIN_SET(route); 1333