1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_compat.h" 33 #include "opt_sctp.h" 34 #include "opt_mpath.h" 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/jail.h> 40 #include <sys/kernel.h> 41 #include <sys/domain.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/rwlock.h> 49 #include <sys/signalvar.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <net/if.h> 56 #include <net/if_dl.h> 57 #include <net/if_llatbl.h> 58 #include <net/if_types.h> 59 #include <net/netisr.h> 60 #include <net/raw_cb.h> 61 #include <net/route.h> 62 #include <net/vnet.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 #include <netinet/ip_carp.h> 67 #ifdef INET6 68 #include <netinet6/ip6_var.h> 69 #include <netinet6/scope6_var.h> 70 #endif 71 72 #if defined(INET) || defined(INET6) 73 #ifdef SCTP 74 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 75 #endif /* SCTP */ 76 #endif 77 78 #ifdef COMPAT_FREEBSD32 79 #include <sys/mount.h> 80 #include <compat/freebsd32/freebsd32.h> 81 82 struct if_data32 { 83 uint8_t ifi_type; 84 uint8_t ifi_physical; 85 uint8_t ifi_addrlen; 86 uint8_t ifi_hdrlen; 87 uint8_t ifi_link_state; 88 uint8_t ifi_vhid; 89 uint8_t ifi_spare_char2; 90 uint8_t ifi_datalen; 91 uint32_t ifi_mtu; 92 uint32_t ifi_metric; 93 uint32_t ifi_baudrate; 94 uint32_t ifi_ipackets; 95 uint32_t ifi_ierrors; 96 uint32_t ifi_opackets; 97 uint32_t ifi_oerrors; 98 uint32_t ifi_collisions; 99 uint32_t ifi_ibytes; 100 uint32_t ifi_obytes; 101 uint32_t ifi_imcasts; 102 uint32_t ifi_omcasts; 103 uint32_t ifi_iqdrops; 104 uint32_t ifi_noproto; 105 uint32_t ifi_hwassist; 106 int32_t ifi_epoch; 107 struct timeval32 ifi_lastchange; 108 }; 109 110 struct if_msghdr32 { 111 uint16_t ifm_msglen; 112 uint8_t ifm_version; 113 uint8_t ifm_type; 114 int32_t ifm_addrs; 115 int32_t ifm_flags; 116 uint16_t ifm_index; 117 struct if_data32 ifm_data; 118 }; 119 120 struct if_msghdrl32 { 121 uint16_t ifm_msglen; 122 uint8_t ifm_version; 123 uint8_t ifm_type; 124 int32_t ifm_addrs; 125 int32_t ifm_flags; 126 uint16_t ifm_index; 127 uint16_t _ifm_spare1; 128 uint16_t ifm_len; 129 uint16_t ifm_data_off; 130 struct if_data32 ifm_data; 131 }; 132 133 struct ifa_msghdrl32 { 134 uint16_t ifam_msglen; 135 uint8_t ifam_version; 136 uint8_t ifam_type; 137 int32_t ifam_addrs; 138 int32_t ifam_flags; 139 uint16_t ifam_index; 140 uint16_t _ifam_spare1; 141 uint16_t ifam_len; 142 uint16_t ifam_data_off; 143 int32_t ifam_metric; 144 struct if_data32 ifam_data; 145 }; 146 #endif /* COMPAT_FREEBSD32 */ 147 148 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 149 150 /* NB: these are not modified */ 151 static struct sockaddr route_src = { 2, PF_ROUTE, }; 152 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 153 154 /* These are external hooks for CARP. */ 155 int (*carp_get_vhid_p)(struct ifaddr *); 156 157 /* 158 * Used by rtsock/raw_input callback code to decide whether to filter the update 159 * notification to a socket bound to a particular FIB. 160 */ 161 #define RTS_FILTER_FIB M_PROTO8 162 #define RTS_ALLFIBS -1 163 164 static struct { 165 int ip_count; /* attached w/ AF_INET */ 166 int ip6_count; /* attached w/ AF_INET6 */ 167 int ipx_count; /* attached w/ AF_IPX */ 168 int any_count; /* total attached */ 169 } route_cb; 170 171 struct mtx rtsock_mtx; 172 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 173 174 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 175 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 176 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 177 178 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 179 180 struct walkarg { 181 int w_tmemsize; 182 int w_op, w_arg; 183 caddr_t w_tmem; 184 struct sysctl_req *w_req; 185 }; 186 187 static void rts_input(struct mbuf *m); 188 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 189 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 190 caddr_t cp, struct walkarg *w); 191 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 192 struct rt_addrinfo *rtinfo); 193 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 194 static int sysctl_iflist(int af, struct walkarg *w); 195 static int sysctl_ifmalist(int af, struct walkarg *w); 196 static int route_output(struct mbuf *m, struct socket *so); 197 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 198 struct rt_metrics_lite *out); 199 static void rt_getmetrics(const struct rt_metrics_lite *in, 200 struct rt_metrics *out); 201 static void rt_dispatch(struct mbuf *, sa_family_t); 202 203 static struct netisr_handler rtsock_nh = { 204 .nh_name = "rtsock", 205 .nh_handler = rts_input, 206 .nh_proto = NETISR_ROUTE, 207 .nh_policy = NETISR_POLICY_SOURCE, 208 }; 209 210 static int 211 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 212 { 213 int error, qlimit; 214 215 netisr_getqlimit(&rtsock_nh, &qlimit); 216 error = sysctl_handle_int(oidp, &qlimit, 0, req); 217 if (error || !req->newptr) 218 return (error); 219 if (qlimit < 1) 220 return (EINVAL); 221 return (netisr_setqlimit(&rtsock_nh, qlimit)); 222 } 223 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 224 0, 0, sysctl_route_netisr_maxqlen, "I", 225 "maximum routing socket dispatch queue length"); 226 227 static void 228 rts_init(void) 229 { 230 int tmp; 231 232 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 233 rtsock_nh.nh_qlimit = tmp; 234 netisr_register(&rtsock_nh); 235 } 236 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 237 238 static int 239 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 240 struct rawcb *rp) 241 { 242 int fibnum; 243 244 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 245 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 246 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 247 248 /* No filtering requested. */ 249 if ((m->m_flags & RTS_FILTER_FIB) == 0) 250 return (0); 251 252 /* Check if it is a rts and the fib matches the one of the socket. */ 253 fibnum = M_GETFIB(m); 254 if (proto->sp_family != PF_ROUTE || 255 rp->rcb_socket == NULL || 256 rp->rcb_socket->so_fibnum == fibnum) 257 return (0); 258 259 /* Filtering requested and no match, the socket shall be skipped. */ 260 return (1); 261 } 262 263 static void 264 rts_input(struct mbuf *m) 265 { 266 struct sockproto route_proto; 267 unsigned short *family; 268 struct m_tag *tag; 269 270 route_proto.sp_family = PF_ROUTE; 271 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 272 if (tag != NULL) { 273 family = (unsigned short *)(tag + 1); 274 route_proto.sp_protocol = *family; 275 m_tag_delete(m, tag); 276 } else 277 route_proto.sp_protocol = 0; 278 279 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 280 } 281 282 /* 283 * It really doesn't make any sense at all for this code to share much 284 * with raw_usrreq.c, since its functionality is so restricted. XXX 285 */ 286 static void 287 rts_abort(struct socket *so) 288 { 289 290 raw_usrreqs.pru_abort(so); 291 } 292 293 static void 294 rts_close(struct socket *so) 295 { 296 297 raw_usrreqs.pru_close(so); 298 } 299 300 /* pru_accept is EOPNOTSUPP */ 301 302 static int 303 rts_attach(struct socket *so, int proto, struct thread *td) 304 { 305 struct rawcb *rp; 306 int error; 307 308 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 309 310 /* XXX */ 311 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 312 if (rp == NULL) 313 return ENOBUFS; 314 315 so->so_pcb = (caddr_t)rp; 316 so->so_fibnum = td->td_proc->p_fibnum; 317 error = raw_attach(so, proto); 318 rp = sotorawcb(so); 319 if (error) { 320 so->so_pcb = NULL; 321 free(rp, M_PCB); 322 return error; 323 } 324 RTSOCK_LOCK(); 325 switch(rp->rcb_proto.sp_protocol) { 326 case AF_INET: 327 route_cb.ip_count++; 328 break; 329 case AF_INET6: 330 route_cb.ip6_count++; 331 break; 332 case AF_IPX: 333 route_cb.ipx_count++; 334 break; 335 } 336 route_cb.any_count++; 337 RTSOCK_UNLOCK(); 338 soisconnected(so); 339 so->so_options |= SO_USELOOPBACK; 340 return 0; 341 } 342 343 static int 344 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 345 { 346 347 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 348 } 349 350 static int 351 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 352 { 353 354 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 355 } 356 357 /* pru_connect2 is EOPNOTSUPP */ 358 /* pru_control is EOPNOTSUPP */ 359 360 static void 361 rts_detach(struct socket *so) 362 { 363 struct rawcb *rp = sotorawcb(so); 364 365 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 366 367 RTSOCK_LOCK(); 368 switch(rp->rcb_proto.sp_protocol) { 369 case AF_INET: 370 route_cb.ip_count--; 371 break; 372 case AF_INET6: 373 route_cb.ip6_count--; 374 break; 375 case AF_IPX: 376 route_cb.ipx_count--; 377 break; 378 } 379 route_cb.any_count--; 380 RTSOCK_UNLOCK(); 381 raw_usrreqs.pru_detach(so); 382 } 383 384 static int 385 rts_disconnect(struct socket *so) 386 { 387 388 return (raw_usrreqs.pru_disconnect(so)); 389 } 390 391 /* pru_listen is EOPNOTSUPP */ 392 393 static int 394 rts_peeraddr(struct socket *so, struct sockaddr **nam) 395 { 396 397 return (raw_usrreqs.pru_peeraddr(so, nam)); 398 } 399 400 /* pru_rcvd is EOPNOTSUPP */ 401 /* pru_rcvoob is EOPNOTSUPP */ 402 403 static int 404 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 405 struct mbuf *control, struct thread *td) 406 { 407 408 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 409 } 410 411 /* pru_sense is null */ 412 413 static int 414 rts_shutdown(struct socket *so) 415 { 416 417 return (raw_usrreqs.pru_shutdown(so)); 418 } 419 420 static int 421 rts_sockaddr(struct socket *so, struct sockaddr **nam) 422 { 423 424 return (raw_usrreqs.pru_sockaddr(so, nam)); 425 } 426 427 static struct pr_usrreqs route_usrreqs = { 428 .pru_abort = rts_abort, 429 .pru_attach = rts_attach, 430 .pru_bind = rts_bind, 431 .pru_connect = rts_connect, 432 .pru_detach = rts_detach, 433 .pru_disconnect = rts_disconnect, 434 .pru_peeraddr = rts_peeraddr, 435 .pru_send = rts_send, 436 .pru_shutdown = rts_shutdown, 437 .pru_sockaddr = rts_sockaddr, 438 .pru_close = rts_close, 439 }; 440 441 #ifndef _SOCKADDR_UNION_DEFINED 442 #define _SOCKADDR_UNION_DEFINED 443 /* 444 * The union of all possible address formats we handle. 445 */ 446 union sockaddr_union { 447 struct sockaddr sa; 448 struct sockaddr_in sin; 449 struct sockaddr_in6 sin6; 450 }; 451 #endif /* _SOCKADDR_UNION_DEFINED */ 452 453 static int 454 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 455 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 456 { 457 458 /* First, see if the returned address is part of the jail. */ 459 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 460 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 461 return (0); 462 } 463 464 switch (info->rti_info[RTAX_DST]->sa_family) { 465 #ifdef INET 466 case AF_INET: 467 { 468 struct in_addr ia; 469 struct ifaddr *ifa; 470 int found; 471 472 found = 0; 473 /* 474 * Try to find an address on the given outgoing interface 475 * that belongs to the jail. 476 */ 477 IF_ADDR_RLOCK(ifp); 478 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 479 struct sockaddr *sa; 480 sa = ifa->ifa_addr; 481 if (sa->sa_family != AF_INET) 482 continue; 483 ia = ((struct sockaddr_in *)sa)->sin_addr; 484 if (prison_check_ip4(cred, &ia) == 0) { 485 found = 1; 486 break; 487 } 488 } 489 IF_ADDR_RUNLOCK(ifp); 490 if (!found) { 491 /* 492 * As a last resort return the 'default' jail address. 493 */ 494 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 495 sin_addr; 496 if (prison_get_ip4(cred, &ia) != 0) 497 return (ESRCH); 498 } 499 bzero(&saun->sin, sizeof(struct sockaddr_in)); 500 saun->sin.sin_len = sizeof(struct sockaddr_in); 501 saun->sin.sin_family = AF_INET; 502 saun->sin.sin_addr.s_addr = ia.s_addr; 503 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 504 break; 505 } 506 #endif 507 #ifdef INET6 508 case AF_INET6: 509 { 510 struct in6_addr ia6; 511 struct ifaddr *ifa; 512 int found; 513 514 found = 0; 515 /* 516 * Try to find an address on the given outgoing interface 517 * that belongs to the jail. 518 */ 519 IF_ADDR_RLOCK(ifp); 520 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 521 struct sockaddr *sa; 522 sa = ifa->ifa_addr; 523 if (sa->sa_family != AF_INET6) 524 continue; 525 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 526 &ia6, sizeof(struct in6_addr)); 527 if (prison_check_ip6(cred, &ia6) == 0) { 528 found = 1; 529 break; 530 } 531 } 532 IF_ADDR_RUNLOCK(ifp); 533 if (!found) { 534 /* 535 * As a last resort return the 'default' jail address. 536 */ 537 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 538 sin6_addr; 539 if (prison_get_ip6(cred, &ia6) != 0) 540 return (ESRCH); 541 } 542 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 543 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 544 saun->sin6.sin6_family = AF_INET6; 545 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 546 if (sa6_recoverscope(&saun->sin6) != 0) 547 return (ESRCH); 548 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 549 break; 550 } 551 #endif 552 default: 553 return (ESRCH); 554 } 555 return (0); 556 } 557 558 /*ARGSUSED*/ 559 static int 560 route_output(struct mbuf *m, struct socket *so) 561 { 562 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 563 struct rt_msghdr *rtm = NULL; 564 struct rtentry *rt = NULL; 565 struct radix_node_head *rnh; 566 struct rt_addrinfo info; 567 #ifdef INET6 568 struct sockaddr_storage ss; 569 struct sockaddr_in6 *sin6; 570 int i, rti_need_deembed = 0; 571 #endif 572 int len, error = 0; 573 struct ifnet *ifp = NULL; 574 union sockaddr_union saun; 575 sa_family_t saf = AF_UNSPEC; 576 577 #define senderr(e) { error = e; goto flush;} 578 if (m == NULL || ((m->m_len < sizeof(long)) && 579 (m = m_pullup(m, sizeof(long))) == NULL)) 580 return (ENOBUFS); 581 if ((m->m_flags & M_PKTHDR) == 0) 582 panic("route_output"); 583 len = m->m_pkthdr.len; 584 if (len < sizeof(*rtm) || 585 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 586 info.rti_info[RTAX_DST] = NULL; 587 senderr(EINVAL); 588 } 589 R_Malloc(rtm, struct rt_msghdr *, len); 590 if (rtm == NULL) { 591 info.rti_info[RTAX_DST] = NULL; 592 senderr(ENOBUFS); 593 } 594 m_copydata(m, 0, len, (caddr_t)rtm); 595 if (rtm->rtm_version != RTM_VERSION) { 596 info.rti_info[RTAX_DST] = NULL; 597 senderr(EPROTONOSUPPORT); 598 } 599 rtm->rtm_pid = curproc->p_pid; 600 bzero(&info, sizeof(info)); 601 info.rti_addrs = rtm->rtm_addrs; 602 /* 603 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 604 * link-local address because rtrequest requires addresses with 605 * embedded scope id. 606 */ 607 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 608 info.rti_info[RTAX_DST] = NULL; 609 senderr(EINVAL); 610 } 611 info.rti_flags = rtm->rtm_flags; 612 if (info.rti_info[RTAX_DST] == NULL || 613 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 614 (info.rti_info[RTAX_GATEWAY] != NULL && 615 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 616 senderr(EINVAL); 617 saf = info.rti_info[RTAX_DST]->sa_family; 618 /* 619 * Verify that the caller has the appropriate privilege; RTM_GET 620 * is the only operation the non-superuser is allowed. 621 */ 622 if (rtm->rtm_type != RTM_GET) { 623 error = priv_check(curthread, PRIV_NET_ROUTE); 624 if (error) 625 senderr(error); 626 } 627 628 /* 629 * The given gateway address may be an interface address. 630 * For example, issuing a "route change" command on a route 631 * entry that was created from a tunnel, and the gateway 632 * address given is the local end point. In this case the 633 * RTF_GATEWAY flag must be cleared or the destination will 634 * not be reachable even though there is no error message. 635 */ 636 if (info.rti_info[RTAX_GATEWAY] != NULL && 637 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 638 struct route gw_ro; 639 640 bzero(&gw_ro, sizeof(gw_ro)); 641 gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY]; 642 rtalloc_ign_fib(&gw_ro, 0, so->so_fibnum); 643 /* 644 * A host route through the loopback interface is 645 * installed for each interface adddress. In pre 8.0 646 * releases the interface address of a PPP link type 647 * is not reachable locally. This behavior is fixed as 648 * part of the new L2/L3 redesign and rewrite work. The 649 * signature of this interface address route is the 650 * AF_LINK sa_family type of the rt_gateway, and the 651 * rt_ifp has the IFF_LOOPBACK flag set. 652 */ 653 if (gw_ro.ro_rt != NULL && 654 gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK && 655 gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) 656 info.rti_flags &= ~RTF_GATEWAY; 657 if (gw_ro.ro_rt != NULL) 658 RTFREE(gw_ro.ro_rt); 659 } 660 661 switch (rtm->rtm_type) { 662 struct rtentry *saved_nrt; 663 664 case RTM_ADD: 665 if (info.rti_info[RTAX_GATEWAY] == NULL) 666 senderr(EINVAL); 667 saved_nrt = NULL; 668 669 /* support for new ARP code */ 670 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 671 (rtm->rtm_flags & RTF_LLDATA) != 0) { 672 error = lla_rt_output(rtm, &info); 673 #ifdef INET6 674 if (error == 0) 675 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 676 #endif 677 break; 678 } 679 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 680 so->so_fibnum); 681 if (error == 0 && saved_nrt) { 682 #ifdef INET6 683 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 684 #endif 685 RT_LOCK(saved_nrt); 686 rt_setmetrics(rtm->rtm_inits, 687 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 688 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 689 RT_REMREF(saved_nrt); 690 RT_UNLOCK(saved_nrt); 691 } 692 break; 693 694 case RTM_DELETE: 695 saved_nrt = NULL; 696 /* support for new ARP code */ 697 if (info.rti_info[RTAX_GATEWAY] && 698 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 699 (rtm->rtm_flags & RTF_LLDATA) != 0) { 700 error = lla_rt_output(rtm, &info); 701 #ifdef INET6 702 if (error == 0) 703 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 704 #endif 705 break; 706 } 707 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 708 so->so_fibnum); 709 if (error == 0) { 710 RT_LOCK(saved_nrt); 711 rt = saved_nrt; 712 goto report; 713 } 714 #ifdef INET6 715 /* rt_msg2() will not be used when RTM_DELETE fails. */ 716 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 717 #endif 718 break; 719 720 case RTM_GET: 721 case RTM_CHANGE: 722 case RTM_LOCK: 723 rnh = rt_tables_get_rnh(so->so_fibnum, 724 info.rti_info[RTAX_DST]->sa_family); 725 if (rnh == NULL) 726 senderr(EAFNOSUPPORT); 727 RADIX_NODE_HEAD_RLOCK(rnh); 728 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 729 info.rti_info[RTAX_NETMASK], rnh); 730 if (rt == NULL) { /* XXX looks bogus */ 731 RADIX_NODE_HEAD_RUNLOCK(rnh); 732 senderr(ESRCH); 733 } 734 #ifdef RADIX_MPATH 735 /* 736 * for RTM_CHANGE/LOCK, if we got multipath routes, 737 * we require users to specify a matching RTAX_GATEWAY. 738 * 739 * for RTM_GET, gate is optional even with multipath. 740 * if gate == NULL the first match is returned. 741 * (no need to call rt_mpath_matchgate if gate == NULL) 742 */ 743 if (rn_mpath_capable(rnh) && 744 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 745 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 746 if (!rt) { 747 RADIX_NODE_HEAD_RUNLOCK(rnh); 748 senderr(ESRCH); 749 } 750 } 751 #endif 752 /* 753 * If performing proxied L2 entry insertion, and 754 * the actual PPP host entry is found, perform 755 * another search to retrieve the prefix route of 756 * the local end point of the PPP link. 757 */ 758 if (rtm->rtm_flags & RTF_ANNOUNCE) { 759 struct sockaddr laddr; 760 761 if (rt->rt_ifp != NULL && 762 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 763 struct ifaddr *ifa; 764 765 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1); 766 if (ifa != NULL) 767 rt_maskedcopy(ifa->ifa_addr, 768 &laddr, 769 ifa->ifa_netmask); 770 } else 771 rt_maskedcopy(rt->rt_ifa->ifa_addr, 772 &laddr, 773 rt->rt_ifa->ifa_netmask); 774 /* 775 * refactor rt and no lock operation necessary 776 */ 777 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh); 778 if (rt == NULL) { 779 RADIX_NODE_HEAD_RUNLOCK(rnh); 780 senderr(ESRCH); 781 } 782 } 783 RT_LOCK(rt); 784 RT_ADDREF(rt); 785 RADIX_NODE_HEAD_RUNLOCK(rnh); 786 787 /* 788 * Fix for PR: 82974 789 * 790 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 791 * returns a perfect match in case a netmask is 792 * specified. For host routes only a longest prefix 793 * match is returned so it is necessary to compare the 794 * existence of the netmask. If both have a netmask 795 * rnh_lookup() did a perfect match and if none of them 796 * have a netmask both are host routes which is also a 797 * perfect match. 798 */ 799 800 if (rtm->rtm_type != RTM_GET && 801 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 802 RT_UNLOCK(rt); 803 senderr(ESRCH); 804 } 805 806 switch(rtm->rtm_type) { 807 808 case RTM_GET: 809 report: 810 RT_LOCK_ASSERT(rt); 811 if ((rt->rt_flags & RTF_HOST) == 0 812 ? jailed_without_vnet(curthread->td_ucred) 813 : prison_if(curthread->td_ucred, 814 rt_key(rt)) != 0) { 815 RT_UNLOCK(rt); 816 senderr(ESRCH); 817 } 818 info.rti_info[RTAX_DST] = rt_key(rt); 819 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 820 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 821 info.rti_info[RTAX_GENMASK] = 0; 822 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 823 ifp = rt->rt_ifp; 824 if (ifp) { 825 info.rti_info[RTAX_IFP] = 826 ifp->if_addr->ifa_addr; 827 error = rtm_get_jailed(&info, ifp, rt, 828 &saun, curthread->td_ucred); 829 if (error != 0) { 830 RT_UNLOCK(rt); 831 senderr(error); 832 } 833 if (ifp->if_flags & IFF_POINTOPOINT) 834 info.rti_info[RTAX_BRD] = 835 rt->rt_ifa->ifa_dstaddr; 836 rtm->rtm_index = ifp->if_index; 837 } else { 838 info.rti_info[RTAX_IFP] = NULL; 839 info.rti_info[RTAX_IFA] = NULL; 840 } 841 } else if ((ifp = rt->rt_ifp) != NULL) { 842 rtm->rtm_index = ifp->if_index; 843 } 844 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 845 if (len > rtm->rtm_msglen) { 846 struct rt_msghdr *new_rtm; 847 R_Malloc(new_rtm, struct rt_msghdr *, len); 848 if (new_rtm == NULL) { 849 RT_UNLOCK(rt); 850 senderr(ENOBUFS); 851 } 852 bcopy(rtm, new_rtm, rtm->rtm_msglen); 853 Free(rtm); rtm = new_rtm; 854 } 855 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 856 rtm->rtm_flags = rt->rt_flags; 857 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 858 rtm->rtm_addrs = info.rti_addrs; 859 break; 860 861 case RTM_CHANGE: 862 /* 863 * New gateway could require new ifaddr, ifp; 864 * flags may also be different; ifp may be specified 865 * by ll sockaddr when protocol address is ambiguous 866 */ 867 if (((rt->rt_flags & RTF_GATEWAY) && 868 info.rti_info[RTAX_GATEWAY] != NULL) || 869 info.rti_info[RTAX_IFP] != NULL || 870 (info.rti_info[RTAX_IFA] != NULL && 871 !sa_equal(info.rti_info[RTAX_IFA], 872 rt->rt_ifa->ifa_addr))) { 873 RT_UNLOCK(rt); 874 RADIX_NODE_HEAD_LOCK(rnh); 875 error = rt_getifa_fib(&info, rt->rt_fibnum); 876 /* 877 * XXXRW: Really we should release this 878 * reference later, but this maintains 879 * historical behavior. 880 */ 881 if (info.rti_ifa != NULL) 882 ifa_free(info.rti_ifa); 883 RADIX_NODE_HEAD_UNLOCK(rnh); 884 if (error != 0) 885 senderr(error); 886 RT_LOCK(rt); 887 } 888 if (info.rti_ifa != NULL && 889 info.rti_ifa != rt->rt_ifa && 890 rt->rt_ifa != NULL && 891 rt->rt_ifa->ifa_rtrequest != NULL) { 892 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 893 &info); 894 ifa_free(rt->rt_ifa); 895 } 896 if (info.rti_info[RTAX_GATEWAY] != NULL) { 897 RT_UNLOCK(rt); 898 RADIX_NODE_HEAD_LOCK(rnh); 899 RT_LOCK(rt); 900 901 error = rt_setgate(rt, rt_key(rt), 902 info.rti_info[RTAX_GATEWAY]); 903 RADIX_NODE_HEAD_UNLOCK(rnh); 904 if (error != 0) { 905 RT_UNLOCK(rt); 906 senderr(error); 907 } 908 rt->rt_flags |= (RTF_GATEWAY & info.rti_flags); 909 } 910 if (info.rti_ifa != NULL && 911 info.rti_ifa != rt->rt_ifa) { 912 ifa_ref(info.rti_ifa); 913 rt->rt_ifa = info.rti_ifa; 914 rt->rt_ifp = info.rti_ifp; 915 } 916 /* Allow some flags to be toggled on change. */ 917 rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) | 918 (rtm->rtm_flags & RTF_FMASK); 919 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 920 &rt->rt_rmx); 921 rtm->rtm_index = rt->rt_ifp->if_index; 922 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 923 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 924 /* FALLTHROUGH */ 925 case RTM_LOCK: 926 /* We don't support locks anymore */ 927 break; 928 } 929 RT_UNLOCK(rt); 930 break; 931 932 default: 933 senderr(EOPNOTSUPP); 934 } 935 936 flush: 937 if (rtm) { 938 if (error) 939 rtm->rtm_errno = error; 940 else 941 rtm->rtm_flags |= RTF_DONE; 942 } 943 if (rt) /* XXX can this be true? */ 944 RTFREE(rt); 945 { 946 struct rawcb *rp = NULL; 947 /* 948 * Check to see if we don't want our own messages. 949 */ 950 if ((so->so_options & SO_USELOOPBACK) == 0) { 951 if (route_cb.any_count <= 1) { 952 if (rtm) 953 Free(rtm); 954 m_freem(m); 955 return (error); 956 } 957 /* There is another listener, so construct message */ 958 rp = sotorawcb(so); 959 } 960 if (rtm) { 961 #ifdef INET6 962 if (rti_need_deembed) { 963 /* sin6_scope_id is recovered before sending rtm. */ 964 for (i = 0; i < RTAX_MAX; i++) { 965 sin6 = (struct sockaddr_in6 *)&ss; 966 if (info.rti_info[i] == NULL) 967 continue; 968 if (info.rti_info[i]->sa_family != AF_INET6) 969 continue; 970 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 971 if (sa6_recoverscope(sin6) == 0) 972 bcopy(sin6, info.rti_info[i], 973 sizeof(*sin6)); 974 } 975 } 976 #endif 977 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 978 if (m->m_pkthdr.len < rtm->rtm_msglen) { 979 m_freem(m); 980 m = NULL; 981 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 982 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 983 } 984 if (m) { 985 M_SETFIB(m, so->so_fibnum); 986 m->m_flags |= RTS_FILTER_FIB; 987 if (rp) { 988 /* 989 * XXX insure we don't get a copy by 990 * invalidating our protocol 991 */ 992 unsigned short family = rp->rcb_proto.sp_family; 993 rp->rcb_proto.sp_family = 0; 994 rt_dispatch(m, saf); 995 rp->rcb_proto.sp_family = family; 996 } else 997 rt_dispatch(m, saf); 998 } 999 /* info.rti_info[RTAX_DST] (used above) can point inside of rtm */ 1000 if (rtm) 1001 Free(rtm); 1002 } 1003 return (error); 1004 #undef sa_equal 1005 } 1006 1007 static void 1008 rt_setmetrics(u_long which, const struct rt_metrics *in, 1009 struct rt_metrics_lite *out) 1010 { 1011 #define metric(f, e) if (which & (f)) out->e = in->e; 1012 /* 1013 * Only these are stored in the routing entry since introduction 1014 * of tcp hostcache. The rest is ignored. 1015 */ 1016 metric(RTV_MTU, rmx_mtu); 1017 metric(RTV_WEIGHT, rmx_weight); 1018 /* Userland -> kernel timebase conversion. */ 1019 if (which & RTV_EXPIRE) 1020 out->rmx_expire = in->rmx_expire ? 1021 in->rmx_expire - time_second + time_uptime : 0; 1022 #undef metric 1023 } 1024 1025 static void 1026 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 1027 { 1028 #define metric(e) out->e = in->e; 1029 bzero(out, sizeof(*out)); 1030 metric(rmx_mtu); 1031 metric(rmx_weight); 1032 /* Kernel -> userland timebase conversion. */ 1033 out->rmx_expire = in->rmx_expire ? 1034 in->rmx_expire - time_uptime + time_second : 0; 1035 #undef metric 1036 } 1037 1038 /* 1039 * Extract the addresses of the passed sockaddrs. 1040 * Do a little sanity checking so as to avoid bad memory references. 1041 * This data is derived straight from userland. 1042 */ 1043 static int 1044 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1045 { 1046 struct sockaddr *sa; 1047 int i; 1048 1049 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1050 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1051 continue; 1052 sa = (struct sockaddr *)cp; 1053 /* 1054 * It won't fit. 1055 */ 1056 if (cp + sa->sa_len > cplim) 1057 return (EINVAL); 1058 /* 1059 * there are no more.. quit now 1060 * If there are more bits, they are in error. 1061 * I've seen this. route(1) can evidently generate these. 1062 * This causes kernel to core dump. 1063 * for compatibility, If we see this, point to a safe address. 1064 */ 1065 if (sa->sa_len == 0) { 1066 rtinfo->rti_info[i] = &sa_zero; 1067 return (0); /* should be EINVAL but for compat */ 1068 } 1069 /* accept it */ 1070 #ifdef INET6 1071 if (sa->sa_family == AF_INET6) 1072 sa6_embedscope((struct sockaddr_in6 *)sa, 1073 V_ip6_use_defzone); 1074 #endif 1075 rtinfo->rti_info[i] = sa; 1076 cp += SA_SIZE(sa); 1077 } 1078 return (0); 1079 } 1080 1081 /* 1082 * Used by the routing socket. 1083 */ 1084 static struct mbuf * 1085 rt_msg1(int type, struct rt_addrinfo *rtinfo) 1086 { 1087 struct rt_msghdr *rtm; 1088 struct mbuf *m; 1089 int i; 1090 struct sockaddr *sa; 1091 #ifdef INET6 1092 struct sockaddr_storage ss; 1093 struct sockaddr_in6 *sin6; 1094 #endif 1095 int len, dlen; 1096 1097 switch (type) { 1098 1099 case RTM_DELADDR: 1100 case RTM_NEWADDR: 1101 len = sizeof(struct ifa_msghdr); 1102 break; 1103 1104 case RTM_DELMADDR: 1105 case RTM_NEWMADDR: 1106 len = sizeof(struct ifma_msghdr); 1107 break; 1108 1109 case RTM_IFINFO: 1110 len = sizeof(struct if_msghdr); 1111 break; 1112 1113 case RTM_IFANNOUNCE: 1114 case RTM_IEEE80211: 1115 len = sizeof(struct if_announcemsghdr); 1116 break; 1117 1118 default: 1119 len = sizeof(struct rt_msghdr); 1120 } 1121 if (len > MCLBYTES) 1122 panic("rt_msg1"); 1123 m = m_gethdr(M_NOWAIT, MT_DATA); 1124 if (m && len > MHLEN) { 1125 MCLGET(m, M_NOWAIT); 1126 if ((m->m_flags & M_EXT) == 0) { 1127 m_free(m); 1128 m = NULL; 1129 } 1130 } 1131 if (m == NULL) 1132 return (m); 1133 m->m_pkthdr.len = m->m_len = len; 1134 m->m_pkthdr.rcvif = NULL; 1135 rtm = mtod(m, struct rt_msghdr *); 1136 bzero((caddr_t)rtm, len); 1137 for (i = 0; i < RTAX_MAX; i++) { 1138 if ((sa = rtinfo->rti_info[i]) == NULL) 1139 continue; 1140 rtinfo->rti_addrs |= (1 << i); 1141 dlen = SA_SIZE(sa); 1142 #ifdef INET6 1143 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1144 sin6 = (struct sockaddr_in6 *)&ss; 1145 bcopy(sa, sin6, sizeof(*sin6)); 1146 if (sa6_recoverscope(sin6) == 0) 1147 sa = (struct sockaddr *)sin6; 1148 } 1149 #endif 1150 m_copyback(m, len, dlen, (caddr_t)sa); 1151 len += dlen; 1152 } 1153 if (m->m_pkthdr.len != len) { 1154 m_freem(m); 1155 return (NULL); 1156 } 1157 rtm->rtm_msglen = len; 1158 rtm->rtm_version = RTM_VERSION; 1159 rtm->rtm_type = type; 1160 return (m); 1161 } 1162 1163 /* 1164 * Used by the sysctl code and routing socket. 1165 */ 1166 static int 1167 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 1168 { 1169 int i; 1170 int len, dlen, second_time = 0; 1171 caddr_t cp0; 1172 #ifdef INET6 1173 struct sockaddr_storage ss; 1174 struct sockaddr_in6 *sin6; 1175 #endif 1176 1177 rtinfo->rti_addrs = 0; 1178 again: 1179 switch (type) { 1180 1181 case RTM_DELADDR: 1182 case RTM_NEWADDR: 1183 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1184 #ifdef COMPAT_FREEBSD32 1185 if (w->w_req->flags & SCTL_MASK32) 1186 len = sizeof(struct ifa_msghdrl32); 1187 else 1188 #endif 1189 len = sizeof(struct ifa_msghdrl); 1190 } else 1191 len = sizeof(struct ifa_msghdr); 1192 break; 1193 1194 case RTM_IFINFO: 1195 #ifdef COMPAT_FREEBSD32 1196 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1197 if (w->w_op == NET_RT_IFLISTL) 1198 len = sizeof(struct if_msghdrl32); 1199 else 1200 len = sizeof(struct if_msghdr32); 1201 break; 1202 } 1203 #endif 1204 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1205 len = sizeof(struct if_msghdrl); 1206 else 1207 len = sizeof(struct if_msghdr); 1208 break; 1209 1210 case RTM_NEWMADDR: 1211 len = sizeof(struct ifma_msghdr); 1212 break; 1213 1214 default: 1215 len = sizeof(struct rt_msghdr); 1216 } 1217 cp0 = cp; 1218 if (cp0) 1219 cp += len; 1220 for (i = 0; i < RTAX_MAX; i++) { 1221 struct sockaddr *sa; 1222 1223 if ((sa = rtinfo->rti_info[i]) == NULL) 1224 continue; 1225 rtinfo->rti_addrs |= (1 << i); 1226 dlen = SA_SIZE(sa); 1227 if (cp) { 1228 #ifdef INET6 1229 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1230 sin6 = (struct sockaddr_in6 *)&ss; 1231 bcopy(sa, sin6, sizeof(*sin6)); 1232 if (sa6_recoverscope(sin6) == 0) 1233 sa = (struct sockaddr *)sin6; 1234 } 1235 #endif 1236 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1237 cp += dlen; 1238 } 1239 len += dlen; 1240 } 1241 len = ALIGN(len); 1242 if (cp == NULL && w != NULL && !second_time) { 1243 struct walkarg *rw = w; 1244 1245 if (rw->w_req) { 1246 if (rw->w_tmemsize < len) { 1247 if (rw->w_tmem) 1248 free(rw->w_tmem, M_RTABLE); 1249 rw->w_tmem = (caddr_t) 1250 malloc(len, M_RTABLE, M_NOWAIT); 1251 if (rw->w_tmem) 1252 rw->w_tmemsize = len; 1253 } 1254 if (rw->w_tmem) { 1255 cp = rw->w_tmem; 1256 second_time = 1; 1257 goto again; 1258 } 1259 } 1260 } 1261 if (cp) { 1262 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 1263 1264 rtm->rtm_version = RTM_VERSION; 1265 rtm->rtm_type = type; 1266 rtm->rtm_msglen = len; 1267 } 1268 return (len); 1269 } 1270 1271 /* 1272 * This routine is called to generate a message from the routing 1273 * socket indicating that a redirect has occured, a routing lookup 1274 * has failed, or that a protocol has detected timeouts to a particular 1275 * destination. 1276 */ 1277 void 1278 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1279 int fibnum) 1280 { 1281 struct rt_msghdr *rtm; 1282 struct mbuf *m; 1283 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1284 1285 if (route_cb.any_count == 0) 1286 return; 1287 m = rt_msg1(type, rtinfo); 1288 if (m == NULL) 1289 return; 1290 1291 if (fibnum != RTS_ALLFIBS) { 1292 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1293 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1294 M_SETFIB(m, fibnum); 1295 m->m_flags |= RTS_FILTER_FIB; 1296 } 1297 1298 rtm = mtod(m, struct rt_msghdr *); 1299 rtm->rtm_flags = RTF_DONE | flags; 1300 rtm->rtm_errno = error; 1301 rtm->rtm_addrs = rtinfo->rti_addrs; 1302 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1303 } 1304 1305 void 1306 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1307 { 1308 1309 rt_missmsg_fib(type, rtinfo, flags, error, RTS_ALLFIBS); 1310 } 1311 1312 /* 1313 * This routine is called to generate a message from the routing 1314 * socket indicating that the status of a network interface has changed. 1315 */ 1316 void 1317 rt_ifmsg(struct ifnet *ifp) 1318 { 1319 struct if_msghdr *ifm; 1320 struct mbuf *m; 1321 struct rt_addrinfo info; 1322 1323 if (route_cb.any_count == 0) 1324 return; 1325 bzero((caddr_t)&info, sizeof(info)); 1326 m = rt_msg1(RTM_IFINFO, &info); 1327 if (m == NULL) 1328 return; 1329 ifm = mtod(m, struct if_msghdr *); 1330 ifm->ifm_index = ifp->if_index; 1331 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1332 ifm->ifm_data = ifp->if_data; 1333 ifm->ifm_addrs = 0; 1334 rt_dispatch(m, AF_UNSPEC); 1335 } 1336 1337 /* 1338 * This is called to generate messages from the routing socket 1339 * indicating a network interface has had addresses associated with it. 1340 * if we ever reverse the logic and replace messages TO the routing 1341 * socket indicate a request to configure interfaces, then it will 1342 * be unnecessary as the routing socket will automatically generate 1343 * copies of it. 1344 */ 1345 void 1346 rt_newaddrmsg_fib(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt, 1347 int fibnum) 1348 { 1349 struct rt_addrinfo info; 1350 struct sockaddr *sa = NULL; 1351 int pass; 1352 struct mbuf *m = NULL; 1353 struct ifnet *ifp = ifa->ifa_ifp; 1354 1355 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 1356 ("unexpected cmd %u", cmd)); 1357 #if defined(INET) || defined(INET6) 1358 #ifdef SCTP 1359 /* 1360 * notify the SCTP stack 1361 * this will only get called when an address is added/deleted 1362 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 1363 */ 1364 sctp_addr_change(ifa, cmd); 1365 #endif /* SCTP */ 1366 #endif 1367 if (route_cb.any_count == 0) 1368 return; 1369 for (pass = 1; pass < 3; pass++) { 1370 bzero((caddr_t)&info, sizeof(info)); 1371 if ((cmd == RTM_ADD && pass == 1) || 1372 (cmd == RTM_DELETE && pass == 2)) { 1373 struct ifa_msghdr *ifam; 1374 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1375 1376 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1377 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1378 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1379 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1380 if ((m = rt_msg1(ncmd, &info)) == NULL) 1381 continue; 1382 ifam = mtod(m, struct ifa_msghdr *); 1383 ifam->ifam_index = ifp->if_index; 1384 ifam->ifam_metric = ifa->ifa_metric; 1385 ifam->ifam_flags = ifa->ifa_flags; 1386 ifam->ifam_addrs = info.rti_addrs; 1387 } 1388 if ((cmd == RTM_ADD && pass == 2) || 1389 (cmd == RTM_DELETE && pass == 1)) { 1390 struct rt_msghdr *rtm; 1391 1392 if (rt == NULL) 1393 continue; 1394 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1395 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1396 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1397 if ((m = rt_msg1(cmd, &info)) == NULL) 1398 continue; 1399 rtm = mtod(m, struct rt_msghdr *); 1400 rtm->rtm_index = ifp->if_index; 1401 rtm->rtm_flags |= rt->rt_flags; 1402 rtm->rtm_errno = error; 1403 rtm->rtm_addrs = info.rti_addrs; 1404 } 1405 if (fibnum != RTS_ALLFIBS) { 1406 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: " 1407 "fibnum out of range 0 <= %d < %d", __func__, 1408 fibnum, rt_numfibs)); 1409 M_SETFIB(m, fibnum); 1410 m->m_flags |= RTS_FILTER_FIB; 1411 } 1412 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1413 } 1414 } 1415 1416 void 1417 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 1418 { 1419 1420 rt_newaddrmsg_fib(cmd, ifa, error, rt, RTS_ALLFIBS); 1421 } 1422 1423 /* 1424 * This is the analogue to the rt_newaddrmsg which performs the same 1425 * function but for multicast group memberhips. This is easier since 1426 * there is no route state to worry about. 1427 */ 1428 void 1429 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1430 { 1431 struct rt_addrinfo info; 1432 struct mbuf *m = NULL; 1433 struct ifnet *ifp = ifma->ifma_ifp; 1434 struct ifma_msghdr *ifmam; 1435 1436 if (route_cb.any_count == 0) 1437 return; 1438 1439 bzero((caddr_t)&info, sizeof(info)); 1440 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1441 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1442 /* 1443 * If a link-layer address is present, present it as a ``gateway'' 1444 * (similarly to how ARP entries, e.g., are presented). 1445 */ 1446 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1447 m = rt_msg1(cmd, &info); 1448 if (m == NULL) 1449 return; 1450 ifmam = mtod(m, struct ifma_msghdr *); 1451 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1452 __func__)); 1453 ifmam->ifmam_index = ifp->if_index; 1454 ifmam->ifmam_addrs = info.rti_addrs; 1455 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1456 } 1457 1458 static struct mbuf * 1459 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1460 struct rt_addrinfo *info) 1461 { 1462 struct if_announcemsghdr *ifan; 1463 struct mbuf *m; 1464 1465 if (route_cb.any_count == 0) 1466 return NULL; 1467 bzero((caddr_t)info, sizeof(*info)); 1468 m = rt_msg1(type, info); 1469 if (m != NULL) { 1470 ifan = mtod(m, struct if_announcemsghdr *); 1471 ifan->ifan_index = ifp->if_index; 1472 strlcpy(ifan->ifan_name, ifp->if_xname, 1473 sizeof(ifan->ifan_name)); 1474 ifan->ifan_what = what; 1475 } 1476 return m; 1477 } 1478 1479 /* 1480 * This is called to generate routing socket messages indicating 1481 * IEEE80211 wireless events. 1482 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1483 */ 1484 void 1485 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1486 { 1487 struct mbuf *m; 1488 struct rt_addrinfo info; 1489 1490 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1491 if (m != NULL) { 1492 /* 1493 * Append the ieee80211 data. Try to stick it in the 1494 * mbuf containing the ifannounce msg; otherwise allocate 1495 * a new mbuf and append. 1496 * 1497 * NB: we assume m is a single mbuf. 1498 */ 1499 if (data_len > M_TRAILINGSPACE(m)) { 1500 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1501 if (n == NULL) { 1502 m_freem(m); 1503 return; 1504 } 1505 bcopy(data, mtod(n, void *), data_len); 1506 n->m_len = data_len; 1507 m->m_next = n; 1508 } else if (data_len > 0) { 1509 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1510 m->m_len += data_len; 1511 } 1512 if (m->m_flags & M_PKTHDR) 1513 m->m_pkthdr.len += data_len; 1514 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1515 rt_dispatch(m, AF_UNSPEC); 1516 } 1517 } 1518 1519 /* 1520 * This is called to generate routing socket messages indicating 1521 * network interface arrival and departure. 1522 */ 1523 void 1524 rt_ifannouncemsg(struct ifnet *ifp, int what) 1525 { 1526 struct mbuf *m; 1527 struct rt_addrinfo info; 1528 1529 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1530 if (m != NULL) 1531 rt_dispatch(m, AF_UNSPEC); 1532 } 1533 1534 static void 1535 rt_dispatch(struct mbuf *m, sa_family_t saf) 1536 { 1537 struct m_tag *tag; 1538 1539 /* 1540 * Preserve the family from the sockaddr, if any, in an m_tag for 1541 * use when injecting the mbuf into the routing socket buffer from 1542 * the netisr. 1543 */ 1544 if (saf != AF_UNSPEC) { 1545 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1546 M_NOWAIT); 1547 if (tag == NULL) { 1548 m_freem(m); 1549 return; 1550 } 1551 *(unsigned short *)(tag + 1) = saf; 1552 m_tag_prepend(m, tag); 1553 } 1554 #ifdef VIMAGE 1555 if (V_loif) 1556 m->m_pkthdr.rcvif = V_loif; 1557 else { 1558 m_freem(m); 1559 return; 1560 } 1561 #endif 1562 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1563 } 1564 1565 /* 1566 * This is used in dumping the kernel table via sysctl(). 1567 */ 1568 static int 1569 sysctl_dumpentry(struct radix_node *rn, void *vw) 1570 { 1571 struct walkarg *w = vw; 1572 struct rtentry *rt = (struct rtentry *)rn; 1573 int error = 0, size; 1574 struct rt_addrinfo info; 1575 1576 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1577 return 0; 1578 if ((rt->rt_flags & RTF_HOST) == 0 1579 ? jailed_without_vnet(w->w_req->td->td_ucred) 1580 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1581 return (0); 1582 bzero((caddr_t)&info, sizeof(info)); 1583 info.rti_info[RTAX_DST] = rt_key(rt); 1584 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1585 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1586 info.rti_info[RTAX_GENMASK] = 0; 1587 if (rt->rt_ifp) { 1588 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1589 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1590 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1591 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1592 } 1593 size = rt_msg2(RTM_GET, &info, NULL, w); 1594 if (w->w_req && w->w_tmem) { 1595 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1596 1597 rtm->rtm_flags = rt->rt_flags; 1598 /* 1599 * let's be honest about this being a retarded hack 1600 */ 1601 rtm->rtm_fmask = rt->rt_rmx.rmx_pksent; 1602 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1603 rtm->rtm_index = rt->rt_ifp->if_index; 1604 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1605 rtm->rtm_addrs = info.rti_addrs; 1606 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1607 return (error); 1608 } 1609 return (error); 1610 } 1611 1612 #ifdef COMPAT_FREEBSD32 1613 static void 1614 copy_ifdata32(struct if_data *src, struct if_data32 *dst) 1615 { 1616 1617 bzero(dst, sizeof(*dst)); 1618 CP(*src, *dst, ifi_type); 1619 CP(*src, *dst, ifi_physical); 1620 CP(*src, *dst, ifi_addrlen); 1621 CP(*src, *dst, ifi_hdrlen); 1622 CP(*src, *dst, ifi_link_state); 1623 CP(*src, *dst, ifi_vhid); 1624 dst->ifi_datalen = sizeof(struct if_data32); 1625 CP(*src, *dst, ifi_mtu); 1626 CP(*src, *dst, ifi_metric); 1627 CP(*src, *dst, ifi_baudrate); 1628 CP(*src, *dst, ifi_ipackets); 1629 CP(*src, *dst, ifi_ierrors); 1630 CP(*src, *dst, ifi_opackets); 1631 CP(*src, *dst, ifi_oerrors); 1632 CP(*src, *dst, ifi_collisions); 1633 CP(*src, *dst, ifi_ibytes); 1634 CP(*src, *dst, ifi_obytes); 1635 CP(*src, *dst, ifi_imcasts); 1636 CP(*src, *dst, ifi_omcasts); 1637 CP(*src, *dst, ifi_iqdrops); 1638 CP(*src, *dst, ifi_noproto); 1639 CP(*src, *dst, ifi_hwassist); 1640 CP(*src, *dst, ifi_epoch); 1641 TV_CP(*src, *dst, ifi_lastchange); 1642 } 1643 #endif 1644 1645 static int 1646 sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info, 1647 struct walkarg *w, int len) 1648 { 1649 struct if_msghdrl *ifm; 1650 1651 #ifdef COMPAT_FREEBSD32 1652 if (w->w_req->flags & SCTL_MASK32) { 1653 struct if_msghdrl32 *ifm32; 1654 1655 ifm32 = (struct if_msghdrl32 *)w->w_tmem; 1656 ifm32->ifm_addrs = info->rti_addrs; 1657 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1658 ifm32->ifm_index = ifp->if_index; 1659 ifm32->_ifm_spare1 = 0; 1660 ifm32->ifm_len = sizeof(*ifm32); 1661 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1662 1663 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1664 /* Fixup if_data carp(4) vhid. */ 1665 if (carp_get_vhid_p != NULL) 1666 ifm32->ifm_data.ifi_vhid = 1667 (*carp_get_vhid_p)(ifp->if_addr); 1668 1669 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len)); 1670 } 1671 #endif 1672 ifm = (struct if_msghdrl *)w->w_tmem; 1673 ifm->ifm_addrs = info->rti_addrs; 1674 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1675 ifm->ifm_index = ifp->if_index; 1676 ifm->_ifm_spare1 = 0; 1677 ifm->ifm_len = sizeof(*ifm); 1678 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1679 1680 ifm->ifm_data = ifp->if_data; 1681 /* Fixup if_data carp(4) vhid. */ 1682 if (carp_get_vhid_p != NULL) 1683 ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr); 1684 1685 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1686 } 1687 1688 static int 1689 sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info, 1690 struct walkarg *w, int len) 1691 { 1692 struct if_msghdr *ifm; 1693 1694 #ifdef COMPAT_FREEBSD32 1695 if (w->w_req->flags & SCTL_MASK32) { 1696 struct if_msghdr32 *ifm32; 1697 1698 ifm32 = (struct if_msghdr32 *)w->w_tmem; 1699 ifm32->ifm_addrs = info->rti_addrs; 1700 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1701 ifm32->ifm_index = ifp->if_index; 1702 1703 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1704 /* Fixup if_data carp(4) vhid. */ 1705 if (carp_get_vhid_p != NULL) 1706 ifm32->ifm_data.ifi_vhid = 1707 (*carp_get_vhid_p)(ifp->if_addr); 1708 1709 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len)); 1710 } 1711 #endif 1712 ifm = (struct if_msghdr *)w->w_tmem; 1713 ifm->ifm_addrs = info->rti_addrs; 1714 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1715 ifm->ifm_index = ifp->if_index; 1716 1717 ifm->ifm_data = ifp->if_data; 1718 /* Fixup if_data carp(4) vhid. */ 1719 if (carp_get_vhid_p != NULL) 1720 ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr); 1721 1722 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1723 } 1724 1725 static int 1726 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1727 struct walkarg *w, int len) 1728 { 1729 struct ifa_msghdrl *ifam; 1730 1731 #ifdef COMPAT_FREEBSD32 1732 if (w->w_req->flags & SCTL_MASK32) { 1733 struct ifa_msghdrl32 *ifam32; 1734 1735 ifam32 = (struct ifa_msghdrl32 *)w->w_tmem; 1736 ifam32->ifam_addrs = info->rti_addrs; 1737 ifam32->ifam_flags = ifa->ifa_flags; 1738 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1739 ifam32->_ifam_spare1 = 0; 1740 ifam32->ifam_len = sizeof(*ifam32); 1741 ifam32->ifam_data_off = 1742 offsetof(struct ifa_msghdrl32, ifam_data); 1743 ifam32->ifam_metric = ifa->ifa_metric; 1744 1745 copy_ifdata32(&ifa->ifa_ifp->if_data, &ifam32->ifam_data); 1746 /* Fixup if_data carp(4) vhid. */ 1747 if (carp_get_vhid_p != NULL) 1748 ifam32->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa); 1749 1750 return (SYSCTL_OUT(w->w_req, (caddr_t)ifam32, len)); 1751 } 1752 #endif 1753 1754 ifam = (struct ifa_msghdrl *)w->w_tmem; 1755 ifam->ifam_addrs = info->rti_addrs; 1756 ifam->ifam_flags = ifa->ifa_flags; 1757 ifam->ifam_index = ifa->ifa_ifp->if_index; 1758 ifam->_ifam_spare1 = 0; 1759 ifam->ifam_len = sizeof(*ifam); 1760 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1761 ifam->ifam_metric = ifa->ifa_metric; 1762 1763 ifam->ifam_data = ifa->if_data; 1764 /* Fixup if_data carp(4) vhid. */ 1765 if (carp_get_vhid_p != NULL) 1766 ifam->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa); 1767 1768 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1769 } 1770 1771 static int 1772 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1773 struct walkarg *w, int len) 1774 { 1775 struct ifa_msghdr *ifam; 1776 1777 ifam = (struct ifa_msghdr *)w->w_tmem; 1778 ifam->ifam_addrs = info->rti_addrs; 1779 ifam->ifam_flags = ifa->ifa_flags; 1780 ifam->ifam_index = ifa->ifa_ifp->if_index; 1781 ifam->ifam_metric = ifa->ifa_metric; 1782 1783 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1784 } 1785 1786 static int 1787 sysctl_iflist(int af, struct walkarg *w) 1788 { 1789 struct ifnet *ifp; 1790 struct ifaddr *ifa; 1791 struct rt_addrinfo info; 1792 int len, error = 0; 1793 1794 bzero((caddr_t)&info, sizeof(info)); 1795 IFNET_RLOCK_NOSLEEP(); 1796 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1797 if (w->w_arg && w->w_arg != ifp->if_index) 1798 continue; 1799 IF_ADDR_RLOCK(ifp); 1800 ifa = ifp->if_addr; 1801 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1802 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1803 info.rti_info[RTAX_IFP] = NULL; 1804 if (w->w_req && w->w_tmem) { 1805 if (w->w_op == NET_RT_IFLISTL) 1806 error = sysctl_iflist_ifml(ifp, &info, w, len); 1807 else 1808 error = sysctl_iflist_ifm(ifp, &info, w, len); 1809 if (error) 1810 goto done; 1811 } 1812 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1813 if (af && af != ifa->ifa_addr->sa_family) 1814 continue; 1815 if (prison_if(w->w_req->td->td_ucred, 1816 ifa->ifa_addr) != 0) 1817 continue; 1818 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1819 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1820 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1821 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1822 if (w->w_req && w->w_tmem) { 1823 if (w->w_op == NET_RT_IFLISTL) 1824 error = sysctl_iflist_ifaml(ifa, &info, 1825 w, len); 1826 else 1827 error = sysctl_iflist_ifam(ifa, &info, 1828 w, len); 1829 if (error) 1830 goto done; 1831 } 1832 } 1833 IF_ADDR_RUNLOCK(ifp); 1834 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1835 info.rti_info[RTAX_BRD] = NULL; 1836 } 1837 done: 1838 if (ifp != NULL) 1839 IF_ADDR_RUNLOCK(ifp); 1840 IFNET_RUNLOCK_NOSLEEP(); 1841 return (error); 1842 } 1843 1844 static int 1845 sysctl_ifmalist(int af, struct walkarg *w) 1846 { 1847 struct ifnet *ifp; 1848 struct ifmultiaddr *ifma; 1849 struct rt_addrinfo info; 1850 int len, error = 0; 1851 struct ifaddr *ifa; 1852 1853 bzero((caddr_t)&info, sizeof(info)); 1854 IFNET_RLOCK_NOSLEEP(); 1855 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1856 if (w->w_arg && w->w_arg != ifp->if_index) 1857 continue; 1858 ifa = ifp->if_addr; 1859 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1860 IF_ADDR_RLOCK(ifp); 1861 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1862 if (af && af != ifma->ifma_addr->sa_family) 1863 continue; 1864 if (prison_if(w->w_req->td->td_ucred, 1865 ifma->ifma_addr) != 0) 1866 continue; 1867 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1868 info.rti_info[RTAX_GATEWAY] = 1869 (ifma->ifma_addr->sa_family != AF_LINK) ? 1870 ifma->ifma_lladdr : NULL; 1871 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1872 if (w->w_req && w->w_tmem) { 1873 struct ifma_msghdr *ifmam; 1874 1875 ifmam = (struct ifma_msghdr *)w->w_tmem; 1876 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1877 ifmam->ifmam_flags = 0; 1878 ifmam->ifmam_addrs = info.rti_addrs; 1879 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1880 if (error) { 1881 IF_ADDR_RUNLOCK(ifp); 1882 goto done; 1883 } 1884 } 1885 } 1886 IF_ADDR_RUNLOCK(ifp); 1887 } 1888 done: 1889 IFNET_RUNLOCK_NOSLEEP(); 1890 return (error); 1891 } 1892 1893 static int 1894 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1895 { 1896 int *name = (int *)arg1; 1897 u_int namelen = arg2; 1898 struct radix_node_head *rnh = NULL; /* silence compiler. */ 1899 int i, lim, error = EINVAL; 1900 u_char af; 1901 struct walkarg w; 1902 1903 name ++; 1904 namelen--; 1905 if (req->newptr) 1906 return (EPERM); 1907 if (namelen != 3) 1908 return ((namelen < 3) ? EISDIR : ENOTDIR); 1909 af = name[0]; 1910 if (af > AF_MAX) 1911 return (EINVAL); 1912 bzero(&w, sizeof(w)); 1913 w.w_op = name[1]; 1914 w.w_arg = name[2]; 1915 w.w_req = req; 1916 1917 error = sysctl_wire_old_buffer(req, 0); 1918 if (error) 1919 return (error); 1920 switch (w.w_op) { 1921 1922 case NET_RT_DUMP: 1923 case NET_RT_FLAGS: 1924 if (af == 0) { /* dump all tables */ 1925 i = 1; 1926 lim = AF_MAX; 1927 } else /* dump only one table */ 1928 i = lim = af; 1929 1930 /* 1931 * take care of llinfo entries, the caller must 1932 * specify an AF 1933 */ 1934 if (w.w_op == NET_RT_FLAGS && 1935 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1936 if (af != 0) 1937 error = lltable_sysctl_dumparp(af, w.w_req); 1938 else 1939 error = EINVAL; 1940 break; 1941 } 1942 /* 1943 * take care of routing entries 1944 */ 1945 for (error = 0; error == 0 && i <= lim; i++) { 1946 rnh = rt_tables_get_rnh(req->td->td_proc->p_fibnum, i); 1947 if (rnh != NULL) { 1948 RADIX_NODE_HEAD_RLOCK(rnh); 1949 error = rnh->rnh_walktree(rnh, 1950 sysctl_dumpentry, &w); 1951 RADIX_NODE_HEAD_RUNLOCK(rnh); 1952 } else if (af != 0) 1953 error = EAFNOSUPPORT; 1954 } 1955 break; 1956 1957 case NET_RT_IFLIST: 1958 case NET_RT_IFLISTL: 1959 error = sysctl_iflist(af, &w); 1960 break; 1961 1962 case NET_RT_IFMALIST: 1963 error = sysctl_ifmalist(af, &w); 1964 break; 1965 } 1966 if (w.w_tmem) 1967 free(w.w_tmem, M_RTABLE); 1968 return (error); 1969 } 1970 1971 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1972 1973 /* 1974 * Definitions of protocols supported in the ROUTE domain. 1975 */ 1976 1977 static struct domain routedomain; /* or at least forward */ 1978 1979 static struct protosw routesw[] = { 1980 { 1981 .pr_type = SOCK_RAW, 1982 .pr_domain = &routedomain, 1983 .pr_flags = PR_ATOMIC|PR_ADDR, 1984 .pr_output = route_output, 1985 .pr_ctlinput = raw_ctlinput, 1986 .pr_init = raw_init, 1987 .pr_usrreqs = &route_usrreqs 1988 } 1989 }; 1990 1991 static struct domain routedomain = { 1992 .dom_family = PF_ROUTE, 1993 .dom_name = "route", 1994 .dom_protosw = routesw, 1995 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1996 }; 1997 1998 VNET_DOMAIN_SET(route); 1999