1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_compat.h" 33 #include "opt_mpath.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 37 #include <sys/param.h> 38 #include <sys/jail.h> 39 #include <sys/kernel.h> 40 #include <sys/domain.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/rwlock.h> 48 #include <sys/signalvar.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/systm.h> 53 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_dl.h> 57 #include <net/if_llatbl.h> 58 #include <net/if_types.h> 59 #include <net/netisr.h> 60 #include <net/raw_cb.h> 61 #include <net/route.h> 62 #include <net/route_var.h> 63 #include <net/vnet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/if_ether.h> 67 #include <netinet/ip_carp.h> 68 #ifdef INET6 69 #include <netinet6/ip6_var.h> 70 #include <netinet6/scope6_var.h> 71 #endif 72 73 #ifdef COMPAT_FREEBSD32 74 #include <sys/mount.h> 75 #include <compat/freebsd32/freebsd32.h> 76 77 struct if_msghdr32 { 78 uint16_t ifm_msglen; 79 uint8_t ifm_version; 80 uint8_t ifm_type; 81 int32_t ifm_addrs; 82 int32_t ifm_flags; 83 uint16_t ifm_index; 84 struct if_data ifm_data; 85 }; 86 87 struct if_msghdrl32 { 88 uint16_t ifm_msglen; 89 uint8_t ifm_version; 90 uint8_t ifm_type; 91 int32_t ifm_addrs; 92 int32_t ifm_flags; 93 uint16_t ifm_index; 94 uint16_t _ifm_spare1; 95 uint16_t ifm_len; 96 uint16_t ifm_data_off; 97 struct if_data ifm_data; 98 }; 99 100 struct ifa_msghdrl32 { 101 uint16_t ifam_msglen; 102 uint8_t ifam_version; 103 uint8_t ifam_type; 104 int32_t ifam_addrs; 105 int32_t ifam_flags; 106 uint16_t ifam_index; 107 uint16_t _ifam_spare1; 108 uint16_t ifam_len; 109 uint16_t ifam_data_off; 110 int32_t ifam_metric; 111 struct if_data ifam_data; 112 }; 113 #endif /* COMPAT_FREEBSD32 */ 114 115 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 116 117 /* NB: these are not modified */ 118 static struct sockaddr route_src = { 2, PF_ROUTE, }; 119 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 120 121 /* These are external hooks for CARP. */ 122 int (*carp_get_vhid_p)(struct ifaddr *); 123 124 /* 125 * Used by rtsock/raw_input callback code to decide whether to filter the update 126 * notification to a socket bound to a particular FIB. 127 */ 128 #define RTS_FILTER_FIB M_PROTO8 129 130 typedef struct { 131 int ip_count; /* attached w/ AF_INET */ 132 int ip6_count; /* attached w/ AF_INET6 */ 133 int any_count; /* total attached */ 134 } route_cb_t; 135 static VNET_DEFINE(route_cb_t, route_cb); 136 #define V_route_cb VNET(route_cb) 137 138 struct mtx rtsock_mtx; 139 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 140 141 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 142 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 143 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 144 145 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 146 147 struct walkarg { 148 int w_tmemsize; 149 int w_op, w_arg; 150 caddr_t w_tmem; 151 struct sysctl_req *w_req; 152 }; 153 154 static void rts_input(struct mbuf *m); 155 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 156 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 157 struct walkarg *w, int *plen); 158 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 159 struct rt_addrinfo *rtinfo); 160 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 161 static int sysctl_iflist(int af, struct walkarg *w); 162 static int sysctl_ifmalist(int af, struct walkarg *w); 163 static int route_output(struct mbuf *m, struct socket *so, ...); 164 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 165 static void rt_dispatch(struct mbuf *, sa_family_t); 166 static struct sockaddr *rtsock_fix_netmask(struct sockaddr *dst, 167 struct sockaddr *smask, struct sockaddr_storage *dmask); 168 169 static struct netisr_handler rtsock_nh = { 170 .nh_name = "rtsock", 171 .nh_handler = rts_input, 172 .nh_proto = NETISR_ROUTE, 173 .nh_policy = NETISR_POLICY_SOURCE, 174 }; 175 176 static int 177 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 178 { 179 int error, qlimit; 180 181 netisr_getqlimit(&rtsock_nh, &qlimit); 182 error = sysctl_handle_int(oidp, &qlimit, 0, req); 183 if (error || !req->newptr) 184 return (error); 185 if (qlimit < 1) 186 return (EINVAL); 187 return (netisr_setqlimit(&rtsock_nh, qlimit)); 188 } 189 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 190 0, 0, sysctl_route_netisr_maxqlen, "I", 191 "maximum routing socket dispatch queue length"); 192 193 static void 194 vnet_rts_init(void) 195 { 196 int tmp; 197 198 if (IS_DEFAULT_VNET(curvnet)) { 199 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 200 rtsock_nh.nh_qlimit = tmp; 201 netisr_register(&rtsock_nh); 202 } 203 #ifdef VIMAGE 204 else 205 netisr_register_vnet(&rtsock_nh); 206 #endif 207 } 208 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 209 vnet_rts_init, 0); 210 211 #ifdef VIMAGE 212 static void 213 vnet_rts_uninit(void) 214 { 215 216 netisr_unregister_vnet(&rtsock_nh); 217 } 218 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 219 vnet_rts_uninit, 0); 220 #endif 221 222 static int 223 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 224 struct rawcb *rp) 225 { 226 int fibnum; 227 228 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 229 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 230 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 231 232 /* No filtering requested. */ 233 if ((m->m_flags & RTS_FILTER_FIB) == 0) 234 return (0); 235 236 /* Check if it is a rts and the fib matches the one of the socket. */ 237 fibnum = M_GETFIB(m); 238 if (proto->sp_family != PF_ROUTE || 239 rp->rcb_socket == NULL || 240 rp->rcb_socket->so_fibnum == fibnum) 241 return (0); 242 243 /* Filtering requested and no match, the socket shall be skipped. */ 244 return (1); 245 } 246 247 static void 248 rts_input(struct mbuf *m) 249 { 250 struct sockproto route_proto; 251 unsigned short *family; 252 struct m_tag *tag; 253 254 route_proto.sp_family = PF_ROUTE; 255 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 256 if (tag != NULL) { 257 family = (unsigned short *)(tag + 1); 258 route_proto.sp_protocol = *family; 259 m_tag_delete(m, tag); 260 } else 261 route_proto.sp_protocol = 0; 262 263 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 264 } 265 266 /* 267 * It really doesn't make any sense at all for this code to share much 268 * with raw_usrreq.c, since its functionality is so restricted. XXX 269 */ 270 static void 271 rts_abort(struct socket *so) 272 { 273 274 raw_usrreqs.pru_abort(so); 275 } 276 277 static void 278 rts_close(struct socket *so) 279 { 280 281 raw_usrreqs.pru_close(so); 282 } 283 284 /* pru_accept is EOPNOTSUPP */ 285 286 static int 287 rts_attach(struct socket *so, int proto, struct thread *td) 288 { 289 struct rawcb *rp; 290 int error; 291 292 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 293 294 /* XXX */ 295 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 296 297 so->so_pcb = (caddr_t)rp; 298 so->so_fibnum = td->td_proc->p_fibnum; 299 error = raw_attach(so, proto); 300 rp = sotorawcb(so); 301 if (error) { 302 so->so_pcb = NULL; 303 free(rp, M_PCB); 304 return error; 305 } 306 RTSOCK_LOCK(); 307 switch(rp->rcb_proto.sp_protocol) { 308 case AF_INET: 309 V_route_cb.ip_count++; 310 break; 311 case AF_INET6: 312 V_route_cb.ip6_count++; 313 break; 314 } 315 V_route_cb.any_count++; 316 RTSOCK_UNLOCK(); 317 soisconnected(so); 318 so->so_options |= SO_USELOOPBACK; 319 return 0; 320 } 321 322 static int 323 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 324 { 325 326 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 327 } 328 329 static int 330 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 331 { 332 333 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 334 } 335 336 /* pru_connect2 is EOPNOTSUPP */ 337 /* pru_control is EOPNOTSUPP */ 338 339 static void 340 rts_detach(struct socket *so) 341 { 342 struct rawcb *rp = sotorawcb(so); 343 344 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 345 346 RTSOCK_LOCK(); 347 switch(rp->rcb_proto.sp_protocol) { 348 case AF_INET: 349 V_route_cb.ip_count--; 350 break; 351 case AF_INET6: 352 V_route_cb.ip6_count--; 353 break; 354 } 355 V_route_cb.any_count--; 356 RTSOCK_UNLOCK(); 357 raw_usrreqs.pru_detach(so); 358 } 359 360 static int 361 rts_disconnect(struct socket *so) 362 { 363 364 return (raw_usrreqs.pru_disconnect(so)); 365 } 366 367 /* pru_listen is EOPNOTSUPP */ 368 369 static int 370 rts_peeraddr(struct socket *so, struct sockaddr **nam) 371 { 372 373 return (raw_usrreqs.pru_peeraddr(so, nam)); 374 } 375 376 /* pru_rcvd is EOPNOTSUPP */ 377 /* pru_rcvoob is EOPNOTSUPP */ 378 379 static int 380 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 381 struct mbuf *control, struct thread *td) 382 { 383 384 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 385 } 386 387 /* pru_sense is null */ 388 389 static int 390 rts_shutdown(struct socket *so) 391 { 392 393 return (raw_usrreqs.pru_shutdown(so)); 394 } 395 396 static int 397 rts_sockaddr(struct socket *so, struct sockaddr **nam) 398 { 399 400 return (raw_usrreqs.pru_sockaddr(so, nam)); 401 } 402 403 static struct pr_usrreqs route_usrreqs = { 404 .pru_abort = rts_abort, 405 .pru_attach = rts_attach, 406 .pru_bind = rts_bind, 407 .pru_connect = rts_connect, 408 .pru_detach = rts_detach, 409 .pru_disconnect = rts_disconnect, 410 .pru_peeraddr = rts_peeraddr, 411 .pru_send = rts_send, 412 .pru_shutdown = rts_shutdown, 413 .pru_sockaddr = rts_sockaddr, 414 .pru_close = rts_close, 415 }; 416 417 #ifndef _SOCKADDR_UNION_DEFINED 418 #define _SOCKADDR_UNION_DEFINED 419 /* 420 * The union of all possible address formats we handle. 421 */ 422 union sockaddr_union { 423 struct sockaddr sa; 424 struct sockaddr_in sin; 425 struct sockaddr_in6 sin6; 426 }; 427 #endif /* _SOCKADDR_UNION_DEFINED */ 428 429 static int 430 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 431 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 432 { 433 434 /* First, see if the returned address is part of the jail. */ 435 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 436 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 437 return (0); 438 } 439 440 switch (info->rti_info[RTAX_DST]->sa_family) { 441 #ifdef INET 442 case AF_INET: 443 { 444 struct in_addr ia; 445 struct ifaddr *ifa; 446 int found; 447 448 found = 0; 449 /* 450 * Try to find an address on the given outgoing interface 451 * that belongs to the jail. 452 */ 453 IF_ADDR_RLOCK(ifp); 454 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 455 struct sockaddr *sa; 456 sa = ifa->ifa_addr; 457 if (sa->sa_family != AF_INET) 458 continue; 459 ia = ((struct sockaddr_in *)sa)->sin_addr; 460 if (prison_check_ip4(cred, &ia) == 0) { 461 found = 1; 462 break; 463 } 464 } 465 IF_ADDR_RUNLOCK(ifp); 466 if (!found) { 467 /* 468 * As a last resort return the 'default' jail address. 469 */ 470 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 471 sin_addr; 472 if (prison_get_ip4(cred, &ia) != 0) 473 return (ESRCH); 474 } 475 bzero(&saun->sin, sizeof(struct sockaddr_in)); 476 saun->sin.sin_len = sizeof(struct sockaddr_in); 477 saun->sin.sin_family = AF_INET; 478 saun->sin.sin_addr.s_addr = ia.s_addr; 479 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 480 break; 481 } 482 #endif 483 #ifdef INET6 484 case AF_INET6: 485 { 486 struct in6_addr ia6; 487 struct ifaddr *ifa; 488 int found; 489 490 found = 0; 491 /* 492 * Try to find an address on the given outgoing interface 493 * that belongs to the jail. 494 */ 495 IF_ADDR_RLOCK(ifp); 496 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 497 struct sockaddr *sa; 498 sa = ifa->ifa_addr; 499 if (sa->sa_family != AF_INET6) 500 continue; 501 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 502 &ia6, sizeof(struct in6_addr)); 503 if (prison_check_ip6(cred, &ia6) == 0) { 504 found = 1; 505 break; 506 } 507 } 508 IF_ADDR_RUNLOCK(ifp); 509 if (!found) { 510 /* 511 * As a last resort return the 'default' jail address. 512 */ 513 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 514 sin6_addr; 515 if (prison_get_ip6(cred, &ia6) != 0) 516 return (ESRCH); 517 } 518 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 519 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 520 saun->sin6.sin6_family = AF_INET6; 521 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 522 if (sa6_recoverscope(&saun->sin6) != 0) 523 return (ESRCH); 524 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 525 break; 526 } 527 #endif 528 default: 529 return (ESRCH); 530 } 531 return (0); 532 } 533 534 /*ARGSUSED*/ 535 static int 536 route_output(struct mbuf *m, struct socket *so, ...) 537 { 538 struct rt_msghdr *rtm = NULL; 539 struct rtentry *rt = NULL; 540 struct rib_head *rnh; 541 struct rt_addrinfo info; 542 struct sockaddr_storage ss; 543 #ifdef INET6 544 struct sockaddr_in6 *sin6; 545 int i, rti_need_deembed = 0; 546 #endif 547 int alloc_len = 0, len, error = 0, fibnum; 548 struct ifnet *ifp = NULL; 549 union sockaddr_union saun; 550 sa_family_t saf = AF_UNSPEC; 551 struct rawcb *rp = NULL; 552 struct walkarg w; 553 554 fibnum = so->so_fibnum; 555 556 #define senderr(e) { error = e; goto flush;} 557 if (m == NULL || ((m->m_len < sizeof(long)) && 558 (m = m_pullup(m, sizeof(long))) == NULL)) 559 return (ENOBUFS); 560 if ((m->m_flags & M_PKTHDR) == 0) 561 panic("route_output"); 562 len = m->m_pkthdr.len; 563 if (len < sizeof(*rtm) || 564 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 565 senderr(EINVAL); 566 567 /* 568 * Most of current messages are in range 200-240 bytes, 569 * minimize possible re-allocation on reply using larger size 570 * buffer aligned on 1k boundaty. 571 */ 572 alloc_len = roundup2(len, 1024); 573 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 574 senderr(ENOBUFS); 575 576 m_copydata(m, 0, len, (caddr_t)rtm); 577 bzero(&info, sizeof(info)); 578 bzero(&w, sizeof(w)); 579 580 if (rtm->rtm_version != RTM_VERSION) { 581 /* Do not touch message since format is unknown */ 582 free(rtm, M_TEMP); 583 rtm = NULL; 584 senderr(EPROTONOSUPPORT); 585 } 586 587 /* 588 * Starting from here, it is possible 589 * to alter original message and insert 590 * caller PID and error value. 591 */ 592 593 rtm->rtm_pid = curproc->p_pid; 594 info.rti_addrs = rtm->rtm_addrs; 595 596 info.rti_mflags = rtm->rtm_inits; 597 info.rti_rmx = &rtm->rtm_rmx; 598 599 /* 600 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 601 * link-local address because rtrequest requires addresses with 602 * embedded scope id. 603 */ 604 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) 605 senderr(EINVAL); 606 607 info.rti_flags = rtm->rtm_flags; 608 if (info.rti_info[RTAX_DST] == NULL || 609 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 610 (info.rti_info[RTAX_GATEWAY] != NULL && 611 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 612 senderr(EINVAL); 613 saf = info.rti_info[RTAX_DST]->sa_family; 614 /* 615 * Verify that the caller has the appropriate privilege; RTM_GET 616 * is the only operation the non-superuser is allowed. 617 */ 618 if (rtm->rtm_type != RTM_GET) { 619 error = priv_check(curthread, PRIV_NET_ROUTE); 620 if (error) 621 senderr(error); 622 } 623 624 /* 625 * The given gateway address may be an interface address. 626 * For example, issuing a "route change" command on a route 627 * entry that was created from a tunnel, and the gateway 628 * address given is the local end point. In this case the 629 * RTF_GATEWAY flag must be cleared or the destination will 630 * not be reachable even though there is no error message. 631 */ 632 if (info.rti_info[RTAX_GATEWAY] != NULL && 633 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 634 struct rt_addrinfo ginfo; 635 struct sockaddr *gdst; 636 637 bzero(&ginfo, sizeof(ginfo)); 638 bzero(&ss, sizeof(ss)); 639 ss.ss_len = sizeof(ss); 640 641 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 642 gdst = info.rti_info[RTAX_GATEWAY]; 643 644 /* 645 * A host route through the loopback interface is 646 * installed for each interface adddress. In pre 8.0 647 * releases the interface address of a PPP link type 648 * is not reachable locally. This behavior is fixed as 649 * part of the new L2/L3 redesign and rewrite work. The 650 * signature of this interface address route is the 651 * AF_LINK sa_family type of the rt_gateway, and the 652 * rt_ifp has the IFF_LOOPBACK flag set. 653 */ 654 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 655 if (ss.ss_family == AF_LINK && 656 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 657 info.rti_flags &= ~RTF_GATEWAY; 658 info.rti_flags |= RTF_GWFLAG_COMPAT; 659 } 660 rib_free_info(&ginfo); 661 } 662 } 663 664 switch (rtm->rtm_type) { 665 struct rtentry *saved_nrt; 666 667 case RTM_ADD: 668 case RTM_CHANGE: 669 if (info.rti_info[RTAX_GATEWAY] == NULL) 670 senderr(EINVAL); 671 saved_nrt = NULL; 672 673 /* support for new ARP code */ 674 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 675 (rtm->rtm_flags & RTF_LLDATA) != 0) { 676 error = lla_rt_output(rtm, &info); 677 #ifdef INET6 678 if (error == 0) 679 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 680 #endif 681 break; 682 } 683 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt, 684 fibnum); 685 if (error == 0 && saved_nrt != NULL) { 686 #ifdef INET6 687 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 688 #endif 689 RT_LOCK(saved_nrt); 690 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 691 RT_REMREF(saved_nrt); 692 RT_UNLOCK(saved_nrt); 693 } 694 break; 695 696 case RTM_DELETE: 697 saved_nrt = NULL; 698 /* support for new ARP code */ 699 if (info.rti_info[RTAX_GATEWAY] && 700 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 701 (rtm->rtm_flags & RTF_LLDATA) != 0) { 702 error = lla_rt_output(rtm, &info); 703 #ifdef INET6 704 if (error == 0) 705 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 706 #endif 707 break; 708 } 709 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum); 710 if (error == 0) { 711 RT_LOCK(saved_nrt); 712 rt = saved_nrt; 713 goto report; 714 } 715 #ifdef INET6 716 /* rt_msg2() will not be used when RTM_DELETE fails. */ 717 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 718 #endif 719 break; 720 721 case RTM_GET: 722 rnh = rt_tables_get_rnh(fibnum, saf); 723 if (rnh == NULL) 724 senderr(EAFNOSUPPORT); 725 726 RIB_RLOCK(rnh); 727 728 if (info.rti_info[RTAX_NETMASK] == NULL && 729 rtm->rtm_type == RTM_GET) { 730 /* 731 * Provide longest prefix match for 732 * address lookup (no mask). 733 * 'route -n get addr' 734 */ 735 rt = (struct rtentry *) rnh->rnh_matchaddr( 736 info.rti_info[RTAX_DST], &rnh->head); 737 } else 738 rt = (struct rtentry *) rnh->rnh_lookup( 739 info.rti_info[RTAX_DST], 740 info.rti_info[RTAX_NETMASK], &rnh->head); 741 742 if (rt == NULL) { 743 RIB_RUNLOCK(rnh); 744 senderr(ESRCH); 745 } 746 #ifdef RADIX_MPATH 747 /* 748 * for RTM_CHANGE/LOCK, if we got multipath routes, 749 * we require users to specify a matching RTAX_GATEWAY. 750 * 751 * for RTM_GET, gate is optional even with multipath. 752 * if gate == NULL the first match is returned. 753 * (no need to call rt_mpath_matchgate if gate == NULL) 754 */ 755 if (rt_mpath_capable(rnh) && 756 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 757 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 758 if (!rt) { 759 RIB_RUNLOCK(rnh); 760 senderr(ESRCH); 761 } 762 } 763 #endif 764 /* 765 * If performing proxied L2 entry insertion, and 766 * the actual PPP host entry is found, perform 767 * another search to retrieve the prefix route of 768 * the local end point of the PPP link. 769 */ 770 if (rtm->rtm_flags & RTF_ANNOUNCE) { 771 struct sockaddr laddr; 772 773 if (rt->rt_ifp != NULL && 774 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 775 struct ifaddr *ifa; 776 777 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1, 778 RT_ALL_FIBS); 779 if (ifa != NULL) 780 rt_maskedcopy(ifa->ifa_addr, 781 &laddr, 782 ifa->ifa_netmask); 783 } else 784 rt_maskedcopy(rt->rt_ifa->ifa_addr, 785 &laddr, 786 rt->rt_ifa->ifa_netmask); 787 /* 788 * refactor rt and no lock operation necessary 789 */ 790 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 791 &rnh->head); 792 if (rt == NULL) { 793 RIB_RUNLOCK(rnh); 794 senderr(ESRCH); 795 } 796 } 797 RT_LOCK(rt); 798 RT_ADDREF(rt); 799 RIB_RUNLOCK(rnh); 800 801 report: 802 RT_LOCK_ASSERT(rt); 803 if ((rt->rt_flags & RTF_HOST) == 0 804 ? jailed_without_vnet(curthread->td_ucred) 805 : prison_if(curthread->td_ucred, 806 rt_key(rt)) != 0) { 807 RT_UNLOCK(rt); 808 senderr(ESRCH); 809 } 810 info.rti_info[RTAX_DST] = rt_key(rt); 811 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 812 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 813 rt_mask(rt), &ss); 814 info.rti_info[RTAX_GENMASK] = 0; 815 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 816 ifp = rt->rt_ifp; 817 if (ifp) { 818 info.rti_info[RTAX_IFP] = 819 ifp->if_addr->ifa_addr; 820 error = rtm_get_jailed(&info, ifp, rt, 821 &saun, curthread->td_ucred); 822 if (error != 0) { 823 RT_UNLOCK(rt); 824 senderr(error); 825 } 826 if (ifp->if_flags & IFF_POINTOPOINT) 827 info.rti_info[RTAX_BRD] = 828 rt->rt_ifa->ifa_dstaddr; 829 rtm->rtm_index = ifp->if_index; 830 } else { 831 info.rti_info[RTAX_IFP] = NULL; 832 info.rti_info[RTAX_IFA] = NULL; 833 } 834 } else if ((ifp = rt->rt_ifp) != NULL) { 835 rtm->rtm_index = ifp->if_index; 836 } 837 838 /* Check if we need to realloc storage */ 839 rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len); 840 if (len > alloc_len) { 841 struct rt_msghdr *new_rtm; 842 new_rtm = malloc(len, M_TEMP, M_NOWAIT); 843 if (new_rtm == NULL) { 844 RT_UNLOCK(rt); 845 senderr(ENOBUFS); 846 } 847 bcopy(rtm, new_rtm, rtm->rtm_msglen); 848 free(rtm, M_TEMP); 849 rtm = new_rtm; 850 alloc_len = len; 851 } 852 853 w.w_tmem = (caddr_t)rtm; 854 w.w_tmemsize = alloc_len; 855 rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len); 856 857 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 858 rtm->rtm_flags = RTF_GATEWAY | 859 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 860 else 861 rtm->rtm_flags = rt->rt_flags; 862 rt_getmetrics(rt, &rtm->rtm_rmx); 863 rtm->rtm_addrs = info.rti_addrs; 864 865 RT_UNLOCK(rt); 866 break; 867 868 default: 869 senderr(EOPNOTSUPP); 870 } 871 872 flush: 873 if (rt != NULL) 874 RTFREE(rt); 875 /* 876 * Check to see if we don't want our own messages. 877 */ 878 if ((so->so_options & SO_USELOOPBACK) == 0) { 879 if (V_route_cb.any_count <= 1) { 880 if (rtm != NULL) 881 free(rtm, M_TEMP); 882 m_freem(m); 883 return (error); 884 } 885 /* There is another listener, so construct message */ 886 rp = sotorawcb(so); 887 } 888 889 if (rtm != NULL) { 890 #ifdef INET6 891 if (rti_need_deembed) { 892 /* sin6_scope_id is recovered before sending rtm. */ 893 sin6 = (struct sockaddr_in6 *)&ss; 894 for (i = 0; i < RTAX_MAX; i++) { 895 if (info.rti_info[i] == NULL) 896 continue; 897 if (info.rti_info[i]->sa_family != AF_INET6) 898 continue; 899 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 900 if (sa6_recoverscope(sin6) == 0) 901 bcopy(sin6, info.rti_info[i], 902 sizeof(*sin6)); 903 } 904 } 905 #endif 906 if (error != 0) 907 rtm->rtm_errno = error; 908 else 909 rtm->rtm_flags |= RTF_DONE; 910 911 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 912 if (m->m_pkthdr.len < rtm->rtm_msglen) { 913 m_freem(m); 914 m = NULL; 915 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 916 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 917 918 free(rtm, M_TEMP); 919 } 920 if (m != NULL) { 921 M_SETFIB(m, fibnum); 922 m->m_flags |= RTS_FILTER_FIB; 923 if (rp) { 924 /* 925 * XXX insure we don't get a copy by 926 * invalidating our protocol 927 */ 928 unsigned short family = rp->rcb_proto.sp_family; 929 rp->rcb_proto.sp_family = 0; 930 rt_dispatch(m, saf); 931 rp->rcb_proto.sp_family = family; 932 } else 933 rt_dispatch(m, saf); 934 } 935 936 return (error); 937 } 938 939 static void 940 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 941 { 942 943 bzero(out, sizeof(*out)); 944 out->rmx_mtu = rt->rt_mtu; 945 out->rmx_weight = rt->rt_weight; 946 out->rmx_pksent = counter_u64_fetch(rt->rt_pksent); 947 /* Kernel -> userland timebase conversion. */ 948 out->rmx_expire = rt->rt_expire ? 949 rt->rt_expire - time_uptime + time_second : 0; 950 } 951 952 /* 953 * Extract the addresses of the passed sockaddrs. 954 * Do a little sanity checking so as to avoid bad memory references. 955 * This data is derived straight from userland. 956 */ 957 static int 958 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 959 { 960 struct sockaddr *sa; 961 int i; 962 963 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 964 if ((rtinfo->rti_addrs & (1 << i)) == 0) 965 continue; 966 sa = (struct sockaddr *)cp; 967 /* 968 * It won't fit. 969 */ 970 if (cp + sa->sa_len > cplim) 971 return (EINVAL); 972 /* 973 * there are no more.. quit now 974 * If there are more bits, they are in error. 975 * I've seen this. route(1) can evidently generate these. 976 * This causes kernel to core dump. 977 * for compatibility, If we see this, point to a safe address. 978 */ 979 if (sa->sa_len == 0) { 980 rtinfo->rti_info[i] = &sa_zero; 981 return (0); /* should be EINVAL but for compat */ 982 } 983 /* accept it */ 984 #ifdef INET6 985 if (sa->sa_family == AF_INET6) 986 sa6_embedscope((struct sockaddr_in6 *)sa, 987 V_ip6_use_defzone); 988 #endif 989 rtinfo->rti_info[i] = sa; 990 cp += SA_SIZE(sa); 991 } 992 return (0); 993 } 994 995 /* 996 * Fill in @dmask with valid netmask leaving original @smask 997 * intact. Mostly used with radix netmasks. 998 */ 999 static struct sockaddr * 1000 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask, 1001 struct sockaddr_storage *dmask) 1002 { 1003 if (dst == NULL || smask == NULL) 1004 return (NULL); 1005 1006 memset(dmask, 0, dst->sa_len); 1007 memcpy(dmask, smask, smask->sa_len); 1008 dmask->ss_len = dst->sa_len; 1009 dmask->ss_family = dst->sa_family; 1010 1011 return ((struct sockaddr *)dmask); 1012 } 1013 1014 /* 1015 * Writes information related to @rtinfo object to newly-allocated mbuf. 1016 * Assumes MCLBYTES is enough to construct any message. 1017 * Used for OS notifications of vaious events (if/ifa announces,etc) 1018 * 1019 * Returns allocated mbuf or NULL on failure. 1020 */ 1021 static struct mbuf * 1022 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1023 { 1024 struct rt_msghdr *rtm; 1025 struct mbuf *m; 1026 int i; 1027 struct sockaddr *sa; 1028 #ifdef INET6 1029 struct sockaddr_storage ss; 1030 struct sockaddr_in6 *sin6; 1031 #endif 1032 int len, dlen; 1033 1034 switch (type) { 1035 1036 case RTM_DELADDR: 1037 case RTM_NEWADDR: 1038 len = sizeof(struct ifa_msghdr); 1039 break; 1040 1041 case RTM_DELMADDR: 1042 case RTM_NEWMADDR: 1043 len = sizeof(struct ifma_msghdr); 1044 break; 1045 1046 case RTM_IFINFO: 1047 len = sizeof(struct if_msghdr); 1048 break; 1049 1050 case RTM_IFANNOUNCE: 1051 case RTM_IEEE80211: 1052 len = sizeof(struct if_announcemsghdr); 1053 break; 1054 1055 default: 1056 len = sizeof(struct rt_msghdr); 1057 } 1058 1059 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1060 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1061 if (len > MHLEN) 1062 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1063 else 1064 m = m_gethdr(M_NOWAIT, MT_DATA); 1065 if (m == NULL) 1066 return (m); 1067 1068 m->m_pkthdr.len = m->m_len = len; 1069 rtm = mtod(m, struct rt_msghdr *); 1070 bzero((caddr_t)rtm, len); 1071 for (i = 0; i < RTAX_MAX; i++) { 1072 if ((sa = rtinfo->rti_info[i]) == NULL) 1073 continue; 1074 rtinfo->rti_addrs |= (1 << i); 1075 dlen = SA_SIZE(sa); 1076 #ifdef INET6 1077 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1078 sin6 = (struct sockaddr_in6 *)&ss; 1079 bcopy(sa, sin6, sizeof(*sin6)); 1080 if (sa6_recoverscope(sin6) == 0) 1081 sa = (struct sockaddr *)sin6; 1082 } 1083 #endif 1084 m_copyback(m, len, dlen, (caddr_t)sa); 1085 len += dlen; 1086 } 1087 if (m->m_pkthdr.len != len) { 1088 m_freem(m); 1089 return (NULL); 1090 } 1091 rtm->rtm_msglen = len; 1092 rtm->rtm_version = RTM_VERSION; 1093 rtm->rtm_type = type; 1094 return (m); 1095 } 1096 1097 /* 1098 * Writes information related to @rtinfo object to preallocated buffer. 1099 * Stores needed size in @plen. If @w is NULL, calculates size without 1100 * writing. 1101 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1102 * 1103 * Returns 0 on success. 1104 * 1105 */ 1106 static int 1107 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1108 { 1109 int i; 1110 int len, buflen = 0, dlen; 1111 caddr_t cp = NULL; 1112 struct rt_msghdr *rtm = NULL; 1113 #ifdef INET6 1114 struct sockaddr_storage ss; 1115 struct sockaddr_in6 *sin6; 1116 #endif 1117 1118 switch (type) { 1119 1120 case RTM_DELADDR: 1121 case RTM_NEWADDR: 1122 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1123 #ifdef COMPAT_FREEBSD32 1124 if (w->w_req->flags & SCTL_MASK32) 1125 len = sizeof(struct ifa_msghdrl32); 1126 else 1127 #endif 1128 len = sizeof(struct ifa_msghdrl); 1129 } else 1130 len = sizeof(struct ifa_msghdr); 1131 break; 1132 1133 case RTM_IFINFO: 1134 #ifdef COMPAT_FREEBSD32 1135 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1136 if (w->w_op == NET_RT_IFLISTL) 1137 len = sizeof(struct if_msghdrl32); 1138 else 1139 len = sizeof(struct if_msghdr32); 1140 break; 1141 } 1142 #endif 1143 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1144 len = sizeof(struct if_msghdrl); 1145 else 1146 len = sizeof(struct if_msghdr); 1147 break; 1148 1149 case RTM_NEWMADDR: 1150 len = sizeof(struct ifma_msghdr); 1151 break; 1152 1153 default: 1154 len = sizeof(struct rt_msghdr); 1155 } 1156 1157 if (w != NULL) { 1158 rtm = (struct rt_msghdr *)w->w_tmem; 1159 buflen = w->w_tmemsize - len; 1160 cp = (caddr_t)w->w_tmem + len; 1161 } 1162 1163 rtinfo->rti_addrs = 0; 1164 for (i = 0; i < RTAX_MAX; i++) { 1165 struct sockaddr *sa; 1166 1167 if ((sa = rtinfo->rti_info[i]) == NULL) 1168 continue; 1169 rtinfo->rti_addrs |= (1 << i); 1170 dlen = SA_SIZE(sa); 1171 if (cp != NULL && buflen >= dlen) { 1172 #ifdef INET6 1173 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1174 sin6 = (struct sockaddr_in6 *)&ss; 1175 bcopy(sa, sin6, sizeof(*sin6)); 1176 if (sa6_recoverscope(sin6) == 0) 1177 sa = (struct sockaddr *)sin6; 1178 } 1179 #endif 1180 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1181 cp += dlen; 1182 buflen -= dlen; 1183 } else if (cp != NULL) { 1184 /* 1185 * Buffer too small. Count needed size 1186 * and return with error. 1187 */ 1188 cp = NULL; 1189 } 1190 1191 len += dlen; 1192 } 1193 1194 if (cp != NULL) { 1195 dlen = ALIGN(len) - len; 1196 if (buflen < dlen) 1197 cp = NULL; 1198 else 1199 buflen -= dlen; 1200 } 1201 len = ALIGN(len); 1202 1203 if (cp != NULL) { 1204 /* fill header iff buffer is large enough */ 1205 rtm->rtm_version = RTM_VERSION; 1206 rtm->rtm_type = type; 1207 rtm->rtm_msglen = len; 1208 } 1209 1210 *plen = len; 1211 1212 if (w != NULL && cp == NULL) 1213 return (ENOBUFS); 1214 1215 return (0); 1216 } 1217 1218 /* 1219 * This routine is called to generate a message from the routing 1220 * socket indicating that a redirect has occurred, a routing lookup 1221 * has failed, or that a protocol has detected timeouts to a particular 1222 * destination. 1223 */ 1224 void 1225 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1226 int fibnum) 1227 { 1228 struct rt_msghdr *rtm; 1229 struct mbuf *m; 1230 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1231 1232 if (V_route_cb.any_count == 0) 1233 return; 1234 m = rtsock_msg_mbuf(type, rtinfo); 1235 if (m == NULL) 1236 return; 1237 1238 if (fibnum != RT_ALL_FIBS) { 1239 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1240 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1241 M_SETFIB(m, fibnum); 1242 m->m_flags |= RTS_FILTER_FIB; 1243 } 1244 1245 rtm = mtod(m, struct rt_msghdr *); 1246 rtm->rtm_flags = RTF_DONE | flags; 1247 rtm->rtm_errno = error; 1248 rtm->rtm_addrs = rtinfo->rti_addrs; 1249 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1250 } 1251 1252 void 1253 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1254 { 1255 1256 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1257 } 1258 1259 /* 1260 * This routine is called to generate a message from the routing 1261 * socket indicating that the status of a network interface has changed. 1262 */ 1263 void 1264 rt_ifmsg(struct ifnet *ifp) 1265 { 1266 struct if_msghdr *ifm; 1267 struct mbuf *m; 1268 struct rt_addrinfo info; 1269 1270 if (V_route_cb.any_count == 0) 1271 return; 1272 bzero((caddr_t)&info, sizeof(info)); 1273 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1274 if (m == NULL) 1275 return; 1276 ifm = mtod(m, struct if_msghdr *); 1277 ifm->ifm_index = ifp->if_index; 1278 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1279 if_data_copy(ifp, &ifm->ifm_data); 1280 ifm->ifm_addrs = 0; 1281 rt_dispatch(m, AF_UNSPEC); 1282 } 1283 1284 /* 1285 * Announce interface address arrival/withdraw. 1286 * Please do not call directly, use rt_addrmsg(). 1287 * Assume input data to be valid. 1288 * Returns 0 on success. 1289 */ 1290 int 1291 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1292 { 1293 struct rt_addrinfo info; 1294 struct sockaddr *sa; 1295 int ncmd; 1296 struct mbuf *m; 1297 struct ifa_msghdr *ifam; 1298 struct ifnet *ifp = ifa->ifa_ifp; 1299 struct sockaddr_storage ss; 1300 1301 if (V_route_cb.any_count == 0) 1302 return (0); 1303 1304 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1305 1306 bzero((caddr_t)&info, sizeof(info)); 1307 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1308 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1309 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1310 info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss); 1311 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1312 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1313 return (ENOBUFS); 1314 ifam = mtod(m, struct ifa_msghdr *); 1315 ifam->ifam_index = ifp->if_index; 1316 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1317 ifam->ifam_flags = ifa->ifa_flags; 1318 ifam->ifam_addrs = info.rti_addrs; 1319 1320 if (fibnum != RT_ALL_FIBS) { 1321 M_SETFIB(m, fibnum); 1322 m->m_flags |= RTS_FILTER_FIB; 1323 } 1324 1325 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1326 1327 return (0); 1328 } 1329 1330 /* 1331 * Announce route addition/removal. 1332 * Please do not call directly, use rt_routemsg(). 1333 * Note that @rt data MAY be inconsistent/invalid: 1334 * if some userland app sends us "invalid" route message (invalid mask, 1335 * no dst, wrong address families, etc...) we need to pass it back 1336 * to app (and any other rtsock consumers) with rtm_errno field set to 1337 * non-zero value. 1338 * 1339 * Returns 0 on success. 1340 */ 1341 int 1342 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1343 int fibnum) 1344 { 1345 struct rt_addrinfo info; 1346 struct sockaddr *sa; 1347 struct mbuf *m; 1348 struct rt_msghdr *rtm; 1349 struct sockaddr_storage ss; 1350 1351 if (V_route_cb.any_count == 0) 1352 return (0); 1353 1354 bzero((caddr_t)&info, sizeof(info)); 1355 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1356 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss); 1357 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1358 if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL) 1359 return (ENOBUFS); 1360 rtm = mtod(m, struct rt_msghdr *); 1361 rtm->rtm_index = ifp->if_index; 1362 rtm->rtm_flags |= rt->rt_flags; 1363 rtm->rtm_errno = error; 1364 rtm->rtm_addrs = info.rti_addrs; 1365 1366 if (fibnum != RT_ALL_FIBS) { 1367 M_SETFIB(m, fibnum); 1368 m->m_flags |= RTS_FILTER_FIB; 1369 } 1370 1371 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1372 1373 return (0); 1374 } 1375 1376 /* 1377 * This is the analogue to the rt_newaddrmsg which performs the same 1378 * function but for multicast group memberhips. This is easier since 1379 * there is no route state to worry about. 1380 */ 1381 void 1382 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1383 { 1384 struct rt_addrinfo info; 1385 struct mbuf *m = NULL; 1386 struct ifnet *ifp = ifma->ifma_ifp; 1387 struct ifma_msghdr *ifmam; 1388 1389 if (V_route_cb.any_count == 0) 1390 return; 1391 1392 bzero((caddr_t)&info, sizeof(info)); 1393 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1394 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1395 /* 1396 * If a link-layer address is present, present it as a ``gateway'' 1397 * (similarly to how ARP entries, e.g., are presented). 1398 */ 1399 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1400 m = rtsock_msg_mbuf(cmd, &info); 1401 if (m == NULL) 1402 return; 1403 ifmam = mtod(m, struct ifma_msghdr *); 1404 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1405 __func__)); 1406 ifmam->ifmam_index = ifp->if_index; 1407 ifmam->ifmam_addrs = info.rti_addrs; 1408 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1409 } 1410 1411 static struct mbuf * 1412 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1413 struct rt_addrinfo *info) 1414 { 1415 struct if_announcemsghdr *ifan; 1416 struct mbuf *m; 1417 1418 if (V_route_cb.any_count == 0) 1419 return NULL; 1420 bzero((caddr_t)info, sizeof(*info)); 1421 m = rtsock_msg_mbuf(type, info); 1422 if (m != NULL) { 1423 ifan = mtod(m, struct if_announcemsghdr *); 1424 ifan->ifan_index = ifp->if_index; 1425 strlcpy(ifan->ifan_name, ifp->if_xname, 1426 sizeof(ifan->ifan_name)); 1427 ifan->ifan_what = what; 1428 } 1429 return m; 1430 } 1431 1432 /* 1433 * This is called to generate routing socket messages indicating 1434 * IEEE80211 wireless events. 1435 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1436 */ 1437 void 1438 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1439 { 1440 struct mbuf *m; 1441 struct rt_addrinfo info; 1442 1443 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1444 if (m != NULL) { 1445 /* 1446 * Append the ieee80211 data. Try to stick it in the 1447 * mbuf containing the ifannounce msg; otherwise allocate 1448 * a new mbuf and append. 1449 * 1450 * NB: we assume m is a single mbuf. 1451 */ 1452 if (data_len > M_TRAILINGSPACE(m)) { 1453 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1454 if (n == NULL) { 1455 m_freem(m); 1456 return; 1457 } 1458 bcopy(data, mtod(n, void *), data_len); 1459 n->m_len = data_len; 1460 m->m_next = n; 1461 } else if (data_len > 0) { 1462 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1463 m->m_len += data_len; 1464 } 1465 if (m->m_flags & M_PKTHDR) 1466 m->m_pkthdr.len += data_len; 1467 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1468 rt_dispatch(m, AF_UNSPEC); 1469 } 1470 } 1471 1472 /* 1473 * This is called to generate routing socket messages indicating 1474 * network interface arrival and departure. 1475 */ 1476 void 1477 rt_ifannouncemsg(struct ifnet *ifp, int what) 1478 { 1479 struct mbuf *m; 1480 struct rt_addrinfo info; 1481 1482 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1483 if (m != NULL) 1484 rt_dispatch(m, AF_UNSPEC); 1485 } 1486 1487 static void 1488 rt_dispatch(struct mbuf *m, sa_family_t saf) 1489 { 1490 struct m_tag *tag; 1491 1492 /* 1493 * Preserve the family from the sockaddr, if any, in an m_tag for 1494 * use when injecting the mbuf into the routing socket buffer from 1495 * the netisr. 1496 */ 1497 if (saf != AF_UNSPEC) { 1498 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1499 M_NOWAIT); 1500 if (tag == NULL) { 1501 m_freem(m); 1502 return; 1503 } 1504 *(unsigned short *)(tag + 1) = saf; 1505 m_tag_prepend(m, tag); 1506 } 1507 #ifdef VIMAGE 1508 if (V_loif) 1509 m->m_pkthdr.rcvif = V_loif; 1510 else { 1511 m_freem(m); 1512 return; 1513 } 1514 #endif 1515 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1516 } 1517 1518 /* 1519 * This is used in dumping the kernel table via sysctl(). 1520 */ 1521 static int 1522 sysctl_dumpentry(struct radix_node *rn, void *vw) 1523 { 1524 struct walkarg *w = vw; 1525 struct rtentry *rt = (struct rtentry *)rn; 1526 int error = 0, size; 1527 struct rt_addrinfo info; 1528 struct sockaddr_storage ss; 1529 1530 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1531 return 0; 1532 if ((rt->rt_flags & RTF_HOST) == 0 1533 ? jailed_without_vnet(w->w_req->td->td_ucred) 1534 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1535 return (0); 1536 bzero((caddr_t)&info, sizeof(info)); 1537 info.rti_info[RTAX_DST] = rt_key(rt); 1538 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1539 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1540 rt_mask(rt), &ss); 1541 info.rti_info[RTAX_GENMASK] = 0; 1542 if (rt->rt_ifp) { 1543 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1544 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1545 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1546 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1547 } 1548 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1549 return (error); 1550 if (w->w_req && w->w_tmem) { 1551 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1552 1553 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1554 rtm->rtm_flags = RTF_GATEWAY | 1555 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1556 else 1557 rtm->rtm_flags = rt->rt_flags; 1558 rt_getmetrics(rt, &rtm->rtm_rmx); 1559 rtm->rtm_index = rt->rt_ifp->if_index; 1560 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1561 rtm->rtm_addrs = info.rti_addrs; 1562 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1563 return (error); 1564 } 1565 return (error); 1566 } 1567 1568 static int 1569 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1570 struct rt_addrinfo *info, struct walkarg *w, int len) 1571 { 1572 struct if_msghdrl *ifm; 1573 struct if_data *ifd; 1574 1575 ifm = (struct if_msghdrl *)w->w_tmem; 1576 1577 #ifdef COMPAT_FREEBSD32 1578 if (w->w_req->flags & SCTL_MASK32) { 1579 struct if_msghdrl32 *ifm32; 1580 1581 ifm32 = (struct if_msghdrl32 *)ifm; 1582 ifm32->ifm_addrs = info->rti_addrs; 1583 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1584 ifm32->ifm_index = ifp->if_index; 1585 ifm32->_ifm_spare1 = 0; 1586 ifm32->ifm_len = sizeof(*ifm32); 1587 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1588 ifd = &ifm32->ifm_data; 1589 } else 1590 #endif 1591 { 1592 ifm->ifm_addrs = info->rti_addrs; 1593 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1594 ifm->ifm_index = ifp->if_index; 1595 ifm->_ifm_spare1 = 0; 1596 ifm->ifm_len = sizeof(*ifm); 1597 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1598 ifd = &ifm->ifm_data; 1599 } 1600 1601 memcpy(ifd, src_ifd, sizeof(*ifd)); 1602 1603 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1604 } 1605 1606 static int 1607 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 1608 struct rt_addrinfo *info, struct walkarg *w, int len) 1609 { 1610 struct if_msghdr *ifm; 1611 struct if_data *ifd; 1612 1613 ifm = (struct if_msghdr *)w->w_tmem; 1614 1615 #ifdef COMPAT_FREEBSD32 1616 if (w->w_req->flags & SCTL_MASK32) { 1617 struct if_msghdr32 *ifm32; 1618 1619 ifm32 = (struct if_msghdr32 *)ifm; 1620 ifm32->ifm_addrs = info->rti_addrs; 1621 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1622 ifm32->ifm_index = ifp->if_index; 1623 ifd = &ifm32->ifm_data; 1624 } else 1625 #endif 1626 { 1627 ifm->ifm_addrs = info->rti_addrs; 1628 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1629 ifm->ifm_index = ifp->if_index; 1630 ifd = &ifm->ifm_data; 1631 } 1632 1633 memcpy(ifd, src_ifd, sizeof(*ifd)); 1634 1635 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1636 } 1637 1638 static int 1639 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1640 struct walkarg *w, int len) 1641 { 1642 struct ifa_msghdrl *ifam; 1643 struct if_data *ifd; 1644 1645 ifam = (struct ifa_msghdrl *)w->w_tmem; 1646 1647 #ifdef COMPAT_FREEBSD32 1648 if (w->w_req->flags & SCTL_MASK32) { 1649 struct ifa_msghdrl32 *ifam32; 1650 1651 ifam32 = (struct ifa_msghdrl32 *)ifam; 1652 ifam32->ifam_addrs = info->rti_addrs; 1653 ifam32->ifam_flags = ifa->ifa_flags; 1654 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1655 ifam32->_ifam_spare1 = 0; 1656 ifam32->ifam_len = sizeof(*ifam32); 1657 ifam32->ifam_data_off = 1658 offsetof(struct ifa_msghdrl32, ifam_data); 1659 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1660 ifd = &ifam32->ifam_data; 1661 } else 1662 #endif 1663 { 1664 ifam->ifam_addrs = info->rti_addrs; 1665 ifam->ifam_flags = ifa->ifa_flags; 1666 ifam->ifam_index = ifa->ifa_ifp->if_index; 1667 ifam->_ifam_spare1 = 0; 1668 ifam->ifam_len = sizeof(*ifam); 1669 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1670 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1671 ifd = &ifam->ifam_data; 1672 } 1673 1674 bzero(ifd, sizeof(*ifd)); 1675 ifd->ifi_datalen = sizeof(struct if_data); 1676 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1677 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1678 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1679 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1680 1681 /* Fixup if_data carp(4) vhid. */ 1682 if (carp_get_vhid_p != NULL) 1683 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1684 1685 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1686 } 1687 1688 static int 1689 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1690 struct walkarg *w, int len) 1691 { 1692 struct ifa_msghdr *ifam; 1693 1694 ifam = (struct ifa_msghdr *)w->w_tmem; 1695 ifam->ifam_addrs = info->rti_addrs; 1696 ifam->ifam_flags = ifa->ifa_flags; 1697 ifam->ifam_index = ifa->ifa_ifp->if_index; 1698 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1699 1700 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1701 } 1702 1703 static int 1704 sysctl_iflist(int af, struct walkarg *w) 1705 { 1706 struct ifnet *ifp; 1707 struct ifaddr *ifa; 1708 struct if_data ifd; 1709 struct rt_addrinfo info; 1710 int len, error = 0; 1711 struct sockaddr_storage ss; 1712 1713 bzero((caddr_t)&info, sizeof(info)); 1714 bzero(&ifd, sizeof(ifd)); 1715 IFNET_RLOCK_NOSLEEP(); 1716 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1717 if (w->w_arg && w->w_arg != ifp->if_index) 1718 continue; 1719 if_data_copy(ifp, &ifd); 1720 IF_ADDR_RLOCK(ifp); 1721 ifa = ifp->if_addr; 1722 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1723 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1724 if (error != 0) 1725 goto done; 1726 info.rti_info[RTAX_IFP] = NULL; 1727 if (w->w_req && w->w_tmem) { 1728 if (w->w_op == NET_RT_IFLISTL) 1729 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 1730 len); 1731 else 1732 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 1733 len); 1734 if (error) 1735 goto done; 1736 } 1737 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1738 if (af && af != ifa->ifa_addr->sa_family) 1739 continue; 1740 if (prison_if(w->w_req->td->td_ucred, 1741 ifa->ifa_addr) != 0) 1742 continue; 1743 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1744 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1745 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1746 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1747 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1748 if (error != 0) 1749 goto done; 1750 if (w->w_req && w->w_tmem) { 1751 if (w->w_op == NET_RT_IFLISTL) 1752 error = sysctl_iflist_ifaml(ifa, &info, 1753 w, len); 1754 else 1755 error = sysctl_iflist_ifam(ifa, &info, 1756 w, len); 1757 if (error) 1758 goto done; 1759 } 1760 } 1761 IF_ADDR_RUNLOCK(ifp); 1762 info.rti_info[RTAX_IFA] = NULL; 1763 info.rti_info[RTAX_NETMASK] = NULL; 1764 info.rti_info[RTAX_BRD] = NULL; 1765 } 1766 done: 1767 if (ifp != NULL) 1768 IF_ADDR_RUNLOCK(ifp); 1769 IFNET_RUNLOCK_NOSLEEP(); 1770 return (error); 1771 } 1772 1773 static int 1774 sysctl_ifmalist(int af, struct walkarg *w) 1775 { 1776 struct rt_addrinfo info; 1777 struct ifaddr *ifa; 1778 struct ifmultiaddr *ifma; 1779 struct ifnet *ifp; 1780 int error, len; 1781 1782 error = 0; 1783 bzero((caddr_t)&info, sizeof(info)); 1784 1785 IFNET_RLOCK_NOSLEEP(); 1786 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1787 if (w->w_arg && w->w_arg != ifp->if_index) 1788 continue; 1789 ifa = ifp->if_addr; 1790 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1791 IF_ADDR_RLOCK(ifp); 1792 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1793 if (af && af != ifma->ifma_addr->sa_family) 1794 continue; 1795 if (prison_if(w->w_req->td->td_ucred, 1796 ifma->ifma_addr) != 0) 1797 continue; 1798 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1799 info.rti_info[RTAX_GATEWAY] = 1800 (ifma->ifma_addr->sa_family != AF_LINK) ? 1801 ifma->ifma_lladdr : NULL; 1802 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1803 if (error != 0) 1804 break; 1805 if (w->w_req && w->w_tmem) { 1806 struct ifma_msghdr *ifmam; 1807 1808 ifmam = (struct ifma_msghdr *)w->w_tmem; 1809 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1810 ifmam->ifmam_flags = 0; 1811 ifmam->ifmam_addrs = info.rti_addrs; 1812 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1813 if (error != 0) 1814 break; 1815 } 1816 } 1817 IF_ADDR_RUNLOCK(ifp); 1818 if (error != 0) 1819 break; 1820 } 1821 IFNET_RUNLOCK_NOSLEEP(); 1822 return (error); 1823 } 1824 1825 static int 1826 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1827 { 1828 int *name = (int *)arg1; 1829 u_int namelen = arg2; 1830 struct rib_head *rnh = NULL; /* silence compiler. */ 1831 int i, lim, error = EINVAL; 1832 int fib = 0; 1833 u_char af; 1834 struct walkarg w; 1835 1836 name ++; 1837 namelen--; 1838 if (req->newptr) 1839 return (EPERM); 1840 if (name[1] == NET_RT_DUMP) { 1841 if (namelen == 3) 1842 fib = req->td->td_proc->p_fibnum; 1843 else if (namelen == 4) 1844 fib = (name[3] == RT_ALL_FIBS) ? 1845 req->td->td_proc->p_fibnum : name[3]; 1846 else 1847 return ((namelen < 3) ? EISDIR : ENOTDIR); 1848 if (fib < 0 || fib >= rt_numfibs) 1849 return (EINVAL); 1850 } else if (namelen != 3) 1851 return ((namelen < 3) ? EISDIR : ENOTDIR); 1852 af = name[0]; 1853 if (af > AF_MAX) 1854 return (EINVAL); 1855 bzero(&w, sizeof(w)); 1856 w.w_op = name[1]; 1857 w.w_arg = name[2]; 1858 w.w_req = req; 1859 1860 error = sysctl_wire_old_buffer(req, 0); 1861 if (error) 1862 return (error); 1863 1864 /* 1865 * Allocate reply buffer in advance. 1866 * All rtsock messages has maximum length of u_short. 1867 */ 1868 w.w_tmemsize = 65536; 1869 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 1870 1871 switch (w.w_op) { 1872 1873 case NET_RT_DUMP: 1874 case NET_RT_FLAGS: 1875 if (af == 0) { /* dump all tables */ 1876 i = 1; 1877 lim = AF_MAX; 1878 } else /* dump only one table */ 1879 i = lim = af; 1880 1881 /* 1882 * take care of llinfo entries, the caller must 1883 * specify an AF 1884 */ 1885 if (w.w_op == NET_RT_FLAGS && 1886 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1887 if (af != 0) 1888 error = lltable_sysctl_dumparp(af, w.w_req); 1889 else 1890 error = EINVAL; 1891 break; 1892 } 1893 /* 1894 * take care of routing entries 1895 */ 1896 for (error = 0; error == 0 && i <= lim; i++) { 1897 rnh = rt_tables_get_rnh(fib, i); 1898 if (rnh != NULL) { 1899 RIB_RLOCK(rnh); 1900 error = rnh->rnh_walktree(&rnh->head, 1901 sysctl_dumpentry, &w); 1902 RIB_RUNLOCK(rnh); 1903 } else if (af != 0) 1904 error = EAFNOSUPPORT; 1905 } 1906 break; 1907 1908 case NET_RT_IFLIST: 1909 case NET_RT_IFLISTL: 1910 error = sysctl_iflist(af, &w); 1911 break; 1912 1913 case NET_RT_IFMALIST: 1914 error = sysctl_ifmalist(af, &w); 1915 break; 1916 } 1917 1918 free(w.w_tmem, M_TEMP); 1919 return (error); 1920 } 1921 1922 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1923 1924 /* 1925 * Definitions of protocols supported in the ROUTE domain. 1926 */ 1927 1928 static struct domain routedomain; /* or at least forward */ 1929 1930 static struct protosw routesw[] = { 1931 { 1932 .pr_type = SOCK_RAW, 1933 .pr_domain = &routedomain, 1934 .pr_flags = PR_ATOMIC|PR_ADDR, 1935 .pr_output = route_output, 1936 .pr_ctlinput = raw_ctlinput, 1937 .pr_init = raw_init, 1938 .pr_usrreqs = &route_usrreqs 1939 } 1940 }; 1941 1942 static struct domain routedomain = { 1943 .dom_family = PF_ROUTE, 1944 .dom_name = "route", 1945 .dom_protosw = routesw, 1946 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 1947 }; 1948 1949 VNET_DOMAIN_SET(route); 1950