xref: /freebsd/sys/net/rtsock.c (revision c17dd0e88b5db94cf641e862f50bdad436704598)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
32  * $FreeBSD$
33  */
34 #include "opt_ddb.h"
35 #include "opt_mpath.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 
39 #include <sys/param.h>
40 #include <sys/jail.h>
41 #include <sys/kernel.h>
42 #include <sys/domain.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/rmlock.h>
50 #include <sys/rwlock.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 
57 #ifdef DDB
58 #include <ddb/ddb.h>
59 #include <ddb/db_lex.h>
60 #endif
61 
62 #include <net/if.h>
63 #include <net/if_var.h>
64 #include <net/if_dl.h>
65 #include <net/if_llatbl.h>
66 #include <net/if_types.h>
67 #include <net/netisr.h>
68 #include <net/raw_cb.h>
69 #include <net/route.h>
70 #include <net/route_var.h>
71 #include <net/vnet.h>
72 
73 #include <netinet/in.h>
74 #include <netinet/if_ether.h>
75 #include <netinet/ip_carp.h>
76 #ifdef INET6
77 #include <netinet6/ip6_var.h>
78 #include <netinet6/scope6_var.h>
79 #endif
80 #include <net/route/nhop.h>
81 #include <net/route/shared.h>
82 
83 #ifdef COMPAT_FREEBSD32
84 #include <sys/mount.h>
85 #include <compat/freebsd32/freebsd32.h>
86 
87 struct if_msghdr32 {
88 	uint16_t ifm_msglen;
89 	uint8_t	ifm_version;
90 	uint8_t	ifm_type;
91 	int32_t	ifm_addrs;
92 	int32_t	ifm_flags;
93 	uint16_t ifm_index;
94 	uint16_t _ifm_spare1;
95 	struct	if_data ifm_data;
96 };
97 
98 struct if_msghdrl32 {
99 	uint16_t ifm_msglen;
100 	uint8_t	ifm_version;
101 	uint8_t	ifm_type;
102 	int32_t	ifm_addrs;
103 	int32_t	ifm_flags;
104 	uint16_t ifm_index;
105 	uint16_t _ifm_spare1;
106 	uint16_t ifm_len;
107 	uint16_t ifm_data_off;
108 	uint32_t _ifm_spare2;
109 	struct	if_data ifm_data;
110 };
111 
112 struct ifa_msghdrl32 {
113 	uint16_t ifam_msglen;
114 	uint8_t	ifam_version;
115 	uint8_t	ifam_type;
116 	int32_t	ifam_addrs;
117 	int32_t	ifam_flags;
118 	uint16_t ifam_index;
119 	uint16_t _ifam_spare1;
120 	uint16_t ifam_len;
121 	uint16_t ifam_data_off;
122 	int32_t	ifam_metric;
123 	struct	if_data ifam_data;
124 };
125 
126 #define SA_SIZE32(sa)						\
127     (  (((struct sockaddr *)(sa))->sa_len == 0) ?		\
128 	sizeof(int)		:				\
129 	1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
130 
131 #endif /* COMPAT_FREEBSD32 */
132 
133 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
134 
135 /* NB: these are not modified */
136 static struct	sockaddr route_src = { 2, PF_ROUTE, };
137 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
138 
139 /* These are external hooks for CARP. */
140 int	(*carp_get_vhid_p)(struct ifaddr *);
141 
142 /*
143  * Used by rtsock/raw_input callback code to decide whether to filter the update
144  * notification to a socket bound to a particular FIB.
145  */
146 #define	RTS_FILTER_FIB	M_PROTO8
147 
148 typedef struct {
149 	int	ip_count;	/* attached w/ AF_INET */
150 	int	ip6_count;	/* attached w/ AF_INET6 */
151 	int	any_count;	/* total attached */
152 } route_cb_t;
153 VNET_DEFINE_STATIC(route_cb_t, route_cb);
154 #define	V_route_cb VNET(route_cb)
155 
156 struct mtx rtsock_mtx;
157 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
158 
159 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
160 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
161 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
162 
163 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
164     "");
165 
166 struct walkarg {
167 	int	w_tmemsize;
168 	int	w_op, w_arg;
169 	caddr_t	w_tmem;
170 	struct sysctl_req *w_req;
171 };
172 
173 static void	rts_input(struct mbuf *m);
174 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
175 static int	rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
176 			struct walkarg *w, int *plen);
177 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
178 			struct rt_addrinfo *rtinfo);
179 static int	sysctl_dumpentry(struct radix_node *rn, void *vw);
180 static int	sysctl_iflist(int af, struct walkarg *w);
181 static int	sysctl_ifmalist(int af, struct walkarg *w);
182 static int	route_output(struct mbuf *m, struct socket *so, ...);
183 static void	rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out);
184 static void	rt_dispatch(struct mbuf *, sa_family_t);
185 static struct sockaddr	*rtsock_fix_netmask(struct sockaddr *dst,
186 			struct sockaddr *smask, struct sockaddr_storage *dmask);
187 static int	handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
188 			struct rt_msghdr *rtm, struct rtentry **ret_nrt);
189 static int	update_rtm_from_rte(struct rt_addrinfo *info,
190 			struct rt_msghdr **prtm, int alloc_len,
191 			struct rtentry *rt);
192 static void	send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
193 			struct mbuf *m, sa_family_t saf, u_int fibnum,
194 			int rtm_errno);
195 static int	can_export_rte(struct ucred *td_ucred, const struct rtentry *rt);
196 
197 static struct netisr_handler rtsock_nh = {
198 	.nh_name = "rtsock",
199 	.nh_handler = rts_input,
200 	.nh_proto = NETISR_ROUTE,
201 	.nh_policy = NETISR_POLICY_SOURCE,
202 };
203 
204 static int
205 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
206 {
207 	int error, qlimit;
208 
209 	netisr_getqlimit(&rtsock_nh, &qlimit);
210 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
211         if (error || !req->newptr)
212                 return (error);
213 	if (qlimit < 1)
214 		return (EINVAL);
215 	return (netisr_setqlimit(&rtsock_nh, qlimit));
216 }
217 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen,
218     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
219     0, 0, sysctl_route_netisr_maxqlen, "I",
220     "maximum routing socket dispatch queue length");
221 
222 static void
223 vnet_rts_init(void)
224 {
225 	int tmp;
226 
227 	if (IS_DEFAULT_VNET(curvnet)) {
228 		if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
229 			rtsock_nh.nh_qlimit = tmp;
230 		netisr_register(&rtsock_nh);
231 	}
232 #ifdef VIMAGE
233 	 else
234 		netisr_register_vnet(&rtsock_nh);
235 #endif
236 }
237 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
238     vnet_rts_init, 0);
239 
240 #ifdef VIMAGE
241 static void
242 vnet_rts_uninit(void)
243 {
244 
245 	netisr_unregister_vnet(&rtsock_nh);
246 }
247 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
248     vnet_rts_uninit, 0);
249 #endif
250 
251 static int
252 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
253     struct rawcb *rp)
254 {
255 	int fibnum;
256 
257 	KASSERT(m != NULL, ("%s: m is NULL", __func__));
258 	KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
259 	KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
260 
261 	/* No filtering requested. */
262 	if ((m->m_flags & RTS_FILTER_FIB) == 0)
263 		return (0);
264 
265 	/* Check if it is a rts and the fib matches the one of the socket. */
266 	fibnum = M_GETFIB(m);
267 	if (proto->sp_family != PF_ROUTE ||
268 	    rp->rcb_socket == NULL ||
269 	    rp->rcb_socket->so_fibnum == fibnum)
270 		return (0);
271 
272 	/* Filtering requested and no match, the socket shall be skipped. */
273 	return (1);
274 }
275 
276 static void
277 rts_input(struct mbuf *m)
278 {
279 	struct sockproto route_proto;
280 	unsigned short *family;
281 	struct m_tag *tag;
282 
283 	route_proto.sp_family = PF_ROUTE;
284 	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
285 	if (tag != NULL) {
286 		family = (unsigned short *)(tag + 1);
287 		route_proto.sp_protocol = *family;
288 		m_tag_delete(m, tag);
289 	} else
290 		route_proto.sp_protocol = 0;
291 
292 	raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
293 }
294 
295 /*
296  * It really doesn't make any sense at all for this code to share much
297  * with raw_usrreq.c, since its functionality is so restricted.  XXX
298  */
299 static void
300 rts_abort(struct socket *so)
301 {
302 
303 	raw_usrreqs.pru_abort(so);
304 }
305 
306 static void
307 rts_close(struct socket *so)
308 {
309 
310 	raw_usrreqs.pru_close(so);
311 }
312 
313 /* pru_accept is EOPNOTSUPP */
314 
315 static int
316 rts_attach(struct socket *so, int proto, struct thread *td)
317 {
318 	struct rawcb *rp;
319 	int error;
320 
321 	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
322 
323 	/* XXX */
324 	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
325 
326 	so->so_pcb = (caddr_t)rp;
327 	so->so_fibnum = td->td_proc->p_fibnum;
328 	error = raw_attach(so, proto);
329 	rp = sotorawcb(so);
330 	if (error) {
331 		so->so_pcb = NULL;
332 		free(rp, M_PCB);
333 		return error;
334 	}
335 	RTSOCK_LOCK();
336 	switch(rp->rcb_proto.sp_protocol) {
337 	case AF_INET:
338 		V_route_cb.ip_count++;
339 		break;
340 	case AF_INET6:
341 		V_route_cb.ip6_count++;
342 		break;
343 	}
344 	V_route_cb.any_count++;
345 	RTSOCK_UNLOCK();
346 	soisconnected(so);
347 	so->so_options |= SO_USELOOPBACK;
348 	return 0;
349 }
350 
351 static int
352 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
353 {
354 
355 	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
356 }
357 
358 static int
359 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
360 {
361 
362 	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
363 }
364 
365 /* pru_connect2 is EOPNOTSUPP */
366 /* pru_control is EOPNOTSUPP */
367 
368 static void
369 rts_detach(struct socket *so)
370 {
371 	struct rawcb *rp = sotorawcb(so);
372 
373 	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
374 
375 	RTSOCK_LOCK();
376 	switch(rp->rcb_proto.sp_protocol) {
377 	case AF_INET:
378 		V_route_cb.ip_count--;
379 		break;
380 	case AF_INET6:
381 		V_route_cb.ip6_count--;
382 		break;
383 	}
384 	V_route_cb.any_count--;
385 	RTSOCK_UNLOCK();
386 	raw_usrreqs.pru_detach(so);
387 }
388 
389 static int
390 rts_disconnect(struct socket *so)
391 {
392 
393 	return (raw_usrreqs.pru_disconnect(so));
394 }
395 
396 /* pru_listen is EOPNOTSUPP */
397 
398 static int
399 rts_peeraddr(struct socket *so, struct sockaddr **nam)
400 {
401 
402 	return (raw_usrreqs.pru_peeraddr(so, nam));
403 }
404 
405 /* pru_rcvd is EOPNOTSUPP */
406 /* pru_rcvoob is EOPNOTSUPP */
407 
408 static int
409 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
410 	 struct mbuf *control, struct thread *td)
411 {
412 
413 	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
414 }
415 
416 /* pru_sense is null */
417 
418 static int
419 rts_shutdown(struct socket *so)
420 {
421 
422 	return (raw_usrreqs.pru_shutdown(so));
423 }
424 
425 static int
426 rts_sockaddr(struct socket *so, struct sockaddr **nam)
427 {
428 
429 	return (raw_usrreqs.pru_sockaddr(so, nam));
430 }
431 
432 static struct pr_usrreqs route_usrreqs = {
433 	.pru_abort =		rts_abort,
434 	.pru_attach =		rts_attach,
435 	.pru_bind =		rts_bind,
436 	.pru_connect =		rts_connect,
437 	.pru_detach =		rts_detach,
438 	.pru_disconnect =	rts_disconnect,
439 	.pru_peeraddr =		rts_peeraddr,
440 	.pru_send =		rts_send,
441 	.pru_shutdown =		rts_shutdown,
442 	.pru_sockaddr =		rts_sockaddr,
443 	.pru_close =		rts_close,
444 };
445 
446 #ifndef _SOCKADDR_UNION_DEFINED
447 #define	_SOCKADDR_UNION_DEFINED
448 /*
449  * The union of all possible address formats we handle.
450  */
451 union sockaddr_union {
452 	struct sockaddr		sa;
453 	struct sockaddr_in	sin;
454 	struct sockaddr_in6	sin6;
455 };
456 #endif /* _SOCKADDR_UNION_DEFINED */
457 
458 static int
459 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
460     struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
461 {
462 #if defined(INET) || defined(INET6)
463 	struct epoch_tracker et;
464 #endif
465 
466 	/* First, see if the returned address is part of the jail. */
467 	if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
468 		info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
469 		return (0);
470 	}
471 
472 	switch (info->rti_info[RTAX_DST]->sa_family) {
473 #ifdef INET
474 	case AF_INET:
475 	{
476 		struct in_addr ia;
477 		struct ifaddr *ifa;
478 		int found;
479 
480 		found = 0;
481 		/*
482 		 * Try to find an address on the given outgoing interface
483 		 * that belongs to the jail.
484 		 */
485 		NET_EPOCH_ENTER(et);
486 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
487 			struct sockaddr *sa;
488 			sa = ifa->ifa_addr;
489 			if (sa->sa_family != AF_INET)
490 				continue;
491 			ia = ((struct sockaddr_in *)sa)->sin_addr;
492 			if (prison_check_ip4(cred, &ia) == 0) {
493 				found = 1;
494 				break;
495 			}
496 		}
497 		NET_EPOCH_EXIT(et);
498 		if (!found) {
499 			/*
500 			 * As a last resort return the 'default' jail address.
501 			 */
502 			ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->
503 			    sin_addr;
504 			if (prison_get_ip4(cred, &ia) != 0)
505 				return (ESRCH);
506 		}
507 		bzero(&saun->sin, sizeof(struct sockaddr_in));
508 		saun->sin.sin_len = sizeof(struct sockaddr_in);
509 		saun->sin.sin_family = AF_INET;
510 		saun->sin.sin_addr.s_addr = ia.s_addr;
511 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
512 		break;
513 	}
514 #endif
515 #ifdef INET6
516 	case AF_INET6:
517 	{
518 		struct in6_addr ia6;
519 		struct ifaddr *ifa;
520 		int found;
521 
522 		found = 0;
523 		/*
524 		 * Try to find an address on the given outgoing interface
525 		 * that belongs to the jail.
526 		 */
527 		NET_EPOCH_ENTER(et);
528 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
529 			struct sockaddr *sa;
530 			sa = ifa->ifa_addr;
531 			if (sa->sa_family != AF_INET6)
532 				continue;
533 			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
534 			    &ia6, sizeof(struct in6_addr));
535 			if (prison_check_ip6(cred, &ia6) == 0) {
536 				found = 1;
537 				break;
538 			}
539 		}
540 		NET_EPOCH_EXIT(et);
541 		if (!found) {
542 			/*
543 			 * As a last resort return the 'default' jail address.
544 			 */
545 			ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->
546 			    sin6_addr;
547 			if (prison_get_ip6(cred, &ia6) != 0)
548 				return (ESRCH);
549 		}
550 		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
551 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
552 		saun->sin6.sin6_family = AF_INET6;
553 		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
554 		if (sa6_recoverscope(&saun->sin6) != 0)
555 			return (ESRCH);
556 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
557 		break;
558 	}
559 #endif
560 	default:
561 		return (ESRCH);
562 	}
563 	return (0);
564 }
565 
566 /*
567  * Fills in @info based on userland-provided @rtm message.
568  *
569  * Returns 0 on success.
570  */
571 static int
572 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info)
573 {
574 	int error;
575 	sa_family_t saf;
576 
577 	rtm->rtm_pid = curproc->p_pid;
578 	info->rti_addrs = rtm->rtm_addrs;
579 
580 	info->rti_mflags = rtm->rtm_inits;
581 	info->rti_rmx = &rtm->rtm_rmx;
582 
583 	/*
584 	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
585 	 * link-local address because rtrequest requires addresses with
586 	 * embedded scope id.
587 	 */
588 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
589 		return (EINVAL);
590 
591 	if (rtm->rtm_flags & RTF_RNH_LOCKED)
592 		return (EINVAL);
593 	info->rti_flags = rtm->rtm_flags;
594 	if (info->rti_info[RTAX_DST] == NULL ||
595 	    info->rti_info[RTAX_DST]->sa_family >= AF_MAX ||
596 	    (info->rti_info[RTAX_GATEWAY] != NULL &&
597 	     info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
598 		return (EINVAL);
599 	saf = info->rti_info[RTAX_DST]->sa_family;
600 	/*
601 	 * Verify that the caller has the appropriate privilege; RTM_GET
602 	 * is the only operation the non-superuser is allowed.
603 	 */
604 	if (rtm->rtm_type != RTM_GET) {
605 		error = priv_check(curthread, PRIV_NET_ROUTE);
606 		if (error != 0)
607 			return (error);
608 	}
609 
610 	/*
611 	 * The given gateway address may be an interface address.
612 	 * For example, issuing a "route change" command on a route
613 	 * entry that was created from a tunnel, and the gateway
614 	 * address given is the local end point. In this case the
615 	 * RTF_GATEWAY flag must be cleared or the destination will
616 	 * not be reachable even though there is no error message.
617 	 */
618 	if (info->rti_info[RTAX_GATEWAY] != NULL &&
619 	    info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
620 		struct rt_addrinfo ginfo;
621 		struct sockaddr *gdst;
622 		struct sockaddr_storage ss;
623 
624 		bzero(&ginfo, sizeof(ginfo));
625 		bzero(&ss, sizeof(ss));
626 		ss.ss_len = sizeof(ss);
627 
628 		ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
629 		gdst = info->rti_info[RTAX_GATEWAY];
630 
631 		/*
632 		 * A host route through the loopback interface is
633 		 * installed for each interface adddress. In pre 8.0
634 		 * releases the interface address of a PPP link type
635 		 * is not reachable locally. This behavior is fixed as
636 		 * part of the new L2/L3 redesign and rewrite work. The
637 		 * signature of this interface address route is the
638 		 * AF_LINK sa_family type of the rt_gateway, and the
639 		 * rt_ifp has the IFF_LOOPBACK flag set.
640 		 */
641 		if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
642 			if (ss.ss_family == AF_LINK &&
643 			    ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
644 				info->rti_flags &= ~RTF_GATEWAY;
645 				info->rti_flags |= RTF_GWFLAG_COMPAT;
646 			}
647 			rib_free_info(&ginfo);
648 		}
649 	}
650 
651 	return (0);
652 }
653 
654 /*
655  * Handles RTM_GET message from routing socket, returning matching rt.
656  *
657  * Returns:
658  * 0 on success, with locked and referenced matching rt in @rt_nrt
659  * errno of failure
660  */
661 static int
662 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
663     struct rt_msghdr *rtm, struct rtentry **ret_nrt)
664 {
665 	RIB_RLOCK_TRACKER;
666 	struct rtentry *rt;
667 	struct rib_head *rnh;
668 	sa_family_t saf;
669 
670 	saf = info->rti_info[RTAX_DST]->sa_family;
671 
672 	rnh = rt_tables_get_rnh(fibnum, saf);
673 	if (rnh == NULL)
674 		return (EAFNOSUPPORT);
675 
676 	RIB_RLOCK(rnh);
677 
678 	if (info->rti_info[RTAX_NETMASK] == NULL) {
679 		/*
680 		 * Provide longest prefix match for
681 		 * address lookup (no mask).
682 		 * 'route -n get addr'
683 		 */
684 		rt = (struct rtentry *) rnh->rnh_matchaddr(
685 		    info->rti_info[RTAX_DST], &rnh->head);
686 	} else
687 		rt = (struct rtentry *) rnh->rnh_lookup(
688 		    info->rti_info[RTAX_DST],
689 		    info->rti_info[RTAX_NETMASK], &rnh->head);
690 
691 	if (rt == NULL) {
692 		RIB_RUNLOCK(rnh);
693 		return (ESRCH);
694 	}
695 #ifdef RADIX_MPATH
696 	/*
697 	 * for RTM_GET, gate is optional even with multipath.
698 	 * if gate == NULL the first match is returned.
699 	 * (no need to call rt_mpath_matchgate if gate == NULL)
700 	 */
701 	if (rt_mpath_capable(rnh) && info->rti_info[RTAX_GATEWAY]) {
702 		rt = rt_mpath_matchgate(rt, info->rti_info[RTAX_GATEWAY]);
703 		if (!rt) {
704 			RIB_RUNLOCK(rnh);
705 			return (ESRCH);
706 		}
707 	}
708 #endif
709 	/*
710 	 * If performing proxied L2 entry insertion, and
711 	 * the actual PPP host entry is found, perform
712 	 * another search to retrieve the prefix route of
713 	 * the local end point of the PPP link.
714 	 */
715 	if (rtm->rtm_flags & RTF_ANNOUNCE) {
716 		struct sockaddr laddr;
717 
718 		if (rt->rt_ifp != NULL &&
719 		    rt->rt_ifp->if_type == IFT_PROPVIRTUAL) {
720 			struct epoch_tracker et;
721 			struct ifaddr *ifa;
722 
723 			NET_EPOCH_ENTER(et);
724 			ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
725 					RT_ALL_FIBS);
726 			NET_EPOCH_EXIT(et);
727 			if (ifa != NULL)
728 				rt_maskedcopy(ifa->ifa_addr,
729 					      &laddr,
730 					      ifa->ifa_netmask);
731 		} else
732 			rt_maskedcopy(rt->rt_ifa->ifa_addr,
733 				      &laddr,
734 				      rt->rt_ifa->ifa_netmask);
735 		/*
736 		 * refactor rt and no lock operation necessary
737 		 */
738 		rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
739 		    &rnh->head);
740 		if (rt == NULL) {
741 			RIB_RUNLOCK(rnh);
742 			return (ESRCH);
743 		}
744 	}
745 	RT_LOCK(rt);
746 	RT_ADDREF(rt);
747 	RIB_RUNLOCK(rnh);
748 
749 	*ret_nrt = rt;
750 
751 	return (0);
752 }
753 
754 /*
755  * Update sockaddrs, flags, etc in @prtm based on @rt data.
756  * Assumes @rt is locked.
757  * rtm can be reallocated.
758  *
759  * Returns 0 on success, along with pointer to (potentially reallocated)
760  *  rtm.
761  *
762  */
763 static int
764 update_rtm_from_rte(struct rt_addrinfo *info, struct rt_msghdr **prtm,
765     int alloc_len, struct rtentry *rt)
766 {
767 	struct sockaddr_storage netmask_ss;
768 	struct walkarg w;
769 	union sockaddr_union saun;
770 	struct rt_msghdr *rtm, *orig_rtm = NULL;
771 	struct ifnet *ifp;
772 	int error, len;
773 
774 	RT_LOCK_ASSERT(rt);
775 
776 	rtm = *prtm;
777 
778 	info->rti_info[RTAX_DST] = rt_key(rt);
779 	info->rti_info[RTAX_GATEWAY] = rt->rt_gateway;
780 	info->rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
781 	    rt_mask(rt), &netmask_ss);
782 	info->rti_info[RTAX_GENMASK] = 0;
783 	ifp = rt->rt_ifp;
784 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
785 		if (ifp) {
786 			info->rti_info[RTAX_IFP] =
787 			    ifp->if_addr->ifa_addr;
788 			error = rtm_get_jailed(info, ifp, rt,
789 			    &saun, curthread->td_ucred);
790 			if (error != 0)
791 				return (error);
792 			if (ifp->if_flags & IFF_POINTOPOINT)
793 				info->rti_info[RTAX_BRD] =
794 				    rt->rt_ifa->ifa_dstaddr;
795 			rtm->rtm_index = ifp->if_index;
796 		} else {
797 			info->rti_info[RTAX_IFP] = NULL;
798 			info->rti_info[RTAX_IFA] = NULL;
799 		}
800 	} else if (ifp != NULL)
801 		rtm->rtm_index = ifp->if_index;
802 
803 	/* Check if we need to realloc storage */
804 	rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
805 	if (len > alloc_len) {
806 		struct rt_msghdr *tmp_rtm;
807 
808 		tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
809 		if (tmp_rtm == NULL)
810 			return (ENOBUFS);
811 		bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
812 		orig_rtm = rtm;
813 		rtm = tmp_rtm;
814 		alloc_len = len;
815 
816 		/*
817 		 * Delay freeing original rtm as info contains
818 		 * data referencing it.
819 		 */
820 	}
821 
822 	w.w_tmem = (caddr_t)rtm;
823 	w.w_tmemsize = alloc_len;
824 	rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
825 
826 	if (rt->rt_flags & RTF_GWFLAG_COMPAT)
827 		rtm->rtm_flags = RTF_GATEWAY |
828 			(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
829 	else
830 		rtm->rtm_flags = rt->rt_flags;
831 	rt_getmetrics(rt, &rtm->rtm_rmx);
832 	rtm->rtm_addrs = info->rti_addrs;
833 
834 	if (orig_rtm != NULL)
835 		free(orig_rtm, M_TEMP);
836 	*prtm = rtm;
837 
838 	return (0);
839 }
840 
841 /*ARGSUSED*/
842 static int
843 route_output(struct mbuf *m, struct socket *so, ...)
844 {
845 	struct rt_msghdr *rtm = NULL;
846 	struct rtentry *rt = NULL;
847 	struct rt_addrinfo info;
848 	struct epoch_tracker et;
849 #ifdef INET6
850 	struct sockaddr_storage ss;
851 	struct sockaddr_in6 *sin6;
852 	int i, rti_need_deembed = 0;
853 #endif
854 	int alloc_len = 0, len, error = 0, fibnum;
855 	sa_family_t saf = AF_UNSPEC;
856 	struct walkarg w;
857 
858 	fibnum = so->so_fibnum;
859 
860 #define senderr(e) { error = e; goto flush;}
861 	if (m == NULL || ((m->m_len < sizeof(long)) &&
862 		       (m = m_pullup(m, sizeof(long))) == NULL))
863 		return (ENOBUFS);
864 	if ((m->m_flags & M_PKTHDR) == 0)
865 		panic("route_output");
866 	NET_EPOCH_ENTER(et);
867 	len = m->m_pkthdr.len;
868 	if (len < sizeof(*rtm) ||
869 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
870 		senderr(EINVAL);
871 
872 	/*
873 	 * Most of current messages are in range 200-240 bytes,
874 	 * minimize possible re-allocation on reply using larger size
875 	 * buffer aligned on 1k boundaty.
876 	 */
877 	alloc_len = roundup2(len, 1024);
878 	if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL)
879 		senderr(ENOBUFS);
880 
881 	m_copydata(m, 0, len, (caddr_t)rtm);
882 	bzero(&info, sizeof(info));
883 	bzero(&w, sizeof(w));
884 
885 	if (rtm->rtm_version != RTM_VERSION) {
886 		/* Do not touch message since format is unknown */
887 		free(rtm, M_TEMP);
888 		rtm = NULL;
889 		senderr(EPROTONOSUPPORT);
890 	}
891 
892 	/*
893 	 * Starting from here, it is possible
894 	 * to alter original message and insert
895 	 * caller PID and error value.
896 	 */
897 
898 	if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) {
899 		senderr(error);
900 	}
901 
902 	saf = info.rti_info[RTAX_DST]->sa_family;
903 
904 	/* support for new ARP code */
905 	if (rtm->rtm_flags & RTF_LLDATA) {
906 		error = lla_rt_output(rtm, &info);
907 #ifdef INET6
908 		if (error == 0)
909 			rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
910 #endif
911 		goto flush;
912 	}
913 
914 	switch (rtm->rtm_type) {
915 		struct rtentry *saved_nrt;
916 
917 	case RTM_ADD:
918 	case RTM_CHANGE:
919 		if (rtm->rtm_type == RTM_ADD) {
920 			if (info.rti_info[RTAX_GATEWAY] == NULL)
921 				senderr(EINVAL);
922 		}
923 		saved_nrt = NULL;
924 		error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt,
925 		    fibnum);
926 		if (error == 0 && saved_nrt != NULL) {
927 #ifdef INET6
928 			rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
929 #endif
930 			RT_LOCK(saved_nrt);
931 			rtm->rtm_index = saved_nrt->rt_ifp->if_index;
932 			RT_REMREF(saved_nrt);
933 			RT_UNLOCK(saved_nrt);
934 		}
935 		break;
936 
937 	case RTM_DELETE:
938 		saved_nrt = NULL;
939 		error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum);
940 		if (error == 0) {
941 			RT_LOCK(saved_nrt);
942 			rt = saved_nrt;
943 			goto report;
944 		}
945 #ifdef INET6
946 		/* rt_msg2() will not be used when RTM_DELETE fails. */
947 		rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
948 #endif
949 		break;
950 
951 	case RTM_GET:
952 		error = handle_rtm_get(&info, fibnum, rtm, &rt);
953 		if (error != 0)
954 			senderr(error);
955 
956 report:
957 		RT_LOCK_ASSERT(rt);
958 		if (!can_export_rte(curthread->td_ucred, rt)) {
959 			RT_UNLOCK(rt);
960 			senderr(ESRCH);
961 		}
962 		error = update_rtm_from_rte(&info, &rtm, alloc_len, rt);
963 		/*
964 		 * Note that some sockaddr pointers may have changed to
965 		 * point to memory outsize @rtm. Some may be pointing
966 		 * to the on-stack variables.
967 		 * Given that, any pointer in @info CANNOT BE USED.
968 		 */
969 
970 		/*
971 		 * scopeid deembedding has been performed while
972 		 * writing updated rtm in rtsock_msg_buffer().
973 		 * With that in mind, skip deembedding procedure below.
974 		 */
975 #ifdef INET6
976 		rti_need_deembed = 0;
977 #endif
978 		RT_UNLOCK(rt);
979 		if (error != 0)
980 			senderr(error);
981 		break;
982 
983 	default:
984 		senderr(EOPNOTSUPP);
985 	}
986 
987 flush:
988 	NET_EPOCH_EXIT(et);
989 	if (rt != NULL)
990 		RTFREE(rt);
991 
992 #ifdef INET6
993 	if (rtm != NULL) {
994 		if (rti_need_deembed) {
995 			/* sin6_scope_id is recovered before sending rtm. */
996 			sin6 = (struct sockaddr_in6 *)&ss;
997 			for (i = 0; i < RTAX_MAX; i++) {
998 				if (info.rti_info[i] == NULL)
999 					continue;
1000 				if (info.rti_info[i]->sa_family != AF_INET6)
1001 					continue;
1002 				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
1003 				if (sa6_recoverscope(sin6) == 0)
1004 					bcopy(sin6, info.rti_info[i],
1005 						    sizeof(*sin6));
1006 			}
1007 		}
1008 	}
1009 #endif
1010 	send_rtm_reply(so, rtm, m, saf, fibnum, error);
1011 
1012 	return (error);
1013 }
1014 
1015 /*
1016  * Sends the prepared reply message in @rtm to all rtsock clients.
1017  * Frees @m and @rtm.
1018  *
1019  */
1020 static void
1021 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
1022     sa_family_t saf, u_int fibnum, int rtm_errno)
1023 {
1024 	struct rawcb *rp = NULL;
1025 
1026 	/*
1027 	 * Check to see if we don't want our own messages.
1028 	 */
1029 	if ((so->so_options & SO_USELOOPBACK) == 0) {
1030 		if (V_route_cb.any_count <= 1) {
1031 			if (rtm != NULL)
1032 				free(rtm, M_TEMP);
1033 			m_freem(m);
1034 			return;
1035 		}
1036 		/* There is another listener, so construct message */
1037 		rp = sotorawcb(so);
1038 	}
1039 
1040 	if (rtm != NULL) {
1041 		if (rtm_errno!= 0)
1042 			rtm->rtm_errno = rtm_errno;
1043 		else
1044 			rtm->rtm_flags |= RTF_DONE;
1045 
1046 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
1047 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
1048 			m_freem(m);
1049 			m = NULL;
1050 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
1051 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1052 
1053 		free(rtm, M_TEMP);
1054 	}
1055 	if (m != NULL) {
1056 		M_SETFIB(m, fibnum);
1057 		m->m_flags |= RTS_FILTER_FIB;
1058 		if (rp) {
1059 			/*
1060 			 * XXX insure we don't get a copy by
1061 			 * invalidating our protocol
1062 			 */
1063 			unsigned short family = rp->rcb_proto.sp_family;
1064 			rp->rcb_proto.sp_family = 0;
1065 			rt_dispatch(m, saf);
1066 			rp->rcb_proto.sp_family = family;
1067 		} else
1068 			rt_dispatch(m, saf);
1069 	}
1070 }
1071 
1072 
1073 static void
1074 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out)
1075 {
1076 
1077 	bzero(out, sizeof(*out));
1078 	out->rmx_mtu = rt->rt_mtu;
1079 	out->rmx_weight = rt->rt_weight;
1080 	out->rmx_pksent = counter_u64_fetch(rt->rt_pksent);
1081 	out->rmx_nhidx = nhop_get_idx(rt->rt_nhop);
1082 	/* Kernel -> userland timebase conversion. */
1083 	out->rmx_expire = rt->rt_expire ?
1084 	    rt->rt_expire - time_uptime + time_second : 0;
1085 }
1086 
1087 /*
1088  * Extract the addresses of the passed sockaddrs.
1089  * Do a little sanity checking so as to avoid bad memory references.
1090  * This data is derived straight from userland.
1091  */
1092 static int
1093 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1094 {
1095 	struct sockaddr *sa;
1096 	int i;
1097 
1098 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1099 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
1100 			continue;
1101 		sa = (struct sockaddr *)cp;
1102 		/*
1103 		 * It won't fit.
1104 		 */
1105 		if (cp + sa->sa_len > cplim)
1106 			return (EINVAL);
1107 		/*
1108 		 * there are no more.. quit now
1109 		 * If there are more bits, they are in error.
1110 		 * I've seen this. route(1) can evidently generate these.
1111 		 * This causes kernel to core dump.
1112 		 * for compatibility, If we see this, point to a safe address.
1113 		 */
1114 		if (sa->sa_len == 0) {
1115 			rtinfo->rti_info[i] = &sa_zero;
1116 			return (0); /* should be EINVAL but for compat */
1117 		}
1118 		/* accept it */
1119 #ifdef INET6
1120 		if (sa->sa_family == AF_INET6)
1121 			sa6_embedscope((struct sockaddr_in6 *)sa,
1122 			    V_ip6_use_defzone);
1123 #endif
1124 		rtinfo->rti_info[i] = sa;
1125 		cp += SA_SIZE(sa);
1126 	}
1127 	return (0);
1128 }
1129 
1130 /*
1131  * Fill in @dmask with valid netmask leaving original @smask
1132  * intact. Mostly used with radix netmasks.
1133  */
1134 static struct sockaddr *
1135 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask,
1136     struct sockaddr_storage *dmask)
1137 {
1138 	if (dst == NULL || smask == NULL)
1139 		return (NULL);
1140 
1141 	memset(dmask, 0, dst->sa_len);
1142 	memcpy(dmask, smask, smask->sa_len);
1143 	dmask->ss_len = dst->sa_len;
1144 	dmask->ss_family = dst->sa_family;
1145 
1146 	return ((struct sockaddr *)dmask);
1147 }
1148 
1149 /*
1150  * Writes information related to @rtinfo object to newly-allocated mbuf.
1151  * Assumes MCLBYTES is enough to construct any message.
1152  * Used for OS notifications of vaious events (if/ifa announces,etc)
1153  *
1154  * Returns allocated mbuf or NULL on failure.
1155  */
1156 static struct mbuf *
1157 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1158 {
1159 	struct rt_msghdr *rtm;
1160 	struct mbuf *m;
1161 	int i;
1162 	struct sockaddr *sa;
1163 #ifdef INET6
1164 	struct sockaddr_storage ss;
1165 	struct sockaddr_in6 *sin6;
1166 #endif
1167 	int len, dlen;
1168 
1169 	switch (type) {
1170 
1171 	case RTM_DELADDR:
1172 	case RTM_NEWADDR:
1173 		len = sizeof(struct ifa_msghdr);
1174 		break;
1175 
1176 	case RTM_DELMADDR:
1177 	case RTM_NEWMADDR:
1178 		len = sizeof(struct ifma_msghdr);
1179 		break;
1180 
1181 	case RTM_IFINFO:
1182 		len = sizeof(struct if_msghdr);
1183 		break;
1184 
1185 	case RTM_IFANNOUNCE:
1186 	case RTM_IEEE80211:
1187 		len = sizeof(struct if_announcemsghdr);
1188 		break;
1189 
1190 	default:
1191 		len = sizeof(struct rt_msghdr);
1192 	}
1193 
1194 	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
1195 	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1196 	if (len > MHLEN)
1197 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1198 	else
1199 		m = m_gethdr(M_NOWAIT, MT_DATA);
1200 	if (m == NULL)
1201 		return (m);
1202 
1203 	m->m_pkthdr.len = m->m_len = len;
1204 	rtm = mtod(m, struct rt_msghdr *);
1205 	bzero((caddr_t)rtm, len);
1206 	for (i = 0; i < RTAX_MAX; i++) {
1207 		if ((sa = rtinfo->rti_info[i]) == NULL)
1208 			continue;
1209 		rtinfo->rti_addrs |= (1 << i);
1210 		dlen = SA_SIZE(sa);
1211 #ifdef INET6
1212 		if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1213 			sin6 = (struct sockaddr_in6 *)&ss;
1214 			bcopy(sa, sin6, sizeof(*sin6));
1215 			if (sa6_recoverscope(sin6) == 0)
1216 				sa = (struct sockaddr *)sin6;
1217 		}
1218 #endif
1219 		m_copyback(m, len, dlen, (caddr_t)sa);
1220 		len += dlen;
1221 	}
1222 	if (m->m_pkthdr.len != len) {
1223 		m_freem(m);
1224 		return (NULL);
1225 	}
1226 	rtm->rtm_msglen = len;
1227 	rtm->rtm_version = RTM_VERSION;
1228 	rtm->rtm_type = type;
1229 	return (m);
1230 }
1231 
1232 /*
1233  * Writes information related to @rtinfo object to preallocated buffer.
1234  * Stores needed size in @plen. If @w is NULL, calculates size without
1235  * writing.
1236  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1237  *
1238  * Returns 0 on success.
1239  *
1240  */
1241 static int
1242 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1243 {
1244 	int i;
1245 	int len, buflen = 0, dlen;
1246 	caddr_t cp = NULL;
1247 	struct rt_msghdr *rtm = NULL;
1248 #ifdef INET6
1249 	struct sockaddr_storage ss;
1250 	struct sockaddr_in6 *sin6;
1251 #endif
1252 #ifdef COMPAT_FREEBSD32
1253 	bool compat32 = false;
1254 #endif
1255 
1256 	switch (type) {
1257 
1258 	case RTM_DELADDR:
1259 	case RTM_NEWADDR:
1260 		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1261 #ifdef COMPAT_FREEBSD32
1262 			if (w->w_req->flags & SCTL_MASK32) {
1263 				len = sizeof(struct ifa_msghdrl32);
1264 				compat32 = true;
1265 			} else
1266 #endif
1267 				len = sizeof(struct ifa_msghdrl);
1268 		} else
1269 			len = sizeof(struct ifa_msghdr);
1270 		break;
1271 
1272 	case RTM_IFINFO:
1273 #ifdef COMPAT_FREEBSD32
1274 		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1275 			if (w->w_op == NET_RT_IFLISTL)
1276 				len = sizeof(struct if_msghdrl32);
1277 			else
1278 				len = sizeof(struct if_msghdr32);
1279 			compat32 = true;
1280 			break;
1281 		}
1282 #endif
1283 		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1284 			len = sizeof(struct if_msghdrl);
1285 		else
1286 			len = sizeof(struct if_msghdr);
1287 		break;
1288 
1289 	case RTM_NEWMADDR:
1290 		len = sizeof(struct ifma_msghdr);
1291 		break;
1292 
1293 	default:
1294 		len = sizeof(struct rt_msghdr);
1295 	}
1296 
1297 	if (w != NULL) {
1298 		rtm = (struct rt_msghdr *)w->w_tmem;
1299 		buflen = w->w_tmemsize - len;
1300 		cp = (caddr_t)w->w_tmem + len;
1301 	}
1302 
1303 	rtinfo->rti_addrs = 0;
1304 	for (i = 0; i < RTAX_MAX; i++) {
1305 		struct sockaddr *sa;
1306 
1307 		if ((sa = rtinfo->rti_info[i]) == NULL)
1308 			continue;
1309 		rtinfo->rti_addrs |= (1 << i);
1310 #ifdef COMPAT_FREEBSD32
1311 		if (compat32)
1312 			dlen = SA_SIZE32(sa);
1313 		else
1314 #endif
1315 			dlen = SA_SIZE(sa);
1316 		if (cp != NULL && buflen >= dlen) {
1317 #ifdef INET6
1318 			if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1319 				sin6 = (struct sockaddr_in6 *)&ss;
1320 				bcopy(sa, sin6, sizeof(*sin6));
1321 				if (sa6_recoverscope(sin6) == 0)
1322 					sa = (struct sockaddr *)sin6;
1323 			}
1324 #endif
1325 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1326 			cp += dlen;
1327 			buflen -= dlen;
1328 		} else if (cp != NULL) {
1329 			/*
1330 			 * Buffer too small. Count needed size
1331 			 * and return with error.
1332 			 */
1333 			cp = NULL;
1334 		}
1335 
1336 		len += dlen;
1337 	}
1338 
1339 	if (cp != NULL) {
1340 		dlen = ALIGN(len) - len;
1341 		if (buflen < dlen)
1342 			cp = NULL;
1343 		else {
1344 			bzero(cp, dlen);
1345 			cp += dlen;
1346 			buflen -= dlen;
1347 		}
1348 	}
1349 	len = ALIGN(len);
1350 
1351 	if (cp != NULL) {
1352 		/* fill header iff buffer is large enough */
1353 		rtm->rtm_version = RTM_VERSION;
1354 		rtm->rtm_type = type;
1355 		rtm->rtm_msglen = len;
1356 	}
1357 
1358 	*plen = len;
1359 
1360 	if (w != NULL && cp == NULL)
1361 		return (ENOBUFS);
1362 
1363 	return (0);
1364 }
1365 
1366 /*
1367  * This routine is called to generate a message from the routing
1368  * socket indicating that a redirect has occurred, a routing lookup
1369  * has failed, or that a protocol has detected timeouts to a particular
1370  * destination.
1371  */
1372 void
1373 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1374     int fibnum)
1375 {
1376 	struct rt_msghdr *rtm;
1377 	struct mbuf *m;
1378 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1379 
1380 	if (V_route_cb.any_count == 0)
1381 		return;
1382 	m = rtsock_msg_mbuf(type, rtinfo);
1383 	if (m == NULL)
1384 		return;
1385 
1386 	if (fibnum != RT_ALL_FIBS) {
1387 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1388 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1389 		M_SETFIB(m, fibnum);
1390 		m->m_flags |= RTS_FILTER_FIB;
1391 	}
1392 
1393 	rtm = mtod(m, struct rt_msghdr *);
1394 	rtm->rtm_flags = RTF_DONE | flags;
1395 	rtm->rtm_errno = error;
1396 	rtm->rtm_addrs = rtinfo->rti_addrs;
1397 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1398 }
1399 
1400 void
1401 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1402 {
1403 
1404 	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1405 }
1406 
1407 /*
1408  * This routine is called to generate a message from the routing
1409  * socket indicating that the status of a network interface has changed.
1410  */
1411 void
1412 rt_ifmsg(struct ifnet *ifp)
1413 {
1414 	struct if_msghdr *ifm;
1415 	struct mbuf *m;
1416 	struct rt_addrinfo info;
1417 
1418 	if (V_route_cb.any_count == 0)
1419 		return;
1420 	bzero((caddr_t)&info, sizeof(info));
1421 	m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1422 	if (m == NULL)
1423 		return;
1424 	ifm = mtod(m, struct if_msghdr *);
1425 	ifm->ifm_index = ifp->if_index;
1426 	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1427 	if_data_copy(ifp, &ifm->ifm_data);
1428 	ifm->ifm_addrs = 0;
1429 	rt_dispatch(m, AF_UNSPEC);
1430 }
1431 
1432 /*
1433  * Announce interface address arrival/withdraw.
1434  * Please do not call directly, use rt_addrmsg().
1435  * Assume input data to be valid.
1436  * Returns 0 on success.
1437  */
1438 int
1439 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1440 {
1441 	struct rt_addrinfo info;
1442 	struct sockaddr *sa;
1443 	int ncmd;
1444 	struct mbuf *m;
1445 	struct ifa_msghdr *ifam;
1446 	struct ifnet *ifp = ifa->ifa_ifp;
1447 	struct sockaddr_storage ss;
1448 
1449 	if (V_route_cb.any_count == 0)
1450 		return (0);
1451 
1452 	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1453 
1454 	bzero((caddr_t)&info, sizeof(info));
1455 	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1456 	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1457 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1458 	    info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
1459 	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1460 	if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1461 		return (ENOBUFS);
1462 	ifam = mtod(m, struct ifa_msghdr *);
1463 	ifam->ifam_index = ifp->if_index;
1464 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1465 	ifam->ifam_flags = ifa->ifa_flags;
1466 	ifam->ifam_addrs = info.rti_addrs;
1467 
1468 	if (fibnum != RT_ALL_FIBS) {
1469 		M_SETFIB(m, fibnum);
1470 		m->m_flags |= RTS_FILTER_FIB;
1471 	}
1472 
1473 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1474 
1475 	return (0);
1476 }
1477 
1478 /*
1479  * Announce route addition/removal to rtsock based on @rt data.
1480  * Callers are advives to use rt_routemsg() instead of using this
1481  *  function directly.
1482  * Assume @rt data is consistent.
1483  *
1484  * Returns 0 on success.
1485  */
1486 int
1487 rtsock_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs,
1488     int fibnum)
1489 {
1490 	struct sockaddr_storage ss;
1491 	struct rt_addrinfo info;
1492 
1493 	if (V_route_cb.any_count == 0)
1494 		return (0);
1495 
1496 	bzero((caddr_t)&info, sizeof(info));
1497 	info.rti_info[RTAX_DST] = rt_key(rt);
1498 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), rt_mask(rt), &ss);
1499 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1500 	info.rti_flags = rt->rt_flags;
1501 	info.rti_ifp = ifp;
1502 
1503 	return (rtsock_routemsg_info(cmd, &info, fibnum));
1504 }
1505 
1506 int
1507 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
1508 {
1509 	struct rt_msghdr *rtm;
1510 	struct sockaddr *sa;
1511 	struct mbuf *m;
1512 
1513 	if (V_route_cb.any_count == 0)
1514 		return (0);
1515 
1516 	if (info->rti_flags & RTF_HOST)
1517 		info->rti_info[RTAX_NETMASK] = NULL;
1518 
1519 	m = rtsock_msg_mbuf(cmd, info);
1520 	if (m == NULL)
1521 		return (ENOBUFS);
1522 
1523 	if (fibnum != RT_ALL_FIBS) {
1524 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1525 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1526 		M_SETFIB(m, fibnum);
1527 		m->m_flags |= RTS_FILTER_FIB;
1528 	}
1529 
1530 	rtm = mtod(m, struct rt_msghdr *);
1531 	rtm->rtm_addrs = info->rti_addrs;
1532 	if (info->rti_ifp != NULL)
1533 		rtm->rtm_index = info->rti_ifp->if_index;
1534 	/* Add RTF_DONE to indicate command 'completion' required by API */
1535 	info->rti_flags |= RTF_DONE;
1536 	/* Reported routes has to be up */
1537 	if (cmd == RTM_ADD || cmd == RTM_CHANGE)
1538 		info->rti_flags |= RTF_UP;
1539 	rtm->rtm_flags = info->rti_flags;
1540 
1541 	sa = info->rti_info[RTAX_DST];
1542 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1543 
1544 	return (0);
1545 }
1546 
1547 /*
1548  * This is the analogue to the rt_newaddrmsg which performs the same
1549  * function but for multicast group memberhips.  This is easier since
1550  * there is no route state to worry about.
1551  */
1552 void
1553 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1554 {
1555 	struct rt_addrinfo info;
1556 	struct mbuf *m = NULL;
1557 	struct ifnet *ifp = ifma->ifma_ifp;
1558 	struct ifma_msghdr *ifmam;
1559 
1560 	if (V_route_cb.any_count == 0)
1561 		return;
1562 
1563 	bzero((caddr_t)&info, sizeof(info));
1564 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1565 	if (ifp && ifp->if_addr)
1566 		info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1567 	else
1568 		info.rti_info[RTAX_IFP] = NULL;
1569 	/*
1570 	 * If a link-layer address is present, present it as a ``gateway''
1571 	 * (similarly to how ARP entries, e.g., are presented).
1572 	 */
1573 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1574 	m = rtsock_msg_mbuf(cmd, &info);
1575 	if (m == NULL)
1576 		return;
1577 	ifmam = mtod(m, struct ifma_msghdr *);
1578 	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1579 	    __func__));
1580 	ifmam->ifmam_index = ifp->if_index;
1581 	ifmam->ifmam_addrs = info.rti_addrs;
1582 	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1583 }
1584 
1585 static struct mbuf *
1586 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1587 	struct rt_addrinfo *info)
1588 {
1589 	struct if_announcemsghdr *ifan;
1590 	struct mbuf *m;
1591 
1592 	if (V_route_cb.any_count == 0)
1593 		return NULL;
1594 	bzero((caddr_t)info, sizeof(*info));
1595 	m = rtsock_msg_mbuf(type, info);
1596 	if (m != NULL) {
1597 		ifan = mtod(m, struct if_announcemsghdr *);
1598 		ifan->ifan_index = ifp->if_index;
1599 		strlcpy(ifan->ifan_name, ifp->if_xname,
1600 			sizeof(ifan->ifan_name));
1601 		ifan->ifan_what = what;
1602 	}
1603 	return m;
1604 }
1605 
1606 /*
1607  * This is called to generate routing socket messages indicating
1608  * IEEE80211 wireless events.
1609  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1610  */
1611 void
1612 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1613 {
1614 	struct mbuf *m;
1615 	struct rt_addrinfo info;
1616 
1617 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1618 	if (m != NULL) {
1619 		/*
1620 		 * Append the ieee80211 data.  Try to stick it in the
1621 		 * mbuf containing the ifannounce msg; otherwise allocate
1622 		 * a new mbuf and append.
1623 		 *
1624 		 * NB: we assume m is a single mbuf.
1625 		 */
1626 		if (data_len > M_TRAILINGSPACE(m)) {
1627 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1628 			if (n == NULL) {
1629 				m_freem(m);
1630 				return;
1631 			}
1632 			bcopy(data, mtod(n, void *), data_len);
1633 			n->m_len = data_len;
1634 			m->m_next = n;
1635 		} else if (data_len > 0) {
1636 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1637 			m->m_len += data_len;
1638 		}
1639 		if (m->m_flags & M_PKTHDR)
1640 			m->m_pkthdr.len += data_len;
1641 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1642 		rt_dispatch(m, AF_UNSPEC);
1643 	}
1644 }
1645 
1646 /*
1647  * This is called to generate routing socket messages indicating
1648  * network interface arrival and departure.
1649  */
1650 void
1651 rt_ifannouncemsg(struct ifnet *ifp, int what)
1652 {
1653 	struct mbuf *m;
1654 	struct rt_addrinfo info;
1655 
1656 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1657 	if (m != NULL)
1658 		rt_dispatch(m, AF_UNSPEC);
1659 }
1660 
1661 static void
1662 rt_dispatch(struct mbuf *m, sa_family_t saf)
1663 {
1664 	struct m_tag *tag;
1665 
1666 	/*
1667 	 * Preserve the family from the sockaddr, if any, in an m_tag for
1668 	 * use when injecting the mbuf into the routing socket buffer from
1669 	 * the netisr.
1670 	 */
1671 	if (saf != AF_UNSPEC) {
1672 		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1673 		    M_NOWAIT);
1674 		if (tag == NULL) {
1675 			m_freem(m);
1676 			return;
1677 		}
1678 		*(unsigned short *)(tag + 1) = saf;
1679 		m_tag_prepend(m, tag);
1680 	}
1681 #ifdef VIMAGE
1682 	if (V_loif)
1683 		m->m_pkthdr.rcvif = V_loif;
1684 	else {
1685 		m_freem(m);
1686 		return;
1687 	}
1688 #endif
1689 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
1690 }
1691 
1692 /*
1693  * Checks if rte can be exported v.r.t jails/vnets.
1694  *
1695  * Returns 1 if it can, 0 otherwise.
1696  */
1697 static int
1698 can_export_rte(struct ucred *td_ucred, const struct rtentry *rt)
1699 {
1700 
1701 	if ((rt->rt_flags & RTF_HOST) == 0
1702 	    ? jailed_without_vnet(td_ucred)
1703 	    : prison_if(td_ucred, rt_key_const(rt)) != 0)
1704 		return (0);
1705 	return (1);
1706 }
1707 
1708 /*
1709  * This is used in dumping the kernel table via sysctl().
1710  */
1711 static int
1712 sysctl_dumpentry(struct radix_node *rn, void *vw)
1713 {
1714 	struct walkarg *w = vw;
1715 	struct rtentry *rt = (struct rtentry *)rn;
1716 	int error = 0, size;
1717 	struct rt_addrinfo info;
1718 	struct sockaddr_storage ss;
1719 
1720 	NET_EPOCH_ASSERT();
1721 
1722 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1723 		return 0;
1724 	if (!can_export_rte(w->w_req->td->td_ucred, rt))
1725 		return (0);
1726 	bzero((caddr_t)&info, sizeof(info));
1727 	info.rti_info[RTAX_DST] = rt_key(rt);
1728 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1729 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
1730 	    rt_mask(rt), &ss);
1731 	info.rti_info[RTAX_GENMASK] = 0;
1732 	if (rt->rt_ifp && !(rt->rt_ifp->if_flags & IFF_DYING)) {
1733 		info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1734 		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1735 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1736 			info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1737 	}
1738 	if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
1739 		return (error);
1740 	if (w->w_req && w->w_tmem) {
1741 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1742 
1743 		bzero(&rtm->rtm_index,
1744 		    sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
1745 		if (rt->rt_flags & RTF_GWFLAG_COMPAT)
1746 			rtm->rtm_flags = RTF_GATEWAY |
1747 				(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
1748 		else
1749 			rtm->rtm_flags = rt->rt_flags;
1750 		rt_getmetrics(rt, &rtm->rtm_rmx);
1751 		rtm->rtm_index = rt->rt_ifp->if_index;
1752 		rtm->rtm_addrs = info.rti_addrs;
1753 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1754 		return (error);
1755 	}
1756 	return (error);
1757 }
1758 
1759 static int
1760 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
1761     struct rt_addrinfo *info, struct walkarg *w, int len)
1762 {
1763 	struct if_msghdrl *ifm;
1764 	struct if_data *ifd;
1765 
1766 	ifm = (struct if_msghdrl *)w->w_tmem;
1767 
1768 #ifdef COMPAT_FREEBSD32
1769 	if (w->w_req->flags & SCTL_MASK32) {
1770 		struct if_msghdrl32 *ifm32;
1771 
1772 		ifm32 = (struct if_msghdrl32 *)ifm;
1773 		ifm32->ifm_addrs = info->rti_addrs;
1774 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1775 		ifm32->ifm_index = ifp->if_index;
1776 		ifm32->_ifm_spare1 = 0;
1777 		ifm32->ifm_len = sizeof(*ifm32);
1778 		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1779 		ifm32->_ifm_spare2 = 0;
1780 		ifd = &ifm32->ifm_data;
1781 	} else
1782 #endif
1783 	{
1784 		ifm->ifm_addrs = info->rti_addrs;
1785 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1786 		ifm->ifm_index = ifp->if_index;
1787 		ifm->_ifm_spare1 = 0;
1788 		ifm->ifm_len = sizeof(*ifm);
1789 		ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1790 		ifm->_ifm_spare2 = 0;
1791 		ifd = &ifm->ifm_data;
1792 	}
1793 
1794 	memcpy(ifd, src_ifd, sizeof(*ifd));
1795 
1796 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1797 }
1798 
1799 static int
1800 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
1801     struct rt_addrinfo *info, struct walkarg *w, int len)
1802 {
1803 	struct if_msghdr *ifm;
1804 	struct if_data *ifd;
1805 
1806 	ifm = (struct if_msghdr *)w->w_tmem;
1807 
1808 #ifdef COMPAT_FREEBSD32
1809 	if (w->w_req->flags & SCTL_MASK32) {
1810 		struct if_msghdr32 *ifm32;
1811 
1812 		ifm32 = (struct if_msghdr32 *)ifm;
1813 		ifm32->ifm_addrs = info->rti_addrs;
1814 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1815 		ifm32->ifm_index = ifp->if_index;
1816 		ifm32->_ifm_spare1 = 0;
1817 		ifd = &ifm32->ifm_data;
1818 	} else
1819 #endif
1820 	{
1821 		ifm->ifm_addrs = info->rti_addrs;
1822 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1823 		ifm->ifm_index = ifp->if_index;
1824 		ifm->_ifm_spare1 = 0;
1825 		ifd = &ifm->ifm_data;
1826 	}
1827 
1828 	memcpy(ifd, src_ifd, sizeof(*ifd));
1829 
1830 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1831 }
1832 
1833 static int
1834 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1835     struct walkarg *w, int len)
1836 {
1837 	struct ifa_msghdrl *ifam;
1838 	struct if_data *ifd;
1839 
1840 	ifam = (struct ifa_msghdrl *)w->w_tmem;
1841 
1842 #ifdef COMPAT_FREEBSD32
1843 	if (w->w_req->flags & SCTL_MASK32) {
1844 		struct ifa_msghdrl32 *ifam32;
1845 
1846 		ifam32 = (struct ifa_msghdrl32 *)ifam;
1847 		ifam32->ifam_addrs = info->rti_addrs;
1848 		ifam32->ifam_flags = ifa->ifa_flags;
1849 		ifam32->ifam_index = ifa->ifa_ifp->if_index;
1850 		ifam32->_ifam_spare1 = 0;
1851 		ifam32->ifam_len = sizeof(*ifam32);
1852 		ifam32->ifam_data_off =
1853 		    offsetof(struct ifa_msghdrl32, ifam_data);
1854 		ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
1855 		ifd = &ifam32->ifam_data;
1856 	} else
1857 #endif
1858 	{
1859 		ifam->ifam_addrs = info->rti_addrs;
1860 		ifam->ifam_flags = ifa->ifa_flags;
1861 		ifam->ifam_index = ifa->ifa_ifp->if_index;
1862 		ifam->_ifam_spare1 = 0;
1863 		ifam->ifam_len = sizeof(*ifam);
1864 		ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
1865 		ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1866 		ifd = &ifam->ifam_data;
1867 	}
1868 
1869 	bzero(ifd, sizeof(*ifd));
1870 	ifd->ifi_datalen = sizeof(struct if_data);
1871 	ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
1872 	ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
1873 	ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
1874 	ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
1875 
1876 	/* Fixup if_data carp(4) vhid. */
1877 	if (carp_get_vhid_p != NULL)
1878 		ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
1879 
1880 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1881 }
1882 
1883 static int
1884 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
1885     struct walkarg *w, int len)
1886 {
1887 	struct ifa_msghdr *ifam;
1888 
1889 	ifam = (struct ifa_msghdr *)w->w_tmem;
1890 	ifam->ifam_addrs = info->rti_addrs;
1891 	ifam->ifam_flags = ifa->ifa_flags;
1892 	ifam->ifam_index = ifa->ifa_ifp->if_index;
1893 	ifam->_ifam_spare1 = 0;
1894 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1895 
1896 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1897 }
1898 
1899 static int
1900 sysctl_iflist(int af, struct walkarg *w)
1901 {
1902 	struct ifnet *ifp;
1903 	struct ifaddr *ifa;
1904 	struct if_data ifd;
1905 	struct rt_addrinfo info;
1906 	int len, error = 0;
1907 	struct sockaddr_storage ss;
1908 
1909 	bzero((caddr_t)&info, sizeof(info));
1910 	bzero(&ifd, sizeof(ifd));
1911 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1912 		if (w->w_arg && w->w_arg != ifp->if_index)
1913 			continue;
1914 		if_data_copy(ifp, &ifd);
1915 		ifa = ifp->if_addr;
1916 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1917 		error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
1918 		if (error != 0)
1919 			goto done;
1920 		info.rti_info[RTAX_IFP] = NULL;
1921 		if (w->w_req && w->w_tmem) {
1922 			if (w->w_op == NET_RT_IFLISTL)
1923 				error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
1924 				    len);
1925 			else
1926 				error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
1927 				    len);
1928 			if (error)
1929 				goto done;
1930 		}
1931 		while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
1932 			if (af && af != ifa->ifa_addr->sa_family)
1933 				continue;
1934 			if (prison_if(w->w_req->td->td_ucred,
1935 			    ifa->ifa_addr) != 0)
1936 				continue;
1937 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1938 			info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1939 			    ifa->ifa_addr, ifa->ifa_netmask, &ss);
1940 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1941 			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
1942 			if (error != 0)
1943 				goto done;
1944 			if (w->w_req && w->w_tmem) {
1945 				if (w->w_op == NET_RT_IFLISTL)
1946 					error = sysctl_iflist_ifaml(ifa, &info,
1947 					    w, len);
1948 				else
1949 					error = sysctl_iflist_ifam(ifa, &info,
1950 					    w, len);
1951 				if (error)
1952 					goto done;
1953 			}
1954 		}
1955 		info.rti_info[RTAX_IFA] = NULL;
1956 		info.rti_info[RTAX_NETMASK] = NULL;
1957 		info.rti_info[RTAX_BRD] = NULL;
1958 	}
1959 done:
1960 	return (error);
1961 }
1962 
1963 static int
1964 sysctl_ifmalist(int af, struct walkarg *w)
1965 {
1966 	struct rt_addrinfo info;
1967 	struct ifaddr *ifa;
1968 	struct ifmultiaddr *ifma;
1969 	struct ifnet *ifp;
1970 	int error, len;
1971 
1972 	NET_EPOCH_ASSERT();
1973 
1974 	error = 0;
1975 	bzero((caddr_t)&info, sizeof(info));
1976 
1977 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1978 		if (w->w_arg && w->w_arg != ifp->if_index)
1979 			continue;
1980 		ifa = ifp->if_addr;
1981 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1982 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1983 			if (af && af != ifma->ifma_addr->sa_family)
1984 				continue;
1985 			if (prison_if(w->w_req->td->td_ucred,
1986 			    ifma->ifma_addr) != 0)
1987 				continue;
1988 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1989 			info.rti_info[RTAX_GATEWAY] =
1990 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
1991 			    ifma->ifma_lladdr : NULL;
1992 			error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
1993 			if (error != 0)
1994 				break;
1995 			if (w->w_req && w->w_tmem) {
1996 				struct ifma_msghdr *ifmam;
1997 
1998 				ifmam = (struct ifma_msghdr *)w->w_tmem;
1999 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
2000 				ifmam->ifmam_flags = 0;
2001 				ifmam->ifmam_addrs = info.rti_addrs;
2002 				ifmam->_ifmam_spare1 = 0;
2003 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
2004 				if (error != 0)
2005 					break;
2006 			}
2007 		}
2008 		if (error != 0)
2009 			break;
2010 	}
2011 	return (error);
2012 }
2013 
2014 static int
2015 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
2016 {
2017 	RIB_RLOCK_TRACKER;
2018 	struct epoch_tracker et;
2019 	int	*name = (int *)arg1;
2020 	u_int	namelen = arg2;
2021 	struct rib_head *rnh = NULL; /* silence compiler. */
2022 	int	i, lim, error = EINVAL;
2023 	int	fib = 0;
2024 	u_char	af;
2025 	struct	walkarg w;
2026 
2027 	name ++;
2028 	namelen--;
2029 	if (req->newptr)
2030 		return (EPERM);
2031 	if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP) {
2032 		if (namelen == 3)
2033 			fib = req->td->td_proc->p_fibnum;
2034 		else if (namelen == 4)
2035 			fib = (name[3] == RT_ALL_FIBS) ?
2036 			    req->td->td_proc->p_fibnum : name[3];
2037 		else
2038 			return ((namelen < 3) ? EISDIR : ENOTDIR);
2039 		if (fib < 0 || fib >= rt_numfibs)
2040 			return (EINVAL);
2041 	} else if (namelen != 3)
2042 		return ((namelen < 3) ? EISDIR : ENOTDIR);
2043 	af = name[0];
2044 	if (af > AF_MAX)
2045 		return (EINVAL);
2046 	bzero(&w, sizeof(w));
2047 	w.w_op = name[1];
2048 	w.w_arg = name[2];
2049 	w.w_req = req;
2050 
2051 	error = sysctl_wire_old_buffer(req, 0);
2052 	if (error)
2053 		return (error);
2054 
2055 	/*
2056 	 * Allocate reply buffer in advance.
2057 	 * All rtsock messages has maximum length of u_short.
2058 	 */
2059 	w.w_tmemsize = 65536;
2060 	w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
2061 
2062 	NET_EPOCH_ENTER(et);
2063 	switch (w.w_op) {
2064 	case NET_RT_DUMP:
2065 	case NET_RT_FLAGS:
2066 		if (af == 0) {			/* dump all tables */
2067 			i = 1;
2068 			lim = AF_MAX;
2069 		} else				/* dump only one table */
2070 			i = lim = af;
2071 
2072 		/*
2073 		 * take care of llinfo entries, the caller must
2074 		 * specify an AF
2075 		 */
2076 		if (w.w_op == NET_RT_FLAGS &&
2077 		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
2078 			if (af != 0)
2079 				error = lltable_sysctl_dumparp(af, w.w_req);
2080 			else
2081 				error = EINVAL;
2082 			break;
2083 		}
2084 		/*
2085 		 * take care of routing entries
2086 		 */
2087 		for (error = 0; error == 0 && i <= lim; i++) {
2088 			rnh = rt_tables_get_rnh(fib, i);
2089 			if (rnh != NULL) {
2090 				RIB_RLOCK(rnh);
2091 			    	error = rnh->rnh_walktree(&rnh->head,
2092 				    sysctl_dumpentry, &w);
2093 				RIB_RUNLOCK(rnh);
2094 			} else if (af != 0)
2095 				error = EAFNOSUPPORT;
2096 		}
2097 		break;
2098 	case NET_RT_NHOP:
2099 		/* Allow dumping one specific af/fib at a time */
2100 		if (namelen < 4) {
2101 			error = EINVAL;
2102 			break;
2103 		}
2104 		fib = name[3];
2105 		if (fib < 0 || fib > rt_numfibs) {
2106 			error = EINVAL;
2107 			break;
2108 		}
2109 		rnh = rt_tables_get_rnh(fib, af);
2110 		if (rnh == NULL) {
2111 			error = EAFNOSUPPORT;
2112 			break;
2113 		}
2114 		if (w.w_op == NET_RT_NHOP)
2115 			error = nhops_dump_sysctl(rnh, w.w_req);
2116 		break;
2117 	case NET_RT_IFLIST:
2118 	case NET_RT_IFLISTL:
2119 		error = sysctl_iflist(af, &w);
2120 		break;
2121 
2122 	case NET_RT_IFMALIST:
2123 		error = sysctl_ifmalist(af, &w);
2124 		break;
2125 	}
2126 	NET_EPOCH_EXIT(et);
2127 
2128 	free(w.w_tmem, M_TEMP);
2129 	return (error);
2130 }
2131 
2132 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
2133     sysctl_rtsock, "Return route tables and interface/address lists");
2134 
2135 /*
2136  * Definitions of protocols supported in the ROUTE domain.
2137  */
2138 
2139 static struct domain routedomain;		/* or at least forward */
2140 
2141 static struct protosw routesw[] = {
2142 {
2143 	.pr_type =		SOCK_RAW,
2144 	.pr_domain =		&routedomain,
2145 	.pr_flags =		PR_ATOMIC|PR_ADDR,
2146 	.pr_output =		route_output,
2147 	.pr_ctlinput =		raw_ctlinput,
2148 	.pr_init =		raw_init,
2149 	.pr_usrreqs =		&route_usrreqs
2150 }
2151 };
2152 
2153 static struct domain routedomain = {
2154 	.dom_family =		PF_ROUTE,
2155 	.dom_name =		 "route",
2156 	.dom_protosw =		routesw,
2157 	.dom_protoswNPROTOSW =	&routesw[nitems(routesw)]
2158 };
2159 
2160 VNET_DOMAIN_SET(route);
2161 
2162 #ifdef DDB
2163 /*
2164  * Unfortunately, RTF_ values are expressed as raw masks rather than powers of
2165  * 2, so we cannot use them as nice C99 initializer indices below.
2166  */
2167 static const char * const rtf_flag_strings[] = {
2168 	"UP",
2169 	"GATEWAY",
2170 	"HOST",
2171 	"REJECT",
2172 	"DYNAMIC",
2173 	"MODIFIED",
2174 	"DONE",
2175 	"UNUSED_0x80",
2176 	"UNUSED_0x100",
2177 	"XRESOLVE",
2178 	"LLDATA",
2179 	"STATIC",
2180 	"BLACKHOLE",
2181 	"UNUSED_0x2000",
2182 	"PROTO2",
2183 	"PROTO1",
2184 	"UNUSED_0x10000",
2185 	"UNUSED_0x20000",
2186 	"PROTO3",
2187 	"FIXEDMTU",
2188 	"PINNED",
2189 	"LOCAL",
2190 	"BROADCAST",
2191 	"MULTICAST",
2192 	/* Big gap. */
2193 	[28] = "STICKY",
2194 	[30] = "RNH_LOCKED",
2195 	[31] = "GWFLAG_COMPAT",
2196 };
2197 
2198 static const char * __pure
2199 rt_flag_name(unsigned idx)
2200 {
2201 	if (idx >= nitems(rtf_flag_strings))
2202 		return ("INVALID_FLAG");
2203 	if (rtf_flag_strings[idx] == NULL)
2204 		return ("UNKNOWN");
2205 	return (rtf_flag_strings[idx]);
2206 }
2207 
2208 static void
2209 rt_dumpaddr_ddb(const char *name, const struct sockaddr *sa)
2210 {
2211 	char buf[INET6_ADDRSTRLEN], *res;
2212 
2213 	res = NULL;
2214 	if (sa == NULL)
2215 		res = "NULL";
2216 	else if (sa->sa_family == AF_INET) {
2217 		res = inet_ntop(AF_INET,
2218 		    &((const struct sockaddr_in *)sa)->sin_addr,
2219 		    buf, sizeof(buf));
2220 	} else if (sa->sa_family == AF_INET6) {
2221 		res = inet_ntop(AF_INET6,
2222 		    &((const struct sockaddr_in6 *)sa)->sin6_addr,
2223 		    buf, sizeof(buf));
2224 	} else if (sa->sa_family == AF_LINK) {
2225 		res = "on link";
2226 	}
2227 
2228 	if (res != NULL) {
2229 		db_printf("%s <%s> ", name, res);
2230 		return;
2231 	}
2232 
2233 	db_printf("%s <af:%d> ", name, sa->sa_family);
2234 }
2235 
2236 static int
2237 rt_dumpentry_ddb(struct radix_node *rn, void *arg __unused)
2238 {
2239 	struct sockaddr_storage ss;
2240 	struct rtentry *rt;
2241 	int flags, idx;
2242 
2243 	/* If RNTORT is important, put it in a header. */
2244 	rt = (void *)rn;
2245 
2246 	rt_dumpaddr_ddb("dst", rt_key(rt));
2247 	rt_dumpaddr_ddb("gateway", rt->rt_gateway);
2248 	rt_dumpaddr_ddb("netmask", rtsock_fix_netmask(rt_key(rt), rt_mask(rt),
2249 	    &ss));
2250 	if (rt->rt_ifp != NULL && (rt->rt_ifp->if_flags & IFF_DYING) == 0) {
2251 		rt_dumpaddr_ddb("ifp", rt->rt_ifp->if_addr->ifa_addr);
2252 		rt_dumpaddr_ddb("ifa", rt->rt_ifa->ifa_addr);
2253 	}
2254 
2255 	db_printf("flags ");
2256 	flags = rt->rt_flags;
2257 	if (flags == 0)
2258 		db_printf("none");
2259 
2260 	while ((idx = ffs(flags)) > 0) {
2261 		idx--;
2262 
2263 		if (flags != rt->rt_flags)
2264 			db_printf(",");
2265 		db_printf("%s", rt_flag_name(idx));
2266 
2267 		flags &= ~(1ul << idx);
2268 	}
2269 
2270 	db_printf("\n");
2271 	return (0);
2272 }
2273 
2274 DB_SHOW_COMMAND(routetable, db_show_routetable_cmd)
2275 {
2276 	struct rib_head *rnh;
2277 	int error, i, lim;
2278 
2279 	if (have_addr)
2280 		i = lim = addr;
2281 	else {
2282 		i = 1;
2283 		lim = AF_MAX;
2284 	}
2285 
2286 	for (; i <= lim; i++) {
2287 		rnh = rt_tables_get_rnh(0, i);
2288 		if (rnh == NULL) {
2289 			if (have_addr) {
2290 				db_printf("%s: AF %d not supported?\n",
2291 				    __func__, i);
2292 				break;
2293 			}
2294 			continue;
2295 		}
2296 
2297 		if (!have_addr && i > 1)
2298 			db_printf("\n");
2299 
2300 		db_printf("Route table for AF %d%s%s%s:\n", i,
2301 		    (i == AF_INET || i == AF_INET6) ? " (" : "",
2302 		    (i == AF_INET) ? "INET" : (i == AF_INET6) ? "INET6" : "",
2303 		    (i == AF_INET || i == AF_INET6) ? ")" : "");
2304 
2305 		error = rnh->rnh_walktree(&rnh->head, rt_dumpentry_ddb, NULL);
2306 		if (error != 0)
2307 			db_printf("%s: walktree(%d): %d\n", __func__, i,
2308 			    error);
2309 	}
2310 }
2311 
2312 _DB_FUNC(_show, route, db_show_route_cmd, db_show_table, CS_OWN, NULL)
2313 {
2314 	char buf[INET6_ADDRSTRLEN], *bp;
2315 	const void *dst_addrp;
2316 	struct sockaddr *dstp;
2317 	struct rtentry *rt;
2318 	union {
2319 		struct sockaddr_in dest_sin;
2320 		struct sockaddr_in6 dest_sin6;
2321 	} u;
2322 	uint16_t hextets[8];
2323 	unsigned i, tets;
2324 	int t, af, exp, tokflags;
2325 
2326 	/*
2327 	 * Undecoded address family.  No double-colon expansion seen yet.
2328 	 */
2329 	af = -1;
2330 	exp = -1;
2331 	/* Assume INET6 to start; we can work back if guess was wrong. */
2332 	tokflags = DRT_WSPACE | DRT_HEX | DRT_HEXADECIMAL;
2333 
2334 	/*
2335 	 * db_command has lexed 'show route' for us.
2336 	 */
2337 	t = db_read_token_flags(tokflags);
2338 	if (t == tWSPACE)
2339 		t = db_read_token_flags(tokflags);
2340 
2341 	/*
2342 	 * tEOL: Just 'show route' isn't a valid mode.
2343 	 * tMINUS: It's either '-h' or some invalid option.  Regardless, usage.
2344 	 */
2345 	if (t == tEOL || t == tMINUS)
2346 		goto usage;
2347 
2348 	db_unread_token(t);
2349 
2350 	tets = nitems(hextets);
2351 
2352 	/*
2353 	 * Each loop iteration, we expect to read one octet (v4) or hextet
2354 	 * (v6), followed by an appropriate field separator ('.' or ':' or
2355 	 * '::').
2356 	 *
2357 	 * At the start of each loop, we're looking for a number (octet or
2358 	 * hextet).
2359 	 *
2360 	 * INET6 addresses have a special case where they may begin with '::'.
2361 	 */
2362 	for (i = 0; i < tets; i++) {
2363 		t = db_read_token_flags(tokflags);
2364 
2365 		if (t == tCOLONCOLON) {
2366 			/* INET6 with leading '::' or invalid. */
2367 			if (i != 0) {
2368 				db_printf("Parse error: unexpected extra "
2369 				    "colons.\n");
2370 				goto exit;
2371 			}
2372 
2373 			af = AF_INET6;
2374 			exp = i;
2375 			hextets[i] = 0;
2376 			continue;
2377 		} else if (t == tNUMBER) {
2378 			/*
2379 			 * Lexer separates out '-' as tMINUS, but make the
2380 			 * assumption explicit here.
2381 			 */
2382 			MPASS(db_tok_number >= 0);
2383 
2384 			if (af == AF_INET && db_tok_number > UINT8_MAX) {
2385 				db_printf("Not a valid v4 octet: %ld\n",
2386 				    (long)db_tok_number);
2387 				goto exit;
2388 			}
2389 			hextets[i] = db_tok_number;
2390 		} else if (t == tEOL) {
2391 			/*
2392 			 * We can only detect the end of an IPv6 address in
2393 			 * compact representation with EOL.
2394 			 */
2395 			if (af != AF_INET6 || exp < 0) {
2396 				db_printf("Parse failed.  Got unexpected EOF "
2397 				    "when the address is not a compact-"
2398 				    "representation IPv6 address.\n");
2399 				goto exit;
2400 			}
2401 			break;
2402 		} else {
2403 			db_printf("Parse failed.  Unexpected token %d.\n", t);
2404 			goto exit;
2405 		}
2406 
2407 		/* Next, look for a separator, if appropriate. */
2408 		if (i == tets - 1)
2409 			continue;
2410 
2411 		t = db_read_token_flags(tokflags);
2412 		if (af < 0) {
2413 			if (t == tCOLON) {
2414 				af = AF_INET6;
2415 				continue;
2416 			}
2417 			if (t == tCOLONCOLON) {
2418 				af = AF_INET6;
2419 				i++;
2420 				hextets[i] = 0;
2421 				exp = i;
2422 				continue;
2423 			}
2424 			if (t == tDOT) {
2425 				unsigned hn, dn;
2426 
2427 				af = AF_INET;
2428 				/* Need to fixup the first parsed number. */
2429 				if (hextets[0] > 0x255 ||
2430 				    (hextets[0] & 0xf0) > 0x90 ||
2431 				    (hextets[0] & 0xf) > 9) {
2432 					db_printf("Not a valid v4 octet: %x\n",
2433 					    hextets[0]);
2434 					goto exit;
2435 				}
2436 
2437 				hn = hextets[0];
2438 				dn = (hn >> 8) * 100 +
2439 				    ((hn >> 4) & 0xf) * 10 +
2440 				    (hn & 0xf);
2441 
2442 				hextets[0] = dn;
2443 
2444 				/* Switch to decimal for remaining octets. */
2445 				tokflags &= ~DRT_RADIX_MASK;
2446 				tokflags |= DRT_DECIMAL;
2447 
2448 				tets = 4;
2449 				continue;
2450 			}
2451 
2452 			db_printf("Parse error.  Unexpected token %d.\n", t);
2453 			goto exit;
2454 		} else if (af == AF_INET) {
2455 			if (t == tDOT)
2456 				continue;
2457 			db_printf("Expected '.' (%d) between octets but got "
2458 			    "(%d).\n", tDOT, t);
2459 			goto exit;
2460 
2461 		} else if (af == AF_INET6) {
2462 			if (t == tCOLON)
2463 				continue;
2464 			if (t == tCOLONCOLON) {
2465 				if (exp < 0) {
2466 					i++;
2467 					hextets[i] = 0;
2468 					exp = i;
2469 					continue;
2470 				}
2471 				db_printf("Got bogus second '::' in v6 "
2472 				    "address.\n");
2473 				goto exit;
2474 			}
2475 			if (t == tEOL) {
2476 				/*
2477 				 * Handle in the earlier part of the loop
2478 				 * because we need to handle trailing :: too.
2479 				 */
2480 				db_unread_token(t);
2481 				continue;
2482 			}
2483 
2484 			db_printf("Expected ':' (%d) or '::' (%d) between "
2485 			    "hextets but got (%d).\n", tCOLON, tCOLONCOLON, t);
2486 			goto exit;
2487 		}
2488 	}
2489 
2490 	/* Check for trailing garbage. */
2491 	if (i == tets) {
2492 		t = db_read_token_flags(tokflags);
2493 		if (t != tEOL) {
2494 			db_printf("Got unexpected garbage after address "
2495 			    "(%d).\n", t);
2496 			goto exit;
2497 		}
2498 	}
2499 
2500 	/*
2501 	 * Need to expand compact INET6 addresses.
2502 	 *
2503 	 * Technically '::' for a single ':0:' is MUST NOT but just in case,
2504 	 * don't bother expanding that form (exp >= 0 && i == tets case).
2505 	 */
2506 	if (af == AF_INET6 && exp >= 0 && i < tets) {
2507 		if (exp + 1 < i) {
2508 			memmove(&hextets[exp + 1 + (nitems(hextets) - i)],
2509 			    &hextets[exp + 1],
2510 			    (i - (exp + 1)) * sizeof(hextets[0]));
2511 		}
2512 		memset(&hextets[exp + 1], 0, (nitems(hextets) - i) *
2513 		    sizeof(hextets[0]));
2514 	}
2515 
2516 	memset(&u, 0, sizeof(u));
2517 	if (af == AF_INET) {
2518 		u.dest_sin.sin_family = AF_INET;
2519 		u.dest_sin.sin_len = sizeof(u.dest_sin);
2520 		u.dest_sin.sin_addr.s_addr = htonl(
2521 		    ((uint32_t)hextets[0] << 24) |
2522 		    ((uint32_t)hextets[1] << 16) |
2523 		    ((uint32_t)hextets[2] << 8) |
2524 		    (uint32_t)hextets[3]);
2525 		dstp = (void *)&u.dest_sin;
2526 		dst_addrp = &u.dest_sin.sin_addr;
2527 	} else if (af == AF_INET6) {
2528 		u.dest_sin6.sin6_family = AF_INET6;
2529 		u.dest_sin6.sin6_len = sizeof(u.dest_sin6);
2530 		for (i = 0; i < nitems(hextets); i++)
2531 			u.dest_sin6.sin6_addr.s6_addr16[i] = htons(hextets[i]);
2532 		dstp = (void *)&u.dest_sin6;
2533 		dst_addrp = &u.dest_sin6.sin6_addr;
2534 	} else {
2535 		MPASS(false);
2536 		/* UNREACHABLE */
2537 		/* Appease Clang false positive: */
2538 		dstp = NULL;
2539 	}
2540 
2541 	bp = inet_ntop(af, dst_addrp, buf, sizeof(buf));
2542 	if (bp != NULL)
2543 		db_printf("Looking up route to destination '%s'\n", bp);
2544 
2545 	CURVNET_SET(vnet0);
2546 	rt = rtalloc1(dstp, 0, RTF_RNH_LOCKED);
2547 	CURVNET_RESTORE();
2548 
2549 	if (rt == NULL) {
2550 		db_printf("Could not get route for that server.\n");
2551 		return;
2552 	}
2553 
2554 	rt_dumpentry_ddb((void *)rt, NULL);
2555 	RTFREE_LOCKED(rt);
2556 
2557 	return;
2558 usage:
2559 	db_printf("Usage: 'show route <address>'\n"
2560 	    "  Currently accepts only dotted-decimal INET or colon-separated\n"
2561 	    "  hextet INET6 addresses.\n");
2562 exit:
2563 	db_skip_to_eol();
2564 }
2565 #endif
2566