xref: /freebsd/sys/net/rtsock.c (revision be181ee2a28aa2b4b0e76684bce9f673ef668874)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
32  * $FreeBSD$
33  */
34 #include "opt_ddb.h"
35 #include "opt_route.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 
39 #include <sys/param.h>
40 #include <sys/jail.h>
41 #include <sys/kernel.h>
42 #include <sys/eventhandler.h>
43 #include <sys/domain.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/priv.h>
48 #include <sys/proc.h>
49 #include <sys/protosw.h>
50 #include <sys/rmlock.h>
51 #include <sys/rwlock.h>
52 #include <sys/signalvar.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/sysctl.h>
56 #include <sys/systm.h>
57 
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_dl.h>
61 #include <net/if_llatbl.h>
62 #include <net/if_types.h>
63 #include <net/netisr.h>
64 #include <net/route.h>
65 #include <net/route/route_ctl.h>
66 #include <net/route/route_var.h>
67 #include <net/vnet.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/if_ether.h>
71 #include <netinet/ip_carp.h>
72 #ifdef INET6
73 #include <netinet6/in6_var.h>
74 #include <netinet6/ip6_var.h>
75 #include <netinet6/scope6_var.h>
76 #endif
77 #include <net/route/nhop.h>
78 
79 #define	DEBUG_MOD_NAME	rtsock
80 #define	DEBUG_MAX_LEVEL	LOG_DEBUG
81 #include <net/route/route_debug.h>
82 _DECLARE_DEBUG(LOG_INFO);
83 
84 #ifdef COMPAT_FREEBSD32
85 #include <sys/mount.h>
86 #include <compat/freebsd32/freebsd32.h>
87 
88 struct if_msghdr32 {
89 	uint16_t ifm_msglen;
90 	uint8_t	ifm_version;
91 	uint8_t	ifm_type;
92 	int32_t	ifm_addrs;
93 	int32_t	ifm_flags;
94 	uint16_t ifm_index;
95 	uint16_t _ifm_spare1;
96 	struct	if_data ifm_data;
97 };
98 
99 struct if_msghdrl32 {
100 	uint16_t ifm_msglen;
101 	uint8_t	ifm_version;
102 	uint8_t	ifm_type;
103 	int32_t	ifm_addrs;
104 	int32_t	ifm_flags;
105 	uint16_t ifm_index;
106 	uint16_t _ifm_spare1;
107 	uint16_t ifm_len;
108 	uint16_t ifm_data_off;
109 	uint32_t _ifm_spare2;
110 	struct	if_data ifm_data;
111 };
112 
113 struct ifa_msghdrl32 {
114 	uint16_t ifam_msglen;
115 	uint8_t	ifam_version;
116 	uint8_t	ifam_type;
117 	int32_t	ifam_addrs;
118 	int32_t	ifam_flags;
119 	uint16_t ifam_index;
120 	uint16_t _ifam_spare1;
121 	uint16_t ifam_len;
122 	uint16_t ifam_data_off;
123 	int32_t	ifam_metric;
124 	struct	if_data ifam_data;
125 };
126 
127 #define SA_SIZE32(sa)						\
128     (  (((struct sockaddr *)(sa))->sa_len == 0) ?		\
129 	sizeof(int)		:				\
130 	1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
131 
132 #endif /* COMPAT_FREEBSD32 */
133 
134 struct linear_buffer {
135 	char		*base;	/* Base allocated memory pointer */
136 	uint32_t	offset;	/* Currently used offset */
137 	uint32_t	size;	/* Total buffer size */
138 };
139 #define	SCRATCH_BUFFER_SIZE	1024
140 
141 #define	RTS_PID_LOG(_l, _fmt, ...)	RT_LOG_##_l(_l, "PID %d: " _fmt, curproc ? curproc->p_pid : 0, ## __VA_ARGS__)
142 
143 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
144 
145 /* NB: these are not modified */
146 static struct	sockaddr route_src = { 2, PF_ROUTE, };
147 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
148 
149 /* These are external hooks for CARP. */
150 int	(*carp_get_vhid_p)(struct ifaddr *);
151 
152 /*
153  * Used by rtsock callback code to decide whether to filter the update
154  * notification to a socket bound to a particular FIB.
155  */
156 #define	RTS_FILTER_FIB	M_PROTO8
157 /*
158  * Used to store address family of the notification.
159  */
160 #define	m_rtsock_family	m_pkthdr.PH_loc.eight[0]
161 
162 struct rcb {
163 	LIST_ENTRY(rcb) list;
164 	struct socket	*rcb_socket;
165 	sa_family_t	rcb_family;
166 };
167 
168 typedef struct {
169 	LIST_HEAD(, rcb)	cblist;
170 	int	ip_count;	/* attached w/ AF_INET */
171 	int	ip6_count;	/* attached w/ AF_INET6 */
172 	int	any_count;	/* total attached */
173 } route_cb_t;
174 VNET_DEFINE_STATIC(route_cb_t, route_cb);
175 #define	V_route_cb VNET(route_cb)
176 
177 struct mtx rtsock_mtx;
178 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
179 
180 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
181 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
182 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
183 
184 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
185 
186 struct walkarg {
187 	int	family;
188 	int	w_tmemsize;
189 	int	w_op, w_arg;
190 	caddr_t	w_tmem;
191 	struct sysctl_req *w_req;
192 	struct sockaddr *dst;
193 	struct sockaddr *mask;
194 };
195 
196 static void	rts_input(struct mbuf *m);
197 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
198 static int	rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
199 			struct walkarg *w, int *plen);
200 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
201 			struct rt_addrinfo *rtinfo);
202 static int	cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb);
203 static int	sysctl_dumpentry(struct rtentry *rt, void *vw);
204 static int	sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh,
205 			uint32_t weight, struct walkarg *w);
206 static int	sysctl_iflist(int af, struct walkarg *w);
207 static int	sysctl_ifmalist(int af, struct walkarg *w);
208 static void	rt_getmetrics(const struct rtentry *rt,
209 			const struct nhop_object *nh, struct rt_metrics *out);
210 static void	rt_dispatch(struct mbuf *, sa_family_t);
211 static void	rt_ifannouncemsg(struct ifnet *ifp, int what);
212 static int	handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
213 			struct rt_msghdr *rtm, struct rib_cmd_info *rc);
214 static int	update_rtm_from_rc(struct rt_addrinfo *info,
215 			struct rt_msghdr **prtm, int alloc_len,
216 			struct rib_cmd_info *rc, struct nhop_object *nh);
217 static void	send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
218 			struct mbuf *m, sa_family_t saf, u_int fibnum,
219 			int rtm_errno);
220 static bool	can_export_rte(struct ucred *td_ucred, bool rt_is_host,
221 			const struct sockaddr *rt_dst);
222 static void	rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc);
223 
224 static struct netisr_handler rtsock_nh = {
225 	.nh_name = "rtsock",
226 	.nh_handler = rts_input,
227 	.nh_proto = NETISR_ROUTE,
228 	.nh_policy = NETISR_POLICY_SOURCE,
229 };
230 
231 static int
232 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
233 {
234 	int error, qlimit;
235 
236 	netisr_getqlimit(&rtsock_nh, &qlimit);
237 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
238         if (error || !req->newptr)
239                 return (error);
240 	if (qlimit < 1)
241 		return (EINVAL);
242 	return (netisr_setqlimit(&rtsock_nh, qlimit));
243 }
244 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen,
245     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
246     0, 0, sysctl_route_netisr_maxqlen, "I",
247     "maximum routing socket dispatch queue length");
248 
249 static void
250 vnet_rts_init(void)
251 {
252 	int tmp;
253 
254 	if (IS_DEFAULT_VNET(curvnet)) {
255 		if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
256 			rtsock_nh.nh_qlimit = tmp;
257 		netisr_register(&rtsock_nh);
258 	}
259 #ifdef VIMAGE
260 	 else
261 		netisr_register_vnet(&rtsock_nh);
262 #endif
263 }
264 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
265     vnet_rts_init, 0);
266 
267 #ifdef VIMAGE
268 static void
269 vnet_rts_uninit(void)
270 {
271 
272 	netisr_unregister_vnet(&rtsock_nh);
273 }
274 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
275     vnet_rts_uninit, 0);
276 #endif
277 
278 static void
279 report_route_event(const struct rib_cmd_info *rc, void *_cbdata)
280 {
281 	uint32_t fibnum = (uint32_t)(uintptr_t)_cbdata;
282 	struct nhop_object *nh;
283 
284 	nh = rc->rc_cmd == RTM_DELETE ? rc->rc_nh_old : rc->rc_nh_new;
285 	rt_routemsg(rc->rc_cmd, rc->rc_rt, nh, fibnum);
286 }
287 
288 static void
289 rts_handle_route_event(uint32_t fibnum, const struct rib_cmd_info *rc)
290 {
291 #ifdef ROUTE_MPATH
292 	if ((rc->rc_nh_new && NH_IS_NHGRP(rc->rc_nh_new)) ||
293 	    (rc->rc_nh_old && NH_IS_NHGRP(rc->rc_nh_old))) {
294 		rib_decompose_notification(rc, report_route_event,
295 		    (void *)(uintptr_t)fibnum);
296 	} else
297 #endif
298 		report_route_event(rc, (void *)(uintptr_t)fibnum);
299 }
300 static struct rtbridge rtsbridge = { .route_f = rts_handle_route_event };
301 static struct rtbridge *rtsbridge_orig_p;
302 
303 static void
304 rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc)
305 {
306 	netlink_callback_p->route_f(fibnum, rc);
307 }
308 
309 static void
310 rtsock_init(void)
311 {
312 	rtsbridge_orig_p = rtsock_callback_p;
313 	rtsock_callback_p = &rtsbridge;
314 }
315 SYSINIT(rtsock_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rtsock_init, NULL);
316 
317 static void
318 rts_handle_ifnet_arrival(void *arg __unused, struct ifnet *ifp)
319 {
320 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
321 }
322 EVENTHANDLER_DEFINE(ifnet_arrival_event, rts_handle_ifnet_arrival, NULL, 0);
323 
324 static void
325 rts_handle_ifnet_departure(void *arg __unused, struct ifnet *ifp)
326 {
327 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
328 }
329 EVENTHANDLER_DEFINE(ifnet_departure_event, rts_handle_ifnet_departure, NULL, 0);
330 
331 static void
332 rts_append_data(struct socket *so, struct mbuf *m)
333 {
334 
335 	if (sbappendaddr(&so->so_rcv, &route_src, m, NULL) == 0) {
336 		soroverflow(so);
337 		m_freem(m);
338 	} else
339 		sorwakeup(so);
340 }
341 
342 static void
343 rts_input(struct mbuf *m)
344 {
345 	struct rcb *rcb;
346 	struct socket *last;
347 
348 	last = NULL;
349 	RTSOCK_LOCK();
350 	LIST_FOREACH(rcb, &V_route_cb.cblist, list) {
351 		if (rcb->rcb_family != AF_UNSPEC &&
352 		    rcb->rcb_family != m->m_rtsock_family)
353 			continue;
354 		if ((m->m_flags & RTS_FILTER_FIB) &&
355 		    M_GETFIB(m) != rcb->rcb_socket->so_fibnum)
356 			continue;
357 		if (last != NULL) {
358 			struct mbuf *n;
359 
360 			n = m_copym(m, 0, M_COPYALL, M_NOWAIT);
361 			if (n != NULL)
362 				rts_append_data(last, n);
363 		}
364 		last = rcb->rcb_socket;
365 	}
366 	if (last != NULL)
367 		rts_append_data(last, m);
368 	else
369 		m_freem(m);
370 	RTSOCK_UNLOCK();
371 }
372 
373 static void
374 rts_close(struct socket *so)
375 {
376 
377 	soisdisconnected(so);
378 }
379 
380 static SYSCTL_NODE(_net, OID_AUTO, rtsock, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
381     "Routing socket infrastructure");
382 static u_long rts_sendspace = 8192;
383 SYSCTL_ULONG(_net_rtsock, OID_AUTO, sendspace, CTLFLAG_RW, &rts_sendspace, 0,
384     "Default routing socket send space");
385 static u_long rts_recvspace = 8192;
386 SYSCTL_ULONG(_net_rtsock, OID_AUTO, recvspace, CTLFLAG_RW, &rts_recvspace, 0,
387     "Default routing socket receive space");
388 
389 static int
390 rts_attach(struct socket *so, int proto, struct thread *td)
391 {
392 	struct rcb *rcb;
393 	int error;
394 
395 	error = soreserve(so, rts_sendspace, rts_recvspace);
396 	if (error)
397 		return (error);
398 
399 	rcb = malloc(sizeof(*rcb), M_PCB, M_WAITOK);
400 	rcb->rcb_socket = so;
401 	rcb->rcb_family = proto;
402 
403 	so->so_pcb = rcb;
404 	so->so_fibnum = td->td_proc->p_fibnum;
405 	so->so_options |= SO_USELOOPBACK;
406 
407 	RTSOCK_LOCK();
408 	LIST_INSERT_HEAD(&V_route_cb.cblist, rcb, list);
409 	switch (proto) {
410 	case AF_INET:
411 		V_route_cb.ip_count++;
412 		break;
413 	case AF_INET6:
414 		V_route_cb.ip6_count++;
415 		break;
416 	}
417 	V_route_cb.any_count++;
418 	RTSOCK_UNLOCK();
419 	soisconnected(so);
420 
421 	return (0);
422 }
423 
424 static void
425 rts_detach(struct socket *so)
426 {
427 	struct rcb *rcb = so->so_pcb;
428 
429 	RTSOCK_LOCK();
430 	LIST_REMOVE(rcb, list);
431 	switch(rcb->rcb_family) {
432 	case AF_INET:
433 		V_route_cb.ip_count--;
434 		break;
435 	case AF_INET6:
436 		V_route_cb.ip6_count--;
437 		break;
438 	}
439 	V_route_cb.any_count--;
440 	RTSOCK_UNLOCK();
441 	free(rcb, M_PCB);
442 	so->so_pcb = NULL;
443 }
444 
445 static int
446 rts_shutdown(struct socket *so)
447 {
448 
449 	socantsendmore(so);
450 	return (0);
451 }
452 
453 #ifndef _SOCKADDR_UNION_DEFINED
454 #define	_SOCKADDR_UNION_DEFINED
455 /*
456  * The union of all possible address formats we handle.
457  */
458 union sockaddr_union {
459 	struct sockaddr		sa;
460 	struct sockaddr_in	sin;
461 	struct sockaddr_in6	sin6;
462 };
463 #endif /* _SOCKADDR_UNION_DEFINED */
464 
465 static int
466 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
467     struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred)
468 {
469 #if defined(INET) || defined(INET6)
470 	struct epoch_tracker et;
471 #endif
472 
473 	/* First, see if the returned address is part of the jail. */
474 	if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) {
475 		info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
476 		return (0);
477 	}
478 
479 	switch (info->rti_info[RTAX_DST]->sa_family) {
480 #ifdef INET
481 	case AF_INET:
482 	{
483 		struct in_addr ia;
484 		struct ifaddr *ifa;
485 		int found;
486 
487 		found = 0;
488 		/*
489 		 * Try to find an address on the given outgoing interface
490 		 * that belongs to the jail.
491 		 */
492 		NET_EPOCH_ENTER(et);
493 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
494 			struct sockaddr *sa;
495 			sa = ifa->ifa_addr;
496 			if (sa->sa_family != AF_INET)
497 				continue;
498 			ia = ((struct sockaddr_in *)sa)->sin_addr;
499 			if (prison_check_ip4(cred, &ia) == 0) {
500 				found = 1;
501 				break;
502 			}
503 		}
504 		NET_EPOCH_EXIT(et);
505 		if (!found) {
506 			/*
507 			 * As a last resort return the 'default' jail address.
508 			 */
509 			ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)->
510 			    sin_addr;
511 			if (prison_get_ip4(cred, &ia) != 0)
512 				return (ESRCH);
513 		}
514 		bzero(&saun->sin, sizeof(struct sockaddr_in));
515 		saun->sin.sin_len = sizeof(struct sockaddr_in);
516 		saun->sin.sin_family = AF_INET;
517 		saun->sin.sin_addr.s_addr = ia.s_addr;
518 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
519 		break;
520 	}
521 #endif
522 #ifdef INET6
523 	case AF_INET6:
524 	{
525 		struct in6_addr ia6;
526 		struct ifaddr *ifa;
527 		int found;
528 
529 		found = 0;
530 		/*
531 		 * Try to find an address on the given outgoing interface
532 		 * that belongs to the jail.
533 		 */
534 		NET_EPOCH_ENTER(et);
535 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
536 			struct sockaddr *sa;
537 			sa = ifa->ifa_addr;
538 			if (sa->sa_family != AF_INET6)
539 				continue;
540 			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
541 			    &ia6, sizeof(struct in6_addr));
542 			if (prison_check_ip6(cred, &ia6) == 0) {
543 				found = 1;
544 				break;
545 			}
546 		}
547 		NET_EPOCH_EXIT(et);
548 		if (!found) {
549 			/*
550 			 * As a last resort return the 'default' jail address.
551 			 */
552 			ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)->
553 			    sin6_addr;
554 			if (prison_get_ip6(cred, &ia6) != 0)
555 				return (ESRCH);
556 		}
557 		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
558 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
559 		saun->sin6.sin6_family = AF_INET6;
560 		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
561 		if (sa6_recoverscope(&saun->sin6) != 0)
562 			return (ESRCH);
563 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
564 		break;
565 	}
566 #endif
567 	default:
568 		return (ESRCH);
569 	}
570 	return (0);
571 }
572 
573 static int
574 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun)
575 {
576 	struct ifaddr *ifa;
577 	sa_family_t saf;
578 
579 	if (V_loif == NULL) {
580 		RTS_PID_LOG(LOG_INFO, "Unable to add blackhole/reject nhop without loopback");
581 		return (ENOTSUP);
582 	}
583 	info->rti_ifp = V_loif;
584 
585 	saf = info->rti_info[RTAX_DST]->sa_family;
586 
587 	CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) {
588 		if (ifa->ifa_addr->sa_family == saf) {
589 			info->rti_ifa = ifa;
590 			break;
591 		}
592 	}
593 	if (info->rti_ifa == NULL) {
594 		RTS_PID_LOG(LOG_INFO, "Unable to find ifa for blackhole/reject nhop");
595 		return (ENOTSUP);
596 	}
597 
598 	bzero(saun, sizeof(union sockaddr_union));
599 	switch (saf) {
600 #ifdef INET
601 	case AF_INET:
602 		saun->sin.sin_family = AF_INET;
603 		saun->sin.sin_len = sizeof(struct sockaddr_in);
604 		saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
605 		break;
606 #endif
607 #ifdef INET6
608 	case AF_INET6:
609 		saun->sin6.sin6_family = AF_INET6;
610 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
611 		saun->sin6.sin6_addr = in6addr_loopback;
612 		break;
613 #endif
614 	default:
615 		RTS_PID_LOG(LOG_INFO, "unsupported family: %d", saf);
616 		return (ENOTSUP);
617 	}
618 	info->rti_info[RTAX_GATEWAY] = &saun->sa;
619 	info->rti_flags |= RTF_GATEWAY;
620 
621 	return (0);
622 }
623 
624 /*
625  * Fills in @info based on userland-provided @rtm message.
626  *
627  * Returns 0 on success.
628  */
629 static int
630 fill_addrinfo(struct rt_msghdr *rtm, int len, struct linear_buffer *lb, u_int fibnum,
631     struct rt_addrinfo *info)
632 {
633 	int error;
634 
635 	rtm->rtm_pid = curproc->p_pid;
636 	info->rti_addrs = rtm->rtm_addrs;
637 
638 	info->rti_mflags = rtm->rtm_inits;
639 	info->rti_rmx = &rtm->rtm_rmx;
640 
641 	/*
642 	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
643 	 * link-local address because rtrequest requires addresses with
644 	 * embedded scope id.
645 	 */
646 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
647 		return (EINVAL);
648 
649 	info->rti_flags = rtm->rtm_flags;
650 	error = cleanup_xaddrs(info, lb);
651 	if (error != 0)
652 		return (error);
653 	/*
654 	 * Verify that the caller has the appropriate privilege; RTM_GET
655 	 * is the only operation the non-superuser is allowed.
656 	 */
657 	if (rtm->rtm_type != RTM_GET) {
658 		error = priv_check(curthread, PRIV_NET_ROUTE);
659 		if (error != 0)
660 			return (error);
661 	}
662 
663 	/*
664 	 * The given gateway address may be an interface address.
665 	 * For example, issuing a "route change" command on a route
666 	 * entry that was created from a tunnel, and the gateway
667 	 * address given is the local end point. In this case the
668 	 * RTF_GATEWAY flag must be cleared or the destination will
669 	 * not be reachable even though there is no error message.
670 	 */
671 	if (info->rti_info[RTAX_GATEWAY] != NULL &&
672 	    info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
673 		struct nhop_object *nh;
674 
675 		/*
676 		 * A host route through the loopback interface is
677 		 * installed for each interface adddress. In pre 8.0
678 		 * releases the interface address of a PPP link type
679 		 * is not reachable locally. This behavior is fixed as
680 		 * part of the new L2/L3 redesign and rewrite work. The
681 		 * signature of this interface address route is the
682 		 * AF_LINK sa_family type of the gateway, and the
683 		 * rt_ifp has the IFF_LOOPBACK flag set.
684 		 */
685 		nh = rib_lookup(fibnum, info->rti_info[RTAX_GATEWAY], NHR_NONE, 0);
686 		if (nh != NULL && nh->gw_sa.sa_family == AF_LINK &&
687 		    nh->nh_ifp->if_flags & IFF_LOOPBACK) {
688 				info->rti_flags &= ~RTF_GATEWAY;
689 				info->rti_flags |= RTF_GWFLAG_COMPAT;
690 		}
691 	}
692 
693 	return (0);
694 }
695 
696 static struct nhop_object *
697 select_nhop(struct nhop_object *nh, const struct sockaddr *gw)
698 {
699 	if (!NH_IS_NHGRP(nh))
700 		return (nh);
701 #ifdef ROUTE_MPATH
702 	const struct weightened_nhop *wn;
703 	uint32_t num_nhops;
704 	wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
705 	if (gw == NULL)
706 		return (wn[0].nh);
707 	for (int i = 0; i < num_nhops; i++) {
708 		if (match_nhop_gw(wn[i].nh, gw))
709 			return (wn[i].nh);
710 	}
711 #endif
712 	return (NULL);
713 }
714 
715 /*
716  * Handles RTM_GET message from routing socket, returning matching rt.
717  *
718  * Returns:
719  * 0 on success, with locked and referenced matching rt in @rt_nrt
720  * errno of failure
721  */
722 static int
723 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
724     struct rt_msghdr *rtm, struct rib_cmd_info *rc)
725 {
726 	RIB_RLOCK_TRACKER;
727 	struct rib_head *rnh;
728 	struct nhop_object *nh;
729 	sa_family_t saf;
730 
731 	saf = info->rti_info[RTAX_DST]->sa_family;
732 
733 	rnh = rt_tables_get_rnh(fibnum, saf);
734 	if (rnh == NULL)
735 		return (EAFNOSUPPORT);
736 
737 	RIB_RLOCK(rnh);
738 
739 	/*
740 	 * By (implicit) convention host route (one without netmask)
741 	 * means longest-prefix-match request and the route with netmask
742 	 * means exact-match lookup.
743 	 * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128
744 	 * prefixes, use original data to check for the netmask presence.
745 	 */
746 	if ((rtm->rtm_addrs & RTA_NETMASK) == 0) {
747 		/*
748 		 * Provide longest prefix match for
749 		 * address lookup (no mask).
750 		 * 'route -n get addr'
751 		 */
752 		rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr(
753 		    info->rti_info[RTAX_DST], &rnh->head);
754 	} else
755 		rc->rc_rt = (struct rtentry *) rnh->rnh_lookup(
756 		    info->rti_info[RTAX_DST],
757 		    info->rti_info[RTAX_NETMASK], &rnh->head);
758 
759 	if (rc->rc_rt == NULL) {
760 		RIB_RUNLOCK(rnh);
761 		return (ESRCH);
762 	}
763 
764 	nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]);
765 	if (nh == NULL) {
766 		RIB_RUNLOCK(rnh);
767 		return (ESRCH);
768 	}
769 	/*
770 	 * If performing proxied L2 entry insertion, and
771 	 * the actual PPP host entry is found, perform
772 	 * another search to retrieve the prefix route of
773 	 * the local end point of the PPP link.
774 	 * TODO: move this logic to userland.
775 	 */
776 	if (rtm->rtm_flags & RTF_ANNOUNCE) {
777 		struct sockaddr_storage laddr;
778 
779 		if (nh->nh_ifp != NULL &&
780 		    nh->nh_ifp->if_type == IFT_PROPVIRTUAL) {
781 			struct ifaddr *ifa;
782 
783 			ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
784 					RT_ALL_FIBS);
785 			if (ifa != NULL)
786 				rt_maskedcopy(ifa->ifa_addr,
787 					      (struct sockaddr *)&laddr,
788 					      ifa->ifa_netmask);
789 		} else
790 			rt_maskedcopy(nh->nh_ifa->ifa_addr,
791 				      (struct sockaddr *)&laddr,
792 				      nh->nh_ifa->ifa_netmask);
793 		/*
794 		 * refactor rt and no lock operation necessary
795 		 */
796 		rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(
797 		    (struct sockaddr *)&laddr, &rnh->head);
798 		if (rc->rc_rt == NULL) {
799 			RIB_RUNLOCK(rnh);
800 			return (ESRCH);
801 		}
802 		nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]);
803 		if (nh == NULL) {
804 			RIB_RUNLOCK(rnh);
805 			return (ESRCH);
806 		}
807 	}
808 	rc->rc_nh_new = nh;
809 	rc->rc_nh_weight = rc->rc_rt->rt_weight;
810 	RIB_RUNLOCK(rnh);
811 
812 	return (0);
813 }
814 
815 static void
816 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask)
817 {
818 #ifdef INET
819 	if (family == AF_INET) {
820 		struct sockaddr_in *dst4 = (struct sockaddr_in *)dst;
821 		struct sockaddr_in *mask4 = (struct sockaddr_in *)mask;
822 
823 		bzero(dst4, sizeof(struct sockaddr_in));
824 		bzero(mask4, sizeof(struct sockaddr_in));
825 
826 		dst4->sin_family = AF_INET;
827 		dst4->sin_len = sizeof(struct sockaddr_in);
828 		mask4->sin_family = AF_INET;
829 		mask4->sin_len = sizeof(struct sockaddr_in);
830 	}
831 #endif
832 #ifdef INET6
833 	if (family == AF_INET6) {
834 		struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst;
835 		struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask;
836 
837 		bzero(dst6, sizeof(struct sockaddr_in6));
838 		bzero(mask6, sizeof(struct sockaddr_in6));
839 
840 		dst6->sin6_family = AF_INET6;
841 		dst6->sin6_len = sizeof(struct sockaddr_in6);
842 		mask6->sin6_family = AF_INET6;
843 		mask6->sin6_len = sizeof(struct sockaddr_in6);
844 	}
845 #endif
846 }
847 
848 static void
849 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst,
850     struct sockaddr *mask)
851 {
852 #ifdef INET
853 	if (dst->sa_family == AF_INET) {
854 		struct sockaddr_in *dst4 = (struct sockaddr_in *)dst;
855 		struct sockaddr_in *mask4 = (struct sockaddr_in *)mask;
856 		uint32_t scopeid = 0;
857 		rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr,
858 		    &scopeid);
859 		return;
860 	}
861 #endif
862 #ifdef INET6
863 	if (dst->sa_family == AF_INET6) {
864 		struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst;
865 		struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask;
866 		uint32_t scopeid = 0;
867 		rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr,
868 		    &mask6->sin6_addr, &scopeid);
869 		dst6->sin6_scope_id = scopeid;
870 		return;
871 	}
872 #endif
873 }
874 
875 static int
876 update_rtm_from_info(struct rt_addrinfo *info, struct rt_msghdr **prtm,
877     int alloc_len)
878 {
879 	struct rt_msghdr *rtm, *orig_rtm = NULL;
880 	struct walkarg w;
881 	int len;
882 
883 	rtm = *prtm;
884 	/* Check if we need to realloc storage */
885 	rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
886 	if (len > alloc_len) {
887 		struct rt_msghdr *tmp_rtm;
888 
889 		tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
890 		if (tmp_rtm == NULL)
891 			return (ENOBUFS);
892 		bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
893 		orig_rtm = rtm;
894 		rtm = tmp_rtm;
895 		alloc_len = len;
896 
897 		/*
898 		 * Delay freeing original rtm as info contains
899 		 * data referencing it.
900 		 */
901 	}
902 
903 	w.w_tmem = (caddr_t)rtm;
904 	w.w_tmemsize = alloc_len;
905 	rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
906 	rtm->rtm_addrs = info->rti_addrs;
907 
908 	if (orig_rtm != NULL)
909 		free(orig_rtm, M_TEMP);
910 	*prtm = rtm;
911 	return (0);
912 }
913 
914 
915 /*
916  * Update sockaddrs, flags, etc in @prtm based on @rc data.
917  * rtm can be reallocated.
918  *
919  * Returns 0 on success, along with pointer to (potentially reallocated)
920  *  rtm.
921  *
922  */
923 static int
924 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm,
925     int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh)
926 {
927 	union sockaddr_union saun;
928 	struct rt_msghdr *rtm;
929 	struct ifnet *ifp;
930 	int error;
931 
932 	rtm = *prtm;
933 	union sockaddr_union sa_dst, sa_mask;
934 	int family = info->rti_info[RTAX_DST]->sa_family;
935 	init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa);
936 	export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa);
937 
938 	info->rti_info[RTAX_DST] = &sa_dst.sa;
939 	info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa;
940 	info->rti_info[RTAX_GATEWAY] = &nh->gw_sa;
941 	info->rti_info[RTAX_GENMASK] = 0;
942 	ifp = nh->nh_ifp;
943 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
944 		if (ifp) {
945 			info->rti_info[RTAX_IFP] =
946 			    ifp->if_addr->ifa_addr;
947 			error = rtm_get_jailed(info, ifp, nh,
948 			    &saun, curthread->td_ucred);
949 			if (error != 0)
950 				return (error);
951 			if (ifp->if_flags & IFF_POINTOPOINT)
952 				info->rti_info[RTAX_BRD] =
953 				    nh->nh_ifa->ifa_dstaddr;
954 			rtm->rtm_index = ifp->if_index;
955 		} else {
956 			info->rti_info[RTAX_IFP] = NULL;
957 			info->rti_info[RTAX_IFA] = NULL;
958 		}
959 	} else if (ifp != NULL)
960 		rtm->rtm_index = ifp->if_index;
961 
962 	if ((error = update_rtm_from_info(info, prtm, alloc_len)) != 0)
963 		return (error);
964 
965 	rtm = *prtm;
966 	rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh);
967 	if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
968 		rtm->rtm_flags = RTF_GATEWAY |
969 			(rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
970 	rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx);
971 	rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight;
972 
973 	return (0);
974 }
975 
976 #ifdef ROUTE_MPATH
977 static void
978 save_del_notification(const struct rib_cmd_info *rc, void *_cbdata)
979 {
980 	struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
981 
982 	if (rc->rc_cmd == RTM_DELETE)
983 		*rc_new = *rc;
984 }
985 
986 static void
987 save_add_notification(const struct rib_cmd_info *rc, void *_cbdata)
988 {
989 	struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
990 
991 	if (rc->rc_cmd == RTM_ADD)
992 		*rc_new = *rc;
993 }
994 #endif
995 
996 #if defined(INET6) || defined(INET)
997 static struct sockaddr *
998 alloc_sockaddr_aligned(struct linear_buffer *lb, int len)
999 {
1000 	len = roundup2(len, sizeof(uint64_t));
1001 	if (lb->offset + len > lb->size)
1002 		return (NULL);
1003 	struct sockaddr *sa = (struct sockaddr *)(lb->base + lb->offset);
1004 	lb->offset += len;
1005 	return (sa);
1006 }
1007 #endif
1008 
1009 static int
1010 rts_send(struct socket *so, int flags, struct mbuf *m,
1011     struct sockaddr *nam, struct mbuf *control, struct thread *td)
1012 {
1013 	struct rt_msghdr *rtm = NULL;
1014 	struct rt_addrinfo info;
1015 	struct epoch_tracker et;
1016 #ifdef INET6
1017 	struct sockaddr_storage ss;
1018 	struct sockaddr_in6 *sin6;
1019 	int i, rti_need_deembed = 0;
1020 #endif
1021 	int alloc_len = 0, len, error = 0, fibnum;
1022 	sa_family_t saf = AF_UNSPEC;
1023 	struct rib_cmd_info rc;
1024 	struct nhop_object *nh;
1025 
1026 	if ((flags & PRUS_OOB) || control != NULL) {
1027 		m_freem(m);
1028 		if (control != NULL)
1029 			m_freem(control);
1030 		return (EOPNOTSUPP);
1031 	}
1032 
1033 	fibnum = so->so_fibnum;
1034 #define senderr(e) { error = e; goto flush;}
1035 	if (m == NULL || ((m->m_len < sizeof(long)) &&
1036 		       (m = m_pullup(m, sizeof(long))) == NULL))
1037 		return (ENOBUFS);
1038 	if ((m->m_flags & M_PKTHDR) == 0)
1039 		panic("route_output");
1040 	NET_EPOCH_ENTER(et);
1041 	len = m->m_pkthdr.len;
1042 	if (len < sizeof(*rtm) ||
1043 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
1044 		senderr(EINVAL);
1045 
1046 	/*
1047 	 * Most of current messages are in range 200-240 bytes,
1048 	 * minimize possible re-allocation on reply using larger size
1049 	 * buffer aligned on 1k boundaty.
1050 	 */
1051 	alloc_len = roundup2(len, 1024);
1052 	int total_len = alloc_len + SCRATCH_BUFFER_SIZE;
1053 	if ((rtm = malloc(total_len, M_TEMP, M_NOWAIT)) == NULL)
1054 		senderr(ENOBUFS);
1055 
1056 	m_copydata(m, 0, len, (caddr_t)rtm);
1057 	bzero(&info, sizeof(info));
1058 	nh = NULL;
1059 	struct linear_buffer lb = {
1060 		.base = (char *)rtm + alloc_len,
1061 		.size = SCRATCH_BUFFER_SIZE,
1062 	};
1063 
1064 	if (rtm->rtm_version != RTM_VERSION) {
1065 		/* Do not touch message since format is unknown */
1066 		free(rtm, M_TEMP);
1067 		rtm = NULL;
1068 		senderr(EPROTONOSUPPORT);
1069 	}
1070 
1071 	/*
1072 	 * Starting from here, it is possible
1073 	 * to alter original message and insert
1074 	 * caller PID and error value.
1075 	 */
1076 
1077 	if ((error = fill_addrinfo(rtm, len, &lb, fibnum, &info)) != 0) {
1078 		senderr(error);
1079 	}
1080 	/* fill_addringo() embeds scope into IPv6 addresses */
1081 #ifdef INET6
1082 	rti_need_deembed = 1;
1083 #endif
1084 
1085 	saf = info.rti_info[RTAX_DST]->sa_family;
1086 
1087 	/* support for new ARP code */
1088 	if (rtm->rtm_flags & RTF_LLDATA) {
1089 		error = lla_rt_output(rtm, &info);
1090 		goto flush;
1091 	}
1092 
1093 	union sockaddr_union gw_saun;
1094 	int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT);
1095 	if (blackhole_flags != 0) {
1096 		if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT))
1097 			error = fill_blackholeinfo(&info, &gw_saun);
1098 		else {
1099 			RTS_PID_LOG(LOG_DEBUG, "both BLACKHOLE and REJECT flags specifiied");
1100 			error = EINVAL;
1101 		}
1102 		if (error != 0)
1103 			senderr(error);
1104 	}
1105 
1106 	switch (rtm->rtm_type) {
1107 	case RTM_ADD:
1108 	case RTM_CHANGE:
1109 		if (rtm->rtm_type == RTM_ADD) {
1110 			if (info.rti_info[RTAX_GATEWAY] == NULL) {
1111 				RTS_PID_LOG(LOG_DEBUG, "RTM_ADD w/o gateway");
1112 				senderr(EINVAL);
1113 			}
1114 		}
1115 		error = rib_action(fibnum, rtm->rtm_type, &info, &rc);
1116 		if (error == 0) {
1117 			rtsock_notify_event(fibnum, &rc);
1118 #ifdef ROUTE_MPATH
1119 			if (NH_IS_NHGRP(rc.rc_nh_new) ||
1120 			    (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) {
1121 				struct rib_cmd_info rc_simple = {};
1122 				rib_decompose_notification(&rc,
1123 				    save_add_notification, (void *)&rc_simple);
1124 				rc = rc_simple;
1125 			}
1126 #endif
1127 			/* nh MAY be empty if RTM_CHANGE request is no-op */
1128 			nh = rc.rc_nh_new;
1129 			if (nh != NULL) {
1130 				rtm->rtm_index = nh->nh_ifp->if_index;
1131 				rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh);
1132 			}
1133 		}
1134 		break;
1135 
1136 	case RTM_DELETE:
1137 		error = rib_action(fibnum, RTM_DELETE, &info, &rc);
1138 		if (error == 0) {
1139 			rtsock_notify_event(fibnum, &rc);
1140 #ifdef ROUTE_MPATH
1141 			if (NH_IS_NHGRP(rc.rc_nh_old) ||
1142 			    (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) {
1143 				struct rib_cmd_info rc_simple = {};
1144 				rib_decompose_notification(&rc,
1145 				    save_del_notification, (void *)&rc_simple);
1146 				rc = rc_simple;
1147 			}
1148 #endif
1149 			nh = rc.rc_nh_old;
1150 		}
1151 		break;
1152 
1153 	case RTM_GET:
1154 		error = handle_rtm_get(&info, fibnum, rtm, &rc);
1155 		if (error != 0)
1156 			senderr(error);
1157 		nh = rc.rc_nh_new;
1158 
1159 		if (!can_export_rte(curthread->td_ucred,
1160 		    info.rti_info[RTAX_NETMASK] == NULL,
1161 		    info.rti_info[RTAX_DST])) {
1162 			senderr(ESRCH);
1163 		}
1164 		break;
1165 
1166 	default:
1167 		senderr(EOPNOTSUPP);
1168 	}
1169 
1170 	if (error == 0 && nh != NULL) {
1171 		error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh);
1172 		/*
1173 		 * Note that some sockaddr pointers may have changed to
1174 		 * point to memory outsize @rtm. Some may be pointing
1175 		 * to the on-stack variables.
1176 		 * Given that, any pointer in @info CANNOT BE USED.
1177 		 */
1178 
1179 		/*
1180 		 * scopeid deembedding has been performed while
1181 		 * writing updated rtm in rtsock_msg_buffer().
1182 		 * With that in mind, skip deembedding procedure below.
1183 		 */
1184 #ifdef INET6
1185 		rti_need_deembed = 0;
1186 #endif
1187 	}
1188 
1189 flush:
1190 	NET_EPOCH_EXIT(et);
1191 
1192 #ifdef INET6
1193 	if (rtm != NULL) {
1194 		if (rti_need_deembed) {
1195 			/* sin6_scope_id is recovered before sending rtm. */
1196 			sin6 = (struct sockaddr_in6 *)&ss;
1197 			for (i = 0; i < RTAX_MAX; i++) {
1198 				if (info.rti_info[i] == NULL)
1199 					continue;
1200 				if (info.rti_info[i]->sa_family != AF_INET6)
1201 					continue;
1202 				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
1203 				if (sa6_recoverscope(sin6) == 0)
1204 					bcopy(sin6, info.rti_info[i],
1205 						    sizeof(*sin6));
1206 			}
1207 			if (update_rtm_from_info(&info, &rtm, alloc_len) != 0) {
1208 				if (error != 0)
1209 					error = ENOBUFS;
1210 			}
1211 		}
1212 	}
1213 #endif
1214 	send_rtm_reply(so, rtm, m, saf, fibnum, error);
1215 
1216 	return (error);
1217 }
1218 
1219 /*
1220  * Sends the prepared reply message in @rtm to all rtsock clients.
1221  * Frees @m and @rtm.
1222  *
1223  */
1224 static void
1225 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
1226     sa_family_t saf, u_int fibnum, int rtm_errno)
1227 {
1228 	struct rcb *rcb = NULL;
1229 
1230 	/*
1231 	 * Check to see if we don't want our own messages.
1232 	 */
1233 	if ((so->so_options & SO_USELOOPBACK) == 0) {
1234 		if (V_route_cb.any_count <= 1) {
1235 			if (rtm != NULL)
1236 				free(rtm, M_TEMP);
1237 			m_freem(m);
1238 			return;
1239 		}
1240 		/* There is another listener, so construct message */
1241 		rcb = so->so_pcb;
1242 	}
1243 
1244 	if (rtm != NULL) {
1245 		if (rtm_errno!= 0)
1246 			rtm->rtm_errno = rtm_errno;
1247 		else
1248 			rtm->rtm_flags |= RTF_DONE;
1249 
1250 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
1251 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
1252 			m_freem(m);
1253 			m = NULL;
1254 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
1255 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1256 
1257 		free(rtm, M_TEMP);
1258 	}
1259 	if (m != NULL) {
1260 		M_SETFIB(m, fibnum);
1261 		m->m_flags |= RTS_FILTER_FIB;
1262 		if (rcb) {
1263 			/*
1264 			 * XXX insure we don't get a copy by
1265 			 * invalidating our protocol
1266 			 */
1267 			sa_family_t family = rcb->rcb_family;
1268 			rcb->rcb_family = AF_UNSPEC;
1269 			rt_dispatch(m, saf);
1270 			rcb->rcb_family = family;
1271 		} else
1272 			rt_dispatch(m, saf);
1273 	}
1274 }
1275 
1276 static void
1277 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh,
1278     struct rt_metrics *out)
1279 {
1280 
1281 	bzero(out, sizeof(*out));
1282 	out->rmx_mtu = nh->nh_mtu;
1283 	out->rmx_weight = rt->rt_weight;
1284 	out->rmx_nhidx = nhop_get_idx(nh);
1285 	/* Kernel -> userland timebase conversion. */
1286 	out->rmx_expire = nhop_get_expire(nh) ?
1287 	    nhop_get_expire(nh) - time_uptime + time_second : 0;
1288 }
1289 
1290 /*
1291  * Extract the addresses of the passed sockaddrs.
1292  * Do a little sanity checking so as to avoid bad memory references.
1293  * This data is derived straight from userland.
1294  */
1295 static int
1296 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1297 {
1298 	struct sockaddr *sa;
1299 	int i;
1300 
1301 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1302 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
1303 			continue;
1304 		sa = (struct sockaddr *)cp;
1305 		/*
1306 		 * It won't fit.
1307 		 */
1308 		if (cp + sa->sa_len > cplim) {
1309 			RTS_PID_LOG(LOG_DEBUG, "sa_len too big for sa type %d", i);
1310 			return (EINVAL);
1311 		}
1312 		/*
1313 		 * there are no more.. quit now
1314 		 * If there are more bits, they are in error.
1315 		 * I've seen this. route(1) can evidently generate these.
1316 		 * This causes kernel to core dump.
1317 		 * for compatibility, If we see this, point to a safe address.
1318 		 */
1319 		if (sa->sa_len == 0) {
1320 			rtinfo->rti_info[i] = &sa_zero;
1321 			return (0); /* should be EINVAL but for compat */
1322 		}
1323 		/* accept it */
1324 #ifdef INET6
1325 		if (sa->sa_family == AF_INET6)
1326 			sa6_embedscope((struct sockaddr_in6 *)sa,
1327 			    V_ip6_use_defzone);
1328 #endif
1329 		rtinfo->rti_info[i] = sa;
1330 		cp += SA_SIZE(sa);
1331 	}
1332 	return (0);
1333 }
1334 
1335 #ifdef INET
1336 static inline void
1337 fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr)
1338 {
1339 
1340 	const struct sockaddr_in nsin = {
1341 		.sin_family = AF_INET,
1342 		.sin_len = sizeof(struct sockaddr_in),
1343 		.sin_addr = addr,
1344 	};
1345 	*sin = nsin;
1346 }
1347 #endif
1348 
1349 #ifdef INET6
1350 static inline void
1351 fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6,
1352     uint32_t scopeid)
1353 {
1354 
1355 	const struct sockaddr_in6 nsin6 = {
1356 		.sin6_family = AF_INET6,
1357 		.sin6_len = sizeof(struct sockaddr_in6),
1358 		.sin6_addr = *addr6,
1359 		.sin6_scope_id = scopeid,
1360 	};
1361 	*sin6 = nsin6;
1362 }
1363 #endif
1364 
1365 #if defined(INET6) || defined(INET)
1366 /*
1367  * Checks if gateway is suitable for lltable operations.
1368  * Lltable code requires AF_LINK gateway with ifindex
1369  *  and mac address specified.
1370  * Returns 0 on success.
1371  */
1372 static int
1373 cleanup_xaddrs_lladdr(struct rt_addrinfo *info)
1374 {
1375 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY];
1376 
1377 	if (sdl->sdl_family != AF_LINK)
1378 		return (EINVAL);
1379 
1380 	if (sdl->sdl_index == 0) {
1381 		RTS_PID_LOG(LOG_DEBUG, "AF_LINK gateway w/o ifindex");
1382 		return (EINVAL);
1383 	}
1384 
1385 	if (offsetof(struct sockaddr_dl, sdl_data) + sdl->sdl_nlen + sdl->sdl_alen > sdl->sdl_len) {
1386 		RTS_PID_LOG(LOG_DEBUG, "AF_LINK gw: sdl_nlen/sdl_alen too large");
1387 		return (EINVAL);
1388 	}
1389 
1390 	return (0);
1391 }
1392 
1393 static int
1394 cleanup_xaddrs_gateway(struct rt_addrinfo *info, struct linear_buffer *lb)
1395 {
1396 	struct sockaddr *gw = info->rti_info[RTAX_GATEWAY];
1397 	struct sockaddr *sa;
1398 
1399 	if (info->rti_flags & RTF_LLDATA)
1400 		return (cleanup_xaddrs_lladdr(info));
1401 
1402 	switch (gw->sa_family) {
1403 #ifdef INET
1404 	case AF_INET:
1405 		{
1406 			struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw;
1407 
1408 			/* Ensure reads do not go beyoud SA boundary */
1409 			if (SA_SIZE(gw) < offsetof(struct sockaddr_in, sin_zero)) {
1410 				RTS_PID_LOG(LOG_DEBUG, "gateway sin_len too small: %d",
1411 				    gw->sa_len);
1412 				return (EINVAL);
1413 			}
1414 			sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_in));
1415 			if (sa == NULL)
1416 				return (ENOBUFS);
1417 			fill_sockaddr_inet((struct sockaddr_in *)sa, gw_sin->sin_addr);
1418 			info->rti_info[RTAX_GATEWAY] = sa;
1419 		}
1420 		break;
1421 #endif
1422 #ifdef INET6
1423 	case AF_INET6:
1424 		{
1425 			struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw;
1426 			if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) {
1427 				RTS_PID_LOG(LOG_DEBUG, "gateway sin6_len too small: %d",
1428 				    gw->sa_len);
1429 				return (EINVAL);
1430 			}
1431 			fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0);
1432 			break;
1433 		}
1434 #endif
1435 	case AF_LINK:
1436 		{
1437 			struct sockaddr_dl *gw_sdl;
1438 
1439 			size_t sdl_min_len = offsetof(struct sockaddr_dl, sdl_data);
1440 			gw_sdl = (struct sockaddr_dl *)gw;
1441 			if (gw_sdl->sdl_len < sdl_min_len) {
1442 				RTS_PID_LOG(LOG_DEBUG, "gateway sdl_len too small: %d",
1443 				    gw_sdl->sdl_len);
1444 				return (EINVAL);
1445 			}
1446 			sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_dl_short));
1447 			if (sa == NULL)
1448 				return (ENOBUFS);
1449 
1450 			const struct sockaddr_dl_short sdl = {
1451 				.sdl_family = AF_LINK,
1452 				.sdl_len = sizeof(struct sockaddr_dl_short),
1453 				.sdl_index = gw_sdl->sdl_index,
1454 			};
1455 			*((struct sockaddr_dl_short *)sa) = sdl;
1456 			info->rti_info[RTAX_GATEWAY] = sa;
1457 			break;
1458 		}
1459 	}
1460 
1461 	return (0);
1462 }
1463 #endif
1464 
1465 static void
1466 remove_netmask(struct rt_addrinfo *info)
1467 {
1468 	info->rti_info[RTAX_NETMASK] = NULL;
1469 	info->rti_flags |= RTF_HOST;
1470 	info->rti_addrs &= ~RTA_NETMASK;
1471 }
1472 
1473 #ifdef INET
1474 static int
1475 cleanup_xaddrs_inet(struct rt_addrinfo *info, struct linear_buffer *lb)
1476 {
1477 	struct sockaddr_in *dst_sa, *mask_sa;
1478 	const int sa_len = sizeof(struct sockaddr_in);
1479 	struct in_addr dst, mask;
1480 
1481 	/* Check & fixup dst/netmask combination first */
1482 	dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST];
1483 	mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK];
1484 
1485 	/* Ensure reads do not go beyound the buffer size */
1486 	if (SA_SIZE(dst_sa) < offsetof(struct sockaddr_in, sin_zero)) {
1487 		RTS_PID_LOG(LOG_DEBUG, "prefix dst sin_len too small: %d",
1488 		    dst_sa->sin_len);
1489 		return (EINVAL);
1490 	}
1491 
1492 	if ((mask_sa != NULL) && mask_sa->sin_len < sizeof(struct sockaddr_in)) {
1493 		/*
1494 		 * Some older routing software encode mask length into the
1495 		 * sin_len, thus resulting in "truncated" sockaddr.
1496 		 */
1497 		int len = mask_sa->sin_len - offsetof(struct sockaddr_in, sin_addr);
1498 		if (len >= 0) {
1499 			mask.s_addr = 0;
1500 			if (len > sizeof(struct in_addr))
1501 				len = sizeof(struct in_addr);
1502 			memcpy(&mask, &mask_sa->sin_addr, len);
1503 		} else {
1504 			RTS_PID_LOG(LOG_DEBUG, "prefix mask sin_len too small: %d",
1505 			    mask_sa->sin_len);
1506 			return (EINVAL);
1507 		}
1508 	} else
1509 		mask.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST;
1510 
1511 	dst.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr));
1512 
1513 	/* Construct new "clean" dst/mask sockaddresses */
1514 	if ((dst_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1515 		return (ENOBUFS);
1516 	fill_sockaddr_inet(dst_sa, dst);
1517 	info->rti_info[RTAX_DST] = (struct sockaddr *)dst_sa;
1518 
1519 	if (mask.s_addr != INADDR_BROADCAST) {
1520 		if ((mask_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1521 			return (ENOBUFS);
1522 		fill_sockaddr_inet(mask_sa, mask);
1523 		info->rti_info[RTAX_NETMASK] = (struct sockaddr *)mask_sa;
1524 		info->rti_flags &= ~RTF_HOST;
1525 	} else
1526 		remove_netmask(info);
1527 
1528 	/* Check gateway */
1529 	if (info->rti_info[RTAX_GATEWAY] != NULL)
1530 		return (cleanup_xaddrs_gateway(info, lb));
1531 
1532 	return (0);
1533 }
1534 #endif
1535 
1536 #ifdef INET6
1537 static int
1538 cleanup_xaddrs_inet6(struct rt_addrinfo *info, struct linear_buffer *lb)
1539 {
1540 	struct sockaddr *sa;
1541 	struct sockaddr_in6 *dst_sa, *mask_sa;
1542 	struct in6_addr mask, *dst;
1543 	const int sa_len = sizeof(struct sockaddr_in6);
1544 
1545 	/* Check & fixup dst/netmask combination first */
1546 	dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST];
1547 	mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK];
1548 
1549 	if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) {
1550 		RTS_PID_LOG(LOG_DEBUG, "prefix dst sin6_len too small: %d",
1551 		    dst_sa->sin6_len);
1552 		return (EINVAL);
1553 	}
1554 
1555 	if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) {
1556 		/*
1557 		 * Some older routing software encode mask length into the
1558 		 * sin6_len, thus resulting in "truncated" sockaddr.
1559 		 */
1560 		int len = mask_sa->sin6_len - offsetof(struct sockaddr_in6, sin6_addr);
1561 		if (len >= 0) {
1562 			bzero(&mask, sizeof(mask));
1563 			if (len > sizeof(struct in6_addr))
1564 				len = sizeof(struct in6_addr);
1565 			memcpy(&mask, &mask_sa->sin6_addr, len);
1566 		} else {
1567 			RTS_PID_LOG(LOG_DEBUG, "rtsock: prefix mask sin6_len too small: %d",
1568 			    mask_sa->sin6_len);
1569 			return (EINVAL);
1570 		}
1571 	} else
1572 		mask = mask_sa ? mask_sa->sin6_addr : in6mask128;
1573 
1574 	dst = &dst_sa->sin6_addr;
1575 	IN6_MASK_ADDR(dst, &mask);
1576 
1577 	if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1578 		return (ENOBUFS);
1579 	fill_sockaddr_inet6((struct sockaddr_in6 *)sa, dst, 0);
1580 	info->rti_info[RTAX_DST] = sa;
1581 
1582 	if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) {
1583 		if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1584 			return (ENOBUFS);
1585 		fill_sockaddr_inet6((struct sockaddr_in6 *)sa, &mask, 0);
1586 		info->rti_info[RTAX_NETMASK] = sa;
1587 		info->rti_flags &= ~RTF_HOST;
1588 	} else
1589 		remove_netmask(info);
1590 
1591 	/* Check gateway */
1592 	if (info->rti_info[RTAX_GATEWAY] != NULL)
1593 		return (cleanup_xaddrs_gateway(info, lb));
1594 
1595 	return (0);
1596 }
1597 #endif
1598 
1599 static int
1600 cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb)
1601 {
1602 	int error = EAFNOSUPPORT;
1603 
1604 	if (info->rti_info[RTAX_DST] == NULL) {
1605 		RTS_PID_LOG(LOG_DEBUG, "prefix dst is not set");
1606 		return (EINVAL);
1607 	}
1608 
1609 	if (info->rti_flags & RTF_LLDATA) {
1610 		/*
1611 		 * arp(8)/ndp(8) sends RTA_NETMASK for the associated
1612 		 * prefix along with the actual address in RTA_DST.
1613 		 * Remove netmask to avoid unnecessary address masking.
1614 		 */
1615 		remove_netmask(info);
1616 	}
1617 
1618 	switch (info->rti_info[RTAX_DST]->sa_family) {
1619 #ifdef INET
1620 	case AF_INET:
1621 		error = cleanup_xaddrs_inet(info, lb);
1622 		break;
1623 #endif
1624 #ifdef INET6
1625 	case AF_INET6:
1626 		error = cleanup_xaddrs_inet6(info, lb);
1627 		break;
1628 #endif
1629 	}
1630 
1631 	return (error);
1632 }
1633 
1634 /*
1635  * Fill in @dmask with valid netmask leaving original @smask
1636  * intact. Mostly used with radix netmasks.
1637  */
1638 struct sockaddr *
1639 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask,
1640     struct sockaddr_storage *dmask)
1641 {
1642 	if (dst == NULL || smask == NULL)
1643 		return (NULL);
1644 
1645 	memset(dmask, 0, dst->sa_len);
1646 	memcpy(dmask, smask, smask->sa_len);
1647 	dmask->ss_len = dst->sa_len;
1648 	dmask->ss_family = dst->sa_family;
1649 
1650 	return ((struct sockaddr *)dmask);
1651 }
1652 
1653 /*
1654  * Writes information related to @rtinfo object to newly-allocated mbuf.
1655  * Assumes MCLBYTES is enough to construct any message.
1656  * Used for OS notifications of vaious events (if/ifa announces,etc)
1657  *
1658  * Returns allocated mbuf or NULL on failure.
1659  */
1660 static struct mbuf *
1661 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1662 {
1663 	struct sockaddr_storage ss;
1664 	struct rt_msghdr *rtm;
1665 	struct mbuf *m;
1666 	int i;
1667 	struct sockaddr *sa;
1668 #ifdef INET6
1669 	struct sockaddr_in6 *sin6;
1670 #endif
1671 	int len, dlen;
1672 
1673 	switch (type) {
1674 	case RTM_DELADDR:
1675 	case RTM_NEWADDR:
1676 		len = sizeof(struct ifa_msghdr);
1677 		break;
1678 
1679 	case RTM_DELMADDR:
1680 	case RTM_NEWMADDR:
1681 		len = sizeof(struct ifma_msghdr);
1682 		break;
1683 
1684 	case RTM_IFINFO:
1685 		len = sizeof(struct if_msghdr);
1686 		break;
1687 
1688 	case RTM_IFANNOUNCE:
1689 	case RTM_IEEE80211:
1690 		len = sizeof(struct if_announcemsghdr);
1691 		break;
1692 
1693 	default:
1694 		len = sizeof(struct rt_msghdr);
1695 	}
1696 
1697 	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
1698 	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1699 	if (len > MHLEN)
1700 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1701 	else
1702 		m = m_gethdr(M_NOWAIT, MT_DATA);
1703 	if (m == NULL)
1704 		return (m);
1705 
1706 	m->m_pkthdr.len = m->m_len = len;
1707 	rtm = mtod(m, struct rt_msghdr *);
1708 	bzero((caddr_t)rtm, len);
1709 	for (i = 0; i < RTAX_MAX; i++) {
1710 		if ((sa = rtinfo->rti_info[i]) == NULL)
1711 			continue;
1712 		rtinfo->rti_addrs |= (1 << i);
1713 
1714 		dlen = SA_SIZE(sa);
1715 		KASSERT(dlen <= sizeof(ss),
1716 		    ("%s: sockaddr size overflow", __func__));
1717 		bzero(&ss, sizeof(ss));
1718 		bcopy(sa, &ss, sa->sa_len);
1719 		sa = (struct sockaddr *)&ss;
1720 #ifdef INET6
1721 		if (sa->sa_family == AF_INET6) {
1722 			sin6 = (struct sockaddr_in6 *)sa;
1723 			(void)sa6_recoverscope(sin6);
1724 		}
1725 #endif
1726 		m_copyback(m, len, dlen, (caddr_t)sa);
1727 		len += dlen;
1728 	}
1729 	if (m->m_pkthdr.len != len) {
1730 		m_freem(m);
1731 		return (NULL);
1732 	}
1733 	rtm->rtm_msglen = len;
1734 	rtm->rtm_version = RTM_VERSION;
1735 	rtm->rtm_type = type;
1736 	return (m);
1737 }
1738 
1739 /*
1740  * Writes information related to @rtinfo object to preallocated buffer.
1741  * Stores needed size in @plen. If @w is NULL, calculates size without
1742  * writing.
1743  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1744  *
1745  * Returns 0 on success.
1746  *
1747  */
1748 static int
1749 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1750 {
1751 	struct sockaddr_storage ss;
1752 	int len, buflen = 0, dlen, i;
1753 	caddr_t cp = NULL;
1754 	struct rt_msghdr *rtm = NULL;
1755 #ifdef INET6
1756 	struct sockaddr_in6 *sin6;
1757 #endif
1758 #ifdef COMPAT_FREEBSD32
1759 	bool compat32 = false;
1760 #endif
1761 
1762 	switch (type) {
1763 	case RTM_DELADDR:
1764 	case RTM_NEWADDR:
1765 		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1766 #ifdef COMPAT_FREEBSD32
1767 			if (w->w_req->flags & SCTL_MASK32) {
1768 				len = sizeof(struct ifa_msghdrl32);
1769 				compat32 = true;
1770 			} else
1771 #endif
1772 				len = sizeof(struct ifa_msghdrl);
1773 		} else
1774 			len = sizeof(struct ifa_msghdr);
1775 		break;
1776 
1777 	case RTM_IFINFO:
1778 #ifdef COMPAT_FREEBSD32
1779 		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1780 			if (w->w_op == NET_RT_IFLISTL)
1781 				len = sizeof(struct if_msghdrl32);
1782 			else
1783 				len = sizeof(struct if_msghdr32);
1784 			compat32 = true;
1785 			break;
1786 		}
1787 #endif
1788 		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1789 			len = sizeof(struct if_msghdrl);
1790 		else
1791 			len = sizeof(struct if_msghdr);
1792 		break;
1793 
1794 	case RTM_NEWMADDR:
1795 		len = sizeof(struct ifma_msghdr);
1796 		break;
1797 
1798 	default:
1799 		len = sizeof(struct rt_msghdr);
1800 	}
1801 
1802 	if (w != NULL) {
1803 		rtm = (struct rt_msghdr *)w->w_tmem;
1804 		buflen = w->w_tmemsize - len;
1805 		cp = (caddr_t)w->w_tmem + len;
1806 	}
1807 
1808 	rtinfo->rti_addrs = 0;
1809 	for (i = 0; i < RTAX_MAX; i++) {
1810 		struct sockaddr *sa;
1811 
1812 		if ((sa = rtinfo->rti_info[i]) == NULL)
1813 			continue;
1814 		rtinfo->rti_addrs |= (1 << i);
1815 #ifdef COMPAT_FREEBSD32
1816 		if (compat32)
1817 			dlen = SA_SIZE32(sa);
1818 		else
1819 #endif
1820 			dlen = SA_SIZE(sa);
1821 		if (cp != NULL && buflen >= dlen) {
1822 			KASSERT(dlen <= sizeof(ss),
1823 			    ("%s: sockaddr size overflow", __func__));
1824 			bzero(&ss, sizeof(ss));
1825 			bcopy(sa, &ss, sa->sa_len);
1826 			sa = (struct sockaddr *)&ss;
1827 #ifdef INET6
1828 			if (sa->sa_family == AF_INET6) {
1829 				sin6 = (struct sockaddr_in6 *)sa;
1830 				(void)sa6_recoverscope(sin6);
1831 			}
1832 #endif
1833 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1834 			cp += dlen;
1835 			buflen -= dlen;
1836 		} else if (cp != NULL) {
1837 			/*
1838 			 * Buffer too small. Count needed size
1839 			 * and return with error.
1840 			 */
1841 			cp = NULL;
1842 		}
1843 
1844 		len += dlen;
1845 	}
1846 
1847 	if (cp != NULL) {
1848 		dlen = ALIGN(len) - len;
1849 		if (buflen < dlen)
1850 			cp = NULL;
1851 		else {
1852 			bzero(cp, dlen);
1853 			cp += dlen;
1854 			buflen -= dlen;
1855 		}
1856 	}
1857 	len = ALIGN(len);
1858 
1859 	if (cp != NULL) {
1860 		/* fill header iff buffer is large enough */
1861 		rtm->rtm_version = RTM_VERSION;
1862 		rtm->rtm_type = type;
1863 		rtm->rtm_msglen = len;
1864 	}
1865 
1866 	*plen = len;
1867 
1868 	if (w != NULL && cp == NULL)
1869 		return (ENOBUFS);
1870 
1871 	return (0);
1872 }
1873 
1874 /*
1875  * This routine is called to generate a message from the routing
1876  * socket indicating that a redirect has occurred, a routing lookup
1877  * has failed, or that a protocol has detected timeouts to a particular
1878  * destination.
1879  */
1880 void
1881 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1882     int fibnum)
1883 {
1884 	struct rt_msghdr *rtm;
1885 	struct mbuf *m;
1886 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1887 
1888 	if (V_route_cb.any_count == 0)
1889 		return;
1890 	m = rtsock_msg_mbuf(type, rtinfo);
1891 	if (m == NULL)
1892 		return;
1893 
1894 	if (fibnum != RT_ALL_FIBS) {
1895 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1896 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1897 		M_SETFIB(m, fibnum);
1898 		m->m_flags |= RTS_FILTER_FIB;
1899 	}
1900 
1901 	rtm = mtod(m, struct rt_msghdr *);
1902 	rtm->rtm_flags = RTF_DONE | flags;
1903 	rtm->rtm_errno = error;
1904 	rtm->rtm_addrs = rtinfo->rti_addrs;
1905 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1906 }
1907 
1908 void
1909 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1910 {
1911 
1912 	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1913 }
1914 
1915 /*
1916  * This routine is called to generate a message from the routing
1917  * socket indicating that the status of a network interface has changed.
1918  */
1919 void
1920 rt_ifmsg(struct ifnet *ifp)
1921 {
1922 	struct if_msghdr *ifm;
1923 	struct mbuf *m;
1924 	struct rt_addrinfo info;
1925 
1926 	if (V_route_cb.any_count == 0)
1927 		return;
1928 	bzero((caddr_t)&info, sizeof(info));
1929 	m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1930 	if (m == NULL)
1931 		return;
1932 	ifm = mtod(m, struct if_msghdr *);
1933 	ifm->ifm_index = ifp->if_index;
1934 	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1935 	if_data_copy(ifp, &ifm->ifm_data);
1936 	ifm->ifm_addrs = 0;
1937 	rt_dispatch(m, AF_UNSPEC);
1938 }
1939 
1940 /*
1941  * Announce interface address arrival/withdraw.
1942  * Please do not call directly, use rt_addrmsg().
1943  * Assume input data to be valid.
1944  * Returns 0 on success.
1945  */
1946 int
1947 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1948 {
1949 	struct rt_addrinfo info;
1950 	struct sockaddr *sa;
1951 	int ncmd;
1952 	struct mbuf *m;
1953 	struct ifa_msghdr *ifam;
1954 	struct ifnet *ifp = ifa->ifa_ifp;
1955 	struct sockaddr_storage ss;
1956 
1957 	if (V_route_cb.any_count == 0)
1958 		return (0);
1959 
1960 	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1961 
1962 	bzero((caddr_t)&info, sizeof(info));
1963 	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1964 	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1965 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1966 	    info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
1967 	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1968 	if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1969 		return (ENOBUFS);
1970 	ifam = mtod(m, struct ifa_msghdr *);
1971 	ifam->ifam_index = ifp->if_index;
1972 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1973 	ifam->ifam_flags = ifa->ifa_flags;
1974 	ifam->ifam_addrs = info.rti_addrs;
1975 
1976 	if (fibnum != RT_ALL_FIBS) {
1977 		M_SETFIB(m, fibnum);
1978 		m->m_flags |= RTS_FILTER_FIB;
1979 	}
1980 
1981 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1982 
1983 	return (0);
1984 }
1985 
1986 /*
1987  * Announce route addition/removal to rtsock based on @rt data.
1988  * Callers are advives to use rt_routemsg() instead of using this
1989  *  function directly.
1990  * Assume @rt data is consistent.
1991  *
1992  * Returns 0 on success.
1993  */
1994 int
1995 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh,
1996     int fibnum)
1997 {
1998 	union sockaddr_union dst, mask;
1999 	struct rt_addrinfo info;
2000 
2001 	if (V_route_cb.any_count == 0)
2002 		return (0);
2003 
2004 	int family = rt_get_family(rt);
2005 	init_sockaddrs_family(family, &dst.sa, &mask.sa);
2006 	export_rtaddrs(rt, &dst.sa, &mask.sa);
2007 
2008 	bzero((caddr_t)&info, sizeof(info));
2009 	info.rti_info[RTAX_DST] = &dst.sa;
2010 	info.rti_info[RTAX_NETMASK] = &mask.sa;
2011 	info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
2012 	info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh);
2013 	info.rti_ifp = nh->nh_ifp;
2014 
2015 	return (rtsock_routemsg_info(cmd, &info, fibnum));
2016 }
2017 
2018 int
2019 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
2020 {
2021 	struct rt_msghdr *rtm;
2022 	struct sockaddr *sa;
2023 	struct mbuf *m;
2024 
2025 	if (V_route_cb.any_count == 0)
2026 		return (0);
2027 
2028 	if (info->rti_flags & RTF_HOST)
2029 		info->rti_info[RTAX_NETMASK] = NULL;
2030 
2031 	m = rtsock_msg_mbuf(cmd, info);
2032 	if (m == NULL)
2033 		return (ENOBUFS);
2034 
2035 	if (fibnum != RT_ALL_FIBS) {
2036 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
2037 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
2038 		M_SETFIB(m, fibnum);
2039 		m->m_flags |= RTS_FILTER_FIB;
2040 	}
2041 
2042 	rtm = mtod(m, struct rt_msghdr *);
2043 	rtm->rtm_addrs = info->rti_addrs;
2044 	if (info->rti_ifp != NULL)
2045 		rtm->rtm_index = info->rti_ifp->if_index;
2046 	/* Add RTF_DONE to indicate command 'completion' required by API */
2047 	info->rti_flags |= RTF_DONE;
2048 	/* Reported routes has to be up */
2049 	if (cmd == RTM_ADD || cmd == RTM_CHANGE)
2050 		info->rti_flags |= RTF_UP;
2051 	rtm->rtm_flags = info->rti_flags;
2052 
2053 	sa = info->rti_info[RTAX_DST];
2054 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
2055 
2056 	return (0);
2057 }
2058 
2059 /*
2060  * This is the analogue to the rt_newaddrmsg which performs the same
2061  * function but for multicast group memberhips.  This is easier since
2062  * there is no route state to worry about.
2063  */
2064 void
2065 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
2066 {
2067 	struct rt_addrinfo info;
2068 	struct mbuf *m = NULL;
2069 	struct ifnet *ifp = ifma->ifma_ifp;
2070 	struct ifma_msghdr *ifmam;
2071 
2072 	if (V_route_cb.any_count == 0)
2073 		return;
2074 
2075 	bzero((caddr_t)&info, sizeof(info));
2076 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
2077 	if (ifp && ifp->if_addr)
2078 		info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
2079 	else
2080 		info.rti_info[RTAX_IFP] = NULL;
2081 	/*
2082 	 * If a link-layer address is present, present it as a ``gateway''
2083 	 * (similarly to how ARP entries, e.g., are presented).
2084 	 */
2085 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
2086 	m = rtsock_msg_mbuf(cmd, &info);
2087 	if (m == NULL)
2088 		return;
2089 	ifmam = mtod(m, struct ifma_msghdr *);
2090 	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
2091 	    __func__));
2092 	ifmam->ifmam_index = ifp->if_index;
2093 	ifmam->ifmam_addrs = info.rti_addrs;
2094 	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
2095 }
2096 
2097 static struct mbuf *
2098 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
2099 	struct rt_addrinfo *info)
2100 {
2101 	struct if_announcemsghdr *ifan;
2102 	struct mbuf *m;
2103 
2104 	if (V_route_cb.any_count == 0)
2105 		return NULL;
2106 	bzero((caddr_t)info, sizeof(*info));
2107 	m = rtsock_msg_mbuf(type, info);
2108 	if (m != NULL) {
2109 		ifan = mtod(m, struct if_announcemsghdr *);
2110 		ifan->ifan_index = ifp->if_index;
2111 		strlcpy(ifan->ifan_name, ifp->if_xname,
2112 			sizeof(ifan->ifan_name));
2113 		ifan->ifan_what = what;
2114 	}
2115 	return m;
2116 }
2117 
2118 /*
2119  * This is called to generate routing socket messages indicating
2120  * IEEE80211 wireless events.
2121  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
2122  */
2123 void
2124 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
2125 {
2126 	struct mbuf *m;
2127 	struct rt_addrinfo info;
2128 
2129 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
2130 	if (m != NULL) {
2131 		/*
2132 		 * Append the ieee80211 data.  Try to stick it in the
2133 		 * mbuf containing the ifannounce msg; otherwise allocate
2134 		 * a new mbuf and append.
2135 		 *
2136 		 * NB: we assume m is a single mbuf.
2137 		 */
2138 		if (data_len > M_TRAILINGSPACE(m)) {
2139 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
2140 			if (n == NULL) {
2141 				m_freem(m);
2142 				return;
2143 			}
2144 			bcopy(data, mtod(n, void *), data_len);
2145 			n->m_len = data_len;
2146 			m->m_next = n;
2147 		} else if (data_len > 0) {
2148 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
2149 			m->m_len += data_len;
2150 		}
2151 		if (m->m_flags & M_PKTHDR)
2152 			m->m_pkthdr.len += data_len;
2153 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
2154 		rt_dispatch(m, AF_UNSPEC);
2155 	}
2156 }
2157 
2158 /*
2159  * This is called to generate routing socket messages indicating
2160  * network interface arrival and departure.
2161  */
2162 static void
2163 rt_ifannouncemsg(struct ifnet *ifp, int what)
2164 {
2165 	struct mbuf *m;
2166 	struct rt_addrinfo info;
2167 
2168 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
2169 	if (m != NULL)
2170 		rt_dispatch(m, AF_UNSPEC);
2171 }
2172 
2173 static void
2174 rt_dispatch(struct mbuf *m, sa_family_t saf)
2175 {
2176 
2177 	M_ASSERTPKTHDR(m);
2178 
2179 	m->m_rtsock_family = saf;
2180 	if (V_loif)
2181 		m->m_pkthdr.rcvif = V_loif;
2182 	else {
2183 		m_freem(m);
2184 		return;
2185 	}
2186 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
2187 }
2188 
2189 /*
2190  * Checks if rte can be exported w.r.t jails/vnets.
2191  *
2192  * Returns true if it can, false otherwise.
2193  */
2194 static bool
2195 can_export_rte(struct ucred *td_ucred, bool rt_is_host,
2196     const struct sockaddr *rt_dst)
2197 {
2198 
2199 	if ((!rt_is_host) ? jailed_without_vnet(td_ucred)
2200 	    : prison_if(td_ucred, rt_dst) != 0)
2201 		return (false);
2202 	return (true);
2203 }
2204 
2205 
2206 /*
2207  * This is used in dumping the kernel table via sysctl().
2208  */
2209 static int
2210 sysctl_dumpentry(struct rtentry *rt, void *vw)
2211 {
2212 	struct walkarg *w = vw;
2213 	struct nhop_object *nh;
2214 
2215 	NET_EPOCH_ASSERT();
2216 
2217 	export_rtaddrs(rt, w->dst, w->mask);
2218 	if (!can_export_rte(w->w_req->td->td_ucred, rt_is_host(rt), w->dst))
2219 		return (0);
2220 	nh = rt_get_raw_nhop(rt);
2221 #ifdef ROUTE_MPATH
2222 	if (NH_IS_NHGRP(nh)) {
2223 		const struct weightened_nhop *wn;
2224 		uint32_t num_nhops;
2225 		int error;
2226 		wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
2227 		for (int i = 0; i < num_nhops; i++) {
2228 			error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w);
2229 			if (error != 0)
2230 				return (error);
2231 		}
2232 	} else
2233 #endif
2234 		sysctl_dumpnhop(rt, nh, rt->rt_weight, w);
2235 
2236 	return (0);
2237 }
2238 
2239 
2240 static int
2241 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight,
2242     struct walkarg *w)
2243 {
2244 	struct rt_addrinfo info;
2245 	int error = 0, size;
2246 	uint32_t rtflags;
2247 
2248 	rtflags = nhop_get_rtflags(nh);
2249 
2250 	if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg))
2251 		return (0);
2252 
2253 	bzero((caddr_t)&info, sizeof(info));
2254 	info.rti_info[RTAX_DST] = w->dst;
2255 	info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
2256 	info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask;
2257 	info.rti_info[RTAX_GENMASK] = 0;
2258 	if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) {
2259 		info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr;
2260 		info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
2261 		if (nh->nh_ifp->if_flags & IFF_POINTOPOINT)
2262 			info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr;
2263 	}
2264 	if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
2265 		return (error);
2266 	if (w->w_req && w->w_tmem) {
2267 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
2268 
2269 		bzero(&rtm->rtm_index,
2270 		    sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
2271 
2272 		/*
2273 		 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags)
2274 		 * and RTF_UP (if entry is linked, which is always true here).
2275 		 * Given that, use nhop rtflags & add RTF_UP.
2276 		 */
2277 		rtm->rtm_flags = rtflags | RTF_UP;
2278 		if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
2279 			rtm->rtm_flags = RTF_GATEWAY |
2280 				(rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
2281 		rt_getmetrics(rt, nh, &rtm->rtm_rmx);
2282 		rtm->rtm_rmx.rmx_weight = weight;
2283 		rtm->rtm_index = nh->nh_ifp->if_index;
2284 		rtm->rtm_addrs = info.rti_addrs;
2285 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
2286 		return (error);
2287 	}
2288 	return (error);
2289 }
2290 
2291 static int
2292 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
2293     struct rt_addrinfo *info, struct walkarg *w, int len)
2294 {
2295 	struct if_msghdrl *ifm;
2296 	struct if_data *ifd;
2297 
2298 	ifm = (struct if_msghdrl *)w->w_tmem;
2299 
2300 #ifdef COMPAT_FREEBSD32
2301 	if (w->w_req->flags & SCTL_MASK32) {
2302 		struct if_msghdrl32 *ifm32;
2303 
2304 		ifm32 = (struct if_msghdrl32 *)ifm;
2305 		ifm32->ifm_addrs = info->rti_addrs;
2306 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2307 		ifm32->ifm_index = ifp->if_index;
2308 		ifm32->_ifm_spare1 = 0;
2309 		ifm32->ifm_len = sizeof(*ifm32);
2310 		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
2311 		ifm32->_ifm_spare2 = 0;
2312 		ifd = &ifm32->ifm_data;
2313 	} else
2314 #endif
2315 	{
2316 		ifm->ifm_addrs = info->rti_addrs;
2317 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2318 		ifm->ifm_index = ifp->if_index;
2319 		ifm->_ifm_spare1 = 0;
2320 		ifm->ifm_len = sizeof(*ifm);
2321 		ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
2322 		ifm->_ifm_spare2 = 0;
2323 		ifd = &ifm->ifm_data;
2324 	}
2325 
2326 	memcpy(ifd, src_ifd, sizeof(*ifd));
2327 
2328 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
2329 }
2330 
2331 static int
2332 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
2333     struct rt_addrinfo *info, struct walkarg *w, int len)
2334 {
2335 	struct if_msghdr *ifm;
2336 	struct if_data *ifd;
2337 
2338 	ifm = (struct if_msghdr *)w->w_tmem;
2339 
2340 #ifdef COMPAT_FREEBSD32
2341 	if (w->w_req->flags & SCTL_MASK32) {
2342 		struct if_msghdr32 *ifm32;
2343 
2344 		ifm32 = (struct if_msghdr32 *)ifm;
2345 		ifm32->ifm_addrs = info->rti_addrs;
2346 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2347 		ifm32->ifm_index = ifp->if_index;
2348 		ifm32->_ifm_spare1 = 0;
2349 		ifd = &ifm32->ifm_data;
2350 	} else
2351 #endif
2352 	{
2353 		ifm->ifm_addrs = info->rti_addrs;
2354 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2355 		ifm->ifm_index = ifp->if_index;
2356 		ifm->_ifm_spare1 = 0;
2357 		ifd = &ifm->ifm_data;
2358 	}
2359 
2360 	memcpy(ifd, src_ifd, sizeof(*ifd));
2361 
2362 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
2363 }
2364 
2365 static int
2366 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
2367     struct walkarg *w, int len)
2368 {
2369 	struct ifa_msghdrl *ifam;
2370 	struct if_data *ifd;
2371 
2372 	ifam = (struct ifa_msghdrl *)w->w_tmem;
2373 
2374 #ifdef COMPAT_FREEBSD32
2375 	if (w->w_req->flags & SCTL_MASK32) {
2376 		struct ifa_msghdrl32 *ifam32;
2377 
2378 		ifam32 = (struct ifa_msghdrl32 *)ifam;
2379 		ifam32->ifam_addrs = info->rti_addrs;
2380 		ifam32->ifam_flags = ifa->ifa_flags;
2381 		ifam32->ifam_index = ifa->ifa_ifp->if_index;
2382 		ifam32->_ifam_spare1 = 0;
2383 		ifam32->ifam_len = sizeof(*ifam32);
2384 		ifam32->ifam_data_off =
2385 		    offsetof(struct ifa_msghdrl32, ifam_data);
2386 		ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
2387 		ifd = &ifam32->ifam_data;
2388 	} else
2389 #endif
2390 	{
2391 		ifam->ifam_addrs = info->rti_addrs;
2392 		ifam->ifam_flags = ifa->ifa_flags;
2393 		ifam->ifam_index = ifa->ifa_ifp->if_index;
2394 		ifam->_ifam_spare1 = 0;
2395 		ifam->ifam_len = sizeof(*ifam);
2396 		ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
2397 		ifam->ifam_metric = ifa->ifa_ifp->if_metric;
2398 		ifd = &ifam->ifam_data;
2399 	}
2400 
2401 	bzero(ifd, sizeof(*ifd));
2402 	ifd->ifi_datalen = sizeof(struct if_data);
2403 	ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
2404 	ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
2405 	ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
2406 	ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
2407 
2408 	/* Fixup if_data carp(4) vhid. */
2409 	if (carp_get_vhid_p != NULL)
2410 		ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
2411 
2412 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
2413 }
2414 
2415 static int
2416 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
2417     struct walkarg *w, int len)
2418 {
2419 	struct ifa_msghdr *ifam;
2420 
2421 	ifam = (struct ifa_msghdr *)w->w_tmem;
2422 	ifam->ifam_addrs = info->rti_addrs;
2423 	ifam->ifam_flags = ifa->ifa_flags;
2424 	ifam->ifam_index = ifa->ifa_ifp->if_index;
2425 	ifam->_ifam_spare1 = 0;
2426 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
2427 
2428 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
2429 }
2430 
2431 static int
2432 sysctl_iflist(int af, struct walkarg *w)
2433 {
2434 	struct ifnet *ifp;
2435 	struct ifaddr *ifa;
2436 	struct if_data ifd;
2437 	struct rt_addrinfo info;
2438 	int len, error = 0;
2439 	struct sockaddr_storage ss;
2440 
2441 	bzero((caddr_t)&info, sizeof(info));
2442 	bzero(&ifd, sizeof(ifd));
2443 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2444 		if (w->w_arg && w->w_arg != ifp->if_index)
2445 			continue;
2446 		if_data_copy(ifp, &ifd);
2447 		ifa = ifp->if_addr;
2448 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
2449 		error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
2450 		if (error != 0)
2451 			goto done;
2452 		info.rti_info[RTAX_IFP] = NULL;
2453 		if (w->w_req && w->w_tmem) {
2454 			if (w->w_op == NET_RT_IFLISTL)
2455 				error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
2456 				    len);
2457 			else
2458 				error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
2459 				    len);
2460 			if (error)
2461 				goto done;
2462 		}
2463 		while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
2464 			if (af && af != ifa->ifa_addr->sa_family)
2465 				continue;
2466 			if (prison_if(w->w_req->td->td_ucred,
2467 			    ifa->ifa_addr) != 0)
2468 				continue;
2469 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
2470 			info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
2471 			    ifa->ifa_addr, ifa->ifa_netmask, &ss);
2472 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
2473 			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
2474 			if (error != 0)
2475 				goto done;
2476 			if (w->w_req && w->w_tmem) {
2477 				if (w->w_op == NET_RT_IFLISTL)
2478 					error = sysctl_iflist_ifaml(ifa, &info,
2479 					    w, len);
2480 				else
2481 					error = sysctl_iflist_ifam(ifa, &info,
2482 					    w, len);
2483 				if (error)
2484 					goto done;
2485 			}
2486 		}
2487 		info.rti_info[RTAX_IFA] = NULL;
2488 		info.rti_info[RTAX_NETMASK] = NULL;
2489 		info.rti_info[RTAX_BRD] = NULL;
2490 	}
2491 done:
2492 	return (error);
2493 }
2494 
2495 static int
2496 sysctl_ifmalist(int af, struct walkarg *w)
2497 {
2498 	struct rt_addrinfo info;
2499 	struct ifaddr *ifa;
2500 	struct ifmultiaddr *ifma;
2501 	struct ifnet *ifp;
2502 	int error, len;
2503 
2504 	NET_EPOCH_ASSERT();
2505 
2506 	error = 0;
2507 	bzero((caddr_t)&info, sizeof(info));
2508 
2509 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2510 		if (w->w_arg && w->w_arg != ifp->if_index)
2511 			continue;
2512 		ifa = ifp->if_addr;
2513 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
2514 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2515 			if (af && af != ifma->ifma_addr->sa_family)
2516 				continue;
2517 			if (prison_if(w->w_req->td->td_ucred,
2518 			    ifma->ifma_addr) != 0)
2519 				continue;
2520 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
2521 			info.rti_info[RTAX_GATEWAY] =
2522 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
2523 			    ifma->ifma_lladdr : NULL;
2524 			error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
2525 			if (error != 0)
2526 				break;
2527 			if (w->w_req && w->w_tmem) {
2528 				struct ifma_msghdr *ifmam;
2529 
2530 				ifmam = (struct ifma_msghdr *)w->w_tmem;
2531 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
2532 				ifmam->ifmam_flags = 0;
2533 				ifmam->ifmam_addrs = info.rti_addrs;
2534 				ifmam->_ifmam_spare1 = 0;
2535 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
2536 				if (error != 0)
2537 					break;
2538 			}
2539 		}
2540 		if (error != 0)
2541 			break;
2542 	}
2543 	return (error);
2544 }
2545 
2546 static void
2547 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w)
2548 {
2549 	union sockaddr_union sa_dst, sa_mask;
2550 
2551 	w->family = family;
2552 	w->dst = (struct sockaddr *)&sa_dst;
2553 	w->mask = (struct sockaddr *)&sa_mask;
2554 
2555 	init_sockaddrs_family(family, w->dst, w->mask);
2556 
2557 	rib_walk(fibnum, family, false, sysctl_dumpentry, w);
2558 }
2559 
2560 static int
2561 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
2562 {
2563 	struct epoch_tracker et;
2564 	int	*name = (int *)arg1;
2565 	u_int	namelen = arg2;
2566 	struct rib_head *rnh = NULL; /* silence compiler. */
2567 	int	i, lim, error = EINVAL;
2568 	int	fib = 0;
2569 	u_char	af;
2570 	struct	walkarg w;
2571 
2572 	if (namelen < 3)
2573 		return (EINVAL);
2574 
2575 	name++;
2576 	namelen--;
2577 	if (req->newptr)
2578 		return (EPERM);
2579 	if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) {
2580 		if (namelen == 3)
2581 			fib = req->td->td_proc->p_fibnum;
2582 		else if (namelen == 4)
2583 			fib = (name[3] == RT_ALL_FIBS) ?
2584 			    req->td->td_proc->p_fibnum : name[3];
2585 		else
2586 			return ((namelen < 3) ? EISDIR : ENOTDIR);
2587 		if (fib < 0 || fib >= rt_numfibs)
2588 			return (EINVAL);
2589 	} else if (namelen != 3)
2590 		return ((namelen < 3) ? EISDIR : ENOTDIR);
2591 	af = name[0];
2592 	if (af > AF_MAX)
2593 		return (EINVAL);
2594 	bzero(&w, sizeof(w));
2595 	w.w_op = name[1];
2596 	w.w_arg = name[2];
2597 	w.w_req = req;
2598 
2599 	error = sysctl_wire_old_buffer(req, 0);
2600 	if (error)
2601 		return (error);
2602 
2603 	/*
2604 	 * Allocate reply buffer in advance.
2605 	 * All rtsock messages has maximum length of u_short.
2606 	 */
2607 	w.w_tmemsize = 65536;
2608 	w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
2609 
2610 	NET_EPOCH_ENTER(et);
2611 	switch (w.w_op) {
2612 	case NET_RT_DUMP:
2613 	case NET_RT_FLAGS:
2614 		if (af == 0) {			/* dump all tables */
2615 			i = 1;
2616 			lim = AF_MAX;
2617 		} else				/* dump only one table */
2618 			i = lim = af;
2619 
2620 		/*
2621 		 * take care of llinfo entries, the caller must
2622 		 * specify an AF
2623 		 */
2624 		if (w.w_op == NET_RT_FLAGS &&
2625 		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
2626 			if (af != 0)
2627 				error = lltable_sysctl_dumparp(af, w.w_req);
2628 			else
2629 				error = EINVAL;
2630 			break;
2631 		}
2632 		/*
2633 		 * take care of routing entries
2634 		 */
2635 		for (error = 0; error == 0 && i <= lim; i++) {
2636 			rnh = rt_tables_get_rnh(fib, i);
2637 			if (rnh != NULL) {
2638 				rtable_sysctl_dump(fib, i, &w);
2639 			} else if (af != 0)
2640 				error = EAFNOSUPPORT;
2641 		}
2642 		break;
2643 	case NET_RT_NHOP:
2644 	case NET_RT_NHGRP:
2645 		/* Allow dumping one specific af/fib at a time */
2646 		if (namelen < 4) {
2647 			error = EINVAL;
2648 			break;
2649 		}
2650 		fib = name[3];
2651 		if (fib < 0 || fib > rt_numfibs) {
2652 			error = EINVAL;
2653 			break;
2654 		}
2655 		rnh = rt_tables_get_rnh(fib, af);
2656 		if (rnh == NULL) {
2657 			error = EAFNOSUPPORT;
2658 			break;
2659 		}
2660 		if (w.w_op == NET_RT_NHOP)
2661 			error = nhops_dump_sysctl(rnh, w.w_req);
2662 		else
2663 #ifdef ROUTE_MPATH
2664 			error = nhgrp_dump_sysctl(rnh, w.w_req);
2665 #else
2666 			error = ENOTSUP;
2667 #endif
2668 		break;
2669 	case NET_RT_IFLIST:
2670 	case NET_RT_IFLISTL:
2671 		error = sysctl_iflist(af, &w);
2672 		break;
2673 
2674 	case NET_RT_IFMALIST:
2675 		error = sysctl_ifmalist(af, &w);
2676 		break;
2677 	}
2678 	NET_EPOCH_EXIT(et);
2679 
2680 	free(w.w_tmem, M_TEMP);
2681 	return (error);
2682 }
2683 
2684 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
2685     sysctl_rtsock, "Return route tables and interface/address lists");
2686 
2687 /*
2688  * Definitions of protocols supported in the ROUTE domain.
2689  */
2690 
2691 static struct domain routedomain;		/* or at least forward */
2692 
2693 static struct protosw routesw = {
2694 	.pr_type =		SOCK_RAW,
2695 	.pr_flags =		PR_ATOMIC|PR_ADDR,
2696 	.pr_abort =		rts_close,
2697 	.pr_attach =		rts_attach,
2698 	.pr_detach =		rts_detach,
2699 	.pr_send =		rts_send,
2700 	.pr_shutdown =		rts_shutdown,
2701 	.pr_close =		rts_close,
2702 };
2703 
2704 static struct domain routedomain = {
2705 	.dom_family =		PF_ROUTE,
2706 	.dom_name =		"route",
2707 	.dom_nprotosw =		1,
2708 	.dom_protosw =		{ &routesw },
2709 };
2710 
2711 DOMAIN_SET(route);
2712