1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_ddb.h" 35 #include "opt_route.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/domain.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/rmlock.h> 50 #include <sys/rwlock.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_dl.h> 60 #include <net/if_llatbl.h> 61 #include <net/if_types.h> 62 #include <net/netisr.h> 63 #include <net/raw_cb.h> 64 #include <net/route.h> 65 #include <net/route/route_ctl.h> 66 #include <net/route/route_var.h> 67 #include <net/vnet.h> 68 69 #include <netinet/in.h> 70 #include <netinet/if_ether.h> 71 #include <netinet/ip_carp.h> 72 #ifdef INET6 73 #include <netinet6/in6_var.h> 74 #include <netinet6/ip6_var.h> 75 #include <netinet6/scope6_var.h> 76 #endif 77 #include <net/route/nhop.h> 78 79 #ifdef COMPAT_FREEBSD32 80 #include <sys/mount.h> 81 #include <compat/freebsd32/freebsd32.h> 82 83 struct if_msghdr32 { 84 uint16_t ifm_msglen; 85 uint8_t ifm_version; 86 uint8_t ifm_type; 87 int32_t ifm_addrs; 88 int32_t ifm_flags; 89 uint16_t ifm_index; 90 uint16_t _ifm_spare1; 91 struct if_data ifm_data; 92 }; 93 94 struct if_msghdrl32 { 95 uint16_t ifm_msglen; 96 uint8_t ifm_version; 97 uint8_t ifm_type; 98 int32_t ifm_addrs; 99 int32_t ifm_flags; 100 uint16_t ifm_index; 101 uint16_t _ifm_spare1; 102 uint16_t ifm_len; 103 uint16_t ifm_data_off; 104 uint32_t _ifm_spare2; 105 struct if_data ifm_data; 106 }; 107 108 struct ifa_msghdrl32 { 109 uint16_t ifam_msglen; 110 uint8_t ifam_version; 111 uint8_t ifam_type; 112 int32_t ifam_addrs; 113 int32_t ifam_flags; 114 uint16_t ifam_index; 115 uint16_t _ifam_spare1; 116 uint16_t ifam_len; 117 uint16_t ifam_data_off; 118 int32_t ifam_metric; 119 struct if_data ifam_data; 120 }; 121 122 #define SA_SIZE32(sa) \ 123 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 124 sizeof(int) : \ 125 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 126 127 #endif /* COMPAT_FREEBSD32 */ 128 129 struct linear_buffer { 130 char *base; /* Base allocated memory pointer */ 131 uint32_t offset; /* Currently used offset */ 132 uint32_t size; /* Total buffer size */ 133 }; 134 #define SCRATCH_BUFFER_SIZE 1024 135 136 #define RTS_PID_PRINTF(_fmt, ...) \ 137 printf("rtsock:%s(): PID %d: " _fmt "\n", __func__, curproc->p_pid, ## __VA_ARGS__) 138 139 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 140 141 /* NB: these are not modified */ 142 static struct sockaddr route_src = { 2, PF_ROUTE, }; 143 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 144 145 /* These are external hooks for CARP. */ 146 int (*carp_get_vhid_p)(struct ifaddr *); 147 148 /* 149 * Used by rtsock/raw_input callback code to decide whether to filter the update 150 * notification to a socket bound to a particular FIB. 151 */ 152 #define RTS_FILTER_FIB M_PROTO8 153 154 typedef struct { 155 int ip_count; /* attached w/ AF_INET */ 156 int ip6_count; /* attached w/ AF_INET6 */ 157 int any_count; /* total attached */ 158 } route_cb_t; 159 VNET_DEFINE_STATIC(route_cb_t, route_cb); 160 #define V_route_cb VNET(route_cb) 161 162 struct mtx rtsock_mtx; 163 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 164 165 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 166 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 167 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 168 169 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 170 171 struct walkarg { 172 int family; 173 int w_tmemsize; 174 int w_op, w_arg; 175 caddr_t w_tmem; 176 struct sysctl_req *w_req; 177 struct sockaddr *dst; 178 struct sockaddr *mask; 179 }; 180 181 static void rts_input(struct mbuf *m); 182 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 183 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 184 struct walkarg *w, int *plen); 185 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 186 struct rt_addrinfo *rtinfo); 187 static int cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb); 188 static int sysctl_dumpentry(struct rtentry *rt, void *vw); 189 static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, 190 uint32_t weight, struct walkarg *w); 191 static int sysctl_iflist(int af, struct walkarg *w); 192 static int sysctl_ifmalist(int af, struct walkarg *w); 193 static int route_output(struct mbuf *m, struct socket *so, ...); 194 static void rt_getmetrics(const struct rtentry *rt, 195 const struct nhop_object *nh, struct rt_metrics *out); 196 static void rt_dispatch(struct mbuf *, sa_family_t); 197 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 198 struct rt_msghdr *rtm, struct rib_cmd_info *rc); 199 static int update_rtm_from_rc(struct rt_addrinfo *info, 200 struct rt_msghdr **prtm, int alloc_len, 201 struct rib_cmd_info *rc, struct nhop_object *nh); 202 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 203 struct mbuf *m, sa_family_t saf, u_int fibnum, 204 int rtm_errno); 205 static bool can_export_rte(struct ucred *td_ucred, bool rt_is_host, 206 const struct sockaddr *rt_dst); 207 208 static struct netisr_handler rtsock_nh = { 209 .nh_name = "rtsock", 210 .nh_handler = rts_input, 211 .nh_proto = NETISR_ROUTE, 212 .nh_policy = NETISR_POLICY_SOURCE, 213 }; 214 215 static int 216 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 217 { 218 int error, qlimit; 219 220 netisr_getqlimit(&rtsock_nh, &qlimit); 221 error = sysctl_handle_int(oidp, &qlimit, 0, req); 222 if (error || !req->newptr) 223 return (error); 224 if (qlimit < 1) 225 return (EINVAL); 226 return (netisr_setqlimit(&rtsock_nh, qlimit)); 227 } 228 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 229 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 230 0, 0, sysctl_route_netisr_maxqlen, "I", 231 "maximum routing socket dispatch queue length"); 232 233 static void 234 vnet_rts_init(void) 235 { 236 int tmp; 237 238 if (IS_DEFAULT_VNET(curvnet)) { 239 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 240 rtsock_nh.nh_qlimit = tmp; 241 netisr_register(&rtsock_nh); 242 } 243 #ifdef VIMAGE 244 else 245 netisr_register_vnet(&rtsock_nh); 246 #endif 247 } 248 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 249 vnet_rts_init, 0); 250 251 #ifdef VIMAGE 252 static void 253 vnet_rts_uninit(void) 254 { 255 256 netisr_unregister_vnet(&rtsock_nh); 257 } 258 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 259 vnet_rts_uninit, 0); 260 #endif 261 262 static int 263 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 264 struct rawcb *rp) 265 { 266 int fibnum; 267 268 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 269 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 270 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 271 272 /* No filtering requested. */ 273 if ((m->m_flags & RTS_FILTER_FIB) == 0) 274 return (0); 275 276 /* Check if it is a rts and the fib matches the one of the socket. */ 277 fibnum = M_GETFIB(m); 278 if (proto->sp_family != PF_ROUTE || 279 rp->rcb_socket == NULL || 280 rp->rcb_socket->so_fibnum == fibnum) 281 return (0); 282 283 /* Filtering requested and no match, the socket shall be skipped. */ 284 return (1); 285 } 286 287 static void 288 rts_input(struct mbuf *m) 289 { 290 struct sockproto route_proto; 291 unsigned short *family; 292 struct m_tag *tag; 293 294 route_proto.sp_family = PF_ROUTE; 295 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 296 if (tag != NULL) { 297 family = (unsigned short *)(tag + 1); 298 route_proto.sp_protocol = *family; 299 m_tag_delete(m, tag); 300 } else 301 route_proto.sp_protocol = 0; 302 303 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 304 } 305 306 /* 307 * It really doesn't make any sense at all for this code to share much 308 * with raw_usrreq.c, since its functionality is so restricted. XXX 309 */ 310 static void 311 rts_abort(struct socket *so) 312 { 313 314 raw_usrreqs.pru_abort(so); 315 } 316 317 static void 318 rts_close(struct socket *so) 319 { 320 321 raw_usrreqs.pru_close(so); 322 } 323 324 /* pru_accept is EOPNOTSUPP */ 325 326 static int 327 rts_attach(struct socket *so, int proto, struct thread *td) 328 { 329 struct rawcb *rp; 330 int error; 331 332 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 333 334 /* XXX */ 335 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 336 337 so->so_pcb = (caddr_t)rp; 338 so->so_fibnum = td->td_proc->p_fibnum; 339 error = raw_attach(so, proto); 340 rp = sotorawcb(so); 341 if (error) { 342 so->so_pcb = NULL; 343 free(rp, M_PCB); 344 return error; 345 } 346 RTSOCK_LOCK(); 347 switch(rp->rcb_proto.sp_protocol) { 348 case AF_INET: 349 V_route_cb.ip_count++; 350 break; 351 case AF_INET6: 352 V_route_cb.ip6_count++; 353 break; 354 } 355 V_route_cb.any_count++; 356 RTSOCK_UNLOCK(); 357 soisconnected(so); 358 so->so_options |= SO_USELOOPBACK; 359 return 0; 360 } 361 362 static int 363 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 364 { 365 366 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 367 } 368 369 static int 370 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 371 { 372 373 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 374 } 375 376 /* pru_connect2 is EOPNOTSUPP */ 377 /* pru_control is EOPNOTSUPP */ 378 379 static void 380 rts_detach(struct socket *so) 381 { 382 struct rawcb *rp = sotorawcb(so); 383 384 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 385 386 RTSOCK_LOCK(); 387 switch(rp->rcb_proto.sp_protocol) { 388 case AF_INET: 389 V_route_cb.ip_count--; 390 break; 391 case AF_INET6: 392 V_route_cb.ip6_count--; 393 break; 394 } 395 V_route_cb.any_count--; 396 RTSOCK_UNLOCK(); 397 raw_usrreqs.pru_detach(so); 398 } 399 400 static int 401 rts_disconnect(struct socket *so) 402 { 403 404 return (raw_usrreqs.pru_disconnect(so)); 405 } 406 407 /* pru_listen is EOPNOTSUPP */ 408 409 static int 410 rts_peeraddr(struct socket *so, struct sockaddr **nam) 411 { 412 413 return (raw_usrreqs.pru_peeraddr(so, nam)); 414 } 415 416 /* pru_rcvd is EOPNOTSUPP */ 417 /* pru_rcvoob is EOPNOTSUPP */ 418 419 static int 420 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 421 struct mbuf *control, struct thread *td) 422 { 423 424 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 425 } 426 427 /* pru_sense is null */ 428 429 static int 430 rts_shutdown(struct socket *so) 431 { 432 433 return (raw_usrreqs.pru_shutdown(so)); 434 } 435 436 static int 437 rts_sockaddr(struct socket *so, struct sockaddr **nam) 438 { 439 440 return (raw_usrreqs.pru_sockaddr(so, nam)); 441 } 442 443 static struct pr_usrreqs route_usrreqs = { 444 .pru_abort = rts_abort, 445 .pru_attach = rts_attach, 446 .pru_bind = rts_bind, 447 .pru_connect = rts_connect, 448 .pru_detach = rts_detach, 449 .pru_disconnect = rts_disconnect, 450 .pru_peeraddr = rts_peeraddr, 451 .pru_send = rts_send, 452 .pru_shutdown = rts_shutdown, 453 .pru_sockaddr = rts_sockaddr, 454 .pru_close = rts_close, 455 }; 456 457 #ifndef _SOCKADDR_UNION_DEFINED 458 #define _SOCKADDR_UNION_DEFINED 459 /* 460 * The union of all possible address formats we handle. 461 */ 462 union sockaddr_union { 463 struct sockaddr sa; 464 struct sockaddr_in sin; 465 struct sockaddr_in6 sin6; 466 }; 467 #endif /* _SOCKADDR_UNION_DEFINED */ 468 469 static int 470 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 471 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 472 { 473 #if defined(INET) || defined(INET6) 474 struct epoch_tracker et; 475 #endif 476 477 /* First, see if the returned address is part of the jail. */ 478 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 479 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 480 return (0); 481 } 482 483 switch (info->rti_info[RTAX_DST]->sa_family) { 484 #ifdef INET 485 case AF_INET: 486 { 487 struct in_addr ia; 488 struct ifaddr *ifa; 489 int found; 490 491 found = 0; 492 /* 493 * Try to find an address on the given outgoing interface 494 * that belongs to the jail. 495 */ 496 NET_EPOCH_ENTER(et); 497 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 498 struct sockaddr *sa; 499 sa = ifa->ifa_addr; 500 if (sa->sa_family != AF_INET) 501 continue; 502 ia = ((struct sockaddr_in *)sa)->sin_addr; 503 if (prison_check_ip4(cred, &ia) == 0) { 504 found = 1; 505 break; 506 } 507 } 508 NET_EPOCH_EXIT(et); 509 if (!found) { 510 /* 511 * As a last resort return the 'default' jail address. 512 */ 513 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 514 sin_addr; 515 if (prison_get_ip4(cred, &ia) != 0) 516 return (ESRCH); 517 } 518 bzero(&saun->sin, sizeof(struct sockaddr_in)); 519 saun->sin.sin_len = sizeof(struct sockaddr_in); 520 saun->sin.sin_family = AF_INET; 521 saun->sin.sin_addr.s_addr = ia.s_addr; 522 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 523 break; 524 } 525 #endif 526 #ifdef INET6 527 case AF_INET6: 528 { 529 struct in6_addr ia6; 530 struct ifaddr *ifa; 531 int found; 532 533 found = 0; 534 /* 535 * Try to find an address on the given outgoing interface 536 * that belongs to the jail. 537 */ 538 NET_EPOCH_ENTER(et); 539 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 540 struct sockaddr *sa; 541 sa = ifa->ifa_addr; 542 if (sa->sa_family != AF_INET6) 543 continue; 544 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 545 &ia6, sizeof(struct in6_addr)); 546 if (prison_check_ip6(cred, &ia6) == 0) { 547 found = 1; 548 break; 549 } 550 } 551 NET_EPOCH_EXIT(et); 552 if (!found) { 553 /* 554 * As a last resort return the 'default' jail address. 555 */ 556 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 557 sin6_addr; 558 if (prison_get_ip6(cred, &ia6) != 0) 559 return (ESRCH); 560 } 561 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 562 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 563 saun->sin6.sin6_family = AF_INET6; 564 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 565 if (sa6_recoverscope(&saun->sin6) != 0) 566 return (ESRCH); 567 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 568 break; 569 } 570 #endif 571 default: 572 return (ESRCH); 573 } 574 return (0); 575 } 576 577 static int 578 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun) 579 { 580 struct ifaddr *ifa; 581 sa_family_t saf; 582 583 if (V_loif == NULL) { 584 RTS_PID_PRINTF("Unable to add blackhole/reject nhop without loopback"); 585 return (ENOTSUP); 586 } 587 info->rti_ifp = V_loif; 588 589 saf = info->rti_info[RTAX_DST]->sa_family; 590 591 CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) { 592 if (ifa->ifa_addr->sa_family == saf) { 593 info->rti_ifa = ifa; 594 break; 595 } 596 } 597 if (info->rti_ifa == NULL) 598 return (ENOTSUP); 599 600 bzero(saun, sizeof(union sockaddr_union)); 601 switch (saf) { 602 #ifdef INET 603 case AF_INET: 604 saun->sin.sin_family = AF_INET; 605 saun->sin.sin_len = sizeof(struct sockaddr_in); 606 saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); 607 break; 608 #endif 609 #ifdef INET6 610 case AF_INET6: 611 saun->sin6.sin6_family = AF_INET6; 612 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 613 saun->sin6.sin6_addr = in6addr_loopback; 614 break; 615 #endif 616 default: 617 return (ENOTSUP); 618 } 619 info->rti_info[RTAX_GATEWAY] = &saun->sa; 620 info->rti_flags |= RTF_GATEWAY; 621 622 return (0); 623 } 624 625 /* 626 * Fills in @info based on userland-provided @rtm message. 627 * 628 * Returns 0 on success. 629 */ 630 static int 631 fill_addrinfo(struct rt_msghdr *rtm, int len, struct linear_buffer *lb, u_int fibnum, 632 struct rt_addrinfo *info) 633 { 634 int error; 635 sa_family_t saf; 636 637 rtm->rtm_pid = curproc->p_pid; 638 info->rti_addrs = rtm->rtm_addrs; 639 640 info->rti_mflags = rtm->rtm_inits; 641 info->rti_rmx = &rtm->rtm_rmx; 642 643 /* 644 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 645 * link-local address because rtrequest requires addresses with 646 * embedded scope id. 647 */ 648 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 649 return (EINVAL); 650 651 info->rti_flags = rtm->rtm_flags; 652 error = cleanup_xaddrs(info, lb); 653 if (error != 0) 654 return (error); 655 saf = info->rti_info[RTAX_DST]->sa_family; 656 /* 657 * Verify that the caller has the appropriate privilege; RTM_GET 658 * is the only operation the non-superuser is allowed. 659 */ 660 if (rtm->rtm_type != RTM_GET) { 661 error = priv_check(curthread, PRIV_NET_ROUTE); 662 if (error != 0) 663 return (error); 664 } 665 666 /* 667 * The given gateway address may be an interface address. 668 * For example, issuing a "route change" command on a route 669 * entry that was created from a tunnel, and the gateway 670 * address given is the local end point. In this case the 671 * RTF_GATEWAY flag must be cleared or the destination will 672 * not be reachable even though there is no error message. 673 */ 674 if (info->rti_info[RTAX_GATEWAY] != NULL && 675 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 676 struct rt_addrinfo ginfo; 677 struct sockaddr *gdst; 678 struct sockaddr_storage ss; 679 680 bzero(&ginfo, sizeof(ginfo)); 681 bzero(&ss, sizeof(ss)); 682 ss.ss_len = sizeof(ss); 683 684 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 685 gdst = info->rti_info[RTAX_GATEWAY]; 686 687 /* 688 * A host route through the loopback interface is 689 * installed for each interface adddress. In pre 8.0 690 * releases the interface address of a PPP link type 691 * is not reachable locally. This behavior is fixed as 692 * part of the new L2/L3 redesign and rewrite work. The 693 * signature of this interface address route is the 694 * AF_LINK sa_family type of the gateway, and the 695 * rt_ifp has the IFF_LOOPBACK flag set. 696 */ 697 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 698 if (ss.ss_family == AF_LINK && 699 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 700 info->rti_flags &= ~RTF_GATEWAY; 701 info->rti_flags |= RTF_GWFLAG_COMPAT; 702 } 703 rib_free_info(&ginfo); 704 } 705 } 706 707 return (0); 708 } 709 710 static struct nhop_object * 711 select_nhop(struct nhop_object *nh, const struct sockaddr *gw) 712 { 713 if (!NH_IS_NHGRP(nh)) 714 return (nh); 715 #ifdef ROUTE_MPATH 716 struct weightened_nhop *wn; 717 uint32_t num_nhops; 718 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 719 if (gw == NULL) 720 return (wn[0].nh); 721 for (int i = 0; i < num_nhops; i++) { 722 if (match_nhop_gw(wn[i].nh, gw)) 723 return (wn[i].nh); 724 } 725 #endif 726 return (NULL); 727 } 728 729 /* 730 * Handles RTM_GET message from routing socket, returning matching rt. 731 * 732 * Returns: 733 * 0 on success, with locked and referenced matching rt in @rt_nrt 734 * errno of failure 735 */ 736 static int 737 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 738 struct rt_msghdr *rtm, struct rib_cmd_info *rc) 739 { 740 RIB_RLOCK_TRACKER; 741 struct rib_head *rnh; 742 struct nhop_object *nh; 743 sa_family_t saf; 744 745 saf = info->rti_info[RTAX_DST]->sa_family; 746 747 rnh = rt_tables_get_rnh(fibnum, saf); 748 if (rnh == NULL) 749 return (EAFNOSUPPORT); 750 751 RIB_RLOCK(rnh); 752 753 /* 754 * By (implicit) convention host route (one without netmask) 755 * means longest-prefix-match request and the route with netmask 756 * means exact-match lookup. 757 * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128 758 * prefixes, use original data to check for the netmask presence. 759 */ 760 if ((rtm->rtm_addrs & RTA_NETMASK) == 0) { 761 /* 762 * Provide longest prefix match for 763 * address lookup (no mask). 764 * 'route -n get addr' 765 */ 766 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( 767 info->rti_info[RTAX_DST], &rnh->head); 768 } else 769 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( 770 info->rti_info[RTAX_DST], 771 info->rti_info[RTAX_NETMASK], &rnh->head); 772 773 if (rc->rc_rt == NULL) { 774 RIB_RUNLOCK(rnh); 775 return (ESRCH); 776 } 777 778 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 779 if (nh == NULL) { 780 RIB_RUNLOCK(rnh); 781 return (ESRCH); 782 } 783 /* 784 * If performing proxied L2 entry insertion, and 785 * the actual PPP host entry is found, perform 786 * another search to retrieve the prefix route of 787 * the local end point of the PPP link. 788 * TODO: move this logic to userland. 789 */ 790 if (rtm->rtm_flags & RTF_ANNOUNCE) { 791 struct sockaddr laddr; 792 793 if (nh->nh_ifp != NULL && 794 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 795 struct ifaddr *ifa; 796 797 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 798 RT_ALL_FIBS); 799 if (ifa != NULL) 800 rt_maskedcopy(ifa->ifa_addr, 801 &laddr, 802 ifa->ifa_netmask); 803 } else 804 rt_maskedcopy(nh->nh_ifa->ifa_addr, 805 &laddr, 806 nh->nh_ifa->ifa_netmask); 807 /* 808 * refactor rt and no lock operation necessary 809 */ 810 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 811 &rnh->head); 812 if (rc->rc_rt == NULL) { 813 RIB_RUNLOCK(rnh); 814 return (ESRCH); 815 } 816 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 817 if (nh == NULL) { 818 RIB_RUNLOCK(rnh); 819 return (ESRCH); 820 } 821 } 822 rc->rc_nh_new = nh; 823 rc->rc_nh_weight = rc->rc_rt->rt_weight; 824 RIB_RUNLOCK(rnh); 825 826 return (0); 827 } 828 829 static void 830 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask) 831 { 832 #ifdef INET 833 if (family == AF_INET) { 834 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 835 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 836 837 bzero(dst4, sizeof(struct sockaddr_in)); 838 bzero(mask4, sizeof(struct sockaddr_in)); 839 840 dst4->sin_family = AF_INET; 841 dst4->sin_len = sizeof(struct sockaddr_in); 842 mask4->sin_family = AF_INET; 843 mask4->sin_len = sizeof(struct sockaddr_in); 844 } 845 #endif 846 #ifdef INET6 847 if (family == AF_INET6) { 848 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 849 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 850 851 bzero(dst6, sizeof(struct sockaddr_in6)); 852 bzero(mask6, sizeof(struct sockaddr_in6)); 853 854 dst6->sin6_family = AF_INET6; 855 dst6->sin6_len = sizeof(struct sockaddr_in6); 856 mask6->sin6_family = AF_INET6; 857 mask6->sin6_len = sizeof(struct sockaddr_in6); 858 } 859 #endif 860 } 861 862 static void 863 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst, 864 struct sockaddr *mask) 865 { 866 #ifdef INET 867 if (dst->sa_family == AF_INET) { 868 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 869 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 870 uint32_t scopeid = 0; 871 rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr, 872 &scopeid); 873 return; 874 } 875 #endif 876 #ifdef INET6 877 if (dst->sa_family == AF_INET6) { 878 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 879 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 880 uint32_t scopeid = 0; 881 rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr, 882 &mask6->sin6_addr, &scopeid); 883 dst6->sin6_scope_id = scopeid; 884 return; 885 } 886 #endif 887 } 888 889 static int 890 update_rtm_from_info(struct rt_addrinfo *info, struct rt_msghdr **prtm, 891 int alloc_len) 892 { 893 struct rt_msghdr *rtm, *orig_rtm = NULL; 894 struct walkarg w; 895 int len; 896 897 rtm = *prtm; 898 /* Check if we need to realloc storage */ 899 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 900 if (len > alloc_len) { 901 struct rt_msghdr *tmp_rtm; 902 903 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 904 if (tmp_rtm == NULL) 905 return (ENOBUFS); 906 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 907 orig_rtm = rtm; 908 rtm = tmp_rtm; 909 alloc_len = len; 910 911 /* 912 * Delay freeing original rtm as info contains 913 * data referencing it. 914 */ 915 } 916 917 w.w_tmem = (caddr_t)rtm; 918 w.w_tmemsize = alloc_len; 919 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 920 rtm->rtm_addrs = info->rti_addrs; 921 922 if (orig_rtm != NULL) 923 free(orig_rtm, M_TEMP); 924 *prtm = rtm; 925 return (0); 926 } 927 928 929 /* 930 * Update sockaddrs, flags, etc in @prtm based on @rc data. 931 * rtm can be reallocated. 932 * 933 * Returns 0 on success, along with pointer to (potentially reallocated) 934 * rtm. 935 * 936 */ 937 static int 938 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, 939 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) 940 { 941 union sockaddr_union saun; 942 struct rt_msghdr *rtm; 943 struct ifnet *ifp; 944 int error; 945 946 rtm = *prtm; 947 union sockaddr_union sa_dst, sa_mask; 948 int family = info->rti_info[RTAX_DST]->sa_family; 949 init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa); 950 export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa); 951 952 info->rti_info[RTAX_DST] = &sa_dst.sa; 953 info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa; 954 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 955 info->rti_info[RTAX_GENMASK] = 0; 956 ifp = nh->nh_ifp; 957 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 958 if (ifp) { 959 info->rti_info[RTAX_IFP] = 960 ifp->if_addr->ifa_addr; 961 error = rtm_get_jailed(info, ifp, nh, 962 &saun, curthread->td_ucred); 963 if (error != 0) 964 return (error); 965 if (ifp->if_flags & IFF_POINTOPOINT) 966 info->rti_info[RTAX_BRD] = 967 nh->nh_ifa->ifa_dstaddr; 968 rtm->rtm_index = ifp->if_index; 969 } else { 970 info->rti_info[RTAX_IFP] = NULL; 971 info->rti_info[RTAX_IFA] = NULL; 972 } 973 } else if (ifp != NULL) 974 rtm->rtm_index = ifp->if_index; 975 976 if ((error = update_rtm_from_info(info, prtm, alloc_len)) != 0) 977 return (error); 978 979 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); 980 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 981 rtm->rtm_flags = RTF_GATEWAY | 982 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 983 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); 984 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; 985 986 return (0); 987 } 988 989 #ifdef ROUTE_MPATH 990 static void 991 save_del_notification(struct rib_cmd_info *rc, void *_cbdata) 992 { 993 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 994 995 if (rc->rc_cmd == RTM_DELETE) 996 *rc_new = *rc; 997 } 998 999 static void 1000 save_add_notification(struct rib_cmd_info *rc, void *_cbdata) 1001 { 1002 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 1003 1004 if (rc->rc_cmd == RTM_ADD) 1005 *rc_new = *rc; 1006 } 1007 #endif 1008 1009 static struct sockaddr * 1010 alloc_sockaddr_aligned(struct linear_buffer *lb, int len) 1011 { 1012 len = roundup2(len, sizeof(uint64_t)); 1013 if (lb->offset + len > lb->size) 1014 return (NULL); 1015 struct sockaddr *sa = (struct sockaddr *)(lb->base + lb->offset); 1016 lb->offset += len; 1017 return (sa); 1018 } 1019 1020 /*ARGSUSED*/ 1021 static int 1022 route_output(struct mbuf *m, struct socket *so, ...) 1023 { 1024 struct rt_msghdr *rtm = NULL; 1025 struct rtentry *rt = NULL; 1026 struct rt_addrinfo info; 1027 struct epoch_tracker et; 1028 #ifdef INET6 1029 struct sockaddr_storage ss; 1030 struct sockaddr_in6 *sin6; 1031 int i, rti_need_deembed = 0; 1032 #endif 1033 int alloc_len = 0, len, error = 0, fibnum; 1034 sa_family_t saf = AF_UNSPEC; 1035 struct rib_cmd_info rc; 1036 struct nhop_object *nh; 1037 1038 fibnum = so->so_fibnum; 1039 #define senderr(e) { error = e; goto flush;} 1040 if (m == NULL || ((m->m_len < sizeof(long)) && 1041 (m = m_pullup(m, sizeof(long))) == NULL)) 1042 return (ENOBUFS); 1043 if ((m->m_flags & M_PKTHDR) == 0) 1044 panic("route_output"); 1045 NET_EPOCH_ENTER(et); 1046 len = m->m_pkthdr.len; 1047 if (len < sizeof(*rtm) || 1048 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 1049 senderr(EINVAL); 1050 1051 /* 1052 * Most of current messages are in range 200-240 bytes, 1053 * minimize possible re-allocation on reply using larger size 1054 * buffer aligned on 1k boundaty. 1055 */ 1056 alloc_len = roundup2(len, 1024); 1057 int total_len = alloc_len + SCRATCH_BUFFER_SIZE; 1058 if ((rtm = malloc(total_len, M_TEMP, M_NOWAIT)) == NULL) 1059 senderr(ENOBUFS); 1060 1061 m_copydata(m, 0, len, (caddr_t)rtm); 1062 bzero(&info, sizeof(info)); 1063 nh = NULL; 1064 struct linear_buffer lb = { 1065 .base = (char *)rtm + alloc_len, 1066 .size = SCRATCH_BUFFER_SIZE, 1067 }; 1068 1069 if (rtm->rtm_version != RTM_VERSION) { 1070 /* Do not touch message since format is unknown */ 1071 free(rtm, M_TEMP); 1072 rtm = NULL; 1073 senderr(EPROTONOSUPPORT); 1074 } 1075 1076 /* 1077 * Starting from here, it is possible 1078 * to alter original message and insert 1079 * caller PID and error value. 1080 */ 1081 1082 if ((error = fill_addrinfo(rtm, len, &lb, fibnum, &info)) != 0) { 1083 senderr(error); 1084 } 1085 /* fill_addringo() embeds scope into IPv6 addresses */ 1086 #ifdef INET6 1087 rti_need_deembed = 1; 1088 #endif 1089 1090 saf = info.rti_info[RTAX_DST]->sa_family; 1091 1092 /* support for new ARP code */ 1093 if (rtm->rtm_flags & RTF_LLDATA) { 1094 error = lla_rt_output(rtm, &info); 1095 goto flush; 1096 } 1097 1098 union sockaddr_union gw_saun; 1099 int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT); 1100 if (blackhole_flags != 0) { 1101 if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT)) 1102 error = fill_blackholeinfo(&info, &gw_saun); 1103 else 1104 error = EINVAL; 1105 if (error != 0) 1106 senderr(error); 1107 } 1108 1109 switch (rtm->rtm_type) { 1110 case RTM_ADD: 1111 case RTM_CHANGE: 1112 if (rtm->rtm_type == RTM_ADD) { 1113 if (info.rti_info[RTAX_GATEWAY] == NULL) 1114 senderr(EINVAL); 1115 } 1116 error = rib_action(fibnum, rtm->rtm_type, &info, &rc); 1117 if (error == 0) { 1118 #ifdef ROUTE_MPATH 1119 if (NH_IS_NHGRP(rc.rc_nh_new) || 1120 (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) { 1121 struct rib_cmd_info rc_simple = {}; 1122 rib_decompose_notification(&rc, 1123 save_add_notification, (void *)&rc_simple); 1124 rc = rc_simple; 1125 } 1126 #endif 1127 nh = rc.rc_nh_new; 1128 rtm->rtm_index = nh->nh_ifp->if_index; 1129 rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh); 1130 } 1131 break; 1132 1133 case RTM_DELETE: 1134 error = rib_action(fibnum, RTM_DELETE, &info, &rc); 1135 if (error == 0) { 1136 #ifdef ROUTE_MPATH 1137 if (NH_IS_NHGRP(rc.rc_nh_old) || 1138 (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) { 1139 struct rib_cmd_info rc_simple = {}; 1140 rib_decompose_notification(&rc, 1141 save_del_notification, (void *)&rc_simple); 1142 rc = rc_simple; 1143 } 1144 #endif 1145 nh = rc.rc_nh_old; 1146 } 1147 break; 1148 1149 case RTM_GET: 1150 error = handle_rtm_get(&info, fibnum, rtm, &rc); 1151 if (error != 0) 1152 senderr(error); 1153 nh = rc.rc_nh_new; 1154 1155 if (!can_export_rte(curthread->td_ucred, 1156 info.rti_info[RTAX_NETMASK] == NULL, 1157 info.rti_info[RTAX_DST])) { 1158 senderr(ESRCH); 1159 } 1160 break; 1161 1162 default: 1163 senderr(EOPNOTSUPP); 1164 } 1165 1166 if (error == 0) { 1167 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); 1168 /* 1169 * Note that some sockaddr pointers may have changed to 1170 * point to memory outsize @rtm. Some may be pointing 1171 * to the on-stack variables. 1172 * Given that, any pointer in @info CANNOT BE USED. 1173 */ 1174 1175 /* 1176 * scopeid deembedding has been performed while 1177 * writing updated rtm in rtsock_msg_buffer(). 1178 * With that in mind, skip deembedding procedure below. 1179 */ 1180 #ifdef INET6 1181 rti_need_deembed = 0; 1182 #endif 1183 } 1184 1185 flush: 1186 NET_EPOCH_EXIT(et); 1187 rt = NULL; 1188 1189 #ifdef INET6 1190 if (rtm != NULL) { 1191 if (rti_need_deembed) { 1192 /* sin6_scope_id is recovered before sending rtm. */ 1193 sin6 = (struct sockaddr_in6 *)&ss; 1194 for (i = 0; i < RTAX_MAX; i++) { 1195 if (info.rti_info[i] == NULL) 1196 continue; 1197 if (info.rti_info[i]->sa_family != AF_INET6) 1198 continue; 1199 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 1200 if (sa6_recoverscope(sin6) == 0) 1201 bcopy(sin6, info.rti_info[i], 1202 sizeof(*sin6)); 1203 } 1204 if (update_rtm_from_info(&info, &rtm, alloc_len) != 0) { 1205 if (error != 0) 1206 error = ENOBUFS; 1207 } 1208 } 1209 } 1210 #endif 1211 send_rtm_reply(so, rtm, m, saf, fibnum, error); 1212 1213 return (error); 1214 } 1215 1216 /* 1217 * Sends the prepared reply message in @rtm to all rtsock clients. 1218 * Frees @m and @rtm. 1219 * 1220 */ 1221 static void 1222 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1223 sa_family_t saf, u_int fibnum, int rtm_errno) 1224 { 1225 struct rawcb *rp = NULL; 1226 1227 /* 1228 * Check to see if we don't want our own messages. 1229 */ 1230 if ((so->so_options & SO_USELOOPBACK) == 0) { 1231 if (V_route_cb.any_count <= 1) { 1232 if (rtm != NULL) 1233 free(rtm, M_TEMP); 1234 m_freem(m); 1235 return; 1236 } 1237 /* There is another listener, so construct message */ 1238 rp = sotorawcb(so); 1239 } 1240 1241 if (rtm != NULL) { 1242 if (rtm_errno!= 0) 1243 rtm->rtm_errno = rtm_errno; 1244 else 1245 rtm->rtm_flags |= RTF_DONE; 1246 1247 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1248 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1249 m_freem(m); 1250 m = NULL; 1251 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1252 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1253 1254 free(rtm, M_TEMP); 1255 } 1256 if (m != NULL) { 1257 M_SETFIB(m, fibnum); 1258 m->m_flags |= RTS_FILTER_FIB; 1259 if (rp) { 1260 /* 1261 * XXX insure we don't get a copy by 1262 * invalidating our protocol 1263 */ 1264 unsigned short family = rp->rcb_proto.sp_family; 1265 rp->rcb_proto.sp_family = 0; 1266 rt_dispatch(m, saf); 1267 rp->rcb_proto.sp_family = family; 1268 } else 1269 rt_dispatch(m, saf); 1270 } 1271 } 1272 1273 static void 1274 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, 1275 struct rt_metrics *out) 1276 { 1277 1278 bzero(out, sizeof(*out)); 1279 out->rmx_mtu = nh->nh_mtu; 1280 out->rmx_weight = rt->rt_weight; 1281 out->rmx_nhidx = nhop_get_idx(nh); 1282 /* Kernel -> userland timebase conversion. */ 1283 out->rmx_expire = rt->rt_expire ? 1284 rt->rt_expire - time_uptime + time_second : 0; 1285 } 1286 1287 /* 1288 * Extract the addresses of the passed sockaddrs. 1289 * Do a little sanity checking so as to avoid bad memory references. 1290 * This data is derived straight from userland. 1291 */ 1292 static int 1293 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1294 { 1295 struct sockaddr *sa; 1296 int i; 1297 1298 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1299 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1300 continue; 1301 sa = (struct sockaddr *)cp; 1302 /* 1303 * It won't fit. 1304 */ 1305 if (cp + sa->sa_len > cplim) 1306 return (EINVAL); 1307 /* 1308 * there are no more.. quit now 1309 * If there are more bits, they are in error. 1310 * I've seen this. route(1) can evidently generate these. 1311 * This causes kernel to core dump. 1312 * for compatibility, If we see this, point to a safe address. 1313 */ 1314 if (sa->sa_len == 0) { 1315 rtinfo->rti_info[i] = &sa_zero; 1316 return (0); /* should be EINVAL but for compat */ 1317 } 1318 /* accept it */ 1319 #ifdef INET6 1320 if (sa->sa_family == AF_INET6) 1321 sa6_embedscope((struct sockaddr_in6 *)sa, 1322 V_ip6_use_defzone); 1323 #endif 1324 rtinfo->rti_info[i] = sa; 1325 cp += SA_SIZE(sa); 1326 } 1327 return (0); 1328 } 1329 1330 #ifdef INET 1331 static inline void 1332 fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr) 1333 { 1334 1335 const struct sockaddr_in nsin = { 1336 .sin_family = AF_INET, 1337 .sin_len = sizeof(struct sockaddr_in), 1338 .sin_addr = addr, 1339 }; 1340 *sin = nsin; 1341 } 1342 #endif 1343 1344 #ifdef INET6 1345 static inline void 1346 fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6, 1347 uint32_t scopeid) 1348 { 1349 1350 const struct sockaddr_in6 nsin6 = { 1351 .sin6_family = AF_INET6, 1352 .sin6_len = sizeof(struct sockaddr_in6), 1353 .sin6_addr = *addr6, 1354 .sin6_scope_id = scopeid, 1355 }; 1356 *sin6 = nsin6; 1357 } 1358 #endif 1359 1360 /* 1361 * Checks if gateway is suitable for lltable operations. 1362 * Lltable code requires AF_LINK gateway with ifindex 1363 * and mac address specified. 1364 * Returns 0 on success. 1365 */ 1366 static int 1367 cleanup_xaddrs_lladdr(struct rt_addrinfo *info) 1368 { 1369 struct sockaddr_dl *sdl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY]; 1370 1371 if (sdl->sdl_family != AF_LINK) 1372 return (EINVAL); 1373 1374 if (sdl->sdl_index == 0) 1375 return (EINVAL); 1376 1377 if (offsetof(struct sockaddr_dl, sdl_data) + sdl->sdl_nlen + sdl->sdl_alen > sdl->sdl_len) 1378 return (EINVAL); 1379 1380 return (0); 1381 } 1382 1383 static int 1384 cleanup_xaddrs_gateway(struct rt_addrinfo *info, struct linear_buffer *lb) 1385 { 1386 struct sockaddr *gw = info->rti_info[RTAX_GATEWAY]; 1387 struct sockaddr *sa; 1388 1389 if (info->rti_flags & RTF_LLDATA) 1390 return (cleanup_xaddrs_lladdr(info)); 1391 1392 switch (gw->sa_family) { 1393 #ifdef INET 1394 case AF_INET: 1395 { 1396 struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw; 1397 1398 /* Ensure reads do not go beyoud SA boundary */ 1399 if (SA_SIZE(gw) < offsetof(struct sockaddr_in, sin_zero)) { 1400 RTS_PID_PRINTF("gateway sin_len too small: %d", gw->sa_len); 1401 return (EINVAL); 1402 } 1403 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_in)); 1404 if (sa == NULL) 1405 return (ENOBUFS); 1406 fill_sockaddr_inet((struct sockaddr_in *)sa, gw_sin->sin_addr); 1407 info->rti_info[RTAX_GATEWAY] = sa; 1408 } 1409 break; 1410 #endif 1411 #ifdef INET6 1412 case AF_INET6: 1413 { 1414 struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw; 1415 if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) { 1416 RTS_PID_PRINTF("gateway sin6_len too small: %d", gw->sa_len); 1417 return (EINVAL); 1418 } 1419 fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0); 1420 break; 1421 } 1422 #endif 1423 case AF_LINK: 1424 { 1425 struct sockaddr_dl *gw_sdl; 1426 1427 size_t sdl_min_len = offsetof(struct sockaddr_dl, sdl_data); 1428 gw_sdl = (struct sockaddr_dl *)gw; 1429 if (gw_sdl->sdl_len < sdl_min_len) { 1430 RTS_PID_PRINTF("gateway sdl_len too small: %d", gw_sdl->sdl_len); 1431 return (EINVAL); 1432 } 1433 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_dl_short)); 1434 if (sa == NULL) 1435 return (ENOBUFS); 1436 1437 const struct sockaddr_dl_short sdl = { 1438 .sdl_family = AF_LINK, 1439 .sdl_len = sizeof(struct sockaddr_dl_short), 1440 .sdl_index = gw_sdl->sdl_index, 1441 }; 1442 *((struct sockaddr_dl_short *)sa) = sdl; 1443 info->rti_info[RTAX_GATEWAY] = sa; 1444 break; 1445 } 1446 } 1447 1448 return (0); 1449 } 1450 1451 static void 1452 remove_netmask(struct rt_addrinfo *info) 1453 { 1454 info->rti_info[RTAX_NETMASK] = NULL; 1455 info->rti_flags |= RTF_HOST; 1456 info->rti_addrs &= ~RTA_NETMASK; 1457 } 1458 1459 #ifdef INET 1460 static int 1461 cleanup_xaddrs_inet(struct rt_addrinfo *info, struct linear_buffer *lb) 1462 { 1463 struct sockaddr_in *dst_sa, *mask_sa; 1464 const int sa_len = sizeof(struct sockaddr_in); 1465 struct in_addr dst, mask; 1466 1467 /* Check & fixup dst/netmask combination first */ 1468 dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST]; 1469 mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK]; 1470 1471 /* Ensure reads do not go beyound the buffer size */ 1472 if (SA_SIZE(dst_sa) < offsetof(struct sockaddr_in, sin_zero)) 1473 return (EINVAL); 1474 1475 if ((mask_sa != NULL) && mask_sa->sin_len < sizeof(struct sockaddr_in)) { 1476 /* 1477 * Some older routing software encode mask length into the 1478 * sin_len, thus resulting in "truncated" sockaddr. 1479 */ 1480 int len = mask_sa->sin_len - offsetof(struct sockaddr_in, sin_addr); 1481 if (len >= 0) { 1482 mask.s_addr = 0; 1483 if (len > sizeof(struct in_addr)) 1484 len = sizeof(struct in_addr); 1485 memcpy(&mask, &mask_sa->sin_addr, len); 1486 } else { 1487 RTS_PID_PRINTF("prefix mask sin_len too small: %d", mask_sa->sin_len); 1488 return (EINVAL); 1489 } 1490 } else 1491 mask.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST; 1492 1493 dst.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr)); 1494 1495 /* Construct new "clean" dst/mask sockaddresses */ 1496 if ((dst_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1497 return (ENOBUFS); 1498 fill_sockaddr_inet(dst_sa, dst); 1499 info->rti_info[RTAX_DST] = (struct sockaddr *)dst_sa; 1500 1501 if (mask.s_addr != INADDR_BROADCAST) { 1502 if ((mask_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1503 return (ENOBUFS); 1504 fill_sockaddr_inet(mask_sa, mask); 1505 info->rti_info[RTAX_NETMASK] = (struct sockaddr *)mask_sa; 1506 info->rti_flags &= ~RTF_HOST; 1507 } else 1508 remove_netmask(info); 1509 1510 /* Check gateway */ 1511 if (info->rti_info[RTAX_GATEWAY] != NULL) 1512 return (cleanup_xaddrs_gateway(info, lb)); 1513 1514 return (0); 1515 } 1516 #endif 1517 1518 #ifdef INET6 1519 static int 1520 cleanup_xaddrs_inet6(struct rt_addrinfo *info, struct linear_buffer *lb) 1521 { 1522 struct sockaddr *sa; 1523 struct sockaddr_in6 *dst_sa, *mask_sa; 1524 struct in6_addr mask, *dst; 1525 const int sa_len = sizeof(struct sockaddr_in6); 1526 1527 /* Check & fixup dst/netmask combination first */ 1528 dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST]; 1529 mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK]; 1530 1531 if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1532 RTS_PID_PRINTF("prefix dst sin6_len too small: %d", dst_sa->sin6_len); 1533 return (EINVAL); 1534 } 1535 1536 if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1537 /* 1538 * Some older routing software encode mask length into the 1539 * sin6_len, thus resulting in "truncated" sockaddr. 1540 */ 1541 int len = mask_sa->sin6_len - offsetof(struct sockaddr_in6, sin6_addr); 1542 if (len >= 0) { 1543 bzero(&mask, sizeof(mask)); 1544 if (len > sizeof(struct in6_addr)) 1545 len = sizeof(struct in6_addr); 1546 memcpy(&mask, &mask_sa->sin6_addr, len); 1547 } else { 1548 RTS_PID_PRINTF("rtsock: prefix mask sin6_len too small: %d", mask_sa->sin6_len); 1549 return (EINVAL); 1550 } 1551 } else 1552 mask = mask_sa ? mask_sa->sin6_addr : in6mask128; 1553 1554 dst = &dst_sa->sin6_addr; 1555 IN6_MASK_ADDR(dst, &mask); 1556 1557 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1558 return (ENOBUFS); 1559 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, dst, 0); 1560 info->rti_info[RTAX_DST] = sa; 1561 1562 if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) { 1563 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1564 return (ENOBUFS); 1565 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, &mask, 0); 1566 info->rti_info[RTAX_NETMASK] = sa; 1567 info->rti_flags &= ~RTF_HOST; 1568 } else 1569 remove_netmask(info); 1570 1571 /* Check gateway */ 1572 if (info->rti_info[RTAX_GATEWAY] != NULL) 1573 return (cleanup_xaddrs_gateway(info, lb)); 1574 1575 return (0); 1576 } 1577 #endif 1578 1579 static int 1580 cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb) 1581 { 1582 int error = EAFNOSUPPORT; 1583 1584 if (info->rti_info[RTAX_DST] == NULL) 1585 return (EINVAL); 1586 1587 if (info->rti_flags & RTF_LLDATA) { 1588 /* 1589 * arp(8)/ndp(8) sends RTA_NETMASK for the associated 1590 * prefix along with the actual address in RTA_DST. 1591 * Remove netmask to avoid unnecessary address masking. 1592 */ 1593 remove_netmask(info); 1594 } 1595 1596 switch (info->rti_info[RTAX_DST]->sa_family) { 1597 #ifdef INET 1598 case AF_INET: 1599 error = cleanup_xaddrs_inet(info, lb); 1600 break; 1601 #endif 1602 #ifdef INET6 1603 case AF_INET6: 1604 error = cleanup_xaddrs_inet6(info, lb); 1605 break; 1606 #endif 1607 } 1608 1609 return (error); 1610 } 1611 1612 /* 1613 * Fill in @dmask with valid netmask leaving original @smask 1614 * intact. Mostly used with radix netmasks. 1615 */ 1616 struct sockaddr * 1617 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1618 struct sockaddr_storage *dmask) 1619 { 1620 if (dst == NULL || smask == NULL) 1621 return (NULL); 1622 1623 memset(dmask, 0, dst->sa_len); 1624 memcpy(dmask, smask, smask->sa_len); 1625 dmask->ss_len = dst->sa_len; 1626 dmask->ss_family = dst->sa_family; 1627 1628 return ((struct sockaddr *)dmask); 1629 } 1630 1631 /* 1632 * Writes information related to @rtinfo object to newly-allocated mbuf. 1633 * Assumes MCLBYTES is enough to construct any message. 1634 * Used for OS notifications of vaious events (if/ifa announces,etc) 1635 * 1636 * Returns allocated mbuf or NULL on failure. 1637 */ 1638 static struct mbuf * 1639 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1640 { 1641 struct sockaddr_storage ss; 1642 struct rt_msghdr *rtm; 1643 struct mbuf *m; 1644 int i; 1645 struct sockaddr *sa; 1646 #ifdef INET6 1647 struct sockaddr_in6 *sin6; 1648 #endif 1649 int len, dlen; 1650 1651 switch (type) { 1652 case RTM_DELADDR: 1653 case RTM_NEWADDR: 1654 len = sizeof(struct ifa_msghdr); 1655 break; 1656 1657 case RTM_DELMADDR: 1658 case RTM_NEWMADDR: 1659 len = sizeof(struct ifma_msghdr); 1660 break; 1661 1662 case RTM_IFINFO: 1663 len = sizeof(struct if_msghdr); 1664 break; 1665 1666 case RTM_IFANNOUNCE: 1667 case RTM_IEEE80211: 1668 len = sizeof(struct if_announcemsghdr); 1669 break; 1670 1671 default: 1672 len = sizeof(struct rt_msghdr); 1673 } 1674 1675 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1676 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1677 if (len > MHLEN) 1678 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1679 else 1680 m = m_gethdr(M_NOWAIT, MT_DATA); 1681 if (m == NULL) 1682 return (m); 1683 1684 m->m_pkthdr.len = m->m_len = len; 1685 rtm = mtod(m, struct rt_msghdr *); 1686 bzero((caddr_t)rtm, len); 1687 for (i = 0; i < RTAX_MAX; i++) { 1688 if ((sa = rtinfo->rti_info[i]) == NULL) 1689 continue; 1690 rtinfo->rti_addrs |= (1 << i); 1691 1692 dlen = SA_SIZE(sa); 1693 KASSERT(dlen <= sizeof(ss), 1694 ("%s: sockaddr size overflow", __func__)); 1695 bzero(&ss, sizeof(ss)); 1696 bcopy(sa, &ss, sa->sa_len); 1697 sa = (struct sockaddr *)&ss; 1698 #ifdef INET6 1699 if (sa->sa_family == AF_INET6) { 1700 sin6 = (struct sockaddr_in6 *)sa; 1701 (void)sa6_recoverscope(sin6); 1702 } 1703 #endif 1704 m_copyback(m, len, dlen, (caddr_t)sa); 1705 len += dlen; 1706 } 1707 if (m->m_pkthdr.len != len) { 1708 m_freem(m); 1709 return (NULL); 1710 } 1711 rtm->rtm_msglen = len; 1712 rtm->rtm_version = RTM_VERSION; 1713 rtm->rtm_type = type; 1714 return (m); 1715 } 1716 1717 /* 1718 * Writes information related to @rtinfo object to preallocated buffer. 1719 * Stores needed size in @plen. If @w is NULL, calculates size without 1720 * writing. 1721 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1722 * 1723 * Returns 0 on success. 1724 * 1725 */ 1726 static int 1727 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1728 { 1729 struct sockaddr_storage ss; 1730 int len, buflen = 0, dlen, i; 1731 caddr_t cp = NULL; 1732 struct rt_msghdr *rtm = NULL; 1733 #ifdef INET6 1734 struct sockaddr_in6 *sin6; 1735 #endif 1736 #ifdef COMPAT_FREEBSD32 1737 bool compat32 = false; 1738 #endif 1739 1740 switch (type) { 1741 case RTM_DELADDR: 1742 case RTM_NEWADDR: 1743 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1744 #ifdef COMPAT_FREEBSD32 1745 if (w->w_req->flags & SCTL_MASK32) { 1746 len = sizeof(struct ifa_msghdrl32); 1747 compat32 = true; 1748 } else 1749 #endif 1750 len = sizeof(struct ifa_msghdrl); 1751 } else 1752 len = sizeof(struct ifa_msghdr); 1753 break; 1754 1755 case RTM_IFINFO: 1756 #ifdef COMPAT_FREEBSD32 1757 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1758 if (w->w_op == NET_RT_IFLISTL) 1759 len = sizeof(struct if_msghdrl32); 1760 else 1761 len = sizeof(struct if_msghdr32); 1762 compat32 = true; 1763 break; 1764 } 1765 #endif 1766 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1767 len = sizeof(struct if_msghdrl); 1768 else 1769 len = sizeof(struct if_msghdr); 1770 break; 1771 1772 case RTM_NEWMADDR: 1773 len = sizeof(struct ifma_msghdr); 1774 break; 1775 1776 default: 1777 len = sizeof(struct rt_msghdr); 1778 } 1779 1780 if (w != NULL) { 1781 rtm = (struct rt_msghdr *)w->w_tmem; 1782 buflen = w->w_tmemsize - len; 1783 cp = (caddr_t)w->w_tmem + len; 1784 } 1785 1786 rtinfo->rti_addrs = 0; 1787 for (i = 0; i < RTAX_MAX; i++) { 1788 struct sockaddr *sa; 1789 1790 if ((sa = rtinfo->rti_info[i]) == NULL) 1791 continue; 1792 rtinfo->rti_addrs |= (1 << i); 1793 #ifdef COMPAT_FREEBSD32 1794 if (compat32) 1795 dlen = SA_SIZE32(sa); 1796 else 1797 #endif 1798 dlen = SA_SIZE(sa); 1799 if (cp != NULL && buflen >= dlen) { 1800 KASSERT(dlen <= sizeof(ss), 1801 ("%s: sockaddr size overflow", __func__)); 1802 bzero(&ss, sizeof(ss)); 1803 bcopy(sa, &ss, sa->sa_len); 1804 sa = (struct sockaddr *)&ss; 1805 #ifdef INET6 1806 if (sa->sa_family == AF_INET6) { 1807 sin6 = (struct sockaddr_in6 *)sa; 1808 (void)sa6_recoverscope(sin6); 1809 } 1810 #endif 1811 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1812 cp += dlen; 1813 buflen -= dlen; 1814 } else if (cp != NULL) { 1815 /* 1816 * Buffer too small. Count needed size 1817 * and return with error. 1818 */ 1819 cp = NULL; 1820 } 1821 1822 len += dlen; 1823 } 1824 1825 if (cp != NULL) { 1826 dlen = ALIGN(len) - len; 1827 if (buflen < dlen) 1828 cp = NULL; 1829 else { 1830 bzero(cp, dlen); 1831 cp += dlen; 1832 buflen -= dlen; 1833 } 1834 } 1835 len = ALIGN(len); 1836 1837 if (cp != NULL) { 1838 /* fill header iff buffer is large enough */ 1839 rtm->rtm_version = RTM_VERSION; 1840 rtm->rtm_type = type; 1841 rtm->rtm_msglen = len; 1842 } 1843 1844 *plen = len; 1845 1846 if (w != NULL && cp == NULL) 1847 return (ENOBUFS); 1848 1849 return (0); 1850 } 1851 1852 /* 1853 * This routine is called to generate a message from the routing 1854 * socket indicating that a redirect has occurred, a routing lookup 1855 * has failed, or that a protocol has detected timeouts to a particular 1856 * destination. 1857 */ 1858 void 1859 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1860 int fibnum) 1861 { 1862 struct rt_msghdr *rtm; 1863 struct mbuf *m; 1864 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1865 1866 if (V_route_cb.any_count == 0) 1867 return; 1868 m = rtsock_msg_mbuf(type, rtinfo); 1869 if (m == NULL) 1870 return; 1871 1872 if (fibnum != RT_ALL_FIBS) { 1873 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1874 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1875 M_SETFIB(m, fibnum); 1876 m->m_flags |= RTS_FILTER_FIB; 1877 } 1878 1879 rtm = mtod(m, struct rt_msghdr *); 1880 rtm->rtm_flags = RTF_DONE | flags; 1881 rtm->rtm_errno = error; 1882 rtm->rtm_addrs = rtinfo->rti_addrs; 1883 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1884 } 1885 1886 void 1887 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1888 { 1889 1890 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1891 } 1892 1893 /* 1894 * This routine is called to generate a message from the routing 1895 * socket indicating that the status of a network interface has changed. 1896 */ 1897 void 1898 rt_ifmsg(struct ifnet *ifp) 1899 { 1900 struct if_msghdr *ifm; 1901 struct mbuf *m; 1902 struct rt_addrinfo info; 1903 1904 if (V_route_cb.any_count == 0) 1905 return; 1906 bzero((caddr_t)&info, sizeof(info)); 1907 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1908 if (m == NULL) 1909 return; 1910 ifm = mtod(m, struct if_msghdr *); 1911 ifm->ifm_index = ifp->if_index; 1912 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1913 if_data_copy(ifp, &ifm->ifm_data); 1914 ifm->ifm_addrs = 0; 1915 rt_dispatch(m, AF_UNSPEC); 1916 } 1917 1918 /* 1919 * Announce interface address arrival/withdraw. 1920 * Please do not call directly, use rt_addrmsg(). 1921 * Assume input data to be valid. 1922 * Returns 0 on success. 1923 */ 1924 int 1925 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1926 { 1927 struct rt_addrinfo info; 1928 struct sockaddr *sa; 1929 int ncmd; 1930 struct mbuf *m; 1931 struct ifa_msghdr *ifam; 1932 struct ifnet *ifp = ifa->ifa_ifp; 1933 struct sockaddr_storage ss; 1934 1935 if (V_route_cb.any_count == 0) 1936 return (0); 1937 1938 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1939 1940 bzero((caddr_t)&info, sizeof(info)); 1941 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1942 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1943 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1944 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 1945 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1946 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1947 return (ENOBUFS); 1948 ifam = mtod(m, struct ifa_msghdr *); 1949 ifam->ifam_index = ifp->if_index; 1950 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1951 ifam->ifam_flags = ifa->ifa_flags; 1952 ifam->ifam_addrs = info.rti_addrs; 1953 1954 if (fibnum != RT_ALL_FIBS) { 1955 M_SETFIB(m, fibnum); 1956 m->m_flags |= RTS_FILTER_FIB; 1957 } 1958 1959 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1960 1961 return (0); 1962 } 1963 1964 /* 1965 * Announce route addition/removal to rtsock based on @rt data. 1966 * Callers are advives to use rt_routemsg() instead of using this 1967 * function directly. 1968 * Assume @rt data is consistent. 1969 * 1970 * Returns 0 on success. 1971 */ 1972 int 1973 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh, 1974 int fibnum) 1975 { 1976 union sockaddr_union dst, mask; 1977 struct rt_addrinfo info; 1978 1979 if (V_route_cb.any_count == 0) 1980 return (0); 1981 1982 int family = rt_get_family(rt); 1983 init_sockaddrs_family(family, &dst.sa, &mask.sa); 1984 export_rtaddrs(rt, &dst.sa, &mask.sa); 1985 1986 bzero((caddr_t)&info, sizeof(info)); 1987 info.rti_info[RTAX_DST] = &dst.sa; 1988 info.rti_info[RTAX_NETMASK] = &mask.sa; 1989 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 1990 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); 1991 info.rti_ifp = nh->nh_ifp; 1992 1993 return (rtsock_routemsg_info(cmd, &info, fibnum)); 1994 } 1995 1996 int 1997 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 1998 { 1999 struct rt_msghdr *rtm; 2000 struct sockaddr *sa; 2001 struct mbuf *m; 2002 2003 if (V_route_cb.any_count == 0) 2004 return (0); 2005 2006 if (info->rti_flags & RTF_HOST) 2007 info->rti_info[RTAX_NETMASK] = NULL; 2008 2009 m = rtsock_msg_mbuf(cmd, info); 2010 if (m == NULL) 2011 return (ENOBUFS); 2012 2013 if (fibnum != RT_ALL_FIBS) { 2014 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 2015 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 2016 M_SETFIB(m, fibnum); 2017 m->m_flags |= RTS_FILTER_FIB; 2018 } 2019 2020 rtm = mtod(m, struct rt_msghdr *); 2021 rtm->rtm_addrs = info->rti_addrs; 2022 if (info->rti_ifp != NULL) 2023 rtm->rtm_index = info->rti_ifp->if_index; 2024 /* Add RTF_DONE to indicate command 'completion' required by API */ 2025 info->rti_flags |= RTF_DONE; 2026 /* Reported routes has to be up */ 2027 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 2028 info->rti_flags |= RTF_UP; 2029 rtm->rtm_flags = info->rti_flags; 2030 2031 sa = info->rti_info[RTAX_DST]; 2032 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 2033 2034 return (0); 2035 } 2036 2037 /* 2038 * This is the analogue to the rt_newaddrmsg which performs the same 2039 * function but for multicast group memberhips. This is easier since 2040 * there is no route state to worry about. 2041 */ 2042 void 2043 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 2044 { 2045 struct rt_addrinfo info; 2046 struct mbuf *m = NULL; 2047 struct ifnet *ifp = ifma->ifma_ifp; 2048 struct ifma_msghdr *ifmam; 2049 2050 if (V_route_cb.any_count == 0) 2051 return; 2052 2053 bzero((caddr_t)&info, sizeof(info)); 2054 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2055 if (ifp && ifp->if_addr) 2056 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 2057 else 2058 info.rti_info[RTAX_IFP] = NULL; 2059 /* 2060 * If a link-layer address is present, present it as a ``gateway'' 2061 * (similarly to how ARP entries, e.g., are presented). 2062 */ 2063 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 2064 m = rtsock_msg_mbuf(cmd, &info); 2065 if (m == NULL) 2066 return; 2067 ifmam = mtod(m, struct ifma_msghdr *); 2068 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 2069 __func__)); 2070 ifmam->ifmam_index = ifp->if_index; 2071 ifmam->ifmam_addrs = info.rti_addrs; 2072 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 2073 } 2074 2075 static struct mbuf * 2076 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 2077 struct rt_addrinfo *info) 2078 { 2079 struct if_announcemsghdr *ifan; 2080 struct mbuf *m; 2081 2082 if (V_route_cb.any_count == 0) 2083 return NULL; 2084 bzero((caddr_t)info, sizeof(*info)); 2085 m = rtsock_msg_mbuf(type, info); 2086 if (m != NULL) { 2087 ifan = mtod(m, struct if_announcemsghdr *); 2088 ifan->ifan_index = ifp->if_index; 2089 strlcpy(ifan->ifan_name, ifp->if_xname, 2090 sizeof(ifan->ifan_name)); 2091 ifan->ifan_what = what; 2092 } 2093 return m; 2094 } 2095 2096 /* 2097 * This is called to generate routing socket messages indicating 2098 * IEEE80211 wireless events. 2099 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 2100 */ 2101 void 2102 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 2103 { 2104 struct mbuf *m; 2105 struct rt_addrinfo info; 2106 2107 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 2108 if (m != NULL) { 2109 /* 2110 * Append the ieee80211 data. Try to stick it in the 2111 * mbuf containing the ifannounce msg; otherwise allocate 2112 * a new mbuf and append. 2113 * 2114 * NB: we assume m is a single mbuf. 2115 */ 2116 if (data_len > M_TRAILINGSPACE(m)) { 2117 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 2118 if (n == NULL) { 2119 m_freem(m); 2120 return; 2121 } 2122 bcopy(data, mtod(n, void *), data_len); 2123 n->m_len = data_len; 2124 m->m_next = n; 2125 } else if (data_len > 0) { 2126 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 2127 m->m_len += data_len; 2128 } 2129 if (m->m_flags & M_PKTHDR) 2130 m->m_pkthdr.len += data_len; 2131 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 2132 rt_dispatch(m, AF_UNSPEC); 2133 } 2134 } 2135 2136 /* 2137 * This is called to generate routing socket messages indicating 2138 * network interface arrival and departure. 2139 */ 2140 void 2141 rt_ifannouncemsg(struct ifnet *ifp, int what) 2142 { 2143 struct mbuf *m; 2144 struct rt_addrinfo info; 2145 2146 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 2147 if (m != NULL) 2148 rt_dispatch(m, AF_UNSPEC); 2149 } 2150 2151 static void 2152 rt_dispatch(struct mbuf *m, sa_family_t saf) 2153 { 2154 struct m_tag *tag; 2155 2156 /* 2157 * Preserve the family from the sockaddr, if any, in an m_tag for 2158 * use when injecting the mbuf into the routing socket buffer from 2159 * the netisr. 2160 */ 2161 if (saf != AF_UNSPEC) { 2162 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 2163 M_NOWAIT); 2164 if (tag == NULL) { 2165 m_freem(m); 2166 return; 2167 } 2168 *(unsigned short *)(tag + 1) = saf; 2169 m_tag_prepend(m, tag); 2170 } 2171 #ifdef VIMAGE 2172 if (V_loif) 2173 m->m_pkthdr.rcvif = V_loif; 2174 else { 2175 m_freem(m); 2176 return; 2177 } 2178 #endif 2179 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 2180 } 2181 2182 /* 2183 * Checks if rte can be exported w.r.t jails/vnets. 2184 * 2185 * Returns true if it can, false otherwise. 2186 */ 2187 static bool 2188 can_export_rte(struct ucred *td_ucred, bool rt_is_host, 2189 const struct sockaddr *rt_dst) 2190 { 2191 2192 if ((!rt_is_host) ? jailed_without_vnet(td_ucred) 2193 : prison_if(td_ucred, rt_dst) != 0) 2194 return (false); 2195 return (true); 2196 } 2197 2198 2199 /* 2200 * This is used in dumping the kernel table via sysctl(). 2201 */ 2202 static int 2203 sysctl_dumpentry(struct rtentry *rt, void *vw) 2204 { 2205 struct walkarg *w = vw; 2206 struct nhop_object *nh; 2207 int error = 0; 2208 2209 NET_EPOCH_ASSERT(); 2210 2211 export_rtaddrs(rt, w->dst, w->mask); 2212 if (!can_export_rte(w->w_req->td->td_ucred, rt_is_host(rt), w->dst)) 2213 return (0); 2214 nh = rt_get_raw_nhop(rt); 2215 #ifdef ROUTE_MPATH 2216 if (NH_IS_NHGRP(nh)) { 2217 struct weightened_nhop *wn; 2218 uint32_t num_nhops; 2219 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 2220 for (int i = 0; i < num_nhops; i++) { 2221 error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w); 2222 if (error != 0) 2223 return (error); 2224 } 2225 } else 2226 #endif 2227 error = sysctl_dumpnhop(rt, nh, rt->rt_weight, w); 2228 2229 return (0); 2230 } 2231 2232 2233 static int 2234 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, 2235 struct walkarg *w) 2236 { 2237 struct rt_addrinfo info; 2238 int error = 0, size; 2239 uint32_t rtflags; 2240 2241 rtflags = nhop_get_rtflags(nh); 2242 2243 if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg)) 2244 return (0); 2245 2246 bzero((caddr_t)&info, sizeof(info)); 2247 info.rti_info[RTAX_DST] = w->dst; 2248 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2249 info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask; 2250 info.rti_info[RTAX_GENMASK] = 0; 2251 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 2252 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 2253 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 2254 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 2255 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 2256 } 2257 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 2258 return (error); 2259 if (w->w_req && w->w_tmem) { 2260 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 2261 2262 bzero(&rtm->rtm_index, 2263 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 2264 2265 /* 2266 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags) 2267 * and RTF_UP (if entry is linked, which is always true here). 2268 * Given that, use nhop rtflags & add RTF_UP. 2269 */ 2270 rtm->rtm_flags = rtflags | RTF_UP; 2271 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 2272 rtm->rtm_flags = RTF_GATEWAY | 2273 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 2274 rt_getmetrics(rt, nh, &rtm->rtm_rmx); 2275 rtm->rtm_rmx.rmx_weight = weight; 2276 rtm->rtm_index = nh->nh_ifp->if_index; 2277 rtm->rtm_addrs = info.rti_addrs; 2278 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 2279 return (error); 2280 } 2281 return (error); 2282 } 2283 2284 static int 2285 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 2286 struct rt_addrinfo *info, struct walkarg *w, int len) 2287 { 2288 struct if_msghdrl *ifm; 2289 struct if_data *ifd; 2290 2291 ifm = (struct if_msghdrl *)w->w_tmem; 2292 2293 #ifdef COMPAT_FREEBSD32 2294 if (w->w_req->flags & SCTL_MASK32) { 2295 struct if_msghdrl32 *ifm32; 2296 2297 ifm32 = (struct if_msghdrl32 *)ifm; 2298 ifm32->ifm_addrs = info->rti_addrs; 2299 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2300 ifm32->ifm_index = ifp->if_index; 2301 ifm32->_ifm_spare1 = 0; 2302 ifm32->ifm_len = sizeof(*ifm32); 2303 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 2304 ifm32->_ifm_spare2 = 0; 2305 ifd = &ifm32->ifm_data; 2306 } else 2307 #endif 2308 { 2309 ifm->ifm_addrs = info->rti_addrs; 2310 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2311 ifm->ifm_index = ifp->if_index; 2312 ifm->_ifm_spare1 = 0; 2313 ifm->ifm_len = sizeof(*ifm); 2314 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 2315 ifm->_ifm_spare2 = 0; 2316 ifd = &ifm->ifm_data; 2317 } 2318 2319 memcpy(ifd, src_ifd, sizeof(*ifd)); 2320 2321 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2322 } 2323 2324 static int 2325 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 2326 struct rt_addrinfo *info, struct walkarg *w, int len) 2327 { 2328 struct if_msghdr *ifm; 2329 struct if_data *ifd; 2330 2331 ifm = (struct if_msghdr *)w->w_tmem; 2332 2333 #ifdef COMPAT_FREEBSD32 2334 if (w->w_req->flags & SCTL_MASK32) { 2335 struct if_msghdr32 *ifm32; 2336 2337 ifm32 = (struct if_msghdr32 *)ifm; 2338 ifm32->ifm_addrs = info->rti_addrs; 2339 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2340 ifm32->ifm_index = ifp->if_index; 2341 ifm32->_ifm_spare1 = 0; 2342 ifd = &ifm32->ifm_data; 2343 } else 2344 #endif 2345 { 2346 ifm->ifm_addrs = info->rti_addrs; 2347 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2348 ifm->ifm_index = ifp->if_index; 2349 ifm->_ifm_spare1 = 0; 2350 ifd = &ifm->ifm_data; 2351 } 2352 2353 memcpy(ifd, src_ifd, sizeof(*ifd)); 2354 2355 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2356 } 2357 2358 static int 2359 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 2360 struct walkarg *w, int len) 2361 { 2362 struct ifa_msghdrl *ifam; 2363 struct if_data *ifd; 2364 2365 ifam = (struct ifa_msghdrl *)w->w_tmem; 2366 2367 #ifdef COMPAT_FREEBSD32 2368 if (w->w_req->flags & SCTL_MASK32) { 2369 struct ifa_msghdrl32 *ifam32; 2370 2371 ifam32 = (struct ifa_msghdrl32 *)ifam; 2372 ifam32->ifam_addrs = info->rti_addrs; 2373 ifam32->ifam_flags = ifa->ifa_flags; 2374 ifam32->ifam_index = ifa->ifa_ifp->if_index; 2375 ifam32->_ifam_spare1 = 0; 2376 ifam32->ifam_len = sizeof(*ifam32); 2377 ifam32->ifam_data_off = 2378 offsetof(struct ifa_msghdrl32, ifam_data); 2379 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 2380 ifd = &ifam32->ifam_data; 2381 } else 2382 #endif 2383 { 2384 ifam->ifam_addrs = info->rti_addrs; 2385 ifam->ifam_flags = ifa->ifa_flags; 2386 ifam->ifam_index = ifa->ifa_ifp->if_index; 2387 ifam->_ifam_spare1 = 0; 2388 ifam->ifam_len = sizeof(*ifam); 2389 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 2390 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2391 ifd = &ifam->ifam_data; 2392 } 2393 2394 bzero(ifd, sizeof(*ifd)); 2395 ifd->ifi_datalen = sizeof(struct if_data); 2396 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 2397 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 2398 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 2399 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 2400 2401 /* Fixup if_data carp(4) vhid. */ 2402 if (carp_get_vhid_p != NULL) 2403 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 2404 2405 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2406 } 2407 2408 static int 2409 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 2410 struct walkarg *w, int len) 2411 { 2412 struct ifa_msghdr *ifam; 2413 2414 ifam = (struct ifa_msghdr *)w->w_tmem; 2415 ifam->ifam_addrs = info->rti_addrs; 2416 ifam->ifam_flags = ifa->ifa_flags; 2417 ifam->ifam_index = ifa->ifa_ifp->if_index; 2418 ifam->_ifam_spare1 = 0; 2419 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2420 2421 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2422 } 2423 2424 static int 2425 sysctl_iflist(int af, struct walkarg *w) 2426 { 2427 struct ifnet *ifp; 2428 struct ifaddr *ifa; 2429 struct if_data ifd; 2430 struct rt_addrinfo info; 2431 int len, error = 0; 2432 struct sockaddr_storage ss; 2433 2434 bzero((caddr_t)&info, sizeof(info)); 2435 bzero(&ifd, sizeof(ifd)); 2436 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2437 if (w->w_arg && w->w_arg != ifp->if_index) 2438 continue; 2439 if_data_copy(ifp, &ifd); 2440 ifa = ifp->if_addr; 2441 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 2442 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 2443 if (error != 0) 2444 goto done; 2445 info.rti_info[RTAX_IFP] = NULL; 2446 if (w->w_req && w->w_tmem) { 2447 if (w->w_op == NET_RT_IFLISTL) 2448 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 2449 len); 2450 else 2451 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 2452 len); 2453 if (error) 2454 goto done; 2455 } 2456 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 2457 if (af && af != ifa->ifa_addr->sa_family) 2458 continue; 2459 if (prison_if(w->w_req->td->td_ucred, 2460 ifa->ifa_addr) != 0) 2461 continue; 2462 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 2463 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 2464 ifa->ifa_addr, ifa->ifa_netmask, &ss); 2465 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 2466 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 2467 if (error != 0) 2468 goto done; 2469 if (w->w_req && w->w_tmem) { 2470 if (w->w_op == NET_RT_IFLISTL) 2471 error = sysctl_iflist_ifaml(ifa, &info, 2472 w, len); 2473 else 2474 error = sysctl_iflist_ifam(ifa, &info, 2475 w, len); 2476 if (error) 2477 goto done; 2478 } 2479 } 2480 info.rti_info[RTAX_IFA] = NULL; 2481 info.rti_info[RTAX_NETMASK] = NULL; 2482 info.rti_info[RTAX_BRD] = NULL; 2483 } 2484 done: 2485 return (error); 2486 } 2487 2488 static int 2489 sysctl_ifmalist(int af, struct walkarg *w) 2490 { 2491 struct rt_addrinfo info; 2492 struct ifaddr *ifa; 2493 struct ifmultiaddr *ifma; 2494 struct ifnet *ifp; 2495 int error, len; 2496 2497 NET_EPOCH_ASSERT(); 2498 2499 error = 0; 2500 bzero((caddr_t)&info, sizeof(info)); 2501 2502 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2503 if (w->w_arg && w->w_arg != ifp->if_index) 2504 continue; 2505 ifa = ifp->if_addr; 2506 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 2507 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2508 if (af && af != ifma->ifma_addr->sa_family) 2509 continue; 2510 if (prison_if(w->w_req->td->td_ucred, 2511 ifma->ifma_addr) != 0) 2512 continue; 2513 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2514 info.rti_info[RTAX_GATEWAY] = 2515 (ifma->ifma_addr->sa_family != AF_LINK) ? 2516 ifma->ifma_lladdr : NULL; 2517 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 2518 if (error != 0) 2519 break; 2520 if (w->w_req && w->w_tmem) { 2521 struct ifma_msghdr *ifmam; 2522 2523 ifmam = (struct ifma_msghdr *)w->w_tmem; 2524 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 2525 ifmam->ifmam_flags = 0; 2526 ifmam->ifmam_addrs = info.rti_addrs; 2527 ifmam->_ifmam_spare1 = 0; 2528 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 2529 if (error != 0) 2530 break; 2531 } 2532 } 2533 if (error != 0) 2534 break; 2535 } 2536 return (error); 2537 } 2538 2539 static void 2540 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w) 2541 { 2542 union sockaddr_union sa_dst, sa_mask; 2543 2544 w->family = family; 2545 w->dst = (struct sockaddr *)&sa_dst; 2546 w->mask = (struct sockaddr *)&sa_mask; 2547 2548 init_sockaddrs_family(family, w->dst, w->mask); 2549 2550 rib_walk(fibnum, family, false, sysctl_dumpentry, w); 2551 } 2552 2553 static int 2554 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2555 { 2556 struct epoch_tracker et; 2557 int *name = (int *)arg1; 2558 u_int namelen = arg2; 2559 struct rib_head *rnh = NULL; /* silence compiler. */ 2560 int i, lim, error = EINVAL; 2561 int fib = 0; 2562 u_char af; 2563 struct walkarg w; 2564 2565 name ++; 2566 namelen--; 2567 if (req->newptr) 2568 return (EPERM); 2569 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) { 2570 if (namelen == 3) 2571 fib = req->td->td_proc->p_fibnum; 2572 else if (namelen == 4) 2573 fib = (name[3] == RT_ALL_FIBS) ? 2574 req->td->td_proc->p_fibnum : name[3]; 2575 else 2576 return ((namelen < 3) ? EISDIR : ENOTDIR); 2577 if (fib < 0 || fib >= rt_numfibs) 2578 return (EINVAL); 2579 } else if (namelen != 3) 2580 return ((namelen < 3) ? EISDIR : ENOTDIR); 2581 af = name[0]; 2582 if (af > AF_MAX) 2583 return (EINVAL); 2584 bzero(&w, sizeof(w)); 2585 w.w_op = name[1]; 2586 w.w_arg = name[2]; 2587 w.w_req = req; 2588 2589 error = sysctl_wire_old_buffer(req, 0); 2590 if (error) 2591 return (error); 2592 2593 /* 2594 * Allocate reply buffer in advance. 2595 * All rtsock messages has maximum length of u_short. 2596 */ 2597 w.w_tmemsize = 65536; 2598 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2599 2600 NET_EPOCH_ENTER(et); 2601 switch (w.w_op) { 2602 case NET_RT_DUMP: 2603 case NET_RT_FLAGS: 2604 if (af == 0) { /* dump all tables */ 2605 i = 1; 2606 lim = AF_MAX; 2607 } else /* dump only one table */ 2608 i = lim = af; 2609 2610 /* 2611 * take care of llinfo entries, the caller must 2612 * specify an AF 2613 */ 2614 if (w.w_op == NET_RT_FLAGS && 2615 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2616 if (af != 0) 2617 error = lltable_sysctl_dumparp(af, w.w_req); 2618 else 2619 error = EINVAL; 2620 break; 2621 } 2622 /* 2623 * take care of routing entries 2624 */ 2625 for (error = 0; error == 0 && i <= lim; i++) { 2626 rnh = rt_tables_get_rnh(fib, i); 2627 if (rnh != NULL) { 2628 rtable_sysctl_dump(fib, i, &w); 2629 } else if (af != 0) 2630 error = EAFNOSUPPORT; 2631 } 2632 break; 2633 case NET_RT_NHOP: 2634 case NET_RT_NHGRP: 2635 /* Allow dumping one specific af/fib at a time */ 2636 if (namelen < 4) { 2637 error = EINVAL; 2638 break; 2639 } 2640 fib = name[3]; 2641 if (fib < 0 || fib > rt_numfibs) { 2642 error = EINVAL; 2643 break; 2644 } 2645 rnh = rt_tables_get_rnh(fib, af); 2646 if (rnh == NULL) { 2647 error = EAFNOSUPPORT; 2648 break; 2649 } 2650 if (w.w_op == NET_RT_NHOP) 2651 error = nhops_dump_sysctl(rnh, w.w_req); 2652 else 2653 #ifdef ROUTE_MPATH 2654 error = nhgrp_dump_sysctl(rnh, w.w_req); 2655 #else 2656 error = ENOTSUP; 2657 #endif 2658 break; 2659 case NET_RT_IFLIST: 2660 case NET_RT_IFLISTL: 2661 error = sysctl_iflist(af, &w); 2662 break; 2663 2664 case NET_RT_IFMALIST: 2665 error = sysctl_ifmalist(af, &w); 2666 break; 2667 } 2668 NET_EPOCH_EXIT(et); 2669 2670 free(w.w_tmem, M_TEMP); 2671 return (error); 2672 } 2673 2674 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2675 sysctl_rtsock, "Return route tables and interface/address lists"); 2676 2677 /* 2678 * Definitions of protocols supported in the ROUTE domain. 2679 */ 2680 2681 static struct domain routedomain; /* or at least forward */ 2682 2683 static struct protosw routesw[] = { 2684 { 2685 .pr_type = SOCK_RAW, 2686 .pr_domain = &routedomain, 2687 .pr_flags = PR_ATOMIC|PR_ADDR, 2688 .pr_output = route_output, 2689 .pr_ctlinput = raw_ctlinput, 2690 .pr_init = raw_init, 2691 .pr_usrreqs = &route_usrreqs 2692 } 2693 }; 2694 2695 static struct domain routedomain = { 2696 .dom_family = PF_ROUTE, 2697 .dom_name = "route", 2698 .dom_protosw = routesw, 2699 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 2700 }; 2701 2702 VNET_DOMAIN_SET(route); 2703