1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_compat.h" 33 #include "opt_sctp.h" 34 #include "opt_mpath.h" 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/jail.h> 40 #include <sys/kernel.h> 41 #include <sys/domain.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/rwlock.h> 49 #include <sys/signalvar.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <net/if.h> 56 #include <net/if_dl.h> 57 #include <net/if_llatbl.h> 58 #include <net/if_types.h> 59 #include <net/netisr.h> 60 #include <net/raw_cb.h> 61 #include <net/route.h> 62 #include <net/vnet.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 #include <netinet/ip_carp.h> 67 #ifdef INET6 68 #include <netinet6/scope6_var.h> 69 #endif 70 71 #if defined(INET) || defined(INET6) 72 #ifdef SCTP 73 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 74 #endif /* SCTP */ 75 #endif 76 77 #ifdef COMPAT_FREEBSD32 78 #include <sys/mount.h> 79 #include <compat/freebsd32/freebsd32.h> 80 81 struct if_data32 { 82 uint8_t ifi_type; 83 uint8_t ifi_physical; 84 uint8_t ifi_addrlen; 85 uint8_t ifi_hdrlen; 86 uint8_t ifi_link_state; 87 uint8_t ifi_vhid; 88 uint8_t ifi_spare_char2; 89 uint8_t ifi_datalen; 90 uint32_t ifi_mtu; 91 uint32_t ifi_metric; 92 uint32_t ifi_baudrate; 93 uint32_t ifi_ipackets; 94 uint32_t ifi_ierrors; 95 uint32_t ifi_opackets; 96 uint32_t ifi_oerrors; 97 uint32_t ifi_collisions; 98 uint32_t ifi_ibytes; 99 uint32_t ifi_obytes; 100 uint32_t ifi_imcasts; 101 uint32_t ifi_omcasts; 102 uint32_t ifi_iqdrops; 103 uint32_t ifi_noproto; 104 uint32_t ifi_hwassist; 105 int32_t ifi_epoch; 106 struct timeval32 ifi_lastchange; 107 }; 108 109 struct if_msghdr32 { 110 uint16_t ifm_msglen; 111 uint8_t ifm_version; 112 uint8_t ifm_type; 113 int32_t ifm_addrs; 114 int32_t ifm_flags; 115 uint16_t ifm_index; 116 struct if_data32 ifm_data; 117 }; 118 119 struct if_msghdrl32 { 120 uint16_t ifm_msglen; 121 uint8_t ifm_version; 122 uint8_t ifm_type; 123 int32_t ifm_addrs; 124 int32_t ifm_flags; 125 uint16_t ifm_index; 126 uint16_t _ifm_spare1; 127 uint16_t ifm_len; 128 uint16_t ifm_data_off; 129 struct if_data32 ifm_data; 130 }; 131 132 struct ifa_msghdrl32 { 133 uint16_t ifam_msglen; 134 uint8_t ifam_version; 135 uint8_t ifam_type; 136 int32_t ifam_addrs; 137 int32_t ifam_flags; 138 uint16_t ifam_index; 139 uint16_t _ifam_spare1; 140 uint16_t ifam_len; 141 uint16_t ifam_data_off; 142 int32_t ifam_metric; 143 struct if_data32 ifam_data; 144 }; 145 #endif /* COMPAT_FREEBSD32 */ 146 147 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 148 149 /* NB: these are not modified */ 150 static struct sockaddr route_src = { 2, PF_ROUTE, }; 151 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 152 153 /* These are external hooks for CARP. */ 154 int (*carp_get_vhid_p)(struct ifaddr *); 155 156 /* 157 * Used by rtsock/raw_input callback code to decide whether to filter the update 158 * notification to a socket bound to a particular FIB. 159 */ 160 #define RTS_FILTER_FIB M_PROTO8 161 #define RTS_ALLFIBS -1 162 163 static struct { 164 int ip_count; /* attached w/ AF_INET */ 165 int ip6_count; /* attached w/ AF_INET6 */ 166 int ipx_count; /* attached w/ AF_IPX */ 167 int any_count; /* total attached */ 168 } route_cb; 169 170 struct mtx rtsock_mtx; 171 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 172 173 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 174 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 175 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 176 177 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 178 #ifdef INET6 179 static VNET_DEFINE(int, deembed_scopeid) = 1; 180 #define V_deembed_scopeid VNET(deembed_scopeid) 181 SYSCTL_DECL(_net_inet6_ip6); 182 SYSCTL_VNET_INT(_net_inet6_ip6, OID_AUTO, deembed_scopeid, CTLFLAG_RW, 183 &VNET_NAME(deembed_scopeid), 0, 184 "Extract embedded zone ID and set it to sin6_scope_id in sockaddr_in6."); 185 #endif 186 187 struct walkarg { 188 int w_tmemsize; 189 int w_op, w_arg; 190 caddr_t w_tmem; 191 struct sysctl_req *w_req; 192 }; 193 194 static void rts_input(struct mbuf *m); 195 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 196 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 197 caddr_t cp, struct walkarg *w); 198 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 199 struct rt_addrinfo *rtinfo); 200 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 201 static int sysctl_iflist(int af, struct walkarg *w); 202 static int sysctl_ifmalist(int af, struct walkarg *w); 203 static int route_output(struct mbuf *m, struct socket *so); 204 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 205 struct rt_metrics_lite *out); 206 static void rt_getmetrics(const struct rt_metrics_lite *in, 207 struct rt_metrics *out); 208 static void rt_dispatch(struct mbuf *, sa_family_t); 209 210 static struct netisr_handler rtsock_nh = { 211 .nh_name = "rtsock", 212 .nh_handler = rts_input, 213 .nh_proto = NETISR_ROUTE, 214 .nh_policy = NETISR_POLICY_SOURCE, 215 }; 216 217 static int 218 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 219 { 220 int error, qlimit; 221 222 netisr_getqlimit(&rtsock_nh, &qlimit); 223 error = sysctl_handle_int(oidp, &qlimit, 0, req); 224 if (error || !req->newptr) 225 return (error); 226 if (qlimit < 1) 227 return (EINVAL); 228 return (netisr_setqlimit(&rtsock_nh, qlimit)); 229 } 230 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 231 0, 0, sysctl_route_netisr_maxqlen, "I", 232 "maximum routing socket dispatch queue length"); 233 234 static void 235 rts_init(void) 236 { 237 int tmp; 238 239 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 240 rtsock_nh.nh_qlimit = tmp; 241 netisr_register(&rtsock_nh); 242 } 243 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 244 245 static int 246 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 247 struct rawcb *rp) 248 { 249 int fibnum; 250 251 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 252 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 253 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 254 255 /* No filtering requested. */ 256 if ((m->m_flags & RTS_FILTER_FIB) == 0) 257 return (0); 258 259 /* Check if it is a rts and the fib matches the one of the socket. */ 260 fibnum = M_GETFIB(m); 261 if (proto->sp_family != PF_ROUTE || 262 rp->rcb_socket == NULL || 263 rp->rcb_socket->so_fibnum == fibnum) 264 return (0); 265 266 /* Filtering requested and no match, the socket shall be skipped. */ 267 return (1); 268 } 269 270 static void 271 rts_input(struct mbuf *m) 272 { 273 struct sockproto route_proto; 274 unsigned short *family; 275 struct m_tag *tag; 276 277 route_proto.sp_family = PF_ROUTE; 278 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 279 if (tag != NULL) { 280 family = (unsigned short *)(tag + 1); 281 route_proto.sp_protocol = *family; 282 m_tag_delete(m, tag); 283 } else 284 route_proto.sp_protocol = 0; 285 286 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 287 } 288 289 /* 290 * It really doesn't make any sense at all for this code to share much 291 * with raw_usrreq.c, since its functionality is so restricted. XXX 292 */ 293 static void 294 rts_abort(struct socket *so) 295 { 296 297 raw_usrreqs.pru_abort(so); 298 } 299 300 static void 301 rts_close(struct socket *so) 302 { 303 304 raw_usrreqs.pru_close(so); 305 } 306 307 /* pru_accept is EOPNOTSUPP */ 308 309 static int 310 rts_attach(struct socket *so, int proto, struct thread *td) 311 { 312 struct rawcb *rp; 313 int error; 314 315 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 316 317 /* XXX */ 318 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 319 if (rp == NULL) 320 return ENOBUFS; 321 322 so->so_pcb = (caddr_t)rp; 323 so->so_fibnum = td->td_proc->p_fibnum; 324 error = raw_attach(so, proto); 325 rp = sotorawcb(so); 326 if (error) { 327 so->so_pcb = NULL; 328 free(rp, M_PCB); 329 return error; 330 } 331 RTSOCK_LOCK(); 332 switch(rp->rcb_proto.sp_protocol) { 333 case AF_INET: 334 route_cb.ip_count++; 335 break; 336 case AF_INET6: 337 route_cb.ip6_count++; 338 break; 339 case AF_IPX: 340 route_cb.ipx_count++; 341 break; 342 } 343 route_cb.any_count++; 344 RTSOCK_UNLOCK(); 345 soisconnected(so); 346 so->so_options |= SO_USELOOPBACK; 347 return 0; 348 } 349 350 static int 351 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 352 { 353 354 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 355 } 356 357 static int 358 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 359 { 360 361 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 362 } 363 364 /* pru_connect2 is EOPNOTSUPP */ 365 /* pru_control is EOPNOTSUPP */ 366 367 static void 368 rts_detach(struct socket *so) 369 { 370 struct rawcb *rp = sotorawcb(so); 371 372 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 373 374 RTSOCK_LOCK(); 375 switch(rp->rcb_proto.sp_protocol) { 376 case AF_INET: 377 route_cb.ip_count--; 378 break; 379 case AF_INET6: 380 route_cb.ip6_count--; 381 break; 382 case AF_IPX: 383 route_cb.ipx_count--; 384 break; 385 } 386 route_cb.any_count--; 387 RTSOCK_UNLOCK(); 388 raw_usrreqs.pru_detach(so); 389 } 390 391 static int 392 rts_disconnect(struct socket *so) 393 { 394 395 return (raw_usrreqs.pru_disconnect(so)); 396 } 397 398 /* pru_listen is EOPNOTSUPP */ 399 400 static int 401 rts_peeraddr(struct socket *so, struct sockaddr **nam) 402 { 403 404 return (raw_usrreqs.pru_peeraddr(so, nam)); 405 } 406 407 /* pru_rcvd is EOPNOTSUPP */ 408 /* pru_rcvoob is EOPNOTSUPP */ 409 410 static int 411 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 412 struct mbuf *control, struct thread *td) 413 { 414 415 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 416 } 417 418 /* pru_sense is null */ 419 420 static int 421 rts_shutdown(struct socket *so) 422 { 423 424 return (raw_usrreqs.pru_shutdown(so)); 425 } 426 427 static int 428 rts_sockaddr(struct socket *so, struct sockaddr **nam) 429 { 430 431 return (raw_usrreqs.pru_sockaddr(so, nam)); 432 } 433 434 static struct pr_usrreqs route_usrreqs = { 435 .pru_abort = rts_abort, 436 .pru_attach = rts_attach, 437 .pru_bind = rts_bind, 438 .pru_connect = rts_connect, 439 .pru_detach = rts_detach, 440 .pru_disconnect = rts_disconnect, 441 .pru_peeraddr = rts_peeraddr, 442 .pru_send = rts_send, 443 .pru_shutdown = rts_shutdown, 444 .pru_sockaddr = rts_sockaddr, 445 .pru_close = rts_close, 446 }; 447 448 #ifndef _SOCKADDR_UNION_DEFINED 449 #define _SOCKADDR_UNION_DEFINED 450 /* 451 * The union of all possible address formats we handle. 452 */ 453 union sockaddr_union { 454 struct sockaddr sa; 455 struct sockaddr_in sin; 456 struct sockaddr_in6 sin6; 457 }; 458 #endif /* _SOCKADDR_UNION_DEFINED */ 459 460 static int 461 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 462 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 463 { 464 465 /* First, see if the returned address is part of the jail. */ 466 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 467 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 468 return (0); 469 } 470 471 switch (info->rti_info[RTAX_DST]->sa_family) { 472 #ifdef INET 473 case AF_INET: 474 { 475 struct in_addr ia; 476 struct ifaddr *ifa; 477 int found; 478 479 found = 0; 480 /* 481 * Try to find an address on the given outgoing interface 482 * that belongs to the jail. 483 */ 484 IF_ADDR_RLOCK(ifp); 485 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 486 struct sockaddr *sa; 487 sa = ifa->ifa_addr; 488 if (sa->sa_family != AF_INET) 489 continue; 490 ia = ((struct sockaddr_in *)sa)->sin_addr; 491 if (prison_check_ip4(cred, &ia) == 0) { 492 found = 1; 493 break; 494 } 495 } 496 IF_ADDR_RUNLOCK(ifp); 497 if (!found) { 498 /* 499 * As a last resort return the 'default' jail address. 500 */ 501 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 502 sin_addr; 503 if (prison_get_ip4(cred, &ia) != 0) 504 return (ESRCH); 505 } 506 bzero(&saun->sin, sizeof(struct sockaddr_in)); 507 saun->sin.sin_len = sizeof(struct sockaddr_in); 508 saun->sin.sin_family = AF_INET; 509 saun->sin.sin_addr.s_addr = ia.s_addr; 510 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 511 break; 512 } 513 #endif 514 #ifdef INET6 515 case AF_INET6: 516 { 517 struct in6_addr ia6; 518 struct ifaddr *ifa; 519 int found; 520 521 found = 0; 522 /* 523 * Try to find an address on the given outgoing interface 524 * that belongs to the jail. 525 */ 526 IF_ADDR_RLOCK(ifp); 527 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 528 struct sockaddr *sa; 529 sa = ifa->ifa_addr; 530 if (sa->sa_family != AF_INET6) 531 continue; 532 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 533 &ia6, sizeof(struct in6_addr)); 534 if (prison_check_ip6(cred, &ia6) == 0) { 535 found = 1; 536 break; 537 } 538 } 539 IF_ADDR_RUNLOCK(ifp); 540 if (!found) { 541 /* 542 * As a last resort return the 'default' jail address. 543 */ 544 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 545 sin6_addr; 546 if (prison_get_ip6(cred, &ia6) != 0) 547 return (ESRCH); 548 } 549 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 550 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 551 saun->sin6.sin6_family = AF_INET6; 552 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 553 if (sa6_recoverscope(&saun->sin6) != 0) 554 return (ESRCH); 555 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 556 break; 557 } 558 #endif 559 default: 560 return (ESRCH); 561 } 562 return (0); 563 } 564 565 /*ARGSUSED*/ 566 static int 567 route_output(struct mbuf *m, struct socket *so) 568 { 569 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 570 struct rt_msghdr *rtm = NULL; 571 struct rtentry *rt = NULL; 572 struct radix_node_head *rnh; 573 struct rt_addrinfo info; 574 #ifdef INET6 575 struct sockaddr_storage ss_dst; 576 struct sockaddr_storage ss_gw; 577 struct sockaddr_in6 *sin6; 578 #endif 579 int len, error = 0; 580 struct ifnet *ifp = NULL; 581 union sockaddr_union saun; 582 sa_family_t saf = AF_UNSPEC; 583 584 #define senderr(e) { error = e; goto flush;} 585 if (m == NULL || ((m->m_len < sizeof(long)) && 586 (m = m_pullup(m, sizeof(long))) == NULL)) 587 return (ENOBUFS); 588 if ((m->m_flags & M_PKTHDR) == 0) 589 panic("route_output"); 590 len = m->m_pkthdr.len; 591 if (len < sizeof(*rtm) || 592 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 593 info.rti_info[RTAX_DST] = NULL; 594 senderr(EINVAL); 595 } 596 R_Malloc(rtm, struct rt_msghdr *, len); 597 if (rtm == NULL) { 598 info.rti_info[RTAX_DST] = NULL; 599 senderr(ENOBUFS); 600 } 601 m_copydata(m, 0, len, (caddr_t)rtm); 602 if (rtm->rtm_version != RTM_VERSION) { 603 info.rti_info[RTAX_DST] = NULL; 604 senderr(EPROTONOSUPPORT); 605 } 606 rtm->rtm_pid = curproc->p_pid; 607 bzero(&info, sizeof(info)); 608 info.rti_addrs = rtm->rtm_addrs; 609 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 610 info.rti_info[RTAX_DST] = NULL; 611 senderr(EINVAL); 612 } 613 info.rti_flags = rtm->rtm_flags; 614 if (info.rti_info[RTAX_DST] == NULL || 615 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 616 (info.rti_info[RTAX_GATEWAY] != NULL && 617 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 618 senderr(EINVAL); 619 saf = info.rti_info[RTAX_DST]->sa_family; 620 /* 621 * Verify that the caller has the appropriate privilege; RTM_GET 622 * is the only operation the non-superuser is allowed. 623 */ 624 if (rtm->rtm_type != RTM_GET) { 625 error = priv_check(curthread, PRIV_NET_ROUTE); 626 if (error) 627 senderr(error); 628 } 629 630 /* 631 * The given gateway address may be an interface address. 632 * For example, issuing a "route change" command on a route 633 * entry that was created from a tunnel, and the gateway 634 * address given is the local end point. In this case the 635 * RTF_GATEWAY flag must be cleared or the destination will 636 * not be reachable even though there is no error message. 637 */ 638 if (info.rti_info[RTAX_GATEWAY] != NULL && 639 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 640 struct route gw_ro; 641 642 bzero(&gw_ro, sizeof(gw_ro)); 643 gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY]; 644 rtalloc_ign_fib(&gw_ro, 0, so->so_fibnum); 645 /* 646 * A host route through the loopback interface is 647 * installed for each interface adddress. In pre 8.0 648 * releases the interface address of a PPP link type 649 * is not reachable locally. This behavior is fixed as 650 * part of the new L2/L3 redesign and rewrite work. The 651 * signature of this interface address route is the 652 * AF_LINK sa_family type of the rt_gateway, and the 653 * rt_ifp has the IFF_LOOPBACK flag set. 654 */ 655 if (gw_ro.ro_rt != NULL && 656 gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK && 657 gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) 658 info.rti_flags &= ~RTF_GATEWAY; 659 if (gw_ro.ro_rt != NULL) 660 RTFREE(gw_ro.ro_rt); 661 } 662 663 switch (rtm->rtm_type) { 664 struct rtentry *saved_nrt; 665 666 case RTM_ADD: 667 if (info.rti_info[RTAX_GATEWAY] == NULL) 668 senderr(EINVAL); 669 saved_nrt = NULL; 670 671 /* support for new ARP code */ 672 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 673 (rtm->rtm_flags & RTF_LLDATA) != 0) { 674 error = lla_rt_output(rtm, &info); 675 break; 676 } 677 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 678 so->so_fibnum); 679 if (error == 0 && saved_nrt) { 680 RT_LOCK(saved_nrt); 681 rt_setmetrics(rtm->rtm_inits, 682 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 683 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 684 RT_REMREF(saved_nrt); 685 RT_UNLOCK(saved_nrt); 686 } 687 break; 688 689 case RTM_DELETE: 690 saved_nrt = NULL; 691 /* support for new ARP code */ 692 if (info.rti_info[RTAX_GATEWAY] && 693 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 694 (rtm->rtm_flags & RTF_LLDATA) != 0) { 695 error = lla_rt_output(rtm, &info); 696 break; 697 } 698 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 699 so->so_fibnum); 700 if (error == 0) { 701 RT_LOCK(saved_nrt); 702 rt = saved_nrt; 703 goto report; 704 } 705 break; 706 707 case RTM_GET: 708 case RTM_CHANGE: 709 case RTM_LOCK: 710 rnh = rt_tables_get_rnh(so->so_fibnum, 711 info.rti_info[RTAX_DST]->sa_family); 712 if (rnh == NULL) 713 senderr(EAFNOSUPPORT); 714 RADIX_NODE_HEAD_RLOCK(rnh); 715 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 716 info.rti_info[RTAX_NETMASK], rnh); 717 if (rt == NULL) { /* XXX looks bogus */ 718 RADIX_NODE_HEAD_RUNLOCK(rnh); 719 senderr(ESRCH); 720 } 721 #ifdef RADIX_MPATH 722 /* 723 * for RTM_CHANGE/LOCK, if we got multipath routes, 724 * we require users to specify a matching RTAX_GATEWAY. 725 * 726 * for RTM_GET, gate is optional even with multipath. 727 * if gate == NULL the first match is returned. 728 * (no need to call rt_mpath_matchgate if gate == NULL) 729 */ 730 if (rn_mpath_capable(rnh) && 731 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 732 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 733 if (!rt) { 734 RADIX_NODE_HEAD_RUNLOCK(rnh); 735 senderr(ESRCH); 736 } 737 } 738 #endif 739 /* 740 * If performing proxied L2 entry insertion, and 741 * the actual PPP host entry is found, perform 742 * another search to retrieve the prefix route of 743 * the local end point of the PPP link. 744 */ 745 if (rtm->rtm_flags & RTF_ANNOUNCE) { 746 struct sockaddr laddr; 747 748 if (rt->rt_ifp != NULL && 749 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 750 struct ifaddr *ifa; 751 752 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1); 753 if (ifa != NULL) 754 rt_maskedcopy(ifa->ifa_addr, 755 &laddr, 756 ifa->ifa_netmask); 757 } else 758 rt_maskedcopy(rt->rt_ifa->ifa_addr, 759 &laddr, 760 rt->rt_ifa->ifa_netmask); 761 /* 762 * refactor rt and no lock operation necessary 763 */ 764 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh); 765 if (rt == NULL) { 766 RADIX_NODE_HEAD_RUNLOCK(rnh); 767 senderr(ESRCH); 768 } 769 } 770 RT_LOCK(rt); 771 RT_ADDREF(rt); 772 RADIX_NODE_HEAD_RUNLOCK(rnh); 773 774 /* 775 * Fix for PR: 82974 776 * 777 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 778 * returns a perfect match in case a netmask is 779 * specified. For host routes only a longest prefix 780 * match is returned so it is necessary to compare the 781 * existence of the netmask. If both have a netmask 782 * rnh_lookup() did a perfect match and if none of them 783 * have a netmask both are host routes which is also a 784 * perfect match. 785 */ 786 787 if (rtm->rtm_type != RTM_GET && 788 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 789 RT_UNLOCK(rt); 790 senderr(ESRCH); 791 } 792 793 switch(rtm->rtm_type) { 794 795 case RTM_GET: 796 report: 797 RT_LOCK_ASSERT(rt); 798 if ((rt->rt_flags & RTF_HOST) == 0 799 ? jailed_without_vnet(curthread->td_ucred) 800 : prison_if(curthread->td_ucred, 801 rt_key(rt)) != 0) { 802 RT_UNLOCK(rt); 803 senderr(ESRCH); 804 } 805 info.rti_info[RTAX_DST] = rt_key(rt); 806 #ifdef INET6 807 switch (rt_key(rt)->sa_family) { 808 case AF_INET6: 809 if (V_deembed_scopeid == 0) 810 break; 811 sin6 = (struct sockaddr_in6 *)&ss_dst; 812 bcopy(rt_key(rt), sin6, sizeof(*sin6)); 813 if (sa6_recoverscope(sin6) == 0) 814 info.rti_info[RTAX_DST] = 815 (struct sockaddr *)sin6; 816 break; 817 } 818 #endif 819 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 820 #ifdef INET6 821 switch (rt->rt_gateway->sa_family) { 822 case AF_INET6: 823 sin6 = (struct sockaddr_in6 *)&ss_gw; 824 bcopy(rt->rt_gateway, sin6, sizeof(*sin6)); 825 if (sa6_recoverscope(sin6) == 0) 826 info.rti_info[RTAX_GATEWAY] = 827 (struct sockaddr *)sin6; 828 break; 829 } 830 #endif 831 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 832 info.rti_info[RTAX_GENMASK] = 0; 833 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 834 ifp = rt->rt_ifp; 835 if (ifp) { 836 info.rti_info[RTAX_IFP] = 837 ifp->if_addr->ifa_addr; 838 error = rtm_get_jailed(&info, ifp, rt, 839 &saun, curthread->td_ucred); 840 if (error != 0) { 841 RT_UNLOCK(rt); 842 senderr(error); 843 } 844 if (ifp->if_flags & IFF_POINTOPOINT) 845 info.rti_info[RTAX_BRD] = 846 rt->rt_ifa->ifa_dstaddr; 847 rtm->rtm_index = ifp->if_index; 848 } else { 849 info.rti_info[RTAX_IFP] = NULL; 850 info.rti_info[RTAX_IFA] = NULL; 851 } 852 } else if ((ifp = rt->rt_ifp) != NULL) { 853 rtm->rtm_index = ifp->if_index; 854 } 855 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 856 if (len > rtm->rtm_msglen) { 857 struct rt_msghdr *new_rtm; 858 R_Malloc(new_rtm, struct rt_msghdr *, len); 859 if (new_rtm == NULL) { 860 RT_UNLOCK(rt); 861 senderr(ENOBUFS); 862 } 863 bcopy(rtm, new_rtm, rtm->rtm_msglen); 864 Free(rtm); rtm = new_rtm; 865 } 866 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 867 rtm->rtm_flags = rt->rt_flags; 868 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 869 rtm->rtm_addrs = info.rti_addrs; 870 break; 871 872 case RTM_CHANGE: 873 /* 874 * New gateway could require new ifaddr, ifp; 875 * flags may also be different; ifp may be specified 876 * by ll sockaddr when protocol address is ambiguous 877 */ 878 if (((rt->rt_flags & RTF_GATEWAY) && 879 info.rti_info[RTAX_GATEWAY] != NULL) || 880 info.rti_info[RTAX_IFP] != NULL || 881 (info.rti_info[RTAX_IFA] != NULL && 882 !sa_equal(info.rti_info[RTAX_IFA], 883 rt->rt_ifa->ifa_addr))) { 884 RT_UNLOCK(rt); 885 RADIX_NODE_HEAD_LOCK(rnh); 886 error = rt_getifa_fib(&info, rt->rt_fibnum); 887 /* 888 * XXXRW: Really we should release this 889 * reference later, but this maintains 890 * historical behavior. 891 */ 892 if (info.rti_ifa != NULL) 893 ifa_free(info.rti_ifa); 894 RADIX_NODE_HEAD_UNLOCK(rnh); 895 if (error != 0) 896 senderr(error); 897 RT_LOCK(rt); 898 } 899 if (info.rti_ifa != NULL && 900 info.rti_ifa != rt->rt_ifa && 901 rt->rt_ifa != NULL && 902 rt->rt_ifa->ifa_rtrequest != NULL) { 903 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 904 &info); 905 ifa_free(rt->rt_ifa); 906 } 907 if (info.rti_info[RTAX_GATEWAY] != NULL) { 908 RT_UNLOCK(rt); 909 RADIX_NODE_HEAD_LOCK(rnh); 910 RT_LOCK(rt); 911 912 error = rt_setgate(rt, rt_key(rt), 913 info.rti_info[RTAX_GATEWAY]); 914 RADIX_NODE_HEAD_UNLOCK(rnh); 915 if (error != 0) { 916 RT_UNLOCK(rt); 917 senderr(error); 918 } 919 rt->rt_flags |= (RTF_GATEWAY & info.rti_flags); 920 } 921 if (info.rti_ifa != NULL && 922 info.rti_ifa != rt->rt_ifa) { 923 ifa_ref(info.rti_ifa); 924 rt->rt_ifa = info.rti_ifa; 925 rt->rt_ifp = info.rti_ifp; 926 } 927 /* Allow some flags to be toggled on change. */ 928 rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) | 929 (rtm->rtm_flags & RTF_FMASK); 930 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 931 &rt->rt_rmx); 932 rtm->rtm_index = rt->rt_ifp->if_index; 933 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 934 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 935 /* FALLTHROUGH */ 936 case RTM_LOCK: 937 /* We don't support locks anymore */ 938 break; 939 } 940 RT_UNLOCK(rt); 941 break; 942 943 default: 944 senderr(EOPNOTSUPP); 945 } 946 947 flush: 948 if (rtm) { 949 if (error) 950 rtm->rtm_errno = error; 951 else 952 rtm->rtm_flags |= RTF_DONE; 953 } 954 if (rt) /* XXX can this be true? */ 955 RTFREE(rt); 956 { 957 struct rawcb *rp = NULL; 958 /* 959 * Check to see if we don't want our own messages. 960 */ 961 if ((so->so_options & SO_USELOOPBACK) == 0) { 962 if (route_cb.any_count <= 1) { 963 if (rtm) 964 Free(rtm); 965 m_freem(m); 966 return (error); 967 } 968 /* There is another listener, so construct message */ 969 rp = sotorawcb(so); 970 } 971 if (rtm) { 972 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 973 if (m->m_pkthdr.len < rtm->rtm_msglen) { 974 m_freem(m); 975 m = NULL; 976 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 977 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 978 } 979 if (m) { 980 M_SETFIB(m, so->so_fibnum); 981 m->m_flags |= RTS_FILTER_FIB; 982 if (rp) { 983 /* 984 * XXX insure we don't get a copy by 985 * invalidating our protocol 986 */ 987 unsigned short family = rp->rcb_proto.sp_family; 988 rp->rcb_proto.sp_family = 0; 989 rt_dispatch(m, saf); 990 rp->rcb_proto.sp_family = family; 991 } else 992 rt_dispatch(m, saf); 993 } 994 /* info.rti_info[RTAX_DST] (used above) can point inside of rtm */ 995 if (rtm) 996 Free(rtm); 997 } 998 return (error); 999 #undef sa_equal 1000 } 1001 1002 static void 1003 rt_setmetrics(u_long which, const struct rt_metrics *in, 1004 struct rt_metrics_lite *out) 1005 { 1006 #define metric(f, e) if (which & (f)) out->e = in->e; 1007 /* 1008 * Only these are stored in the routing entry since introduction 1009 * of tcp hostcache. The rest is ignored. 1010 */ 1011 metric(RTV_MTU, rmx_mtu); 1012 metric(RTV_WEIGHT, rmx_weight); 1013 /* Userland -> kernel timebase conversion. */ 1014 if (which & RTV_EXPIRE) 1015 out->rmx_expire = in->rmx_expire ? 1016 in->rmx_expire - time_second + time_uptime : 0; 1017 #undef metric 1018 } 1019 1020 static void 1021 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 1022 { 1023 #define metric(e) out->e = in->e; 1024 bzero(out, sizeof(*out)); 1025 metric(rmx_mtu); 1026 metric(rmx_weight); 1027 /* Kernel -> userland timebase conversion. */ 1028 out->rmx_expire = in->rmx_expire ? 1029 in->rmx_expire - time_uptime + time_second : 0; 1030 #undef metric 1031 } 1032 1033 /* 1034 * Extract the addresses of the passed sockaddrs. 1035 * Do a little sanity checking so as to avoid bad memory references. 1036 * This data is derived straight from userland. 1037 */ 1038 static int 1039 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1040 { 1041 struct sockaddr *sa; 1042 int i; 1043 1044 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1045 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1046 continue; 1047 sa = (struct sockaddr *)cp; 1048 /* 1049 * It won't fit. 1050 */ 1051 if (cp + sa->sa_len > cplim) 1052 return (EINVAL); 1053 /* 1054 * there are no more.. quit now 1055 * If there are more bits, they are in error. 1056 * I've seen this. route(1) can evidently generate these. 1057 * This causes kernel to core dump. 1058 * for compatibility, If we see this, point to a safe address. 1059 */ 1060 if (sa->sa_len == 0) { 1061 rtinfo->rti_info[i] = &sa_zero; 1062 return (0); /* should be EINVAL but for compat */ 1063 } 1064 /* accept it */ 1065 rtinfo->rti_info[i] = sa; 1066 cp += SA_SIZE(sa); 1067 } 1068 return (0); 1069 } 1070 1071 /* 1072 * Used by the routing socket. 1073 */ 1074 static struct mbuf * 1075 rt_msg1(int type, struct rt_addrinfo *rtinfo) 1076 { 1077 struct rt_msghdr *rtm; 1078 struct mbuf *m; 1079 int i; 1080 struct sockaddr *sa; 1081 #ifdef INET6 1082 struct sockaddr_storage ss; 1083 struct sockaddr_in6 *sin6; 1084 #endif 1085 int len, dlen; 1086 1087 switch (type) { 1088 1089 case RTM_DELADDR: 1090 case RTM_NEWADDR: 1091 len = sizeof(struct ifa_msghdr); 1092 break; 1093 1094 case RTM_DELMADDR: 1095 case RTM_NEWMADDR: 1096 len = sizeof(struct ifma_msghdr); 1097 break; 1098 1099 case RTM_IFINFO: 1100 len = sizeof(struct if_msghdr); 1101 break; 1102 1103 case RTM_IFANNOUNCE: 1104 case RTM_IEEE80211: 1105 len = sizeof(struct if_announcemsghdr); 1106 break; 1107 1108 default: 1109 len = sizeof(struct rt_msghdr); 1110 } 1111 if (len > MCLBYTES) 1112 panic("rt_msg1"); 1113 m = m_gethdr(M_DONTWAIT, MT_DATA); 1114 if (m && len > MHLEN) { 1115 MCLGET(m, M_DONTWAIT); 1116 if ((m->m_flags & M_EXT) == 0) { 1117 m_free(m); 1118 m = NULL; 1119 } 1120 } 1121 if (m == NULL) 1122 return (m); 1123 m->m_pkthdr.len = m->m_len = len; 1124 m->m_pkthdr.rcvif = NULL; 1125 rtm = mtod(m, struct rt_msghdr *); 1126 bzero((caddr_t)rtm, len); 1127 for (i = 0; i < RTAX_MAX; i++) { 1128 if ((sa = rtinfo->rti_info[i]) == NULL) 1129 continue; 1130 rtinfo->rti_addrs |= (1 << i); 1131 dlen = SA_SIZE(sa); 1132 #ifdef INET6 1133 switch (sa->sa_family) { 1134 case AF_INET6: 1135 if (V_deembed_scopeid == 0) 1136 break; 1137 sin6 = (struct sockaddr_in6 *)&ss; 1138 bcopy(sa, sin6, sizeof(*sin6)); 1139 if (sa6_recoverscope(sin6) == 0) 1140 sa = (struct sockaddr *)sin6; 1141 break; 1142 } 1143 #endif 1144 m_copyback(m, len, dlen, (caddr_t)sa); 1145 len += dlen; 1146 } 1147 if (m->m_pkthdr.len != len) { 1148 m_freem(m); 1149 return (NULL); 1150 } 1151 rtm->rtm_msglen = len; 1152 rtm->rtm_version = RTM_VERSION; 1153 rtm->rtm_type = type; 1154 return (m); 1155 } 1156 1157 /* 1158 * Used by the sysctl code and routing socket. 1159 */ 1160 static int 1161 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 1162 { 1163 int i; 1164 int len, dlen, second_time = 0; 1165 caddr_t cp0; 1166 #ifdef INET6 1167 struct sockaddr_storage ss; 1168 struct sockaddr_in6 *sin6; 1169 #endif 1170 1171 rtinfo->rti_addrs = 0; 1172 again: 1173 switch (type) { 1174 1175 case RTM_DELADDR: 1176 case RTM_NEWADDR: 1177 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1178 #ifdef COMPAT_FREEBSD32 1179 if (w->w_req->flags & SCTL_MASK32) 1180 len = sizeof(struct ifa_msghdrl32); 1181 else 1182 #endif 1183 len = sizeof(struct ifa_msghdrl); 1184 } else 1185 len = sizeof(struct ifa_msghdr); 1186 break; 1187 1188 case RTM_IFINFO: 1189 #ifdef COMPAT_FREEBSD32 1190 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1191 if (w->w_op == NET_RT_IFLISTL) 1192 len = sizeof(struct if_msghdrl32); 1193 else 1194 len = sizeof(struct if_msghdr32); 1195 break; 1196 } 1197 #endif 1198 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1199 len = sizeof(struct if_msghdrl); 1200 else 1201 len = sizeof(struct if_msghdr); 1202 break; 1203 1204 case RTM_NEWMADDR: 1205 len = sizeof(struct ifma_msghdr); 1206 break; 1207 1208 default: 1209 len = sizeof(struct rt_msghdr); 1210 } 1211 cp0 = cp; 1212 if (cp0) 1213 cp += len; 1214 for (i = 0; i < RTAX_MAX; i++) { 1215 struct sockaddr *sa; 1216 1217 if ((sa = rtinfo->rti_info[i]) == NULL) 1218 continue; 1219 rtinfo->rti_addrs |= (1 << i); 1220 dlen = SA_SIZE(sa); 1221 #ifdef INET6 1222 switch (sa->sa_family) { 1223 case AF_INET6: 1224 if (V_deembed_scopeid == 0) 1225 break; 1226 sin6 = (struct sockaddr_in6 *)&ss; 1227 bcopy(sa, sin6, sizeof(*sin6)); 1228 if (sa6_recoverscope(sin6) == 0) 1229 sa = (struct sockaddr *)sin6; 1230 break; 1231 } 1232 #endif 1233 if (cp) { 1234 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1235 cp += dlen; 1236 } 1237 len += dlen; 1238 } 1239 len = ALIGN(len); 1240 if (cp == NULL && w != NULL && !second_time) { 1241 struct walkarg *rw = w; 1242 1243 if (rw->w_req) { 1244 if (rw->w_tmemsize < len) { 1245 if (rw->w_tmem) 1246 free(rw->w_tmem, M_RTABLE); 1247 rw->w_tmem = (caddr_t) 1248 malloc(len, M_RTABLE, M_NOWAIT); 1249 if (rw->w_tmem) 1250 rw->w_tmemsize = len; 1251 } 1252 if (rw->w_tmem) { 1253 cp = rw->w_tmem; 1254 second_time = 1; 1255 goto again; 1256 } 1257 } 1258 } 1259 if (cp) { 1260 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 1261 1262 rtm->rtm_version = RTM_VERSION; 1263 rtm->rtm_type = type; 1264 rtm->rtm_msglen = len; 1265 } 1266 return (len); 1267 } 1268 1269 /* 1270 * This routine is called to generate a message from the routing 1271 * socket indicating that a redirect has occured, a routing lookup 1272 * has failed, or that a protocol has detected timeouts to a particular 1273 * destination. 1274 */ 1275 void 1276 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1277 int fibnum) 1278 { 1279 struct rt_msghdr *rtm; 1280 struct mbuf *m; 1281 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1282 1283 if (route_cb.any_count == 0) 1284 return; 1285 m = rt_msg1(type, rtinfo); 1286 if (m == NULL) 1287 return; 1288 1289 if (fibnum != RTS_ALLFIBS) { 1290 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1291 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1292 M_SETFIB(m, fibnum); 1293 m->m_flags |= RTS_FILTER_FIB; 1294 } 1295 1296 rtm = mtod(m, struct rt_msghdr *); 1297 rtm->rtm_flags = RTF_DONE | flags; 1298 rtm->rtm_errno = error; 1299 rtm->rtm_addrs = rtinfo->rti_addrs; 1300 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1301 } 1302 1303 void 1304 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1305 { 1306 1307 rt_missmsg_fib(type, rtinfo, flags, error, RTS_ALLFIBS); 1308 } 1309 1310 /* 1311 * This routine is called to generate a message from the routing 1312 * socket indicating that the status of a network interface has changed. 1313 */ 1314 void 1315 rt_ifmsg(struct ifnet *ifp) 1316 { 1317 struct if_msghdr *ifm; 1318 struct mbuf *m; 1319 struct rt_addrinfo info; 1320 1321 if (route_cb.any_count == 0) 1322 return; 1323 bzero((caddr_t)&info, sizeof(info)); 1324 m = rt_msg1(RTM_IFINFO, &info); 1325 if (m == NULL) 1326 return; 1327 ifm = mtod(m, struct if_msghdr *); 1328 ifm->ifm_index = ifp->if_index; 1329 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1330 ifm->ifm_data = ifp->if_data; 1331 ifm->ifm_addrs = 0; 1332 rt_dispatch(m, AF_UNSPEC); 1333 } 1334 1335 /* 1336 * This is called to generate messages from the routing socket 1337 * indicating a network interface has had addresses associated with it. 1338 * if we ever reverse the logic and replace messages TO the routing 1339 * socket indicate a request to configure interfaces, then it will 1340 * be unnecessary as the routing socket will automatically generate 1341 * copies of it. 1342 */ 1343 void 1344 rt_newaddrmsg_fib(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt, 1345 int fibnum) 1346 { 1347 struct rt_addrinfo info; 1348 struct sockaddr *sa = NULL; 1349 int pass; 1350 struct mbuf *m = NULL; 1351 struct ifnet *ifp = ifa->ifa_ifp; 1352 1353 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 1354 ("unexpected cmd %u", cmd)); 1355 #if defined(INET) || defined(INET6) 1356 #ifdef SCTP 1357 /* 1358 * notify the SCTP stack 1359 * this will only get called when an address is added/deleted 1360 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 1361 */ 1362 sctp_addr_change(ifa, cmd); 1363 #endif /* SCTP */ 1364 #endif 1365 if (route_cb.any_count == 0) 1366 return; 1367 for (pass = 1; pass < 3; pass++) { 1368 bzero((caddr_t)&info, sizeof(info)); 1369 if ((cmd == RTM_ADD && pass == 1) || 1370 (cmd == RTM_DELETE && pass == 2)) { 1371 struct ifa_msghdr *ifam; 1372 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1373 1374 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1375 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1376 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1377 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1378 if ((m = rt_msg1(ncmd, &info)) == NULL) 1379 continue; 1380 ifam = mtod(m, struct ifa_msghdr *); 1381 ifam->ifam_index = ifp->if_index; 1382 ifam->ifam_metric = ifa->ifa_metric; 1383 ifam->ifam_flags = ifa->ifa_flags; 1384 ifam->ifam_addrs = info.rti_addrs; 1385 } 1386 if ((cmd == RTM_ADD && pass == 2) || 1387 (cmd == RTM_DELETE && pass == 1)) { 1388 struct rt_msghdr *rtm; 1389 1390 if (rt == NULL) 1391 continue; 1392 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1393 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1394 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1395 if ((m = rt_msg1(cmd, &info)) == NULL) 1396 continue; 1397 rtm = mtod(m, struct rt_msghdr *); 1398 rtm->rtm_index = ifp->if_index; 1399 rtm->rtm_flags |= rt->rt_flags; 1400 rtm->rtm_errno = error; 1401 rtm->rtm_addrs = info.rti_addrs; 1402 } 1403 if (fibnum != RTS_ALLFIBS) { 1404 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: " 1405 "fibnum out of range 0 <= %d < %d", __func__, 1406 fibnum, rt_numfibs)); 1407 M_SETFIB(m, fibnum); 1408 m->m_flags |= RTS_FILTER_FIB; 1409 } 1410 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1411 } 1412 } 1413 1414 void 1415 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 1416 { 1417 1418 rt_newaddrmsg_fib(cmd, ifa, error, rt, RTS_ALLFIBS); 1419 } 1420 1421 /* 1422 * This is the analogue to the rt_newaddrmsg which performs the same 1423 * function but for multicast group memberhips. This is easier since 1424 * there is no route state to worry about. 1425 */ 1426 void 1427 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1428 { 1429 struct rt_addrinfo info; 1430 struct mbuf *m = NULL; 1431 struct ifnet *ifp = ifma->ifma_ifp; 1432 struct ifma_msghdr *ifmam; 1433 1434 if (route_cb.any_count == 0) 1435 return; 1436 1437 bzero((caddr_t)&info, sizeof(info)); 1438 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1439 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1440 /* 1441 * If a link-layer address is present, present it as a ``gateway'' 1442 * (similarly to how ARP entries, e.g., are presented). 1443 */ 1444 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1445 m = rt_msg1(cmd, &info); 1446 if (m == NULL) 1447 return; 1448 ifmam = mtod(m, struct ifma_msghdr *); 1449 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1450 __func__)); 1451 ifmam->ifmam_index = ifp->if_index; 1452 ifmam->ifmam_addrs = info.rti_addrs; 1453 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1454 } 1455 1456 static struct mbuf * 1457 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1458 struct rt_addrinfo *info) 1459 { 1460 struct if_announcemsghdr *ifan; 1461 struct mbuf *m; 1462 1463 if (route_cb.any_count == 0) 1464 return NULL; 1465 bzero((caddr_t)info, sizeof(*info)); 1466 m = rt_msg1(type, info); 1467 if (m != NULL) { 1468 ifan = mtod(m, struct if_announcemsghdr *); 1469 ifan->ifan_index = ifp->if_index; 1470 strlcpy(ifan->ifan_name, ifp->if_xname, 1471 sizeof(ifan->ifan_name)); 1472 ifan->ifan_what = what; 1473 } 1474 return m; 1475 } 1476 1477 /* 1478 * This is called to generate routing socket messages indicating 1479 * IEEE80211 wireless events. 1480 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1481 */ 1482 void 1483 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1484 { 1485 struct mbuf *m; 1486 struct rt_addrinfo info; 1487 1488 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1489 if (m != NULL) { 1490 /* 1491 * Append the ieee80211 data. Try to stick it in the 1492 * mbuf containing the ifannounce msg; otherwise allocate 1493 * a new mbuf and append. 1494 * 1495 * NB: we assume m is a single mbuf. 1496 */ 1497 if (data_len > M_TRAILINGSPACE(m)) { 1498 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1499 if (n == NULL) { 1500 m_freem(m); 1501 return; 1502 } 1503 bcopy(data, mtod(n, void *), data_len); 1504 n->m_len = data_len; 1505 m->m_next = n; 1506 } else if (data_len > 0) { 1507 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1508 m->m_len += data_len; 1509 } 1510 if (m->m_flags & M_PKTHDR) 1511 m->m_pkthdr.len += data_len; 1512 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1513 rt_dispatch(m, AF_UNSPEC); 1514 } 1515 } 1516 1517 /* 1518 * This is called to generate routing socket messages indicating 1519 * network interface arrival and departure. 1520 */ 1521 void 1522 rt_ifannouncemsg(struct ifnet *ifp, int what) 1523 { 1524 struct mbuf *m; 1525 struct rt_addrinfo info; 1526 1527 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1528 if (m != NULL) 1529 rt_dispatch(m, AF_UNSPEC); 1530 } 1531 1532 static void 1533 rt_dispatch(struct mbuf *m, sa_family_t saf) 1534 { 1535 struct m_tag *tag; 1536 1537 /* 1538 * Preserve the family from the sockaddr, if any, in an m_tag for 1539 * use when injecting the mbuf into the routing socket buffer from 1540 * the netisr. 1541 */ 1542 if (saf != AF_UNSPEC) { 1543 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1544 M_NOWAIT); 1545 if (tag == NULL) { 1546 m_freem(m); 1547 return; 1548 } 1549 *(unsigned short *)(tag + 1) = saf; 1550 m_tag_prepend(m, tag); 1551 } 1552 #ifdef VIMAGE 1553 if (V_loif) 1554 m->m_pkthdr.rcvif = V_loif; 1555 else { 1556 m_freem(m); 1557 return; 1558 } 1559 #endif 1560 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1561 } 1562 1563 /* 1564 * This is used in dumping the kernel table via sysctl(). 1565 */ 1566 static int 1567 sysctl_dumpentry(struct radix_node *rn, void *vw) 1568 { 1569 struct walkarg *w = vw; 1570 struct rtentry *rt = (struct rtentry *)rn; 1571 int error = 0, size; 1572 struct rt_addrinfo info; 1573 #ifdef INET6 1574 struct sockaddr_storage ss[RTAX_MAX]; 1575 struct sockaddr_in6 *sin6; 1576 int i; 1577 #endif 1578 1579 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1580 return 0; 1581 if ((rt->rt_flags & RTF_HOST) == 0 1582 ? jailed_without_vnet(w->w_req->td->td_ucred) 1583 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1584 return (0); 1585 bzero((caddr_t)&info, sizeof(info)); 1586 info.rti_info[RTAX_DST] = rt_key(rt); 1587 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1588 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1589 info.rti_info[RTAX_GENMASK] = 0; 1590 if (rt->rt_ifp) { 1591 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1592 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1593 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1594 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1595 } 1596 #ifdef INET6 1597 for (i = 0; i < RTAX_MAX; i++) { 1598 if (info.rti_info[i] == NULL) 1599 continue; 1600 switch (info.rti_info[i]->sa_family) { 1601 case AF_INET6: 1602 if (V_deembed_scopeid == 0) 1603 break; 1604 sin6 = (struct sockaddr_in6 *)&ss[i]; 1605 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 1606 if (sa6_recoverscope(sin6) == 0) 1607 info.rti_info[i] = (struct sockaddr *)sin6; 1608 break; 1609 } 1610 } 1611 #endif 1612 size = rt_msg2(RTM_GET, &info, NULL, w); 1613 if (w->w_req && w->w_tmem) { 1614 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1615 1616 rtm->rtm_flags = rt->rt_flags; 1617 /* 1618 * let's be honest about this being a retarded hack 1619 */ 1620 rtm->rtm_fmask = rt->rt_rmx.rmx_pksent; 1621 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1622 rtm->rtm_index = rt->rt_ifp->if_index; 1623 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1624 rtm->rtm_addrs = info.rti_addrs; 1625 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1626 return (error); 1627 } 1628 return (error); 1629 } 1630 1631 #ifdef COMPAT_FREEBSD32 1632 static void 1633 copy_ifdata32(struct if_data *src, struct if_data32 *dst) 1634 { 1635 1636 bzero(dst, sizeof(*dst)); 1637 CP(*src, *dst, ifi_type); 1638 CP(*src, *dst, ifi_physical); 1639 CP(*src, *dst, ifi_addrlen); 1640 CP(*src, *dst, ifi_hdrlen); 1641 CP(*src, *dst, ifi_link_state); 1642 CP(*src, *dst, ifi_vhid); 1643 dst->ifi_datalen = sizeof(struct if_data32); 1644 CP(*src, *dst, ifi_mtu); 1645 CP(*src, *dst, ifi_metric); 1646 CP(*src, *dst, ifi_baudrate); 1647 CP(*src, *dst, ifi_ipackets); 1648 CP(*src, *dst, ifi_ierrors); 1649 CP(*src, *dst, ifi_opackets); 1650 CP(*src, *dst, ifi_oerrors); 1651 CP(*src, *dst, ifi_collisions); 1652 CP(*src, *dst, ifi_ibytes); 1653 CP(*src, *dst, ifi_obytes); 1654 CP(*src, *dst, ifi_imcasts); 1655 CP(*src, *dst, ifi_omcasts); 1656 CP(*src, *dst, ifi_iqdrops); 1657 CP(*src, *dst, ifi_noproto); 1658 CP(*src, *dst, ifi_hwassist); 1659 CP(*src, *dst, ifi_epoch); 1660 TV_CP(*src, *dst, ifi_lastchange); 1661 } 1662 #endif 1663 1664 static int 1665 sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info, 1666 struct walkarg *w, int len) 1667 { 1668 struct if_msghdrl *ifm; 1669 1670 #ifdef COMPAT_FREEBSD32 1671 if (w->w_req->flags & SCTL_MASK32) { 1672 struct if_msghdrl32 *ifm32; 1673 1674 ifm32 = (struct if_msghdrl32 *)w->w_tmem; 1675 ifm32->ifm_addrs = info->rti_addrs; 1676 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1677 ifm32->ifm_index = ifp->if_index; 1678 ifm32->_ifm_spare1 = 0; 1679 ifm32->ifm_len = sizeof(*ifm32); 1680 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1681 1682 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1683 /* Fixup if_data carp(4) vhid. */ 1684 if (carp_get_vhid_p != NULL) 1685 ifm32->ifm_data.ifi_vhid = 1686 (*carp_get_vhid_p)(ifp->if_addr); 1687 1688 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len)); 1689 } 1690 #endif 1691 ifm = (struct if_msghdrl *)w->w_tmem; 1692 ifm->ifm_addrs = info->rti_addrs; 1693 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1694 ifm->ifm_index = ifp->if_index; 1695 ifm->_ifm_spare1 = 0; 1696 ifm->ifm_len = sizeof(*ifm); 1697 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1698 1699 ifm->ifm_data = ifp->if_data; 1700 /* Fixup if_data carp(4) vhid. */ 1701 if (carp_get_vhid_p != NULL) 1702 ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr); 1703 1704 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1705 } 1706 1707 static int 1708 sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info, 1709 struct walkarg *w, int len) 1710 { 1711 struct if_msghdr *ifm; 1712 1713 #ifdef COMPAT_FREEBSD32 1714 if (w->w_req->flags & SCTL_MASK32) { 1715 struct if_msghdr32 *ifm32; 1716 1717 ifm32 = (struct if_msghdr32 *)w->w_tmem; 1718 ifm32->ifm_addrs = info->rti_addrs; 1719 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1720 ifm32->ifm_index = ifp->if_index; 1721 1722 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1723 /* Fixup if_data carp(4) vhid. */ 1724 if (carp_get_vhid_p != NULL) 1725 ifm32->ifm_data.ifi_vhid = 1726 (*carp_get_vhid_p)(ifp->if_addr); 1727 1728 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len)); 1729 } 1730 #endif 1731 ifm = (struct if_msghdr *)w->w_tmem; 1732 ifm->ifm_addrs = info->rti_addrs; 1733 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1734 ifm->ifm_index = ifp->if_index; 1735 1736 ifm->ifm_data = ifp->if_data; 1737 /* Fixup if_data carp(4) vhid. */ 1738 if (carp_get_vhid_p != NULL) 1739 ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr); 1740 1741 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1742 } 1743 1744 static int 1745 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1746 struct walkarg *w, int len) 1747 { 1748 struct ifa_msghdrl *ifam; 1749 1750 #ifdef COMPAT_FREEBSD32 1751 if (w->w_req->flags & SCTL_MASK32) { 1752 struct ifa_msghdrl32 *ifam32; 1753 1754 ifam32 = (struct ifa_msghdrl32 *)w->w_tmem; 1755 ifam32->ifam_addrs = info->rti_addrs; 1756 ifam32->ifam_flags = ifa->ifa_flags; 1757 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1758 ifam32->_ifam_spare1 = 0; 1759 ifam32->ifam_len = sizeof(*ifam32); 1760 ifam32->ifam_data_off = 1761 offsetof(struct ifa_msghdrl32, ifam_data); 1762 ifam32->ifam_metric = ifa->ifa_metric; 1763 1764 copy_ifdata32(&ifa->ifa_ifp->if_data, &ifam32->ifam_data); 1765 /* Fixup if_data carp(4) vhid. */ 1766 if (carp_get_vhid_p != NULL) 1767 ifam32->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa); 1768 1769 return (SYSCTL_OUT(w->w_req, (caddr_t)ifam32, len)); 1770 } 1771 #endif 1772 1773 ifam = (struct ifa_msghdrl *)w->w_tmem; 1774 ifam->ifam_addrs = info->rti_addrs; 1775 ifam->ifam_flags = ifa->ifa_flags; 1776 ifam->ifam_index = ifa->ifa_ifp->if_index; 1777 ifam->_ifam_spare1 = 0; 1778 ifam->ifam_len = sizeof(*ifam); 1779 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1780 ifam->ifam_metric = ifa->ifa_metric; 1781 1782 ifam->ifam_data = ifa->if_data; 1783 /* Fixup if_data carp(4) vhid. */ 1784 if (carp_get_vhid_p != NULL) 1785 ifam->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa); 1786 1787 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1788 } 1789 1790 static int 1791 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1792 struct walkarg *w, int len) 1793 { 1794 struct ifa_msghdr *ifam; 1795 1796 ifam = (struct ifa_msghdr *)w->w_tmem; 1797 ifam->ifam_addrs = info->rti_addrs; 1798 ifam->ifam_flags = ifa->ifa_flags; 1799 ifam->ifam_index = ifa->ifa_ifp->if_index; 1800 ifam->ifam_metric = ifa->ifa_metric; 1801 1802 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1803 } 1804 1805 static int 1806 sysctl_iflist(int af, struct walkarg *w) 1807 { 1808 struct ifnet *ifp; 1809 struct ifaddr *ifa; 1810 struct rt_addrinfo info; 1811 int len, error = 0; 1812 1813 bzero((caddr_t)&info, sizeof(info)); 1814 IFNET_RLOCK(); 1815 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1816 if (w->w_arg && w->w_arg != ifp->if_index) 1817 continue; 1818 IF_ADDR_RLOCK(ifp); 1819 ifa = ifp->if_addr; 1820 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1821 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1822 info.rti_info[RTAX_IFP] = NULL; 1823 if (w->w_req && w->w_tmem) { 1824 if (w->w_op == NET_RT_IFLISTL) 1825 error = sysctl_iflist_ifml(ifp, &info, w, len); 1826 else 1827 error = sysctl_iflist_ifm(ifp, &info, w, len); 1828 if (error) 1829 goto done; 1830 } 1831 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1832 if (af && af != ifa->ifa_addr->sa_family) 1833 continue; 1834 if (prison_if(w->w_req->td->td_ucred, 1835 ifa->ifa_addr) != 0) 1836 continue; 1837 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1838 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1839 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1840 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1841 if (w->w_req && w->w_tmem) { 1842 if (w->w_op == NET_RT_IFLISTL) 1843 error = sysctl_iflist_ifaml(ifa, &info, 1844 w, len); 1845 else 1846 error = sysctl_iflist_ifam(ifa, &info, 1847 w, len); 1848 if (error) 1849 goto done; 1850 } 1851 } 1852 IF_ADDR_RUNLOCK(ifp); 1853 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1854 info.rti_info[RTAX_BRD] = NULL; 1855 } 1856 done: 1857 if (ifp != NULL) 1858 IF_ADDR_RUNLOCK(ifp); 1859 IFNET_RUNLOCK(); 1860 return (error); 1861 } 1862 1863 static int 1864 sysctl_ifmalist(int af, struct walkarg *w) 1865 { 1866 struct ifnet *ifp; 1867 struct ifmultiaddr *ifma; 1868 struct rt_addrinfo info; 1869 int len, error = 0; 1870 struct ifaddr *ifa; 1871 1872 bzero((caddr_t)&info, sizeof(info)); 1873 IFNET_RLOCK(); 1874 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1875 if (w->w_arg && w->w_arg != ifp->if_index) 1876 continue; 1877 ifa = ifp->if_addr; 1878 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1879 IF_ADDR_RLOCK(ifp); 1880 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1881 if (af && af != ifma->ifma_addr->sa_family) 1882 continue; 1883 if (prison_if(w->w_req->td->td_ucred, 1884 ifma->ifma_addr) != 0) 1885 continue; 1886 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1887 info.rti_info[RTAX_GATEWAY] = 1888 (ifma->ifma_addr->sa_family != AF_LINK) ? 1889 ifma->ifma_lladdr : NULL; 1890 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1891 if (w->w_req && w->w_tmem) { 1892 struct ifma_msghdr *ifmam; 1893 1894 ifmam = (struct ifma_msghdr *)w->w_tmem; 1895 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1896 ifmam->ifmam_flags = 0; 1897 ifmam->ifmam_addrs = info.rti_addrs; 1898 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1899 if (error) { 1900 IF_ADDR_RUNLOCK(ifp); 1901 goto done; 1902 } 1903 } 1904 } 1905 IF_ADDR_RUNLOCK(ifp); 1906 } 1907 done: 1908 IFNET_RUNLOCK(); 1909 return (error); 1910 } 1911 1912 static int 1913 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1914 { 1915 int *name = (int *)arg1; 1916 u_int namelen = arg2; 1917 struct radix_node_head *rnh = NULL; /* silence compiler. */ 1918 int i, lim, error = EINVAL; 1919 u_char af; 1920 struct walkarg w; 1921 1922 name ++; 1923 namelen--; 1924 if (req->newptr) 1925 return (EPERM); 1926 if (namelen != 3) 1927 return ((namelen < 3) ? EISDIR : ENOTDIR); 1928 af = name[0]; 1929 if (af > AF_MAX) 1930 return (EINVAL); 1931 bzero(&w, sizeof(w)); 1932 w.w_op = name[1]; 1933 w.w_arg = name[2]; 1934 w.w_req = req; 1935 1936 error = sysctl_wire_old_buffer(req, 0); 1937 if (error) 1938 return (error); 1939 switch (w.w_op) { 1940 1941 case NET_RT_DUMP: 1942 case NET_RT_FLAGS: 1943 if (af == 0) { /* dump all tables */ 1944 i = 1; 1945 lim = AF_MAX; 1946 } else /* dump only one table */ 1947 i = lim = af; 1948 1949 /* 1950 * take care of llinfo entries, the caller must 1951 * specify an AF 1952 */ 1953 if (w.w_op == NET_RT_FLAGS && 1954 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1955 if (af != 0) 1956 error = lltable_sysctl_dumparp(af, w.w_req); 1957 else 1958 error = EINVAL; 1959 break; 1960 } 1961 /* 1962 * take care of routing entries 1963 */ 1964 for (error = 0; error == 0 && i <= lim; i++) { 1965 rnh = rt_tables_get_rnh(req->td->td_proc->p_fibnum, i); 1966 if (rnh != NULL) { 1967 RADIX_NODE_HEAD_RLOCK(rnh); 1968 error = rnh->rnh_walktree(rnh, 1969 sysctl_dumpentry, &w); 1970 RADIX_NODE_HEAD_RUNLOCK(rnh); 1971 } else if (af != 0) 1972 error = EAFNOSUPPORT; 1973 } 1974 break; 1975 1976 case NET_RT_IFLIST: 1977 case NET_RT_IFLISTL: 1978 error = sysctl_iflist(af, &w); 1979 break; 1980 1981 case NET_RT_IFMALIST: 1982 error = sysctl_ifmalist(af, &w); 1983 break; 1984 } 1985 if (w.w_tmem) 1986 free(w.w_tmem, M_RTABLE); 1987 return (error); 1988 } 1989 1990 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1991 1992 /* 1993 * Definitions of protocols supported in the ROUTE domain. 1994 */ 1995 1996 static struct domain routedomain; /* or at least forward */ 1997 1998 static struct protosw routesw[] = { 1999 { 2000 .pr_type = SOCK_RAW, 2001 .pr_domain = &routedomain, 2002 .pr_flags = PR_ATOMIC|PR_ADDR, 2003 .pr_output = route_output, 2004 .pr_ctlinput = raw_ctlinput, 2005 .pr_init = raw_init, 2006 .pr_usrreqs = &route_usrreqs 2007 } 2008 }; 2009 2010 static struct domain routedomain = { 2011 .dom_family = PF_ROUTE, 2012 .dom_name = "route", 2013 .dom_protosw = routesw, 2014 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 2015 }; 2016 2017 VNET_DOMAIN_SET(route); 2018