1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_compat.h" 33 #include "opt_mpath.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 37 #include <sys/param.h> 38 #include <sys/jail.h> 39 #include <sys/kernel.h> 40 #include <sys/domain.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/rwlock.h> 48 #include <sys/signalvar.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/systm.h> 53 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_dl.h> 57 #include <net/if_llatbl.h> 58 #include <net/if_types.h> 59 #include <net/netisr.h> 60 #include <net/raw_cb.h> 61 #include <net/route.h> 62 #include <net/vnet.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 #include <netinet/ip_carp.h> 67 #ifdef INET6 68 #include <netinet6/ip6_var.h> 69 #include <netinet6/scope6_var.h> 70 #endif 71 72 #ifdef COMPAT_FREEBSD32 73 #include <sys/mount.h> 74 #include <compat/freebsd32/freebsd32.h> 75 76 struct if_data32 { 77 uint8_t ifi_type; 78 uint8_t ifi_physical; 79 uint8_t ifi_addrlen; 80 uint8_t ifi_hdrlen; 81 uint8_t ifi_link_state; 82 uint8_t ifi_vhid; 83 uint8_t ifi_baudrate_pf; 84 uint8_t ifi_datalen; 85 uint32_t ifi_mtu; 86 uint32_t ifi_metric; 87 uint32_t ifi_baudrate; 88 uint32_t ifi_ipackets; 89 uint32_t ifi_ierrors; 90 uint32_t ifi_opackets; 91 uint32_t ifi_oerrors; 92 uint32_t ifi_collisions; 93 uint32_t ifi_ibytes; 94 uint32_t ifi_obytes; 95 uint32_t ifi_imcasts; 96 uint32_t ifi_omcasts; 97 uint32_t ifi_iqdrops; 98 uint32_t ifi_noproto; 99 uint32_t ifi_hwassist; 100 int32_t ifi_epoch; 101 struct timeval32 ifi_lastchange; 102 }; 103 104 struct if_msghdr32 { 105 uint16_t ifm_msglen; 106 uint8_t ifm_version; 107 uint8_t ifm_type; 108 int32_t ifm_addrs; 109 int32_t ifm_flags; 110 uint16_t ifm_index; 111 struct if_data32 ifm_data; 112 }; 113 114 struct if_msghdrl32 { 115 uint16_t ifm_msglen; 116 uint8_t ifm_version; 117 uint8_t ifm_type; 118 int32_t ifm_addrs; 119 int32_t ifm_flags; 120 uint16_t ifm_index; 121 uint16_t _ifm_spare1; 122 uint16_t ifm_len; 123 uint16_t ifm_data_off; 124 struct if_data32 ifm_data; 125 }; 126 127 struct ifa_msghdrl32 { 128 uint16_t ifam_msglen; 129 uint8_t ifam_version; 130 uint8_t ifam_type; 131 int32_t ifam_addrs; 132 int32_t ifam_flags; 133 uint16_t ifam_index; 134 uint16_t _ifam_spare1; 135 uint16_t ifam_len; 136 uint16_t ifam_data_off; 137 int32_t ifam_metric; 138 struct if_data32 ifam_data; 139 }; 140 #endif /* COMPAT_FREEBSD32 */ 141 142 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 143 144 /* NB: these are not modified */ 145 static struct sockaddr route_src = { 2, PF_ROUTE, }; 146 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 147 148 /* These are external hooks for CARP. */ 149 int (*carp_get_vhid_p)(struct ifaddr *); 150 151 /* 152 * Used by rtsock/raw_input callback code to decide whether to filter the update 153 * notification to a socket bound to a particular FIB. 154 */ 155 #define RTS_FILTER_FIB M_PROTO8 156 157 typedef struct { 158 int ip_count; /* attached w/ AF_INET */ 159 int ip6_count; /* attached w/ AF_INET6 */ 160 int ipx_count; /* attached w/ AF_IPX */ 161 int any_count; /* total attached */ 162 } route_cb_t; 163 static VNET_DEFINE(route_cb_t, route_cb); 164 #define V_route_cb VNET(route_cb) 165 166 struct mtx rtsock_mtx; 167 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 168 169 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 170 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 171 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 172 173 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 174 175 struct walkarg { 176 int w_tmemsize; 177 int w_op, w_arg; 178 caddr_t w_tmem; 179 struct sysctl_req *w_req; 180 }; 181 182 static void rts_input(struct mbuf *m); 183 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 184 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 185 caddr_t cp, struct walkarg *w); 186 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 187 struct rt_addrinfo *rtinfo); 188 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 189 static int sysctl_iflist(int af, struct walkarg *w); 190 static int sysctl_ifmalist(int af, struct walkarg *w); 191 static int route_output(struct mbuf *m, struct socket *so); 192 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 193 struct rt_metrics_lite *out); 194 static void rt_getmetrics(const struct rt_metrics_lite *in, 195 struct rt_metrics *out); 196 static void rt_dispatch(struct mbuf *, sa_family_t); 197 198 static struct netisr_handler rtsock_nh = { 199 .nh_name = "rtsock", 200 .nh_handler = rts_input, 201 .nh_proto = NETISR_ROUTE, 202 .nh_policy = NETISR_POLICY_SOURCE, 203 }; 204 205 static int 206 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 207 { 208 int error, qlimit; 209 210 netisr_getqlimit(&rtsock_nh, &qlimit); 211 error = sysctl_handle_int(oidp, &qlimit, 0, req); 212 if (error || !req->newptr) 213 return (error); 214 if (qlimit < 1) 215 return (EINVAL); 216 return (netisr_setqlimit(&rtsock_nh, qlimit)); 217 } 218 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 219 0, 0, sysctl_route_netisr_maxqlen, "I", 220 "maximum routing socket dispatch queue length"); 221 222 static void 223 rts_init(void) 224 { 225 int tmp; 226 227 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 228 rtsock_nh.nh_qlimit = tmp; 229 netisr_register(&rtsock_nh); 230 } 231 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 232 233 static int 234 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 235 struct rawcb *rp) 236 { 237 int fibnum; 238 239 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 240 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 241 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 242 243 /* No filtering requested. */ 244 if ((m->m_flags & RTS_FILTER_FIB) == 0) 245 return (0); 246 247 /* Check if it is a rts and the fib matches the one of the socket. */ 248 fibnum = M_GETFIB(m); 249 if (proto->sp_family != PF_ROUTE || 250 rp->rcb_socket == NULL || 251 rp->rcb_socket->so_fibnum == fibnum) 252 return (0); 253 254 /* Filtering requested and no match, the socket shall be skipped. */ 255 return (1); 256 } 257 258 static void 259 rts_input(struct mbuf *m) 260 { 261 struct sockproto route_proto; 262 unsigned short *family; 263 struct m_tag *tag; 264 265 route_proto.sp_family = PF_ROUTE; 266 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 267 if (tag != NULL) { 268 family = (unsigned short *)(tag + 1); 269 route_proto.sp_protocol = *family; 270 m_tag_delete(m, tag); 271 } else 272 route_proto.sp_protocol = 0; 273 274 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 275 } 276 277 /* 278 * It really doesn't make any sense at all for this code to share much 279 * with raw_usrreq.c, since its functionality is so restricted. XXX 280 */ 281 static void 282 rts_abort(struct socket *so) 283 { 284 285 raw_usrreqs.pru_abort(so); 286 } 287 288 static void 289 rts_close(struct socket *so) 290 { 291 292 raw_usrreqs.pru_close(so); 293 } 294 295 /* pru_accept is EOPNOTSUPP */ 296 297 static int 298 rts_attach(struct socket *so, int proto, struct thread *td) 299 { 300 struct rawcb *rp; 301 int error; 302 303 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 304 305 /* XXX */ 306 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 307 if (rp == NULL) 308 return ENOBUFS; 309 310 so->so_pcb = (caddr_t)rp; 311 so->so_fibnum = td->td_proc->p_fibnum; 312 error = raw_attach(so, proto); 313 rp = sotorawcb(so); 314 if (error) { 315 so->so_pcb = NULL; 316 free(rp, M_PCB); 317 return error; 318 } 319 RTSOCK_LOCK(); 320 switch(rp->rcb_proto.sp_protocol) { 321 case AF_INET: 322 V_route_cb.ip_count++; 323 break; 324 case AF_INET6: 325 V_route_cb.ip6_count++; 326 break; 327 case AF_IPX: 328 V_route_cb.ipx_count++; 329 break; 330 } 331 V_route_cb.any_count++; 332 RTSOCK_UNLOCK(); 333 soisconnected(so); 334 so->so_options |= SO_USELOOPBACK; 335 return 0; 336 } 337 338 static int 339 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 340 { 341 342 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 343 } 344 345 static int 346 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 347 { 348 349 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 350 } 351 352 /* pru_connect2 is EOPNOTSUPP */ 353 /* pru_control is EOPNOTSUPP */ 354 355 static void 356 rts_detach(struct socket *so) 357 { 358 struct rawcb *rp = sotorawcb(so); 359 360 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 361 362 RTSOCK_LOCK(); 363 switch(rp->rcb_proto.sp_protocol) { 364 case AF_INET: 365 V_route_cb.ip_count--; 366 break; 367 case AF_INET6: 368 V_route_cb.ip6_count--; 369 break; 370 case AF_IPX: 371 V_route_cb.ipx_count--; 372 break; 373 } 374 V_route_cb.any_count--; 375 RTSOCK_UNLOCK(); 376 raw_usrreqs.pru_detach(so); 377 } 378 379 static int 380 rts_disconnect(struct socket *so) 381 { 382 383 return (raw_usrreqs.pru_disconnect(so)); 384 } 385 386 /* pru_listen is EOPNOTSUPP */ 387 388 static int 389 rts_peeraddr(struct socket *so, struct sockaddr **nam) 390 { 391 392 return (raw_usrreqs.pru_peeraddr(so, nam)); 393 } 394 395 /* pru_rcvd is EOPNOTSUPP */ 396 /* pru_rcvoob is EOPNOTSUPP */ 397 398 static int 399 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 400 struct mbuf *control, struct thread *td) 401 { 402 403 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 404 } 405 406 /* pru_sense is null */ 407 408 static int 409 rts_shutdown(struct socket *so) 410 { 411 412 return (raw_usrreqs.pru_shutdown(so)); 413 } 414 415 static int 416 rts_sockaddr(struct socket *so, struct sockaddr **nam) 417 { 418 419 return (raw_usrreqs.pru_sockaddr(so, nam)); 420 } 421 422 static struct pr_usrreqs route_usrreqs = { 423 .pru_abort = rts_abort, 424 .pru_attach = rts_attach, 425 .pru_bind = rts_bind, 426 .pru_connect = rts_connect, 427 .pru_detach = rts_detach, 428 .pru_disconnect = rts_disconnect, 429 .pru_peeraddr = rts_peeraddr, 430 .pru_send = rts_send, 431 .pru_shutdown = rts_shutdown, 432 .pru_sockaddr = rts_sockaddr, 433 .pru_close = rts_close, 434 }; 435 436 #ifndef _SOCKADDR_UNION_DEFINED 437 #define _SOCKADDR_UNION_DEFINED 438 /* 439 * The union of all possible address formats we handle. 440 */ 441 union sockaddr_union { 442 struct sockaddr sa; 443 struct sockaddr_in sin; 444 struct sockaddr_in6 sin6; 445 }; 446 #endif /* _SOCKADDR_UNION_DEFINED */ 447 448 static int 449 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 450 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 451 { 452 453 /* First, see if the returned address is part of the jail. */ 454 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 455 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 456 return (0); 457 } 458 459 switch (info->rti_info[RTAX_DST]->sa_family) { 460 #ifdef INET 461 case AF_INET: 462 { 463 struct in_addr ia; 464 struct ifaddr *ifa; 465 int found; 466 467 found = 0; 468 /* 469 * Try to find an address on the given outgoing interface 470 * that belongs to the jail. 471 */ 472 IF_ADDR_RLOCK(ifp); 473 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 474 struct sockaddr *sa; 475 sa = ifa->ifa_addr; 476 if (sa->sa_family != AF_INET) 477 continue; 478 ia = ((struct sockaddr_in *)sa)->sin_addr; 479 if (prison_check_ip4(cred, &ia) == 0) { 480 found = 1; 481 break; 482 } 483 } 484 IF_ADDR_RUNLOCK(ifp); 485 if (!found) { 486 /* 487 * As a last resort return the 'default' jail address. 488 */ 489 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 490 sin_addr; 491 if (prison_get_ip4(cred, &ia) != 0) 492 return (ESRCH); 493 } 494 bzero(&saun->sin, sizeof(struct sockaddr_in)); 495 saun->sin.sin_len = sizeof(struct sockaddr_in); 496 saun->sin.sin_family = AF_INET; 497 saun->sin.sin_addr.s_addr = ia.s_addr; 498 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 499 break; 500 } 501 #endif 502 #ifdef INET6 503 case AF_INET6: 504 { 505 struct in6_addr ia6; 506 struct ifaddr *ifa; 507 int found; 508 509 found = 0; 510 /* 511 * Try to find an address on the given outgoing interface 512 * that belongs to the jail. 513 */ 514 IF_ADDR_RLOCK(ifp); 515 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 516 struct sockaddr *sa; 517 sa = ifa->ifa_addr; 518 if (sa->sa_family != AF_INET6) 519 continue; 520 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 521 &ia6, sizeof(struct in6_addr)); 522 if (prison_check_ip6(cred, &ia6) == 0) { 523 found = 1; 524 break; 525 } 526 } 527 IF_ADDR_RUNLOCK(ifp); 528 if (!found) { 529 /* 530 * As a last resort return the 'default' jail address. 531 */ 532 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 533 sin6_addr; 534 if (prison_get_ip6(cred, &ia6) != 0) 535 return (ESRCH); 536 } 537 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 538 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 539 saun->sin6.sin6_family = AF_INET6; 540 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 541 if (sa6_recoverscope(&saun->sin6) != 0) 542 return (ESRCH); 543 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 544 break; 545 } 546 #endif 547 default: 548 return (ESRCH); 549 } 550 return (0); 551 } 552 553 /*ARGSUSED*/ 554 static int 555 route_output(struct mbuf *m, struct socket *so) 556 { 557 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 558 struct rt_msghdr *rtm = NULL; 559 struct rtentry *rt = NULL; 560 struct radix_node_head *rnh; 561 struct rt_addrinfo info; 562 #ifdef INET6 563 struct sockaddr_storage ss; 564 struct sockaddr_in6 *sin6; 565 int i, rti_need_deembed = 0; 566 #endif 567 int len, error = 0; 568 struct ifnet *ifp = NULL; 569 union sockaddr_union saun; 570 sa_family_t saf = AF_UNSPEC; 571 572 #define senderr(e) { error = e; goto flush;} 573 if (m == NULL || ((m->m_len < sizeof(long)) && 574 (m = m_pullup(m, sizeof(long))) == NULL)) 575 return (ENOBUFS); 576 if ((m->m_flags & M_PKTHDR) == 0) 577 panic("route_output"); 578 len = m->m_pkthdr.len; 579 if (len < sizeof(*rtm) || 580 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 581 info.rti_info[RTAX_DST] = NULL; 582 senderr(EINVAL); 583 } 584 R_Malloc(rtm, struct rt_msghdr *, len); 585 if (rtm == NULL) { 586 info.rti_info[RTAX_DST] = NULL; 587 senderr(ENOBUFS); 588 } 589 m_copydata(m, 0, len, (caddr_t)rtm); 590 if (rtm->rtm_version != RTM_VERSION) { 591 info.rti_info[RTAX_DST] = NULL; 592 senderr(EPROTONOSUPPORT); 593 } 594 rtm->rtm_pid = curproc->p_pid; 595 bzero(&info, sizeof(info)); 596 info.rti_addrs = rtm->rtm_addrs; 597 /* 598 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 599 * link-local address because rtrequest requires addresses with 600 * embedded scope id. 601 */ 602 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 603 info.rti_info[RTAX_DST] = NULL; 604 senderr(EINVAL); 605 } 606 info.rti_flags = rtm->rtm_flags; 607 if (info.rti_info[RTAX_DST] == NULL || 608 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 609 (info.rti_info[RTAX_GATEWAY] != NULL && 610 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 611 senderr(EINVAL); 612 saf = info.rti_info[RTAX_DST]->sa_family; 613 /* 614 * Verify that the caller has the appropriate privilege; RTM_GET 615 * is the only operation the non-superuser is allowed. 616 */ 617 if (rtm->rtm_type != RTM_GET) { 618 error = priv_check(curthread, PRIV_NET_ROUTE); 619 if (error) 620 senderr(error); 621 } 622 623 /* 624 * The given gateway address may be an interface address. 625 * For example, issuing a "route change" command on a route 626 * entry that was created from a tunnel, and the gateway 627 * address given is the local end point. In this case the 628 * RTF_GATEWAY flag must be cleared or the destination will 629 * not be reachable even though there is no error message. 630 */ 631 if (info.rti_info[RTAX_GATEWAY] != NULL && 632 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 633 struct route gw_ro; 634 635 bzero(&gw_ro, sizeof(gw_ro)); 636 gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY]; 637 rtalloc_ign_fib(&gw_ro, 0, so->so_fibnum); 638 /* 639 * A host route through the loopback interface is 640 * installed for each interface adddress. In pre 8.0 641 * releases the interface address of a PPP link type 642 * is not reachable locally. This behavior is fixed as 643 * part of the new L2/L3 redesign and rewrite work. The 644 * signature of this interface address route is the 645 * AF_LINK sa_family type of the rt_gateway, and the 646 * rt_ifp has the IFF_LOOPBACK flag set. 647 */ 648 if (gw_ro.ro_rt != NULL && 649 gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK && 650 gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) { 651 info.rti_flags &= ~RTF_GATEWAY; 652 info.rti_flags |= RTF_GWFLAG_COMPAT; 653 } 654 if (gw_ro.ro_rt != NULL) 655 RTFREE(gw_ro.ro_rt); 656 } 657 658 switch (rtm->rtm_type) { 659 struct rtentry *saved_nrt; 660 661 case RTM_ADD: 662 if (info.rti_info[RTAX_GATEWAY] == NULL) 663 senderr(EINVAL); 664 saved_nrt = NULL; 665 666 /* support for new ARP code */ 667 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 668 (rtm->rtm_flags & RTF_LLDATA) != 0) { 669 error = lla_rt_output(rtm, &info); 670 #ifdef INET6 671 if (error == 0) 672 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 673 #endif 674 break; 675 } 676 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 677 so->so_fibnum); 678 if (error == 0 && saved_nrt) { 679 #ifdef INET6 680 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 681 #endif 682 RT_LOCK(saved_nrt); 683 rt_setmetrics(rtm->rtm_inits, 684 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 685 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 686 RT_REMREF(saved_nrt); 687 RT_UNLOCK(saved_nrt); 688 } 689 break; 690 691 case RTM_DELETE: 692 saved_nrt = NULL; 693 /* support for new ARP code */ 694 if (info.rti_info[RTAX_GATEWAY] && 695 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 696 (rtm->rtm_flags & RTF_LLDATA) != 0) { 697 error = lla_rt_output(rtm, &info); 698 #ifdef INET6 699 if (error == 0) 700 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 701 #endif 702 break; 703 } 704 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 705 so->so_fibnum); 706 if (error == 0) { 707 RT_LOCK(saved_nrt); 708 rt = saved_nrt; 709 goto report; 710 } 711 #ifdef INET6 712 /* rt_msg2() will not be used when RTM_DELETE fails. */ 713 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 714 #endif 715 break; 716 717 case RTM_GET: 718 case RTM_CHANGE: 719 case RTM_LOCK: 720 rnh = rt_tables_get_rnh(so->so_fibnum, 721 info.rti_info[RTAX_DST]->sa_family); 722 if (rnh == NULL) 723 senderr(EAFNOSUPPORT); 724 725 RADIX_NODE_HEAD_RLOCK(rnh); 726 727 if (info.rti_info[RTAX_NETMASK] == NULL && 728 rtm->rtm_type == RTM_GET) { 729 /* 730 * Provide logest prefix match for 731 * address lookup (no mask). 732 * 'route -n get addr' 733 */ 734 rt = (struct rtentry *) rnh->rnh_matchaddr( 735 info.rti_info[RTAX_DST], rnh); 736 } else 737 rt = (struct rtentry *) rnh->rnh_lookup( 738 info.rti_info[RTAX_DST], 739 info.rti_info[RTAX_NETMASK], rnh); 740 741 if (rt == NULL) { 742 RADIX_NODE_HEAD_RUNLOCK(rnh); 743 senderr(ESRCH); 744 } 745 #ifdef RADIX_MPATH 746 /* 747 * for RTM_CHANGE/LOCK, if we got multipath routes, 748 * we require users to specify a matching RTAX_GATEWAY. 749 * 750 * for RTM_GET, gate is optional even with multipath. 751 * if gate == NULL the first match is returned. 752 * (no need to call rt_mpath_matchgate if gate == NULL) 753 */ 754 if (rn_mpath_capable(rnh) && 755 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 756 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 757 if (!rt) { 758 RADIX_NODE_HEAD_RUNLOCK(rnh); 759 senderr(ESRCH); 760 } 761 } 762 #endif 763 /* 764 * If performing proxied L2 entry insertion, and 765 * the actual PPP host entry is found, perform 766 * another search to retrieve the prefix route of 767 * the local end point of the PPP link. 768 */ 769 if (rtm->rtm_flags & RTF_ANNOUNCE) { 770 struct sockaddr laddr; 771 772 if (rt->rt_ifp != NULL && 773 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 774 struct ifaddr *ifa; 775 776 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1); 777 if (ifa != NULL) 778 rt_maskedcopy(ifa->ifa_addr, 779 &laddr, 780 ifa->ifa_netmask); 781 } else 782 rt_maskedcopy(rt->rt_ifa->ifa_addr, 783 &laddr, 784 rt->rt_ifa->ifa_netmask); 785 /* 786 * refactor rt and no lock operation necessary 787 */ 788 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh); 789 if (rt == NULL) { 790 RADIX_NODE_HEAD_RUNLOCK(rnh); 791 senderr(ESRCH); 792 } 793 } 794 RT_LOCK(rt); 795 RT_ADDREF(rt); 796 RADIX_NODE_HEAD_RUNLOCK(rnh); 797 798 switch(rtm->rtm_type) { 799 800 case RTM_GET: 801 report: 802 RT_LOCK_ASSERT(rt); 803 if ((rt->rt_flags & RTF_HOST) == 0 804 ? jailed_without_vnet(curthread->td_ucred) 805 : prison_if(curthread->td_ucred, 806 rt_key(rt)) != 0) { 807 RT_UNLOCK(rt); 808 senderr(ESRCH); 809 } 810 info.rti_info[RTAX_DST] = rt_key(rt); 811 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 812 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 813 info.rti_info[RTAX_GENMASK] = 0; 814 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 815 ifp = rt->rt_ifp; 816 if (ifp) { 817 info.rti_info[RTAX_IFP] = 818 ifp->if_addr->ifa_addr; 819 error = rtm_get_jailed(&info, ifp, rt, 820 &saun, curthread->td_ucred); 821 if (error != 0) { 822 RT_UNLOCK(rt); 823 senderr(error); 824 } 825 if (ifp->if_flags & IFF_POINTOPOINT) 826 info.rti_info[RTAX_BRD] = 827 rt->rt_ifa->ifa_dstaddr; 828 rtm->rtm_index = ifp->if_index; 829 } else { 830 info.rti_info[RTAX_IFP] = NULL; 831 info.rti_info[RTAX_IFA] = NULL; 832 } 833 } else if ((ifp = rt->rt_ifp) != NULL) { 834 rtm->rtm_index = ifp->if_index; 835 } 836 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 837 if (len > rtm->rtm_msglen) { 838 struct rt_msghdr *new_rtm; 839 R_Malloc(new_rtm, struct rt_msghdr *, len); 840 if (new_rtm == NULL) { 841 RT_UNLOCK(rt); 842 senderr(ENOBUFS); 843 } 844 bcopy(rtm, new_rtm, rtm->rtm_msglen); 845 Free(rtm); rtm = new_rtm; 846 } 847 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 848 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 849 rtm->rtm_flags = RTF_GATEWAY | 850 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 851 else 852 rtm->rtm_flags = rt->rt_flags; 853 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 854 rtm->rtm_addrs = info.rti_addrs; 855 break; 856 857 case RTM_CHANGE: 858 /* 859 * New gateway could require new ifaddr, ifp; 860 * flags may also be different; ifp may be specified 861 * by ll sockaddr when protocol address is ambiguous 862 */ 863 if (((rt->rt_flags & RTF_GATEWAY) && 864 info.rti_info[RTAX_GATEWAY] != NULL) || 865 info.rti_info[RTAX_IFP] != NULL || 866 (info.rti_info[RTAX_IFA] != NULL && 867 !sa_equal(info.rti_info[RTAX_IFA], 868 rt->rt_ifa->ifa_addr))) { 869 RT_UNLOCK(rt); 870 RADIX_NODE_HEAD_LOCK(rnh); 871 error = rt_getifa_fib(&info, rt->rt_fibnum); 872 /* 873 * XXXRW: Really we should release this 874 * reference later, but this maintains 875 * historical behavior. 876 */ 877 if (info.rti_ifa != NULL) 878 ifa_free(info.rti_ifa); 879 RADIX_NODE_HEAD_UNLOCK(rnh); 880 if (error != 0) 881 senderr(error); 882 RT_LOCK(rt); 883 } 884 if (info.rti_ifa != NULL && 885 info.rti_ifa != rt->rt_ifa && 886 rt->rt_ifa != NULL && 887 rt->rt_ifa->ifa_rtrequest != NULL) { 888 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 889 &info); 890 ifa_free(rt->rt_ifa); 891 } 892 if (info.rti_info[RTAX_GATEWAY] != NULL) { 893 RT_UNLOCK(rt); 894 RADIX_NODE_HEAD_LOCK(rnh); 895 RT_LOCK(rt); 896 897 error = rt_setgate(rt, rt_key(rt), 898 info.rti_info[RTAX_GATEWAY]); 899 RADIX_NODE_HEAD_UNLOCK(rnh); 900 if (error != 0) { 901 RT_UNLOCK(rt); 902 senderr(error); 903 } 904 rt->rt_flags &= ~RTF_GATEWAY; 905 rt->rt_flags |= (RTF_GATEWAY & info.rti_flags); 906 } 907 if (info.rti_ifa != NULL && 908 info.rti_ifa != rt->rt_ifa) { 909 ifa_ref(info.rti_ifa); 910 rt->rt_ifa = info.rti_ifa; 911 rt->rt_ifp = info.rti_ifp; 912 } 913 /* Allow some flags to be toggled on change. */ 914 rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) | 915 (rtm->rtm_flags & RTF_FMASK); 916 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 917 &rt->rt_rmx); 918 rtm->rtm_index = rt->rt_ifp->if_index; 919 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 920 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 921 /* FALLTHROUGH */ 922 case RTM_LOCK: 923 /* We don't support locks anymore */ 924 break; 925 } 926 RT_UNLOCK(rt); 927 break; 928 929 default: 930 senderr(EOPNOTSUPP); 931 } 932 933 flush: 934 if (rtm) { 935 if (error) 936 rtm->rtm_errno = error; 937 else 938 rtm->rtm_flags |= RTF_DONE; 939 } 940 if (rt) /* XXX can this be true? */ 941 RTFREE(rt); 942 { 943 struct rawcb *rp = NULL; 944 /* 945 * Check to see if we don't want our own messages. 946 */ 947 if ((so->so_options & SO_USELOOPBACK) == 0) { 948 if (V_route_cb.any_count <= 1) { 949 if (rtm) 950 Free(rtm); 951 m_freem(m); 952 return (error); 953 } 954 /* There is another listener, so construct message */ 955 rp = sotorawcb(so); 956 } 957 if (rtm) { 958 #ifdef INET6 959 if (rti_need_deembed) { 960 /* sin6_scope_id is recovered before sending rtm. */ 961 sin6 = (struct sockaddr_in6 *)&ss; 962 for (i = 0; i < RTAX_MAX; i++) { 963 if (info.rti_info[i] == NULL) 964 continue; 965 if (info.rti_info[i]->sa_family != AF_INET6) 966 continue; 967 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 968 if (sa6_recoverscope(sin6) == 0) 969 bcopy(sin6, info.rti_info[i], 970 sizeof(*sin6)); 971 } 972 } 973 #endif 974 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 975 if (m->m_pkthdr.len < rtm->rtm_msglen) { 976 m_freem(m); 977 m = NULL; 978 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 979 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 980 } 981 if (m) { 982 M_SETFIB(m, so->so_fibnum); 983 m->m_flags |= RTS_FILTER_FIB; 984 if (rp) { 985 /* 986 * XXX insure we don't get a copy by 987 * invalidating our protocol 988 */ 989 unsigned short family = rp->rcb_proto.sp_family; 990 rp->rcb_proto.sp_family = 0; 991 rt_dispatch(m, saf); 992 rp->rcb_proto.sp_family = family; 993 } else 994 rt_dispatch(m, saf); 995 } 996 /* info.rti_info[RTAX_DST] (used above) can point inside of rtm */ 997 if (rtm) 998 Free(rtm); 999 } 1000 return (error); 1001 #undef sa_equal 1002 } 1003 1004 static void 1005 rt_setmetrics(u_long which, const struct rt_metrics *in, 1006 struct rt_metrics_lite *out) 1007 { 1008 #define metric(f, e) if (which & (f)) out->e = in->e; 1009 /* 1010 * Only these are stored in the routing entry since introduction 1011 * of tcp hostcache. The rest is ignored. 1012 */ 1013 metric(RTV_MTU, rmx_mtu); 1014 metric(RTV_WEIGHT, rmx_weight); 1015 /* Userland -> kernel timebase conversion. */ 1016 if (which & RTV_EXPIRE) 1017 out->rmx_expire = in->rmx_expire ? 1018 in->rmx_expire - time_second + time_uptime : 0; 1019 #undef metric 1020 } 1021 1022 static void 1023 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 1024 { 1025 #define metric(e) out->e = in->e; 1026 bzero(out, sizeof(*out)); 1027 metric(rmx_mtu); 1028 metric(rmx_weight); 1029 /* Kernel -> userland timebase conversion. */ 1030 out->rmx_expire = in->rmx_expire ? 1031 in->rmx_expire - time_uptime + time_second : 0; 1032 #undef metric 1033 } 1034 1035 /* 1036 * Extract the addresses of the passed sockaddrs. 1037 * Do a little sanity checking so as to avoid bad memory references. 1038 * This data is derived straight from userland. 1039 */ 1040 static int 1041 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1042 { 1043 struct sockaddr *sa; 1044 int i; 1045 1046 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1047 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1048 continue; 1049 sa = (struct sockaddr *)cp; 1050 /* 1051 * It won't fit. 1052 */ 1053 if (cp + sa->sa_len > cplim) 1054 return (EINVAL); 1055 /* 1056 * there are no more.. quit now 1057 * If there are more bits, they are in error. 1058 * I've seen this. route(1) can evidently generate these. 1059 * This causes kernel to core dump. 1060 * for compatibility, If we see this, point to a safe address. 1061 */ 1062 if (sa->sa_len == 0) { 1063 rtinfo->rti_info[i] = &sa_zero; 1064 return (0); /* should be EINVAL but for compat */ 1065 } 1066 /* accept it */ 1067 #ifdef INET6 1068 if (sa->sa_family == AF_INET6) 1069 sa6_embedscope((struct sockaddr_in6 *)sa, 1070 V_ip6_use_defzone); 1071 #endif 1072 rtinfo->rti_info[i] = sa; 1073 cp += SA_SIZE(sa); 1074 } 1075 return (0); 1076 } 1077 1078 /* 1079 * Used by the routing socket. 1080 */ 1081 static struct mbuf * 1082 rt_msg1(int type, struct rt_addrinfo *rtinfo) 1083 { 1084 struct rt_msghdr *rtm; 1085 struct mbuf *m; 1086 int i; 1087 struct sockaddr *sa; 1088 #ifdef INET6 1089 struct sockaddr_storage ss; 1090 struct sockaddr_in6 *sin6; 1091 #endif 1092 int len, dlen; 1093 1094 switch (type) { 1095 1096 case RTM_DELADDR: 1097 case RTM_NEWADDR: 1098 len = sizeof(struct ifa_msghdr); 1099 break; 1100 1101 case RTM_DELMADDR: 1102 case RTM_NEWMADDR: 1103 len = sizeof(struct ifma_msghdr); 1104 break; 1105 1106 case RTM_IFINFO: 1107 len = sizeof(struct if_msghdr); 1108 break; 1109 1110 case RTM_IFANNOUNCE: 1111 case RTM_IEEE80211: 1112 len = sizeof(struct if_announcemsghdr); 1113 break; 1114 1115 default: 1116 len = sizeof(struct rt_msghdr); 1117 } 1118 1119 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1120 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1121 if (len > MHLEN) 1122 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1123 else 1124 m = m_gethdr(M_NOWAIT, MT_DATA); 1125 if (m == NULL) 1126 return (m); 1127 1128 m->m_pkthdr.len = m->m_len = len; 1129 rtm = mtod(m, struct rt_msghdr *); 1130 bzero((caddr_t)rtm, len); 1131 for (i = 0; i < RTAX_MAX; i++) { 1132 if ((sa = rtinfo->rti_info[i]) == NULL) 1133 continue; 1134 rtinfo->rti_addrs |= (1 << i); 1135 dlen = SA_SIZE(sa); 1136 #ifdef INET6 1137 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1138 sin6 = (struct sockaddr_in6 *)&ss; 1139 bcopy(sa, sin6, sizeof(*sin6)); 1140 if (sa6_recoverscope(sin6) == 0) 1141 sa = (struct sockaddr *)sin6; 1142 } 1143 #endif 1144 m_copyback(m, len, dlen, (caddr_t)sa); 1145 len += dlen; 1146 } 1147 if (m->m_pkthdr.len != len) { 1148 m_freem(m); 1149 return (NULL); 1150 } 1151 rtm->rtm_msglen = len; 1152 rtm->rtm_version = RTM_VERSION; 1153 rtm->rtm_type = type; 1154 return (m); 1155 } 1156 1157 /* 1158 * Used by the sysctl code and routing socket. 1159 */ 1160 static int 1161 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 1162 { 1163 int i; 1164 int len, dlen, second_time = 0; 1165 caddr_t cp0; 1166 #ifdef INET6 1167 struct sockaddr_storage ss; 1168 struct sockaddr_in6 *sin6; 1169 #endif 1170 1171 rtinfo->rti_addrs = 0; 1172 again: 1173 switch (type) { 1174 1175 case RTM_DELADDR: 1176 case RTM_NEWADDR: 1177 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1178 #ifdef COMPAT_FREEBSD32 1179 if (w->w_req->flags & SCTL_MASK32) 1180 len = sizeof(struct ifa_msghdrl32); 1181 else 1182 #endif 1183 len = sizeof(struct ifa_msghdrl); 1184 } else 1185 len = sizeof(struct ifa_msghdr); 1186 break; 1187 1188 case RTM_IFINFO: 1189 #ifdef COMPAT_FREEBSD32 1190 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1191 if (w->w_op == NET_RT_IFLISTL) 1192 len = sizeof(struct if_msghdrl32); 1193 else 1194 len = sizeof(struct if_msghdr32); 1195 break; 1196 } 1197 #endif 1198 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1199 len = sizeof(struct if_msghdrl); 1200 else 1201 len = sizeof(struct if_msghdr); 1202 break; 1203 1204 case RTM_NEWMADDR: 1205 len = sizeof(struct ifma_msghdr); 1206 break; 1207 1208 default: 1209 len = sizeof(struct rt_msghdr); 1210 } 1211 cp0 = cp; 1212 if (cp0) 1213 cp += len; 1214 for (i = 0; i < RTAX_MAX; i++) { 1215 struct sockaddr *sa; 1216 1217 if ((sa = rtinfo->rti_info[i]) == NULL) 1218 continue; 1219 rtinfo->rti_addrs |= (1 << i); 1220 dlen = SA_SIZE(sa); 1221 if (cp) { 1222 #ifdef INET6 1223 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1224 sin6 = (struct sockaddr_in6 *)&ss; 1225 bcopy(sa, sin6, sizeof(*sin6)); 1226 if (sa6_recoverscope(sin6) == 0) 1227 sa = (struct sockaddr *)sin6; 1228 } 1229 #endif 1230 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1231 cp += dlen; 1232 } 1233 len += dlen; 1234 } 1235 len = ALIGN(len); 1236 if (cp == NULL && w != NULL && !second_time) { 1237 struct walkarg *rw = w; 1238 1239 if (rw->w_req) { 1240 if (rw->w_tmemsize < len) { 1241 if (rw->w_tmem) 1242 free(rw->w_tmem, M_RTABLE); 1243 rw->w_tmem = (caddr_t) 1244 malloc(len, M_RTABLE, M_NOWAIT); 1245 if (rw->w_tmem) 1246 rw->w_tmemsize = len; 1247 } 1248 if (rw->w_tmem) { 1249 cp = rw->w_tmem; 1250 second_time = 1; 1251 goto again; 1252 } 1253 } 1254 } 1255 if (cp) { 1256 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 1257 1258 rtm->rtm_version = RTM_VERSION; 1259 rtm->rtm_type = type; 1260 rtm->rtm_msglen = len; 1261 } 1262 return (len); 1263 } 1264 1265 /* 1266 * This routine is called to generate a message from the routing 1267 * socket indicating that a redirect has occured, a routing lookup 1268 * has failed, or that a protocol has detected timeouts to a particular 1269 * destination. 1270 */ 1271 void 1272 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1273 int fibnum) 1274 { 1275 struct rt_msghdr *rtm; 1276 struct mbuf *m; 1277 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1278 1279 if (V_route_cb.any_count == 0) 1280 return; 1281 m = rt_msg1(type, rtinfo); 1282 if (m == NULL) 1283 return; 1284 1285 if (fibnum != RT_ALL_FIBS) { 1286 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1287 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1288 M_SETFIB(m, fibnum); 1289 m->m_flags |= RTS_FILTER_FIB; 1290 } 1291 1292 rtm = mtod(m, struct rt_msghdr *); 1293 rtm->rtm_flags = RTF_DONE | flags; 1294 rtm->rtm_errno = error; 1295 rtm->rtm_addrs = rtinfo->rti_addrs; 1296 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1297 } 1298 1299 void 1300 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1301 { 1302 1303 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1304 } 1305 1306 /* 1307 * This routine is called to generate a message from the routing 1308 * socket indicating that the status of a network interface has changed. 1309 */ 1310 void 1311 rt_ifmsg(struct ifnet *ifp) 1312 { 1313 struct if_msghdr *ifm; 1314 struct mbuf *m; 1315 struct rt_addrinfo info; 1316 1317 if (V_route_cb.any_count == 0) 1318 return; 1319 bzero((caddr_t)&info, sizeof(info)); 1320 m = rt_msg1(RTM_IFINFO, &info); 1321 if (m == NULL) 1322 return; 1323 ifm = mtod(m, struct if_msghdr *); 1324 ifm->ifm_index = ifp->if_index; 1325 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1326 ifm->ifm_data = ifp->if_data; 1327 ifm->ifm_addrs = 0; 1328 rt_dispatch(m, AF_UNSPEC); 1329 } 1330 1331 /* 1332 * Announce interface address arrival/withdraw. 1333 * Please do not call directly, use rt_addrmsg(). 1334 * Assume input data to be valid. 1335 * Returns 0 on success. 1336 */ 1337 int 1338 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1339 { 1340 struct rt_addrinfo info; 1341 struct sockaddr *sa; 1342 int ncmd; 1343 struct mbuf *m; 1344 struct ifa_msghdr *ifam; 1345 struct ifnet *ifp = ifa->ifa_ifp; 1346 1347 if (V_route_cb.any_count == 0) 1348 return (0); 1349 1350 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1351 1352 bzero((caddr_t)&info, sizeof(info)); 1353 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1354 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1355 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1356 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1357 if ((m = rt_msg1(ncmd, &info)) == NULL) 1358 return (ENOBUFS); 1359 ifam = mtod(m, struct ifa_msghdr *); 1360 ifam->ifam_index = ifp->if_index; 1361 ifam->ifam_metric = ifa->ifa_metric; 1362 ifam->ifam_flags = ifa->ifa_flags; 1363 ifam->ifam_addrs = info.rti_addrs; 1364 1365 if (fibnum != RT_ALL_FIBS) { 1366 M_SETFIB(m, fibnum); 1367 m->m_flags |= RTS_FILTER_FIB; 1368 } 1369 1370 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1371 1372 return (0); 1373 } 1374 1375 /* 1376 * Announce route addition/removal. 1377 * Please do not call directly, use rt_routemsg(). 1378 * Note that @rt data MAY be inconsistent/invalid: 1379 * if some userland app sends us "invalid" route message (invalid mask, 1380 * no dst, wrong address families, etc...) we need to pass it back 1381 * to app (and any other rtsock consumers) with rtm_errno field set to 1382 * non-zero value. 1383 * 1384 * Returns 0 on success. 1385 */ 1386 int 1387 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1388 int fibnum) 1389 { 1390 struct rt_addrinfo info; 1391 struct sockaddr *sa; 1392 struct mbuf *m; 1393 struct rt_msghdr *rtm; 1394 1395 if (V_route_cb.any_count == 0) 1396 return (0); 1397 1398 bzero((caddr_t)&info, sizeof(info)); 1399 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1400 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1401 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1402 if ((m = rt_msg1(cmd, &info)) == NULL) 1403 return (ENOBUFS); 1404 rtm = mtod(m, struct rt_msghdr *); 1405 rtm->rtm_index = ifp->if_index; 1406 rtm->rtm_flags |= rt->rt_flags; 1407 rtm->rtm_errno = error; 1408 rtm->rtm_addrs = info.rti_addrs; 1409 1410 if (fibnum != RT_ALL_FIBS) { 1411 M_SETFIB(m, fibnum); 1412 m->m_flags |= RTS_FILTER_FIB; 1413 } 1414 1415 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1416 1417 return (0); 1418 } 1419 1420 /* 1421 * This is the analogue to the rt_newaddrmsg which performs the same 1422 * function but for multicast group memberhips. This is easier since 1423 * there is no route state to worry about. 1424 */ 1425 void 1426 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1427 { 1428 struct rt_addrinfo info; 1429 struct mbuf *m = NULL; 1430 struct ifnet *ifp = ifma->ifma_ifp; 1431 struct ifma_msghdr *ifmam; 1432 1433 if (V_route_cb.any_count == 0) 1434 return; 1435 1436 bzero((caddr_t)&info, sizeof(info)); 1437 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1438 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1439 /* 1440 * If a link-layer address is present, present it as a ``gateway'' 1441 * (similarly to how ARP entries, e.g., are presented). 1442 */ 1443 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1444 m = rt_msg1(cmd, &info); 1445 if (m == NULL) 1446 return; 1447 ifmam = mtod(m, struct ifma_msghdr *); 1448 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1449 __func__)); 1450 ifmam->ifmam_index = ifp->if_index; 1451 ifmam->ifmam_addrs = info.rti_addrs; 1452 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1453 } 1454 1455 static struct mbuf * 1456 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1457 struct rt_addrinfo *info) 1458 { 1459 struct if_announcemsghdr *ifan; 1460 struct mbuf *m; 1461 1462 if (V_route_cb.any_count == 0) 1463 return NULL; 1464 bzero((caddr_t)info, sizeof(*info)); 1465 m = rt_msg1(type, info); 1466 if (m != NULL) { 1467 ifan = mtod(m, struct if_announcemsghdr *); 1468 ifan->ifan_index = ifp->if_index; 1469 strlcpy(ifan->ifan_name, ifp->if_xname, 1470 sizeof(ifan->ifan_name)); 1471 ifan->ifan_what = what; 1472 } 1473 return m; 1474 } 1475 1476 /* 1477 * This is called to generate routing socket messages indicating 1478 * IEEE80211 wireless events. 1479 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1480 */ 1481 void 1482 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1483 { 1484 struct mbuf *m; 1485 struct rt_addrinfo info; 1486 1487 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1488 if (m != NULL) { 1489 /* 1490 * Append the ieee80211 data. Try to stick it in the 1491 * mbuf containing the ifannounce msg; otherwise allocate 1492 * a new mbuf and append. 1493 * 1494 * NB: we assume m is a single mbuf. 1495 */ 1496 if (data_len > M_TRAILINGSPACE(m)) { 1497 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1498 if (n == NULL) { 1499 m_freem(m); 1500 return; 1501 } 1502 bcopy(data, mtod(n, void *), data_len); 1503 n->m_len = data_len; 1504 m->m_next = n; 1505 } else if (data_len > 0) { 1506 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1507 m->m_len += data_len; 1508 } 1509 if (m->m_flags & M_PKTHDR) 1510 m->m_pkthdr.len += data_len; 1511 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1512 rt_dispatch(m, AF_UNSPEC); 1513 } 1514 } 1515 1516 /* 1517 * This is called to generate routing socket messages indicating 1518 * network interface arrival and departure. 1519 */ 1520 void 1521 rt_ifannouncemsg(struct ifnet *ifp, int what) 1522 { 1523 struct mbuf *m; 1524 struct rt_addrinfo info; 1525 1526 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1527 if (m != NULL) 1528 rt_dispatch(m, AF_UNSPEC); 1529 } 1530 1531 static void 1532 rt_dispatch(struct mbuf *m, sa_family_t saf) 1533 { 1534 struct m_tag *tag; 1535 1536 /* 1537 * Preserve the family from the sockaddr, if any, in an m_tag for 1538 * use when injecting the mbuf into the routing socket buffer from 1539 * the netisr. 1540 */ 1541 if (saf != AF_UNSPEC) { 1542 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1543 M_NOWAIT); 1544 if (tag == NULL) { 1545 m_freem(m); 1546 return; 1547 } 1548 *(unsigned short *)(tag + 1) = saf; 1549 m_tag_prepend(m, tag); 1550 } 1551 #ifdef VIMAGE 1552 if (V_loif) 1553 m->m_pkthdr.rcvif = V_loif; 1554 else { 1555 m_freem(m); 1556 return; 1557 } 1558 #endif 1559 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1560 } 1561 1562 /* 1563 * This is used in dumping the kernel table via sysctl(). 1564 */ 1565 static int 1566 sysctl_dumpentry(struct radix_node *rn, void *vw) 1567 { 1568 struct walkarg *w = vw; 1569 struct rtentry *rt = (struct rtentry *)rn; 1570 int error = 0, size; 1571 struct rt_addrinfo info; 1572 1573 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1574 return 0; 1575 if ((rt->rt_flags & RTF_HOST) == 0 1576 ? jailed_without_vnet(w->w_req->td->td_ucred) 1577 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1578 return (0); 1579 bzero((caddr_t)&info, sizeof(info)); 1580 info.rti_info[RTAX_DST] = rt_key(rt); 1581 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1582 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1583 info.rti_info[RTAX_GENMASK] = 0; 1584 if (rt->rt_ifp) { 1585 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1586 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1587 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1588 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1589 } 1590 size = rt_msg2(RTM_GET, &info, NULL, w); 1591 if (w->w_req && w->w_tmem) { 1592 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1593 1594 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1595 rtm->rtm_flags = RTF_GATEWAY | 1596 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1597 else 1598 rtm->rtm_flags = rt->rt_flags; 1599 /* 1600 * let's be honest about this being a retarded hack 1601 */ 1602 rtm->rtm_fmask = rt->rt_rmx.rmx_pksent; 1603 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1604 rtm->rtm_index = rt->rt_ifp->if_index; 1605 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1606 rtm->rtm_addrs = info.rti_addrs; 1607 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1608 return (error); 1609 } 1610 return (error); 1611 } 1612 1613 #ifdef COMPAT_FREEBSD32 1614 static void 1615 copy_ifdata32(struct if_data *src, struct if_data32 *dst) 1616 { 1617 1618 bzero(dst, sizeof(*dst)); 1619 CP(*src, *dst, ifi_type); 1620 CP(*src, *dst, ifi_physical); 1621 CP(*src, *dst, ifi_addrlen); 1622 CP(*src, *dst, ifi_hdrlen); 1623 CP(*src, *dst, ifi_link_state); 1624 CP(*src, *dst, ifi_vhid); 1625 CP(*src, *dst, ifi_baudrate_pf); 1626 dst->ifi_datalen = sizeof(struct if_data32); 1627 CP(*src, *dst, ifi_mtu); 1628 CP(*src, *dst, ifi_metric); 1629 CP(*src, *dst, ifi_baudrate); 1630 CP(*src, *dst, ifi_ipackets); 1631 CP(*src, *dst, ifi_ierrors); 1632 CP(*src, *dst, ifi_opackets); 1633 CP(*src, *dst, ifi_oerrors); 1634 CP(*src, *dst, ifi_collisions); 1635 CP(*src, *dst, ifi_ibytes); 1636 CP(*src, *dst, ifi_obytes); 1637 CP(*src, *dst, ifi_imcasts); 1638 CP(*src, *dst, ifi_omcasts); 1639 CP(*src, *dst, ifi_iqdrops); 1640 CP(*src, *dst, ifi_noproto); 1641 CP(*src, *dst, ifi_hwassist); 1642 CP(*src, *dst, ifi_epoch); 1643 TV_CP(*src, *dst, ifi_lastchange); 1644 } 1645 #endif 1646 1647 static int 1648 sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info, 1649 struct walkarg *w, int len) 1650 { 1651 struct if_msghdrl *ifm; 1652 1653 #ifdef COMPAT_FREEBSD32 1654 if (w->w_req->flags & SCTL_MASK32) { 1655 struct if_msghdrl32 *ifm32; 1656 1657 ifm32 = (struct if_msghdrl32 *)w->w_tmem; 1658 ifm32->ifm_addrs = info->rti_addrs; 1659 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1660 ifm32->ifm_index = ifp->if_index; 1661 ifm32->_ifm_spare1 = 0; 1662 ifm32->ifm_len = sizeof(*ifm32); 1663 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1664 1665 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1666 /* Fixup if_data carp(4) vhid. */ 1667 if (carp_get_vhid_p != NULL) 1668 ifm32->ifm_data.ifi_vhid = 1669 (*carp_get_vhid_p)(ifp->if_addr); 1670 1671 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len)); 1672 } 1673 #endif 1674 ifm = (struct if_msghdrl *)w->w_tmem; 1675 ifm->ifm_addrs = info->rti_addrs; 1676 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1677 ifm->ifm_index = ifp->if_index; 1678 ifm->_ifm_spare1 = 0; 1679 ifm->ifm_len = sizeof(*ifm); 1680 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1681 1682 ifm->ifm_data = ifp->if_data; 1683 /* Fixup if_data carp(4) vhid. */ 1684 if (carp_get_vhid_p != NULL) 1685 ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr); 1686 1687 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1688 } 1689 1690 static int 1691 sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info, 1692 struct walkarg *w, int len) 1693 { 1694 struct if_msghdr *ifm; 1695 1696 #ifdef COMPAT_FREEBSD32 1697 if (w->w_req->flags & SCTL_MASK32) { 1698 struct if_msghdr32 *ifm32; 1699 1700 ifm32 = (struct if_msghdr32 *)w->w_tmem; 1701 ifm32->ifm_addrs = info->rti_addrs; 1702 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1703 ifm32->ifm_index = ifp->if_index; 1704 1705 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1706 /* Fixup if_data carp(4) vhid. */ 1707 if (carp_get_vhid_p != NULL) 1708 ifm32->ifm_data.ifi_vhid = 1709 (*carp_get_vhid_p)(ifp->if_addr); 1710 1711 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len)); 1712 } 1713 #endif 1714 ifm = (struct if_msghdr *)w->w_tmem; 1715 ifm->ifm_addrs = info->rti_addrs; 1716 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1717 ifm->ifm_index = ifp->if_index; 1718 1719 ifm->ifm_data = ifp->if_data; 1720 /* Fixup if_data carp(4) vhid. */ 1721 if (carp_get_vhid_p != NULL) 1722 ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr); 1723 1724 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1725 } 1726 1727 static int 1728 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1729 struct walkarg *w, int len) 1730 { 1731 struct ifa_msghdrl *ifam; 1732 1733 #ifdef COMPAT_FREEBSD32 1734 if (w->w_req->flags & SCTL_MASK32) { 1735 struct ifa_msghdrl32 *ifam32; 1736 1737 ifam32 = (struct ifa_msghdrl32 *)w->w_tmem; 1738 ifam32->ifam_addrs = info->rti_addrs; 1739 ifam32->ifam_flags = ifa->ifa_flags; 1740 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1741 ifam32->_ifam_spare1 = 0; 1742 ifam32->ifam_len = sizeof(*ifam32); 1743 ifam32->ifam_data_off = 1744 offsetof(struct ifa_msghdrl32, ifam_data); 1745 ifam32->ifam_metric = ifa->ifa_metric; 1746 1747 bzero(&ifam32->ifam_data, sizeof(ifam32->ifam_data)); 1748 ifam32->ifam_data.ifi_datalen = sizeof(struct if_data32); 1749 ifam32->ifam_data.ifi_ipackets = 1750 counter_u64_fetch(ifa->ifa_ipackets); 1751 ifam32->ifam_data.ifi_opackets = 1752 counter_u64_fetch(ifa->ifa_opackets); 1753 ifam32->ifam_data.ifi_ibytes = 1754 counter_u64_fetch(ifa->ifa_ibytes); 1755 ifam32->ifam_data.ifi_obytes = 1756 counter_u64_fetch(ifa->ifa_obytes); 1757 1758 /* Fixup if_data carp(4) vhid. */ 1759 if (carp_get_vhid_p != NULL) 1760 ifam32->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa); 1761 1762 return (SYSCTL_OUT(w->w_req, (caddr_t)ifam32, len)); 1763 } 1764 #endif 1765 1766 ifam = (struct ifa_msghdrl *)w->w_tmem; 1767 ifam->ifam_addrs = info->rti_addrs; 1768 ifam->ifam_flags = ifa->ifa_flags; 1769 ifam->ifam_index = ifa->ifa_ifp->if_index; 1770 ifam->_ifam_spare1 = 0; 1771 ifam->ifam_len = sizeof(*ifam); 1772 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1773 ifam->ifam_metric = ifa->ifa_metric; 1774 1775 bzero(&ifam->ifam_data, sizeof(ifam->ifam_data)); 1776 ifam->ifam_data.ifi_datalen = sizeof(struct if_data); 1777 ifam->ifam_data.ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1778 ifam->ifam_data.ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1779 ifam->ifam_data.ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1780 ifam->ifam_data.ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1781 1782 /* Fixup if_data carp(4) vhid. */ 1783 if (carp_get_vhid_p != NULL) 1784 ifam->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa); 1785 1786 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1787 } 1788 1789 static int 1790 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1791 struct walkarg *w, int len) 1792 { 1793 struct ifa_msghdr *ifam; 1794 1795 ifam = (struct ifa_msghdr *)w->w_tmem; 1796 ifam->ifam_addrs = info->rti_addrs; 1797 ifam->ifam_flags = ifa->ifa_flags; 1798 ifam->ifam_index = ifa->ifa_ifp->if_index; 1799 ifam->ifam_metric = ifa->ifa_metric; 1800 1801 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1802 } 1803 1804 static int 1805 sysctl_iflist(int af, struct walkarg *w) 1806 { 1807 struct ifnet *ifp; 1808 struct ifaddr *ifa; 1809 struct rt_addrinfo info; 1810 int len, error = 0; 1811 1812 bzero((caddr_t)&info, sizeof(info)); 1813 IFNET_RLOCK_NOSLEEP(); 1814 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1815 if (w->w_arg && w->w_arg != ifp->if_index) 1816 continue; 1817 IF_ADDR_RLOCK(ifp); 1818 ifa = ifp->if_addr; 1819 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1820 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1821 info.rti_info[RTAX_IFP] = NULL; 1822 if (w->w_req && w->w_tmem) { 1823 if (w->w_op == NET_RT_IFLISTL) 1824 error = sysctl_iflist_ifml(ifp, &info, w, len); 1825 else 1826 error = sysctl_iflist_ifm(ifp, &info, w, len); 1827 if (error) 1828 goto done; 1829 } 1830 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1831 if (af && af != ifa->ifa_addr->sa_family) 1832 continue; 1833 if (prison_if(w->w_req->td->td_ucred, 1834 ifa->ifa_addr) != 0) 1835 continue; 1836 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1837 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1838 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1839 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1840 if (w->w_req && w->w_tmem) { 1841 if (w->w_op == NET_RT_IFLISTL) 1842 error = sysctl_iflist_ifaml(ifa, &info, 1843 w, len); 1844 else 1845 error = sysctl_iflist_ifam(ifa, &info, 1846 w, len); 1847 if (error) 1848 goto done; 1849 } 1850 } 1851 IF_ADDR_RUNLOCK(ifp); 1852 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1853 info.rti_info[RTAX_BRD] = NULL; 1854 } 1855 done: 1856 if (ifp != NULL) 1857 IF_ADDR_RUNLOCK(ifp); 1858 IFNET_RUNLOCK_NOSLEEP(); 1859 return (error); 1860 } 1861 1862 static int 1863 sysctl_ifmalist(int af, struct walkarg *w) 1864 { 1865 struct ifnet *ifp; 1866 struct ifmultiaddr *ifma; 1867 struct rt_addrinfo info; 1868 int len, error = 0; 1869 struct ifaddr *ifa; 1870 1871 bzero((caddr_t)&info, sizeof(info)); 1872 IFNET_RLOCK_NOSLEEP(); 1873 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1874 if (w->w_arg && w->w_arg != ifp->if_index) 1875 continue; 1876 ifa = ifp->if_addr; 1877 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1878 IF_ADDR_RLOCK(ifp); 1879 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1880 if (af && af != ifma->ifma_addr->sa_family) 1881 continue; 1882 if (prison_if(w->w_req->td->td_ucred, 1883 ifma->ifma_addr) != 0) 1884 continue; 1885 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1886 info.rti_info[RTAX_GATEWAY] = 1887 (ifma->ifma_addr->sa_family != AF_LINK) ? 1888 ifma->ifma_lladdr : NULL; 1889 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1890 if (w->w_req && w->w_tmem) { 1891 struct ifma_msghdr *ifmam; 1892 1893 ifmam = (struct ifma_msghdr *)w->w_tmem; 1894 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1895 ifmam->ifmam_flags = 0; 1896 ifmam->ifmam_addrs = info.rti_addrs; 1897 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1898 if (error) { 1899 IF_ADDR_RUNLOCK(ifp); 1900 goto done; 1901 } 1902 } 1903 } 1904 IF_ADDR_RUNLOCK(ifp); 1905 } 1906 done: 1907 IFNET_RUNLOCK_NOSLEEP(); 1908 return (error); 1909 } 1910 1911 static int 1912 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1913 { 1914 int *name = (int *)arg1; 1915 u_int namelen = arg2; 1916 struct radix_node_head *rnh = NULL; /* silence compiler. */ 1917 int i, lim, error = EINVAL; 1918 int fib = 0; 1919 u_char af; 1920 struct walkarg w; 1921 1922 name ++; 1923 namelen--; 1924 if (req->newptr) 1925 return (EPERM); 1926 if (name[1] == NET_RT_DUMP) { 1927 if (namelen == 3) 1928 fib = req->td->td_proc->p_fibnum; 1929 else if (namelen == 4) 1930 fib = (name[3] == RT_ALL_FIBS) ? 1931 req->td->td_proc->p_fibnum : name[3]; 1932 else 1933 return ((namelen < 3) ? EISDIR : ENOTDIR); 1934 if (fib < 0 || fib >= rt_numfibs) 1935 return (EINVAL); 1936 } else if (namelen != 3) 1937 return ((namelen < 3) ? EISDIR : ENOTDIR); 1938 af = name[0]; 1939 if (af > AF_MAX) 1940 return (EINVAL); 1941 bzero(&w, sizeof(w)); 1942 w.w_op = name[1]; 1943 w.w_arg = name[2]; 1944 w.w_req = req; 1945 1946 error = sysctl_wire_old_buffer(req, 0); 1947 if (error) 1948 return (error); 1949 switch (w.w_op) { 1950 1951 case NET_RT_DUMP: 1952 case NET_RT_FLAGS: 1953 if (af == 0) { /* dump all tables */ 1954 i = 1; 1955 lim = AF_MAX; 1956 } else /* dump only one table */ 1957 i = lim = af; 1958 1959 /* 1960 * take care of llinfo entries, the caller must 1961 * specify an AF 1962 */ 1963 if (w.w_op == NET_RT_FLAGS && 1964 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1965 if (af != 0) 1966 error = lltable_sysctl_dumparp(af, w.w_req); 1967 else 1968 error = EINVAL; 1969 break; 1970 } 1971 /* 1972 * take care of routing entries 1973 */ 1974 for (error = 0; error == 0 && i <= lim; i++) { 1975 rnh = rt_tables_get_rnh(fib, i); 1976 if (rnh != NULL) { 1977 RADIX_NODE_HEAD_RLOCK(rnh); 1978 error = rnh->rnh_walktree(rnh, 1979 sysctl_dumpentry, &w); 1980 RADIX_NODE_HEAD_RUNLOCK(rnh); 1981 } else if (af != 0) 1982 error = EAFNOSUPPORT; 1983 } 1984 break; 1985 1986 case NET_RT_IFLIST: 1987 case NET_RT_IFLISTL: 1988 error = sysctl_iflist(af, &w); 1989 break; 1990 1991 case NET_RT_IFMALIST: 1992 error = sysctl_ifmalist(af, &w); 1993 break; 1994 } 1995 if (w.w_tmem) 1996 free(w.w_tmem, M_RTABLE); 1997 return (error); 1998 } 1999 2000 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 2001 2002 /* 2003 * Definitions of protocols supported in the ROUTE domain. 2004 */ 2005 2006 static struct domain routedomain; /* or at least forward */ 2007 2008 static struct protosw routesw[] = { 2009 { 2010 .pr_type = SOCK_RAW, 2011 .pr_domain = &routedomain, 2012 .pr_flags = PR_ATOMIC|PR_ADDR, 2013 .pr_output = route_output, 2014 .pr_ctlinput = raw_ctlinput, 2015 .pr_init = raw_init, 2016 .pr_usrreqs = &route_usrreqs 2017 } 2018 }; 2019 2020 static struct domain routedomain = { 2021 .dom_family = PF_ROUTE, 2022 .dom_name = "route", 2023 .dom_protosw = routesw, 2024 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 2025 }; 2026 2027 VNET_DOMAIN_SET(route); 2028