1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_compat.h" 33 #include "opt_mpath.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 37 #include <sys/param.h> 38 #include <sys/jail.h> 39 #include <sys/kernel.h> 40 #include <sys/domain.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/rwlock.h> 48 #include <sys/signalvar.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/systm.h> 53 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_dl.h> 57 #include <net/if_llatbl.h> 58 #include <net/if_types.h> 59 #include <net/netisr.h> 60 #include <net/raw_cb.h> 61 #include <net/route.h> 62 #include <net/route_var.h> 63 #include <net/vnet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/if_ether.h> 67 #include <netinet/ip_carp.h> 68 #ifdef INET6 69 #include <netinet6/ip6_var.h> 70 #include <netinet6/scope6_var.h> 71 #endif 72 73 #ifdef COMPAT_FREEBSD32 74 #include <sys/mount.h> 75 #include <compat/freebsd32/freebsd32.h> 76 77 struct if_msghdr32 { 78 uint16_t ifm_msglen; 79 uint8_t ifm_version; 80 uint8_t ifm_type; 81 int32_t ifm_addrs; 82 int32_t ifm_flags; 83 uint16_t ifm_index; 84 struct if_data ifm_data; 85 }; 86 87 struct if_msghdrl32 { 88 uint16_t ifm_msglen; 89 uint8_t ifm_version; 90 uint8_t ifm_type; 91 int32_t ifm_addrs; 92 int32_t ifm_flags; 93 uint16_t ifm_index; 94 uint16_t _ifm_spare1; 95 uint16_t ifm_len; 96 uint16_t ifm_data_off; 97 struct if_data ifm_data; 98 }; 99 100 struct ifa_msghdrl32 { 101 uint16_t ifam_msglen; 102 uint8_t ifam_version; 103 uint8_t ifam_type; 104 int32_t ifam_addrs; 105 int32_t ifam_flags; 106 uint16_t ifam_index; 107 uint16_t _ifam_spare1; 108 uint16_t ifam_len; 109 uint16_t ifam_data_off; 110 int32_t ifam_metric; 111 struct if_data ifam_data; 112 }; 113 #endif /* COMPAT_FREEBSD32 */ 114 115 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 116 117 /* NB: these are not modified */ 118 static struct sockaddr route_src = { 2, PF_ROUTE, }; 119 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 120 121 /* These are external hooks for CARP. */ 122 int (*carp_get_vhid_p)(struct ifaddr *); 123 124 /* 125 * Used by rtsock/raw_input callback code to decide whether to filter the update 126 * notification to a socket bound to a particular FIB. 127 */ 128 #define RTS_FILTER_FIB M_PROTO8 129 130 typedef struct { 131 int ip_count; /* attached w/ AF_INET */ 132 int ip6_count; /* attached w/ AF_INET6 */ 133 int any_count; /* total attached */ 134 } route_cb_t; 135 static VNET_DEFINE(route_cb_t, route_cb); 136 #define V_route_cb VNET(route_cb) 137 138 struct mtx rtsock_mtx; 139 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 140 141 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 142 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 143 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 144 145 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 146 147 struct walkarg { 148 int w_tmemsize; 149 int w_op, w_arg; 150 caddr_t w_tmem; 151 struct sysctl_req *w_req; 152 }; 153 154 static void rts_input(struct mbuf *m); 155 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 156 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 157 struct walkarg *w, int *plen); 158 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 159 struct rt_addrinfo *rtinfo); 160 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 161 static int sysctl_iflist(int af, struct walkarg *w); 162 static int sysctl_ifmalist(int af, struct walkarg *w); 163 static int route_output(struct mbuf *m, struct socket *so, ...); 164 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 165 static void rt_dispatch(struct mbuf *, sa_family_t); 166 static struct sockaddr *rtsock_fix_netmask(struct sockaddr *dst, 167 struct sockaddr *smask, struct sockaddr_storage *dmask); 168 169 static struct netisr_handler rtsock_nh = { 170 .nh_name = "rtsock", 171 .nh_handler = rts_input, 172 .nh_proto = NETISR_ROUTE, 173 .nh_policy = NETISR_POLICY_SOURCE, 174 }; 175 176 static int 177 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 178 { 179 int error, qlimit; 180 181 netisr_getqlimit(&rtsock_nh, &qlimit); 182 error = sysctl_handle_int(oidp, &qlimit, 0, req); 183 if (error || !req->newptr) 184 return (error); 185 if (qlimit < 1) 186 return (EINVAL); 187 return (netisr_setqlimit(&rtsock_nh, qlimit)); 188 } 189 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 190 0, 0, sysctl_route_netisr_maxqlen, "I", 191 "maximum routing socket dispatch queue length"); 192 193 static void 194 rts_init(void) 195 { 196 int tmp; 197 198 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 199 rtsock_nh.nh_qlimit = tmp; 200 netisr_register(&rtsock_nh); 201 } 202 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 203 204 static int 205 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 206 struct rawcb *rp) 207 { 208 int fibnum; 209 210 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 211 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 212 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 213 214 /* No filtering requested. */ 215 if ((m->m_flags & RTS_FILTER_FIB) == 0) 216 return (0); 217 218 /* Check if it is a rts and the fib matches the one of the socket. */ 219 fibnum = M_GETFIB(m); 220 if (proto->sp_family != PF_ROUTE || 221 rp->rcb_socket == NULL || 222 rp->rcb_socket->so_fibnum == fibnum) 223 return (0); 224 225 /* Filtering requested and no match, the socket shall be skipped. */ 226 return (1); 227 } 228 229 static void 230 rts_input(struct mbuf *m) 231 { 232 struct sockproto route_proto; 233 unsigned short *family; 234 struct m_tag *tag; 235 236 route_proto.sp_family = PF_ROUTE; 237 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 238 if (tag != NULL) { 239 family = (unsigned short *)(tag + 1); 240 route_proto.sp_protocol = *family; 241 m_tag_delete(m, tag); 242 } else 243 route_proto.sp_protocol = 0; 244 245 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 246 } 247 248 /* 249 * It really doesn't make any sense at all for this code to share much 250 * with raw_usrreq.c, since its functionality is so restricted. XXX 251 */ 252 static void 253 rts_abort(struct socket *so) 254 { 255 256 raw_usrreqs.pru_abort(so); 257 } 258 259 static void 260 rts_close(struct socket *so) 261 { 262 263 raw_usrreqs.pru_close(so); 264 } 265 266 /* pru_accept is EOPNOTSUPP */ 267 268 static int 269 rts_attach(struct socket *so, int proto, struct thread *td) 270 { 271 struct rawcb *rp; 272 int error; 273 274 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 275 276 /* XXX */ 277 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 278 if (rp == NULL) 279 return ENOBUFS; 280 281 so->so_pcb = (caddr_t)rp; 282 so->so_fibnum = td->td_proc->p_fibnum; 283 error = raw_attach(so, proto); 284 rp = sotorawcb(so); 285 if (error) { 286 so->so_pcb = NULL; 287 free(rp, M_PCB); 288 return error; 289 } 290 RTSOCK_LOCK(); 291 switch(rp->rcb_proto.sp_protocol) { 292 case AF_INET: 293 V_route_cb.ip_count++; 294 break; 295 case AF_INET6: 296 V_route_cb.ip6_count++; 297 break; 298 } 299 V_route_cb.any_count++; 300 RTSOCK_UNLOCK(); 301 soisconnected(so); 302 so->so_options |= SO_USELOOPBACK; 303 return 0; 304 } 305 306 static int 307 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 308 { 309 310 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 311 } 312 313 static int 314 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 315 { 316 317 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 318 } 319 320 /* pru_connect2 is EOPNOTSUPP */ 321 /* pru_control is EOPNOTSUPP */ 322 323 static void 324 rts_detach(struct socket *so) 325 { 326 struct rawcb *rp = sotorawcb(so); 327 328 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 329 330 RTSOCK_LOCK(); 331 switch(rp->rcb_proto.sp_protocol) { 332 case AF_INET: 333 V_route_cb.ip_count--; 334 break; 335 case AF_INET6: 336 V_route_cb.ip6_count--; 337 break; 338 } 339 V_route_cb.any_count--; 340 RTSOCK_UNLOCK(); 341 raw_usrreqs.pru_detach(so); 342 } 343 344 static int 345 rts_disconnect(struct socket *so) 346 { 347 348 return (raw_usrreqs.pru_disconnect(so)); 349 } 350 351 /* pru_listen is EOPNOTSUPP */ 352 353 static int 354 rts_peeraddr(struct socket *so, struct sockaddr **nam) 355 { 356 357 return (raw_usrreqs.pru_peeraddr(so, nam)); 358 } 359 360 /* pru_rcvd is EOPNOTSUPP */ 361 /* pru_rcvoob is EOPNOTSUPP */ 362 363 static int 364 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 365 struct mbuf *control, struct thread *td) 366 { 367 368 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 369 } 370 371 /* pru_sense is null */ 372 373 static int 374 rts_shutdown(struct socket *so) 375 { 376 377 return (raw_usrreqs.pru_shutdown(so)); 378 } 379 380 static int 381 rts_sockaddr(struct socket *so, struct sockaddr **nam) 382 { 383 384 return (raw_usrreqs.pru_sockaddr(so, nam)); 385 } 386 387 static struct pr_usrreqs route_usrreqs = { 388 .pru_abort = rts_abort, 389 .pru_attach = rts_attach, 390 .pru_bind = rts_bind, 391 .pru_connect = rts_connect, 392 .pru_detach = rts_detach, 393 .pru_disconnect = rts_disconnect, 394 .pru_peeraddr = rts_peeraddr, 395 .pru_send = rts_send, 396 .pru_shutdown = rts_shutdown, 397 .pru_sockaddr = rts_sockaddr, 398 .pru_close = rts_close, 399 }; 400 401 #ifndef _SOCKADDR_UNION_DEFINED 402 #define _SOCKADDR_UNION_DEFINED 403 /* 404 * The union of all possible address formats we handle. 405 */ 406 union sockaddr_union { 407 struct sockaddr sa; 408 struct sockaddr_in sin; 409 struct sockaddr_in6 sin6; 410 }; 411 #endif /* _SOCKADDR_UNION_DEFINED */ 412 413 static int 414 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 415 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 416 { 417 418 /* First, see if the returned address is part of the jail. */ 419 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 420 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 421 return (0); 422 } 423 424 switch (info->rti_info[RTAX_DST]->sa_family) { 425 #ifdef INET 426 case AF_INET: 427 { 428 struct in_addr ia; 429 struct ifaddr *ifa; 430 int found; 431 432 found = 0; 433 /* 434 * Try to find an address on the given outgoing interface 435 * that belongs to the jail. 436 */ 437 IF_ADDR_RLOCK(ifp); 438 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 439 struct sockaddr *sa; 440 sa = ifa->ifa_addr; 441 if (sa->sa_family != AF_INET) 442 continue; 443 ia = ((struct sockaddr_in *)sa)->sin_addr; 444 if (prison_check_ip4(cred, &ia) == 0) { 445 found = 1; 446 break; 447 } 448 } 449 IF_ADDR_RUNLOCK(ifp); 450 if (!found) { 451 /* 452 * As a last resort return the 'default' jail address. 453 */ 454 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 455 sin_addr; 456 if (prison_get_ip4(cred, &ia) != 0) 457 return (ESRCH); 458 } 459 bzero(&saun->sin, sizeof(struct sockaddr_in)); 460 saun->sin.sin_len = sizeof(struct sockaddr_in); 461 saun->sin.sin_family = AF_INET; 462 saun->sin.sin_addr.s_addr = ia.s_addr; 463 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 464 break; 465 } 466 #endif 467 #ifdef INET6 468 case AF_INET6: 469 { 470 struct in6_addr ia6; 471 struct ifaddr *ifa; 472 int found; 473 474 found = 0; 475 /* 476 * Try to find an address on the given outgoing interface 477 * that belongs to the jail. 478 */ 479 IF_ADDR_RLOCK(ifp); 480 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 481 struct sockaddr *sa; 482 sa = ifa->ifa_addr; 483 if (sa->sa_family != AF_INET6) 484 continue; 485 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 486 &ia6, sizeof(struct in6_addr)); 487 if (prison_check_ip6(cred, &ia6) == 0) { 488 found = 1; 489 break; 490 } 491 } 492 IF_ADDR_RUNLOCK(ifp); 493 if (!found) { 494 /* 495 * As a last resort return the 'default' jail address. 496 */ 497 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 498 sin6_addr; 499 if (prison_get_ip6(cred, &ia6) != 0) 500 return (ESRCH); 501 } 502 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 503 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 504 saun->sin6.sin6_family = AF_INET6; 505 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 506 if (sa6_recoverscope(&saun->sin6) != 0) 507 return (ESRCH); 508 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 509 break; 510 } 511 #endif 512 default: 513 return (ESRCH); 514 } 515 return (0); 516 } 517 518 /*ARGSUSED*/ 519 static int 520 route_output(struct mbuf *m, struct socket *so, ...) 521 { 522 struct rt_msghdr *rtm = NULL; 523 struct rtentry *rt = NULL; 524 struct rib_head *rnh; 525 struct rt_addrinfo info; 526 struct sockaddr_storage ss; 527 #ifdef INET6 528 struct sockaddr_in6 *sin6; 529 int i, rti_need_deembed = 0; 530 #endif 531 int alloc_len = 0, len, error = 0, fibnum; 532 struct ifnet *ifp = NULL; 533 union sockaddr_union saun; 534 sa_family_t saf = AF_UNSPEC; 535 struct rawcb *rp = NULL; 536 struct walkarg w; 537 538 fibnum = so->so_fibnum; 539 540 #define senderr(e) { error = e; goto flush;} 541 if (m == NULL || ((m->m_len < sizeof(long)) && 542 (m = m_pullup(m, sizeof(long))) == NULL)) 543 return (ENOBUFS); 544 if ((m->m_flags & M_PKTHDR) == 0) 545 panic("route_output"); 546 len = m->m_pkthdr.len; 547 if (len < sizeof(*rtm) || 548 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 549 senderr(EINVAL); 550 551 /* 552 * Most of current messages are in range 200-240 bytes, 553 * minimize possible re-allocation on reply using larger size 554 * buffer aligned on 1k boundaty. 555 */ 556 alloc_len = roundup2(len, 1024); 557 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 558 senderr(ENOBUFS); 559 560 m_copydata(m, 0, len, (caddr_t)rtm); 561 bzero(&info, sizeof(info)); 562 bzero(&w, sizeof(w)); 563 564 if (rtm->rtm_version != RTM_VERSION) { 565 /* Do not touch message since format is unknown */ 566 free(rtm, M_TEMP); 567 rtm = NULL; 568 senderr(EPROTONOSUPPORT); 569 } 570 571 /* 572 * Starting from here, it is possible 573 * to alter original message and insert 574 * caller PID and error value. 575 */ 576 577 rtm->rtm_pid = curproc->p_pid; 578 info.rti_addrs = rtm->rtm_addrs; 579 580 info.rti_mflags = rtm->rtm_inits; 581 info.rti_rmx = &rtm->rtm_rmx; 582 583 /* 584 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 585 * link-local address because rtrequest requires addresses with 586 * embedded scope id. 587 */ 588 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) 589 senderr(EINVAL); 590 591 info.rti_flags = rtm->rtm_flags; 592 if (info.rti_info[RTAX_DST] == NULL || 593 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 594 (info.rti_info[RTAX_GATEWAY] != NULL && 595 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 596 senderr(EINVAL); 597 saf = info.rti_info[RTAX_DST]->sa_family; 598 /* 599 * Verify that the caller has the appropriate privilege; RTM_GET 600 * is the only operation the non-superuser is allowed. 601 */ 602 if (rtm->rtm_type != RTM_GET) { 603 error = priv_check(curthread, PRIV_NET_ROUTE); 604 if (error) 605 senderr(error); 606 } 607 608 /* 609 * The given gateway address may be an interface address. 610 * For example, issuing a "route change" command on a route 611 * entry that was created from a tunnel, and the gateway 612 * address given is the local end point. In this case the 613 * RTF_GATEWAY flag must be cleared or the destination will 614 * not be reachable even though there is no error message. 615 */ 616 if (info.rti_info[RTAX_GATEWAY] != NULL && 617 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 618 struct rt_addrinfo ginfo; 619 struct sockaddr *gdst; 620 621 bzero(&ginfo, sizeof(ginfo)); 622 bzero(&ss, sizeof(ss)); 623 ss.ss_len = sizeof(ss); 624 625 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 626 gdst = info.rti_info[RTAX_GATEWAY]; 627 628 /* 629 * A host route through the loopback interface is 630 * installed for each interface adddress. In pre 8.0 631 * releases the interface address of a PPP link type 632 * is not reachable locally. This behavior is fixed as 633 * part of the new L2/L3 redesign and rewrite work. The 634 * signature of this interface address route is the 635 * AF_LINK sa_family type of the rt_gateway, and the 636 * rt_ifp has the IFF_LOOPBACK flag set. 637 */ 638 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 639 if (ss.ss_family == AF_LINK && 640 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 641 info.rti_flags &= ~RTF_GATEWAY; 642 info.rti_flags |= RTF_GWFLAG_COMPAT; 643 } 644 rib_free_info(&ginfo); 645 } 646 } 647 648 switch (rtm->rtm_type) { 649 struct rtentry *saved_nrt; 650 651 case RTM_ADD: 652 case RTM_CHANGE: 653 if (info.rti_info[RTAX_GATEWAY] == NULL) 654 senderr(EINVAL); 655 saved_nrt = NULL; 656 657 /* support for new ARP code */ 658 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 659 (rtm->rtm_flags & RTF_LLDATA) != 0) { 660 error = lla_rt_output(rtm, &info); 661 #ifdef INET6 662 if (error == 0) 663 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 664 #endif 665 break; 666 } 667 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt, 668 fibnum); 669 if (error == 0 && saved_nrt != NULL) { 670 #ifdef INET6 671 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 672 #endif 673 RT_LOCK(saved_nrt); 674 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 675 RT_REMREF(saved_nrt); 676 RT_UNLOCK(saved_nrt); 677 } 678 break; 679 680 case RTM_DELETE: 681 saved_nrt = NULL; 682 /* support for new ARP code */ 683 if (info.rti_info[RTAX_GATEWAY] && 684 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 685 (rtm->rtm_flags & RTF_LLDATA) != 0) { 686 error = lla_rt_output(rtm, &info); 687 #ifdef INET6 688 if (error == 0) 689 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 690 #endif 691 break; 692 } 693 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum); 694 if (error == 0) { 695 RT_LOCK(saved_nrt); 696 rt = saved_nrt; 697 goto report; 698 } 699 #ifdef INET6 700 /* rt_msg2() will not be used when RTM_DELETE fails. */ 701 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 702 #endif 703 break; 704 705 case RTM_GET: 706 rnh = rt_tables_get_rnh(fibnum, saf); 707 if (rnh == NULL) 708 senderr(EAFNOSUPPORT); 709 710 RIB_RLOCK(rnh); 711 712 if (info.rti_info[RTAX_NETMASK] == NULL && 713 rtm->rtm_type == RTM_GET) { 714 /* 715 * Provide logest prefix match for 716 * address lookup (no mask). 717 * 'route -n get addr' 718 */ 719 rt = (struct rtentry *) rnh->rnh_matchaddr( 720 info.rti_info[RTAX_DST], &rnh->head); 721 } else 722 rt = (struct rtentry *) rnh->rnh_lookup( 723 info.rti_info[RTAX_DST], 724 info.rti_info[RTAX_NETMASK], &rnh->head); 725 726 if (rt == NULL) { 727 RIB_RUNLOCK(rnh); 728 senderr(ESRCH); 729 } 730 #ifdef RADIX_MPATH 731 /* 732 * for RTM_CHANGE/LOCK, if we got multipath routes, 733 * we require users to specify a matching RTAX_GATEWAY. 734 * 735 * for RTM_GET, gate is optional even with multipath. 736 * if gate == NULL the first match is returned. 737 * (no need to call rt_mpath_matchgate if gate == NULL) 738 */ 739 if (rt_mpath_capable(rnh) && 740 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 741 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 742 if (!rt) { 743 RIB_RUNLOCK(rnh); 744 senderr(ESRCH); 745 } 746 } 747 #endif 748 /* 749 * If performing proxied L2 entry insertion, and 750 * the actual PPP host entry is found, perform 751 * another search to retrieve the prefix route of 752 * the local end point of the PPP link. 753 */ 754 if (rtm->rtm_flags & RTF_ANNOUNCE) { 755 struct sockaddr laddr; 756 757 if (rt->rt_ifp != NULL && 758 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 759 struct ifaddr *ifa; 760 761 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1, 762 RT_ALL_FIBS); 763 if (ifa != NULL) 764 rt_maskedcopy(ifa->ifa_addr, 765 &laddr, 766 ifa->ifa_netmask); 767 } else 768 rt_maskedcopy(rt->rt_ifa->ifa_addr, 769 &laddr, 770 rt->rt_ifa->ifa_netmask); 771 /* 772 * refactor rt and no lock operation necessary 773 */ 774 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 775 &rnh->head); 776 if (rt == NULL) { 777 RIB_RUNLOCK(rnh); 778 senderr(ESRCH); 779 } 780 } 781 RT_LOCK(rt); 782 RT_ADDREF(rt); 783 RIB_RUNLOCK(rnh); 784 785 report: 786 RT_LOCK_ASSERT(rt); 787 if ((rt->rt_flags & RTF_HOST) == 0 788 ? jailed_without_vnet(curthread->td_ucred) 789 : prison_if(curthread->td_ucred, 790 rt_key(rt)) != 0) { 791 RT_UNLOCK(rt); 792 senderr(ESRCH); 793 } 794 info.rti_info[RTAX_DST] = rt_key(rt); 795 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 796 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 797 rt_mask(rt), &ss); 798 info.rti_info[RTAX_GENMASK] = 0; 799 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 800 ifp = rt->rt_ifp; 801 if (ifp) { 802 info.rti_info[RTAX_IFP] = 803 ifp->if_addr->ifa_addr; 804 error = rtm_get_jailed(&info, ifp, rt, 805 &saun, curthread->td_ucred); 806 if (error != 0) { 807 RT_UNLOCK(rt); 808 senderr(error); 809 } 810 if (ifp->if_flags & IFF_POINTOPOINT) 811 info.rti_info[RTAX_BRD] = 812 rt->rt_ifa->ifa_dstaddr; 813 rtm->rtm_index = ifp->if_index; 814 } else { 815 info.rti_info[RTAX_IFP] = NULL; 816 info.rti_info[RTAX_IFA] = NULL; 817 } 818 } else if ((ifp = rt->rt_ifp) != NULL) { 819 rtm->rtm_index = ifp->if_index; 820 } 821 822 /* Check if we need to realloc storage */ 823 rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len); 824 if (len > alloc_len) { 825 struct rt_msghdr *new_rtm; 826 new_rtm = malloc(len, M_TEMP, M_NOWAIT); 827 if (new_rtm == NULL) { 828 RT_UNLOCK(rt); 829 senderr(ENOBUFS); 830 } 831 bcopy(rtm, new_rtm, rtm->rtm_msglen); 832 free(rtm, M_TEMP); 833 rtm = new_rtm; 834 alloc_len = len; 835 } 836 837 w.w_tmem = (caddr_t)rtm; 838 w.w_tmemsize = alloc_len; 839 rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len); 840 841 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 842 rtm->rtm_flags = RTF_GATEWAY | 843 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 844 else 845 rtm->rtm_flags = rt->rt_flags; 846 rt_getmetrics(rt, &rtm->rtm_rmx); 847 rtm->rtm_addrs = info.rti_addrs; 848 849 RT_UNLOCK(rt); 850 break; 851 852 default: 853 senderr(EOPNOTSUPP); 854 } 855 856 flush: 857 if (rt != NULL) 858 RTFREE(rt); 859 /* 860 * Check to see if we don't want our own messages. 861 */ 862 if ((so->so_options & SO_USELOOPBACK) == 0) { 863 if (V_route_cb.any_count <= 1) { 864 if (rtm != NULL) 865 free(rtm, M_TEMP); 866 m_freem(m); 867 return (error); 868 } 869 /* There is another listener, so construct message */ 870 rp = sotorawcb(so); 871 } 872 873 if (rtm != NULL) { 874 #ifdef INET6 875 if (rti_need_deembed) { 876 /* sin6_scope_id is recovered before sending rtm. */ 877 sin6 = (struct sockaddr_in6 *)&ss; 878 for (i = 0; i < RTAX_MAX; i++) { 879 if (info.rti_info[i] == NULL) 880 continue; 881 if (info.rti_info[i]->sa_family != AF_INET6) 882 continue; 883 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 884 if (sa6_recoverscope(sin6) == 0) 885 bcopy(sin6, info.rti_info[i], 886 sizeof(*sin6)); 887 } 888 } 889 #endif 890 if (error != 0) 891 rtm->rtm_errno = error; 892 else 893 rtm->rtm_flags |= RTF_DONE; 894 895 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 896 if (m->m_pkthdr.len < rtm->rtm_msglen) { 897 m_freem(m); 898 m = NULL; 899 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 900 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 901 902 free(rtm, M_TEMP); 903 } 904 if (m != NULL) { 905 M_SETFIB(m, fibnum); 906 m->m_flags |= RTS_FILTER_FIB; 907 if (rp) { 908 /* 909 * XXX insure we don't get a copy by 910 * invalidating our protocol 911 */ 912 unsigned short family = rp->rcb_proto.sp_family; 913 rp->rcb_proto.sp_family = 0; 914 rt_dispatch(m, saf); 915 rp->rcb_proto.sp_family = family; 916 } else 917 rt_dispatch(m, saf); 918 } 919 920 return (error); 921 } 922 923 static void 924 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 925 { 926 927 bzero(out, sizeof(*out)); 928 out->rmx_mtu = rt->rt_mtu; 929 out->rmx_weight = rt->rt_weight; 930 out->rmx_pksent = counter_u64_fetch(rt->rt_pksent); 931 /* Kernel -> userland timebase conversion. */ 932 out->rmx_expire = rt->rt_expire ? 933 rt->rt_expire - time_uptime + time_second : 0; 934 } 935 936 /* 937 * Extract the addresses of the passed sockaddrs. 938 * Do a little sanity checking so as to avoid bad memory references. 939 * This data is derived straight from userland. 940 */ 941 static int 942 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 943 { 944 struct sockaddr *sa; 945 int i; 946 947 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 948 if ((rtinfo->rti_addrs & (1 << i)) == 0) 949 continue; 950 sa = (struct sockaddr *)cp; 951 /* 952 * It won't fit. 953 */ 954 if (cp + sa->sa_len > cplim) 955 return (EINVAL); 956 /* 957 * there are no more.. quit now 958 * If there are more bits, they are in error. 959 * I've seen this. route(1) can evidently generate these. 960 * This causes kernel to core dump. 961 * for compatibility, If we see this, point to a safe address. 962 */ 963 if (sa->sa_len == 0) { 964 rtinfo->rti_info[i] = &sa_zero; 965 return (0); /* should be EINVAL but for compat */ 966 } 967 /* accept it */ 968 #ifdef INET6 969 if (sa->sa_family == AF_INET6) 970 sa6_embedscope((struct sockaddr_in6 *)sa, 971 V_ip6_use_defzone); 972 #endif 973 rtinfo->rti_info[i] = sa; 974 cp += SA_SIZE(sa); 975 } 976 return (0); 977 } 978 979 /* 980 * Fill in @dmask with valid netmask leaving original @smask 981 * intact. Mostly used with radix netmasks. 982 */ 983 static struct sockaddr * 984 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask, 985 struct sockaddr_storage *dmask) 986 { 987 if (dst == NULL || smask == NULL) 988 return (NULL); 989 990 memset(dmask, 0, dst->sa_len); 991 memcpy(dmask, smask, smask->sa_len); 992 dmask->ss_len = dst->sa_len; 993 dmask->ss_family = dst->sa_family; 994 995 return ((struct sockaddr *)dmask); 996 } 997 998 /* 999 * Writes information related to @rtinfo object to newly-allocated mbuf. 1000 * Assumes MCLBYTES is enough to construct any message. 1001 * Used for OS notifications of vaious events (if/ifa announces,etc) 1002 * 1003 * Returns allocated mbuf or NULL on failure. 1004 */ 1005 static struct mbuf * 1006 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1007 { 1008 struct rt_msghdr *rtm; 1009 struct mbuf *m; 1010 int i; 1011 struct sockaddr *sa; 1012 #ifdef INET6 1013 struct sockaddr_storage ss; 1014 struct sockaddr_in6 *sin6; 1015 #endif 1016 int len, dlen; 1017 1018 switch (type) { 1019 1020 case RTM_DELADDR: 1021 case RTM_NEWADDR: 1022 len = sizeof(struct ifa_msghdr); 1023 break; 1024 1025 case RTM_DELMADDR: 1026 case RTM_NEWMADDR: 1027 len = sizeof(struct ifma_msghdr); 1028 break; 1029 1030 case RTM_IFINFO: 1031 len = sizeof(struct if_msghdr); 1032 break; 1033 1034 case RTM_IFANNOUNCE: 1035 case RTM_IEEE80211: 1036 len = sizeof(struct if_announcemsghdr); 1037 break; 1038 1039 default: 1040 len = sizeof(struct rt_msghdr); 1041 } 1042 1043 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1044 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1045 if (len > MHLEN) 1046 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1047 else 1048 m = m_gethdr(M_NOWAIT, MT_DATA); 1049 if (m == NULL) 1050 return (m); 1051 1052 m->m_pkthdr.len = m->m_len = len; 1053 rtm = mtod(m, struct rt_msghdr *); 1054 bzero((caddr_t)rtm, len); 1055 for (i = 0; i < RTAX_MAX; i++) { 1056 if ((sa = rtinfo->rti_info[i]) == NULL) 1057 continue; 1058 rtinfo->rti_addrs |= (1 << i); 1059 dlen = SA_SIZE(sa); 1060 #ifdef INET6 1061 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1062 sin6 = (struct sockaddr_in6 *)&ss; 1063 bcopy(sa, sin6, sizeof(*sin6)); 1064 if (sa6_recoverscope(sin6) == 0) 1065 sa = (struct sockaddr *)sin6; 1066 } 1067 #endif 1068 m_copyback(m, len, dlen, (caddr_t)sa); 1069 len += dlen; 1070 } 1071 if (m->m_pkthdr.len != len) { 1072 m_freem(m); 1073 return (NULL); 1074 } 1075 rtm->rtm_msglen = len; 1076 rtm->rtm_version = RTM_VERSION; 1077 rtm->rtm_type = type; 1078 return (m); 1079 } 1080 1081 /* 1082 * Writes information related to @rtinfo object to preallocated buffer. 1083 * Stores needed size in @plen. If @w is NULL, calculates size without 1084 * writing. 1085 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1086 * 1087 * Returns 0 on success. 1088 * 1089 */ 1090 static int 1091 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1092 { 1093 int i; 1094 int len, buflen = 0, dlen; 1095 caddr_t cp = NULL; 1096 struct rt_msghdr *rtm = NULL; 1097 #ifdef INET6 1098 struct sockaddr_storage ss; 1099 struct sockaddr_in6 *sin6; 1100 #endif 1101 1102 switch (type) { 1103 1104 case RTM_DELADDR: 1105 case RTM_NEWADDR: 1106 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1107 #ifdef COMPAT_FREEBSD32 1108 if (w->w_req->flags & SCTL_MASK32) 1109 len = sizeof(struct ifa_msghdrl32); 1110 else 1111 #endif 1112 len = sizeof(struct ifa_msghdrl); 1113 } else 1114 len = sizeof(struct ifa_msghdr); 1115 break; 1116 1117 case RTM_IFINFO: 1118 #ifdef COMPAT_FREEBSD32 1119 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1120 if (w->w_op == NET_RT_IFLISTL) 1121 len = sizeof(struct if_msghdrl32); 1122 else 1123 len = sizeof(struct if_msghdr32); 1124 break; 1125 } 1126 #endif 1127 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1128 len = sizeof(struct if_msghdrl); 1129 else 1130 len = sizeof(struct if_msghdr); 1131 break; 1132 1133 case RTM_NEWMADDR: 1134 len = sizeof(struct ifma_msghdr); 1135 break; 1136 1137 default: 1138 len = sizeof(struct rt_msghdr); 1139 } 1140 1141 if (w != NULL) { 1142 rtm = (struct rt_msghdr *)w->w_tmem; 1143 buflen = w->w_tmemsize - len; 1144 cp = (caddr_t)w->w_tmem + len; 1145 } 1146 1147 rtinfo->rti_addrs = 0; 1148 for (i = 0; i < RTAX_MAX; i++) { 1149 struct sockaddr *sa; 1150 1151 if ((sa = rtinfo->rti_info[i]) == NULL) 1152 continue; 1153 rtinfo->rti_addrs |= (1 << i); 1154 dlen = SA_SIZE(sa); 1155 if (cp != NULL && buflen >= dlen) { 1156 #ifdef INET6 1157 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1158 sin6 = (struct sockaddr_in6 *)&ss; 1159 bcopy(sa, sin6, sizeof(*sin6)); 1160 if (sa6_recoverscope(sin6) == 0) 1161 sa = (struct sockaddr *)sin6; 1162 } 1163 #endif 1164 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1165 cp += dlen; 1166 buflen -= dlen; 1167 } else if (cp != NULL) { 1168 /* 1169 * Buffer too small. Count needed size 1170 * and return with error. 1171 */ 1172 cp = NULL; 1173 } 1174 1175 len += dlen; 1176 } 1177 1178 if (cp != NULL) { 1179 dlen = ALIGN(len) - len; 1180 if (buflen < dlen) 1181 cp = NULL; 1182 else 1183 buflen -= dlen; 1184 } 1185 len = ALIGN(len); 1186 1187 if (cp != NULL) { 1188 /* fill header iff buffer is large enough */ 1189 rtm->rtm_version = RTM_VERSION; 1190 rtm->rtm_type = type; 1191 rtm->rtm_msglen = len; 1192 } 1193 1194 *plen = len; 1195 1196 if (w != NULL && cp == NULL) 1197 return (ENOBUFS); 1198 1199 return (0); 1200 } 1201 1202 /* 1203 * This routine is called to generate a message from the routing 1204 * socket indicating that a redirect has occured, a routing lookup 1205 * has failed, or that a protocol has detected timeouts to a particular 1206 * destination. 1207 */ 1208 void 1209 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1210 int fibnum) 1211 { 1212 struct rt_msghdr *rtm; 1213 struct mbuf *m; 1214 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1215 1216 if (V_route_cb.any_count == 0) 1217 return; 1218 m = rtsock_msg_mbuf(type, rtinfo); 1219 if (m == NULL) 1220 return; 1221 1222 if (fibnum != RT_ALL_FIBS) { 1223 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1224 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1225 M_SETFIB(m, fibnum); 1226 m->m_flags |= RTS_FILTER_FIB; 1227 } 1228 1229 rtm = mtod(m, struct rt_msghdr *); 1230 rtm->rtm_flags = RTF_DONE | flags; 1231 rtm->rtm_errno = error; 1232 rtm->rtm_addrs = rtinfo->rti_addrs; 1233 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1234 } 1235 1236 void 1237 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1238 { 1239 1240 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1241 } 1242 1243 /* 1244 * This routine is called to generate a message from the routing 1245 * socket indicating that the status of a network interface has changed. 1246 */ 1247 void 1248 rt_ifmsg(struct ifnet *ifp) 1249 { 1250 struct if_msghdr *ifm; 1251 struct mbuf *m; 1252 struct rt_addrinfo info; 1253 1254 if (V_route_cb.any_count == 0) 1255 return; 1256 bzero((caddr_t)&info, sizeof(info)); 1257 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1258 if (m == NULL) 1259 return; 1260 ifm = mtod(m, struct if_msghdr *); 1261 ifm->ifm_index = ifp->if_index; 1262 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1263 if_data_copy(ifp, &ifm->ifm_data); 1264 ifm->ifm_addrs = 0; 1265 rt_dispatch(m, AF_UNSPEC); 1266 } 1267 1268 /* 1269 * Announce interface address arrival/withdraw. 1270 * Please do not call directly, use rt_addrmsg(). 1271 * Assume input data to be valid. 1272 * Returns 0 on success. 1273 */ 1274 int 1275 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1276 { 1277 struct rt_addrinfo info; 1278 struct sockaddr *sa; 1279 int ncmd; 1280 struct mbuf *m; 1281 struct ifa_msghdr *ifam; 1282 struct ifnet *ifp = ifa->ifa_ifp; 1283 struct sockaddr_storage ss; 1284 1285 if (V_route_cb.any_count == 0) 1286 return (0); 1287 1288 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1289 1290 bzero((caddr_t)&info, sizeof(info)); 1291 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1292 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1293 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1294 info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss); 1295 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1296 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1297 return (ENOBUFS); 1298 ifam = mtod(m, struct ifa_msghdr *); 1299 ifam->ifam_index = ifp->if_index; 1300 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1301 ifam->ifam_flags = ifa->ifa_flags; 1302 ifam->ifam_addrs = info.rti_addrs; 1303 1304 if (fibnum != RT_ALL_FIBS) { 1305 M_SETFIB(m, fibnum); 1306 m->m_flags |= RTS_FILTER_FIB; 1307 } 1308 1309 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1310 1311 return (0); 1312 } 1313 1314 /* 1315 * Announce route addition/removal. 1316 * Please do not call directly, use rt_routemsg(). 1317 * Note that @rt data MAY be inconsistent/invalid: 1318 * if some userland app sends us "invalid" route message (invalid mask, 1319 * no dst, wrong address families, etc...) we need to pass it back 1320 * to app (and any other rtsock consumers) with rtm_errno field set to 1321 * non-zero value. 1322 * 1323 * Returns 0 on success. 1324 */ 1325 int 1326 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1327 int fibnum) 1328 { 1329 struct rt_addrinfo info; 1330 struct sockaddr *sa; 1331 struct mbuf *m; 1332 struct rt_msghdr *rtm; 1333 struct sockaddr_storage ss; 1334 1335 if (V_route_cb.any_count == 0) 1336 return (0); 1337 1338 bzero((caddr_t)&info, sizeof(info)); 1339 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1340 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss); 1341 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1342 if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL) 1343 return (ENOBUFS); 1344 rtm = mtod(m, struct rt_msghdr *); 1345 rtm->rtm_index = ifp->if_index; 1346 rtm->rtm_flags |= rt->rt_flags; 1347 rtm->rtm_errno = error; 1348 rtm->rtm_addrs = info.rti_addrs; 1349 1350 if (fibnum != RT_ALL_FIBS) { 1351 M_SETFIB(m, fibnum); 1352 m->m_flags |= RTS_FILTER_FIB; 1353 } 1354 1355 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1356 1357 return (0); 1358 } 1359 1360 /* 1361 * This is the analogue to the rt_newaddrmsg which performs the same 1362 * function but for multicast group memberhips. This is easier since 1363 * there is no route state to worry about. 1364 */ 1365 void 1366 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1367 { 1368 struct rt_addrinfo info; 1369 struct mbuf *m = NULL; 1370 struct ifnet *ifp = ifma->ifma_ifp; 1371 struct ifma_msghdr *ifmam; 1372 1373 if (V_route_cb.any_count == 0) 1374 return; 1375 1376 bzero((caddr_t)&info, sizeof(info)); 1377 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1378 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1379 /* 1380 * If a link-layer address is present, present it as a ``gateway'' 1381 * (similarly to how ARP entries, e.g., are presented). 1382 */ 1383 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1384 m = rtsock_msg_mbuf(cmd, &info); 1385 if (m == NULL) 1386 return; 1387 ifmam = mtod(m, struct ifma_msghdr *); 1388 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1389 __func__)); 1390 ifmam->ifmam_index = ifp->if_index; 1391 ifmam->ifmam_addrs = info.rti_addrs; 1392 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1393 } 1394 1395 static struct mbuf * 1396 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1397 struct rt_addrinfo *info) 1398 { 1399 struct if_announcemsghdr *ifan; 1400 struct mbuf *m; 1401 1402 if (V_route_cb.any_count == 0) 1403 return NULL; 1404 bzero((caddr_t)info, sizeof(*info)); 1405 m = rtsock_msg_mbuf(type, info); 1406 if (m != NULL) { 1407 ifan = mtod(m, struct if_announcemsghdr *); 1408 ifan->ifan_index = ifp->if_index; 1409 strlcpy(ifan->ifan_name, ifp->if_xname, 1410 sizeof(ifan->ifan_name)); 1411 ifan->ifan_what = what; 1412 } 1413 return m; 1414 } 1415 1416 /* 1417 * This is called to generate routing socket messages indicating 1418 * IEEE80211 wireless events. 1419 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1420 */ 1421 void 1422 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1423 { 1424 struct mbuf *m; 1425 struct rt_addrinfo info; 1426 1427 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1428 if (m != NULL) { 1429 /* 1430 * Append the ieee80211 data. Try to stick it in the 1431 * mbuf containing the ifannounce msg; otherwise allocate 1432 * a new mbuf and append. 1433 * 1434 * NB: we assume m is a single mbuf. 1435 */ 1436 if (data_len > M_TRAILINGSPACE(m)) { 1437 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1438 if (n == NULL) { 1439 m_freem(m); 1440 return; 1441 } 1442 bcopy(data, mtod(n, void *), data_len); 1443 n->m_len = data_len; 1444 m->m_next = n; 1445 } else if (data_len > 0) { 1446 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1447 m->m_len += data_len; 1448 } 1449 if (m->m_flags & M_PKTHDR) 1450 m->m_pkthdr.len += data_len; 1451 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1452 rt_dispatch(m, AF_UNSPEC); 1453 } 1454 } 1455 1456 /* 1457 * This is called to generate routing socket messages indicating 1458 * network interface arrival and departure. 1459 */ 1460 void 1461 rt_ifannouncemsg(struct ifnet *ifp, int what) 1462 { 1463 struct mbuf *m; 1464 struct rt_addrinfo info; 1465 1466 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1467 if (m != NULL) 1468 rt_dispatch(m, AF_UNSPEC); 1469 } 1470 1471 static void 1472 rt_dispatch(struct mbuf *m, sa_family_t saf) 1473 { 1474 struct m_tag *tag; 1475 1476 /* 1477 * Preserve the family from the sockaddr, if any, in an m_tag for 1478 * use when injecting the mbuf into the routing socket buffer from 1479 * the netisr. 1480 */ 1481 if (saf != AF_UNSPEC) { 1482 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1483 M_NOWAIT); 1484 if (tag == NULL) { 1485 m_freem(m); 1486 return; 1487 } 1488 *(unsigned short *)(tag + 1) = saf; 1489 m_tag_prepend(m, tag); 1490 } 1491 #ifdef VIMAGE 1492 if (V_loif) 1493 m->m_pkthdr.rcvif = V_loif; 1494 else { 1495 m_freem(m); 1496 return; 1497 } 1498 #endif 1499 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1500 } 1501 1502 /* 1503 * This is used in dumping the kernel table via sysctl(). 1504 */ 1505 static int 1506 sysctl_dumpentry(struct radix_node *rn, void *vw) 1507 { 1508 struct walkarg *w = vw; 1509 struct rtentry *rt = (struct rtentry *)rn; 1510 int error = 0, size; 1511 struct rt_addrinfo info; 1512 struct sockaddr_storage ss; 1513 1514 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1515 return 0; 1516 if ((rt->rt_flags & RTF_HOST) == 0 1517 ? jailed_without_vnet(w->w_req->td->td_ucred) 1518 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1519 return (0); 1520 bzero((caddr_t)&info, sizeof(info)); 1521 info.rti_info[RTAX_DST] = rt_key(rt); 1522 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1523 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1524 rt_mask(rt), &ss); 1525 info.rti_info[RTAX_GENMASK] = 0; 1526 if (rt->rt_ifp) { 1527 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1528 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1529 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1530 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1531 } 1532 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1533 return (error); 1534 if (w->w_req && w->w_tmem) { 1535 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1536 1537 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1538 rtm->rtm_flags = RTF_GATEWAY | 1539 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1540 else 1541 rtm->rtm_flags = rt->rt_flags; 1542 rt_getmetrics(rt, &rtm->rtm_rmx); 1543 rtm->rtm_index = rt->rt_ifp->if_index; 1544 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1545 rtm->rtm_addrs = info.rti_addrs; 1546 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1547 return (error); 1548 } 1549 return (error); 1550 } 1551 1552 static int 1553 sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info, 1554 struct walkarg *w, int len) 1555 { 1556 struct if_msghdrl *ifm; 1557 struct if_data *ifd; 1558 1559 ifm = (struct if_msghdrl *)w->w_tmem; 1560 1561 #ifdef COMPAT_FREEBSD32 1562 if (w->w_req->flags & SCTL_MASK32) { 1563 struct if_msghdrl32 *ifm32; 1564 1565 ifm32 = (struct if_msghdrl32 *)ifm; 1566 ifm32->ifm_addrs = info->rti_addrs; 1567 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1568 ifm32->ifm_index = ifp->if_index; 1569 ifm32->_ifm_spare1 = 0; 1570 ifm32->ifm_len = sizeof(*ifm32); 1571 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1572 ifd = &ifm32->ifm_data; 1573 } else 1574 #endif 1575 { 1576 ifm->ifm_addrs = info->rti_addrs; 1577 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1578 ifm->ifm_index = ifp->if_index; 1579 ifm->_ifm_spare1 = 0; 1580 ifm->ifm_len = sizeof(*ifm); 1581 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1582 ifd = &ifm->ifm_data; 1583 } 1584 1585 if_data_copy(ifp, ifd); 1586 1587 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1588 } 1589 1590 static int 1591 sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info, 1592 struct walkarg *w, int len) 1593 { 1594 struct if_msghdr *ifm; 1595 struct if_data *ifd; 1596 1597 ifm = (struct if_msghdr *)w->w_tmem; 1598 1599 #ifdef COMPAT_FREEBSD32 1600 if (w->w_req->flags & SCTL_MASK32) { 1601 struct if_msghdr32 *ifm32; 1602 1603 ifm32 = (struct if_msghdr32 *)ifm; 1604 ifm32->ifm_addrs = info->rti_addrs; 1605 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1606 ifm32->ifm_index = ifp->if_index; 1607 ifd = &ifm32->ifm_data; 1608 } else 1609 #endif 1610 { 1611 ifm->ifm_addrs = info->rti_addrs; 1612 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1613 ifm->ifm_index = ifp->if_index; 1614 ifd = &ifm->ifm_data; 1615 } 1616 1617 if_data_copy(ifp, ifd); 1618 1619 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1620 } 1621 1622 static int 1623 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1624 struct walkarg *w, int len) 1625 { 1626 struct ifa_msghdrl *ifam; 1627 struct if_data *ifd; 1628 1629 ifam = (struct ifa_msghdrl *)w->w_tmem; 1630 1631 #ifdef COMPAT_FREEBSD32 1632 if (w->w_req->flags & SCTL_MASK32) { 1633 struct ifa_msghdrl32 *ifam32; 1634 1635 ifam32 = (struct ifa_msghdrl32 *)ifam; 1636 ifam32->ifam_addrs = info->rti_addrs; 1637 ifam32->ifam_flags = ifa->ifa_flags; 1638 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1639 ifam32->_ifam_spare1 = 0; 1640 ifam32->ifam_len = sizeof(*ifam32); 1641 ifam32->ifam_data_off = 1642 offsetof(struct ifa_msghdrl32, ifam_data); 1643 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1644 ifd = &ifam32->ifam_data; 1645 } else 1646 #endif 1647 { 1648 ifam->ifam_addrs = info->rti_addrs; 1649 ifam->ifam_flags = ifa->ifa_flags; 1650 ifam->ifam_index = ifa->ifa_ifp->if_index; 1651 ifam->_ifam_spare1 = 0; 1652 ifam->ifam_len = sizeof(*ifam); 1653 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1654 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1655 ifd = &ifam->ifam_data; 1656 } 1657 1658 bzero(ifd, sizeof(*ifd)); 1659 ifd->ifi_datalen = sizeof(struct if_data); 1660 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1661 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1662 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1663 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1664 1665 /* Fixup if_data carp(4) vhid. */ 1666 if (carp_get_vhid_p != NULL) 1667 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1668 1669 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1670 } 1671 1672 static int 1673 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1674 struct walkarg *w, int len) 1675 { 1676 struct ifa_msghdr *ifam; 1677 1678 ifam = (struct ifa_msghdr *)w->w_tmem; 1679 ifam->ifam_addrs = info->rti_addrs; 1680 ifam->ifam_flags = ifa->ifa_flags; 1681 ifam->ifam_index = ifa->ifa_ifp->if_index; 1682 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1683 1684 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1685 } 1686 1687 static int 1688 sysctl_iflist(int af, struct walkarg *w) 1689 { 1690 struct ifnet *ifp; 1691 struct ifaddr *ifa; 1692 struct rt_addrinfo info; 1693 int len, error = 0; 1694 struct sockaddr_storage ss; 1695 1696 bzero((caddr_t)&info, sizeof(info)); 1697 IFNET_RLOCK_NOSLEEP(); 1698 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1699 if (w->w_arg && w->w_arg != ifp->if_index) 1700 continue; 1701 IF_ADDR_RLOCK(ifp); 1702 ifa = ifp->if_addr; 1703 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1704 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1705 if (error != 0) 1706 goto done; 1707 info.rti_info[RTAX_IFP] = NULL; 1708 if (w->w_req && w->w_tmem) { 1709 if (w->w_op == NET_RT_IFLISTL) 1710 error = sysctl_iflist_ifml(ifp, &info, w, len); 1711 else 1712 error = sysctl_iflist_ifm(ifp, &info, w, len); 1713 if (error) 1714 goto done; 1715 } 1716 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1717 if (af && af != ifa->ifa_addr->sa_family) 1718 continue; 1719 if (prison_if(w->w_req->td->td_ucred, 1720 ifa->ifa_addr) != 0) 1721 continue; 1722 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1723 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1724 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1725 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1726 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1727 if (error != 0) 1728 goto done; 1729 if (w->w_req && w->w_tmem) { 1730 if (w->w_op == NET_RT_IFLISTL) 1731 error = sysctl_iflist_ifaml(ifa, &info, 1732 w, len); 1733 else 1734 error = sysctl_iflist_ifam(ifa, &info, 1735 w, len); 1736 if (error) 1737 goto done; 1738 } 1739 } 1740 IF_ADDR_RUNLOCK(ifp); 1741 info.rti_info[RTAX_IFA] = NULL; 1742 info.rti_info[RTAX_NETMASK] = NULL; 1743 info.rti_info[RTAX_BRD] = NULL; 1744 } 1745 done: 1746 if (ifp != NULL) 1747 IF_ADDR_RUNLOCK(ifp); 1748 IFNET_RUNLOCK_NOSLEEP(); 1749 return (error); 1750 } 1751 1752 static int 1753 sysctl_ifmalist(int af, struct walkarg *w) 1754 { 1755 struct ifnet *ifp; 1756 struct ifmultiaddr *ifma; 1757 struct rt_addrinfo info; 1758 int len, error = 0; 1759 struct ifaddr *ifa; 1760 1761 bzero((caddr_t)&info, sizeof(info)); 1762 IFNET_RLOCK_NOSLEEP(); 1763 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1764 if (w->w_arg && w->w_arg != ifp->if_index) 1765 continue; 1766 ifa = ifp->if_addr; 1767 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1768 IF_ADDR_RLOCK(ifp); 1769 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1770 if (af && af != ifma->ifma_addr->sa_family) 1771 continue; 1772 if (prison_if(w->w_req->td->td_ucred, 1773 ifma->ifma_addr) != 0) 1774 continue; 1775 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1776 info.rti_info[RTAX_GATEWAY] = 1777 (ifma->ifma_addr->sa_family != AF_LINK) ? 1778 ifma->ifma_lladdr : NULL; 1779 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1780 if (error != 0) 1781 goto done; 1782 if (w->w_req && w->w_tmem) { 1783 struct ifma_msghdr *ifmam; 1784 1785 ifmam = (struct ifma_msghdr *)w->w_tmem; 1786 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1787 ifmam->ifmam_flags = 0; 1788 ifmam->ifmam_addrs = info.rti_addrs; 1789 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1790 if (error) { 1791 IF_ADDR_RUNLOCK(ifp); 1792 goto done; 1793 } 1794 } 1795 } 1796 IF_ADDR_RUNLOCK(ifp); 1797 } 1798 done: 1799 IFNET_RUNLOCK_NOSLEEP(); 1800 return (error); 1801 } 1802 1803 static int 1804 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1805 { 1806 int *name = (int *)arg1; 1807 u_int namelen = arg2; 1808 struct rib_head *rnh = NULL; /* silence compiler. */ 1809 int i, lim, error = EINVAL; 1810 int fib = 0; 1811 u_char af; 1812 struct walkarg w; 1813 1814 name ++; 1815 namelen--; 1816 if (req->newptr) 1817 return (EPERM); 1818 if (name[1] == NET_RT_DUMP) { 1819 if (namelen == 3) 1820 fib = req->td->td_proc->p_fibnum; 1821 else if (namelen == 4) 1822 fib = (name[3] == RT_ALL_FIBS) ? 1823 req->td->td_proc->p_fibnum : name[3]; 1824 else 1825 return ((namelen < 3) ? EISDIR : ENOTDIR); 1826 if (fib < 0 || fib >= rt_numfibs) 1827 return (EINVAL); 1828 } else if (namelen != 3) 1829 return ((namelen < 3) ? EISDIR : ENOTDIR); 1830 af = name[0]; 1831 if (af > AF_MAX) 1832 return (EINVAL); 1833 bzero(&w, sizeof(w)); 1834 w.w_op = name[1]; 1835 w.w_arg = name[2]; 1836 w.w_req = req; 1837 1838 error = sysctl_wire_old_buffer(req, 0); 1839 if (error) 1840 return (error); 1841 1842 /* 1843 * Allocate reply buffer in advance. 1844 * All rtsock messages has maximum length of u_short. 1845 */ 1846 w.w_tmemsize = 65536; 1847 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 1848 1849 switch (w.w_op) { 1850 1851 case NET_RT_DUMP: 1852 case NET_RT_FLAGS: 1853 if (af == 0) { /* dump all tables */ 1854 i = 1; 1855 lim = AF_MAX; 1856 } else /* dump only one table */ 1857 i = lim = af; 1858 1859 /* 1860 * take care of llinfo entries, the caller must 1861 * specify an AF 1862 */ 1863 if (w.w_op == NET_RT_FLAGS && 1864 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1865 if (af != 0) 1866 error = lltable_sysctl_dumparp(af, w.w_req); 1867 else 1868 error = EINVAL; 1869 break; 1870 } 1871 /* 1872 * take care of routing entries 1873 */ 1874 for (error = 0; error == 0 && i <= lim; i++) { 1875 rnh = rt_tables_get_rnh(fib, i); 1876 if (rnh != NULL) { 1877 RIB_RLOCK(rnh); 1878 error = rnh->rnh_walktree(&rnh->head, 1879 sysctl_dumpentry, &w); 1880 RIB_RUNLOCK(rnh); 1881 } else if (af != 0) 1882 error = EAFNOSUPPORT; 1883 } 1884 break; 1885 1886 case NET_RT_IFLIST: 1887 case NET_RT_IFLISTL: 1888 error = sysctl_iflist(af, &w); 1889 break; 1890 1891 case NET_RT_IFMALIST: 1892 error = sysctl_ifmalist(af, &w); 1893 break; 1894 } 1895 1896 free(w.w_tmem, M_TEMP); 1897 return (error); 1898 } 1899 1900 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1901 1902 /* 1903 * Definitions of protocols supported in the ROUTE domain. 1904 */ 1905 1906 static struct domain routedomain; /* or at least forward */ 1907 1908 static struct protosw routesw[] = { 1909 { 1910 .pr_type = SOCK_RAW, 1911 .pr_domain = &routedomain, 1912 .pr_flags = PR_ATOMIC|PR_ADDR, 1913 .pr_output = route_output, 1914 .pr_ctlinput = raw_ctlinput, 1915 .pr_init = raw_init, 1916 .pr_usrreqs = &route_usrreqs 1917 } 1918 }; 1919 1920 static struct domain routedomain = { 1921 .dom_family = PF_ROUTE, 1922 .dom_name = "route", 1923 .dom_protosw = routesw, 1924 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1925 }; 1926 1927 VNET_DOMAIN_SET(route); 1928