1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_mpath.h" 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/jail.h> 40 #include <sys/kernel.h> 41 #include <sys/domain.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/rmlock.h> 49 #include <sys/rwlock.h> 50 #include <sys/signalvar.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/systm.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/if_llatbl.h> 60 #include <net/if_types.h> 61 #include <net/netisr.h> 62 #include <net/raw_cb.h> 63 #include <net/route.h> 64 #include <net/route_var.h> 65 #include <net/vnet.h> 66 67 #include <netinet/in.h> 68 #include <netinet/if_ether.h> 69 #include <netinet/ip_carp.h> 70 #ifdef INET6 71 #include <netinet6/ip6_var.h> 72 #include <netinet6/scope6_var.h> 73 #endif 74 75 #ifdef COMPAT_FREEBSD32 76 #include <sys/mount.h> 77 #include <compat/freebsd32/freebsd32.h> 78 79 struct if_msghdr32 { 80 uint16_t ifm_msglen; 81 uint8_t ifm_version; 82 uint8_t ifm_type; 83 int32_t ifm_addrs; 84 int32_t ifm_flags; 85 uint16_t ifm_index; 86 uint16_t _ifm_spare1; 87 struct if_data ifm_data; 88 }; 89 90 struct if_msghdrl32 { 91 uint16_t ifm_msglen; 92 uint8_t ifm_version; 93 uint8_t ifm_type; 94 int32_t ifm_addrs; 95 int32_t ifm_flags; 96 uint16_t ifm_index; 97 uint16_t _ifm_spare1; 98 uint16_t ifm_len; 99 uint16_t ifm_data_off; 100 uint32_t _ifm_spare2; 101 struct if_data ifm_data; 102 }; 103 104 struct ifa_msghdrl32 { 105 uint16_t ifam_msglen; 106 uint8_t ifam_version; 107 uint8_t ifam_type; 108 int32_t ifam_addrs; 109 int32_t ifam_flags; 110 uint16_t ifam_index; 111 uint16_t _ifam_spare1; 112 uint16_t ifam_len; 113 uint16_t ifam_data_off; 114 int32_t ifam_metric; 115 struct if_data ifam_data; 116 }; 117 118 #define SA_SIZE32(sa) \ 119 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 120 sizeof(int) : \ 121 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 122 123 #endif /* COMPAT_FREEBSD32 */ 124 125 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 126 127 /* NB: these are not modified */ 128 static struct sockaddr route_src = { 2, PF_ROUTE, }; 129 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 130 131 /* These are external hooks for CARP. */ 132 int (*carp_get_vhid_p)(struct ifaddr *); 133 134 /* 135 * Used by rtsock/raw_input callback code to decide whether to filter the update 136 * notification to a socket bound to a particular FIB. 137 */ 138 #define RTS_FILTER_FIB M_PROTO8 139 140 typedef struct { 141 int ip_count; /* attached w/ AF_INET */ 142 int ip6_count; /* attached w/ AF_INET6 */ 143 int any_count; /* total attached */ 144 } route_cb_t; 145 VNET_DEFINE_STATIC(route_cb_t, route_cb); 146 #define V_route_cb VNET(route_cb) 147 148 struct mtx rtsock_mtx; 149 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 150 151 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 152 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 153 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 154 155 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 156 157 struct walkarg { 158 int w_tmemsize; 159 int w_op, w_arg; 160 caddr_t w_tmem; 161 struct sysctl_req *w_req; 162 }; 163 164 static void rts_input(struct mbuf *m); 165 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 166 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 167 struct walkarg *w, int *plen); 168 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 169 struct rt_addrinfo *rtinfo); 170 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 171 static int sysctl_iflist(int af, struct walkarg *w); 172 static int sysctl_ifmalist(int af, struct walkarg *w); 173 static int route_output(struct mbuf *m, struct socket *so, ...); 174 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 175 static void rt_dispatch(struct mbuf *, sa_family_t); 176 static struct sockaddr *rtsock_fix_netmask(struct sockaddr *dst, 177 struct sockaddr *smask, struct sockaddr_storage *dmask); 178 179 static struct netisr_handler rtsock_nh = { 180 .nh_name = "rtsock", 181 .nh_handler = rts_input, 182 .nh_proto = NETISR_ROUTE, 183 .nh_policy = NETISR_POLICY_SOURCE, 184 }; 185 186 static int 187 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 188 { 189 int error, qlimit; 190 191 netisr_getqlimit(&rtsock_nh, &qlimit); 192 error = sysctl_handle_int(oidp, &qlimit, 0, req); 193 if (error || !req->newptr) 194 return (error); 195 if (qlimit < 1) 196 return (EINVAL); 197 return (netisr_setqlimit(&rtsock_nh, qlimit)); 198 } 199 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 200 0, 0, sysctl_route_netisr_maxqlen, "I", 201 "maximum routing socket dispatch queue length"); 202 203 static void 204 vnet_rts_init(void) 205 { 206 int tmp; 207 208 if (IS_DEFAULT_VNET(curvnet)) { 209 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 210 rtsock_nh.nh_qlimit = tmp; 211 netisr_register(&rtsock_nh); 212 } 213 #ifdef VIMAGE 214 else 215 netisr_register_vnet(&rtsock_nh); 216 #endif 217 } 218 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 219 vnet_rts_init, 0); 220 221 #ifdef VIMAGE 222 static void 223 vnet_rts_uninit(void) 224 { 225 226 netisr_unregister_vnet(&rtsock_nh); 227 } 228 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 229 vnet_rts_uninit, 0); 230 #endif 231 232 static int 233 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 234 struct rawcb *rp) 235 { 236 int fibnum; 237 238 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 239 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 240 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 241 242 /* No filtering requested. */ 243 if ((m->m_flags & RTS_FILTER_FIB) == 0) 244 return (0); 245 246 /* Check if it is a rts and the fib matches the one of the socket. */ 247 fibnum = M_GETFIB(m); 248 if (proto->sp_family != PF_ROUTE || 249 rp->rcb_socket == NULL || 250 rp->rcb_socket->so_fibnum == fibnum) 251 return (0); 252 253 /* Filtering requested and no match, the socket shall be skipped. */ 254 return (1); 255 } 256 257 static void 258 rts_input(struct mbuf *m) 259 { 260 struct sockproto route_proto; 261 unsigned short *family; 262 struct m_tag *tag; 263 264 route_proto.sp_family = PF_ROUTE; 265 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 266 if (tag != NULL) { 267 family = (unsigned short *)(tag + 1); 268 route_proto.sp_protocol = *family; 269 m_tag_delete(m, tag); 270 } else 271 route_proto.sp_protocol = 0; 272 273 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 274 } 275 276 /* 277 * It really doesn't make any sense at all for this code to share much 278 * with raw_usrreq.c, since its functionality is so restricted. XXX 279 */ 280 static void 281 rts_abort(struct socket *so) 282 { 283 284 raw_usrreqs.pru_abort(so); 285 } 286 287 static void 288 rts_close(struct socket *so) 289 { 290 291 raw_usrreqs.pru_close(so); 292 } 293 294 /* pru_accept is EOPNOTSUPP */ 295 296 static int 297 rts_attach(struct socket *so, int proto, struct thread *td) 298 { 299 struct rawcb *rp; 300 int error; 301 302 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 303 304 /* XXX */ 305 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 306 307 so->so_pcb = (caddr_t)rp; 308 so->so_fibnum = td->td_proc->p_fibnum; 309 error = raw_attach(so, proto); 310 rp = sotorawcb(so); 311 if (error) { 312 so->so_pcb = NULL; 313 free(rp, M_PCB); 314 return error; 315 } 316 RTSOCK_LOCK(); 317 switch(rp->rcb_proto.sp_protocol) { 318 case AF_INET: 319 V_route_cb.ip_count++; 320 break; 321 case AF_INET6: 322 V_route_cb.ip6_count++; 323 break; 324 } 325 V_route_cb.any_count++; 326 RTSOCK_UNLOCK(); 327 soisconnected(so); 328 so->so_options |= SO_USELOOPBACK; 329 return 0; 330 } 331 332 static int 333 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 334 { 335 336 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 337 } 338 339 static int 340 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 341 { 342 343 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 344 } 345 346 /* pru_connect2 is EOPNOTSUPP */ 347 /* pru_control is EOPNOTSUPP */ 348 349 static void 350 rts_detach(struct socket *so) 351 { 352 struct rawcb *rp = sotorawcb(so); 353 354 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 355 356 RTSOCK_LOCK(); 357 switch(rp->rcb_proto.sp_protocol) { 358 case AF_INET: 359 V_route_cb.ip_count--; 360 break; 361 case AF_INET6: 362 V_route_cb.ip6_count--; 363 break; 364 } 365 V_route_cb.any_count--; 366 RTSOCK_UNLOCK(); 367 raw_usrreqs.pru_detach(so); 368 } 369 370 static int 371 rts_disconnect(struct socket *so) 372 { 373 374 return (raw_usrreqs.pru_disconnect(so)); 375 } 376 377 /* pru_listen is EOPNOTSUPP */ 378 379 static int 380 rts_peeraddr(struct socket *so, struct sockaddr **nam) 381 { 382 383 return (raw_usrreqs.pru_peeraddr(so, nam)); 384 } 385 386 /* pru_rcvd is EOPNOTSUPP */ 387 /* pru_rcvoob is EOPNOTSUPP */ 388 389 static int 390 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 391 struct mbuf *control, struct thread *td) 392 { 393 394 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 395 } 396 397 /* pru_sense is null */ 398 399 static int 400 rts_shutdown(struct socket *so) 401 { 402 403 return (raw_usrreqs.pru_shutdown(so)); 404 } 405 406 static int 407 rts_sockaddr(struct socket *so, struct sockaddr **nam) 408 { 409 410 return (raw_usrreqs.pru_sockaddr(so, nam)); 411 } 412 413 static struct pr_usrreqs route_usrreqs = { 414 .pru_abort = rts_abort, 415 .pru_attach = rts_attach, 416 .pru_bind = rts_bind, 417 .pru_connect = rts_connect, 418 .pru_detach = rts_detach, 419 .pru_disconnect = rts_disconnect, 420 .pru_peeraddr = rts_peeraddr, 421 .pru_send = rts_send, 422 .pru_shutdown = rts_shutdown, 423 .pru_sockaddr = rts_sockaddr, 424 .pru_close = rts_close, 425 }; 426 427 #ifndef _SOCKADDR_UNION_DEFINED 428 #define _SOCKADDR_UNION_DEFINED 429 /* 430 * The union of all possible address formats we handle. 431 */ 432 union sockaddr_union { 433 struct sockaddr sa; 434 struct sockaddr_in sin; 435 struct sockaddr_in6 sin6; 436 }; 437 #endif /* _SOCKADDR_UNION_DEFINED */ 438 439 static int 440 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 441 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 442 { 443 444 /* First, see if the returned address is part of the jail. */ 445 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 446 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 447 return (0); 448 } 449 450 switch (info->rti_info[RTAX_DST]->sa_family) { 451 #ifdef INET 452 case AF_INET: 453 { 454 struct in_addr ia; 455 struct ifaddr *ifa; 456 int found; 457 458 found = 0; 459 /* 460 * Try to find an address on the given outgoing interface 461 * that belongs to the jail. 462 */ 463 IF_ADDR_RLOCK(ifp); 464 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 465 struct sockaddr *sa; 466 sa = ifa->ifa_addr; 467 if (sa->sa_family != AF_INET) 468 continue; 469 ia = ((struct sockaddr_in *)sa)->sin_addr; 470 if (prison_check_ip4(cred, &ia) == 0) { 471 found = 1; 472 break; 473 } 474 } 475 IF_ADDR_RUNLOCK(ifp); 476 if (!found) { 477 /* 478 * As a last resort return the 'default' jail address. 479 */ 480 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 481 sin_addr; 482 if (prison_get_ip4(cred, &ia) != 0) 483 return (ESRCH); 484 } 485 bzero(&saun->sin, sizeof(struct sockaddr_in)); 486 saun->sin.sin_len = sizeof(struct sockaddr_in); 487 saun->sin.sin_family = AF_INET; 488 saun->sin.sin_addr.s_addr = ia.s_addr; 489 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 490 break; 491 } 492 #endif 493 #ifdef INET6 494 case AF_INET6: 495 { 496 struct in6_addr ia6; 497 struct ifaddr *ifa; 498 int found; 499 500 found = 0; 501 /* 502 * Try to find an address on the given outgoing interface 503 * that belongs to the jail. 504 */ 505 IF_ADDR_RLOCK(ifp); 506 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 507 struct sockaddr *sa; 508 sa = ifa->ifa_addr; 509 if (sa->sa_family != AF_INET6) 510 continue; 511 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 512 &ia6, sizeof(struct in6_addr)); 513 if (prison_check_ip6(cred, &ia6) == 0) { 514 found = 1; 515 break; 516 } 517 } 518 IF_ADDR_RUNLOCK(ifp); 519 if (!found) { 520 /* 521 * As a last resort return the 'default' jail address. 522 */ 523 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 524 sin6_addr; 525 if (prison_get_ip6(cred, &ia6) != 0) 526 return (ESRCH); 527 } 528 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 529 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 530 saun->sin6.sin6_family = AF_INET6; 531 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 532 if (sa6_recoverscope(&saun->sin6) != 0) 533 return (ESRCH); 534 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 535 break; 536 } 537 #endif 538 default: 539 return (ESRCH); 540 } 541 return (0); 542 } 543 544 /*ARGSUSED*/ 545 static int 546 route_output(struct mbuf *m, struct socket *so, ...) 547 { 548 RIB_RLOCK_TRACKER; 549 struct rt_msghdr *rtm = NULL; 550 struct rtentry *rt = NULL; 551 struct rib_head *rnh; 552 struct rt_addrinfo info; 553 struct sockaddr_storage ss; 554 #ifdef INET6 555 struct sockaddr_in6 *sin6; 556 int i, rti_need_deembed = 0; 557 #endif 558 int alloc_len = 0, len, error = 0, fibnum; 559 struct ifnet *ifp = NULL; 560 union sockaddr_union saun; 561 sa_family_t saf = AF_UNSPEC; 562 struct rawcb *rp = NULL; 563 struct walkarg w; 564 565 fibnum = so->so_fibnum; 566 567 #define senderr(e) { error = e; goto flush;} 568 if (m == NULL || ((m->m_len < sizeof(long)) && 569 (m = m_pullup(m, sizeof(long))) == NULL)) 570 return (ENOBUFS); 571 if ((m->m_flags & M_PKTHDR) == 0) 572 panic("route_output"); 573 len = m->m_pkthdr.len; 574 if (len < sizeof(*rtm) || 575 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 576 senderr(EINVAL); 577 578 /* 579 * Most of current messages are in range 200-240 bytes, 580 * minimize possible re-allocation on reply using larger size 581 * buffer aligned on 1k boundaty. 582 */ 583 alloc_len = roundup2(len, 1024); 584 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 585 senderr(ENOBUFS); 586 587 m_copydata(m, 0, len, (caddr_t)rtm); 588 bzero(&info, sizeof(info)); 589 bzero(&w, sizeof(w)); 590 591 if (rtm->rtm_version != RTM_VERSION) { 592 /* Do not touch message since format is unknown */ 593 free(rtm, M_TEMP); 594 rtm = NULL; 595 senderr(EPROTONOSUPPORT); 596 } 597 598 /* 599 * Starting from here, it is possible 600 * to alter original message and insert 601 * caller PID and error value. 602 */ 603 604 rtm->rtm_pid = curproc->p_pid; 605 info.rti_addrs = rtm->rtm_addrs; 606 607 info.rti_mflags = rtm->rtm_inits; 608 info.rti_rmx = &rtm->rtm_rmx; 609 610 /* 611 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 612 * link-local address because rtrequest requires addresses with 613 * embedded scope id. 614 */ 615 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) 616 senderr(EINVAL); 617 618 info.rti_flags = rtm->rtm_flags; 619 if (info.rti_info[RTAX_DST] == NULL || 620 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 621 (info.rti_info[RTAX_GATEWAY] != NULL && 622 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 623 senderr(EINVAL); 624 saf = info.rti_info[RTAX_DST]->sa_family; 625 /* 626 * Verify that the caller has the appropriate privilege; RTM_GET 627 * is the only operation the non-superuser is allowed. 628 */ 629 if (rtm->rtm_type != RTM_GET) { 630 error = priv_check(curthread, PRIV_NET_ROUTE); 631 if (error) 632 senderr(error); 633 } 634 635 /* 636 * The given gateway address may be an interface address. 637 * For example, issuing a "route change" command on a route 638 * entry that was created from a tunnel, and the gateway 639 * address given is the local end point. In this case the 640 * RTF_GATEWAY flag must be cleared or the destination will 641 * not be reachable even though there is no error message. 642 */ 643 if (info.rti_info[RTAX_GATEWAY] != NULL && 644 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 645 struct rt_addrinfo ginfo; 646 struct sockaddr *gdst; 647 648 bzero(&ginfo, sizeof(ginfo)); 649 bzero(&ss, sizeof(ss)); 650 ss.ss_len = sizeof(ss); 651 652 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 653 gdst = info.rti_info[RTAX_GATEWAY]; 654 655 /* 656 * A host route through the loopback interface is 657 * installed for each interface adddress. In pre 8.0 658 * releases the interface address of a PPP link type 659 * is not reachable locally. This behavior is fixed as 660 * part of the new L2/L3 redesign and rewrite work. The 661 * signature of this interface address route is the 662 * AF_LINK sa_family type of the rt_gateway, and the 663 * rt_ifp has the IFF_LOOPBACK flag set. 664 */ 665 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 666 if (ss.ss_family == AF_LINK && 667 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 668 info.rti_flags &= ~RTF_GATEWAY; 669 info.rti_flags |= RTF_GWFLAG_COMPAT; 670 } 671 rib_free_info(&ginfo); 672 } 673 } 674 675 switch (rtm->rtm_type) { 676 struct rtentry *saved_nrt; 677 678 case RTM_ADD: 679 case RTM_CHANGE: 680 if (rtm->rtm_type == RTM_ADD) { 681 if (info.rti_info[RTAX_GATEWAY] == NULL) 682 senderr(EINVAL); 683 } 684 saved_nrt = NULL; 685 686 /* support for new ARP code */ 687 if (info.rti_info[RTAX_GATEWAY] != NULL && 688 info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 689 (rtm->rtm_flags & RTF_LLDATA) != 0) { 690 error = lla_rt_output(rtm, &info); 691 #ifdef INET6 692 if (error == 0) 693 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 694 #endif 695 break; 696 } 697 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt, 698 fibnum); 699 if (error == 0 && saved_nrt != NULL) { 700 #ifdef INET6 701 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 702 #endif 703 RT_LOCK(saved_nrt); 704 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 705 RT_REMREF(saved_nrt); 706 RT_UNLOCK(saved_nrt); 707 } 708 break; 709 710 case RTM_DELETE: 711 saved_nrt = NULL; 712 /* support for new ARP code */ 713 if (info.rti_info[RTAX_GATEWAY] && 714 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 715 (rtm->rtm_flags & RTF_LLDATA) != 0) { 716 error = lla_rt_output(rtm, &info); 717 #ifdef INET6 718 if (error == 0) 719 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 720 #endif 721 break; 722 } 723 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum); 724 if (error == 0) { 725 RT_LOCK(saved_nrt); 726 rt = saved_nrt; 727 goto report; 728 } 729 #ifdef INET6 730 /* rt_msg2() will not be used when RTM_DELETE fails. */ 731 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 732 #endif 733 break; 734 735 case RTM_GET: 736 rnh = rt_tables_get_rnh(fibnum, saf); 737 if (rnh == NULL) 738 senderr(EAFNOSUPPORT); 739 740 RIB_RLOCK(rnh); 741 742 if (info.rti_info[RTAX_NETMASK] == NULL && 743 rtm->rtm_type == RTM_GET) { 744 /* 745 * Provide longest prefix match for 746 * address lookup (no mask). 747 * 'route -n get addr' 748 */ 749 rt = (struct rtentry *) rnh->rnh_matchaddr( 750 info.rti_info[RTAX_DST], &rnh->head); 751 } else 752 rt = (struct rtentry *) rnh->rnh_lookup( 753 info.rti_info[RTAX_DST], 754 info.rti_info[RTAX_NETMASK], &rnh->head); 755 756 if (rt == NULL) { 757 RIB_RUNLOCK(rnh); 758 senderr(ESRCH); 759 } 760 #ifdef RADIX_MPATH 761 /* 762 * for RTM_CHANGE/LOCK, if we got multipath routes, 763 * we require users to specify a matching RTAX_GATEWAY. 764 * 765 * for RTM_GET, gate is optional even with multipath. 766 * if gate == NULL the first match is returned. 767 * (no need to call rt_mpath_matchgate if gate == NULL) 768 */ 769 if (rt_mpath_capable(rnh) && 770 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 771 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 772 if (!rt) { 773 RIB_RUNLOCK(rnh); 774 senderr(ESRCH); 775 } 776 } 777 #endif 778 /* 779 * If performing proxied L2 entry insertion, and 780 * the actual PPP host entry is found, perform 781 * another search to retrieve the prefix route of 782 * the local end point of the PPP link. 783 */ 784 if (rtm->rtm_flags & RTF_ANNOUNCE) { 785 struct sockaddr laddr; 786 787 if (rt->rt_ifp != NULL && 788 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 789 struct ifaddr *ifa; 790 791 NET_EPOCH_ENTER(); 792 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1, 793 RT_ALL_FIBS); 794 if (ifa != NULL) 795 rt_maskedcopy(ifa->ifa_addr, 796 &laddr, 797 ifa->ifa_netmask); 798 NET_EPOCH_EXIT(); 799 } else 800 rt_maskedcopy(rt->rt_ifa->ifa_addr, 801 &laddr, 802 rt->rt_ifa->ifa_netmask); 803 /* 804 * refactor rt and no lock operation necessary 805 */ 806 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 807 &rnh->head); 808 if (rt == NULL) { 809 RIB_RUNLOCK(rnh); 810 senderr(ESRCH); 811 } 812 } 813 RT_LOCK(rt); 814 RT_ADDREF(rt); 815 RIB_RUNLOCK(rnh); 816 817 report: 818 RT_LOCK_ASSERT(rt); 819 if ((rt->rt_flags & RTF_HOST) == 0 820 ? jailed_without_vnet(curthread->td_ucred) 821 : prison_if(curthread->td_ucred, 822 rt_key(rt)) != 0) { 823 RT_UNLOCK(rt); 824 senderr(ESRCH); 825 } 826 info.rti_info[RTAX_DST] = rt_key(rt); 827 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 828 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 829 rt_mask(rt), &ss); 830 info.rti_info[RTAX_GENMASK] = 0; 831 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 832 ifp = rt->rt_ifp; 833 if (ifp) { 834 info.rti_info[RTAX_IFP] = 835 ifp->if_addr->ifa_addr; 836 error = rtm_get_jailed(&info, ifp, rt, 837 &saun, curthread->td_ucred); 838 if (error != 0) { 839 RT_UNLOCK(rt); 840 senderr(error); 841 } 842 if (ifp->if_flags & IFF_POINTOPOINT) 843 info.rti_info[RTAX_BRD] = 844 rt->rt_ifa->ifa_dstaddr; 845 rtm->rtm_index = ifp->if_index; 846 } else { 847 info.rti_info[RTAX_IFP] = NULL; 848 info.rti_info[RTAX_IFA] = NULL; 849 } 850 } else if ((ifp = rt->rt_ifp) != NULL) { 851 rtm->rtm_index = ifp->if_index; 852 } 853 854 /* Check if we need to realloc storage */ 855 rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len); 856 if (len > alloc_len) { 857 struct rt_msghdr *new_rtm; 858 new_rtm = malloc(len, M_TEMP, M_NOWAIT); 859 if (new_rtm == NULL) { 860 RT_UNLOCK(rt); 861 senderr(ENOBUFS); 862 } 863 bcopy(rtm, new_rtm, rtm->rtm_msglen); 864 free(rtm, M_TEMP); 865 rtm = new_rtm; 866 alloc_len = len; 867 } 868 869 w.w_tmem = (caddr_t)rtm; 870 w.w_tmemsize = alloc_len; 871 rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len); 872 873 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 874 rtm->rtm_flags = RTF_GATEWAY | 875 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 876 else 877 rtm->rtm_flags = rt->rt_flags; 878 rt_getmetrics(rt, &rtm->rtm_rmx); 879 rtm->rtm_addrs = info.rti_addrs; 880 881 RT_UNLOCK(rt); 882 break; 883 884 default: 885 senderr(EOPNOTSUPP); 886 } 887 888 flush: 889 if (rt != NULL) 890 RTFREE(rt); 891 /* 892 * Check to see if we don't want our own messages. 893 */ 894 if ((so->so_options & SO_USELOOPBACK) == 0) { 895 if (V_route_cb.any_count <= 1) { 896 if (rtm != NULL) 897 free(rtm, M_TEMP); 898 m_freem(m); 899 return (error); 900 } 901 /* There is another listener, so construct message */ 902 rp = sotorawcb(so); 903 } 904 905 if (rtm != NULL) { 906 #ifdef INET6 907 if (rti_need_deembed) { 908 /* sin6_scope_id is recovered before sending rtm. */ 909 sin6 = (struct sockaddr_in6 *)&ss; 910 for (i = 0; i < RTAX_MAX; i++) { 911 if (info.rti_info[i] == NULL) 912 continue; 913 if (info.rti_info[i]->sa_family != AF_INET6) 914 continue; 915 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 916 if (sa6_recoverscope(sin6) == 0) 917 bcopy(sin6, info.rti_info[i], 918 sizeof(*sin6)); 919 } 920 } 921 #endif 922 if (error != 0) 923 rtm->rtm_errno = error; 924 else 925 rtm->rtm_flags |= RTF_DONE; 926 927 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 928 if (m->m_pkthdr.len < rtm->rtm_msglen) { 929 m_freem(m); 930 m = NULL; 931 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 932 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 933 934 free(rtm, M_TEMP); 935 } 936 if (m != NULL) { 937 M_SETFIB(m, fibnum); 938 m->m_flags |= RTS_FILTER_FIB; 939 if (rp) { 940 /* 941 * XXX insure we don't get a copy by 942 * invalidating our protocol 943 */ 944 unsigned short family = rp->rcb_proto.sp_family; 945 rp->rcb_proto.sp_family = 0; 946 rt_dispatch(m, saf); 947 rp->rcb_proto.sp_family = family; 948 } else 949 rt_dispatch(m, saf); 950 } 951 952 return (error); 953 } 954 955 static void 956 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 957 { 958 959 bzero(out, sizeof(*out)); 960 out->rmx_mtu = rt->rt_mtu; 961 out->rmx_weight = rt->rt_weight; 962 out->rmx_pksent = counter_u64_fetch(rt->rt_pksent); 963 /* Kernel -> userland timebase conversion. */ 964 out->rmx_expire = rt->rt_expire ? 965 rt->rt_expire - time_uptime + time_second : 0; 966 } 967 968 /* 969 * Extract the addresses of the passed sockaddrs. 970 * Do a little sanity checking so as to avoid bad memory references. 971 * This data is derived straight from userland. 972 */ 973 static int 974 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 975 { 976 struct sockaddr *sa; 977 int i; 978 979 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 980 if ((rtinfo->rti_addrs & (1 << i)) == 0) 981 continue; 982 sa = (struct sockaddr *)cp; 983 /* 984 * It won't fit. 985 */ 986 if (cp + sa->sa_len > cplim) 987 return (EINVAL); 988 /* 989 * there are no more.. quit now 990 * If there are more bits, they are in error. 991 * I've seen this. route(1) can evidently generate these. 992 * This causes kernel to core dump. 993 * for compatibility, If we see this, point to a safe address. 994 */ 995 if (sa->sa_len == 0) { 996 rtinfo->rti_info[i] = &sa_zero; 997 return (0); /* should be EINVAL but for compat */ 998 } 999 /* accept it */ 1000 #ifdef INET6 1001 if (sa->sa_family == AF_INET6) 1002 sa6_embedscope((struct sockaddr_in6 *)sa, 1003 V_ip6_use_defzone); 1004 #endif 1005 rtinfo->rti_info[i] = sa; 1006 cp += SA_SIZE(sa); 1007 } 1008 return (0); 1009 } 1010 1011 /* 1012 * Fill in @dmask with valid netmask leaving original @smask 1013 * intact. Mostly used with radix netmasks. 1014 */ 1015 static struct sockaddr * 1016 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask, 1017 struct sockaddr_storage *dmask) 1018 { 1019 if (dst == NULL || smask == NULL) 1020 return (NULL); 1021 1022 memset(dmask, 0, dst->sa_len); 1023 memcpy(dmask, smask, smask->sa_len); 1024 dmask->ss_len = dst->sa_len; 1025 dmask->ss_family = dst->sa_family; 1026 1027 return ((struct sockaddr *)dmask); 1028 } 1029 1030 /* 1031 * Writes information related to @rtinfo object to newly-allocated mbuf. 1032 * Assumes MCLBYTES is enough to construct any message. 1033 * Used for OS notifications of vaious events (if/ifa announces,etc) 1034 * 1035 * Returns allocated mbuf or NULL on failure. 1036 */ 1037 static struct mbuf * 1038 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1039 { 1040 struct rt_msghdr *rtm; 1041 struct mbuf *m; 1042 int i; 1043 struct sockaddr *sa; 1044 #ifdef INET6 1045 struct sockaddr_storage ss; 1046 struct sockaddr_in6 *sin6; 1047 #endif 1048 int len, dlen; 1049 1050 switch (type) { 1051 1052 case RTM_DELADDR: 1053 case RTM_NEWADDR: 1054 len = sizeof(struct ifa_msghdr); 1055 break; 1056 1057 case RTM_DELMADDR: 1058 case RTM_NEWMADDR: 1059 len = sizeof(struct ifma_msghdr); 1060 break; 1061 1062 case RTM_IFINFO: 1063 len = sizeof(struct if_msghdr); 1064 break; 1065 1066 case RTM_IFANNOUNCE: 1067 case RTM_IEEE80211: 1068 len = sizeof(struct if_announcemsghdr); 1069 break; 1070 1071 default: 1072 len = sizeof(struct rt_msghdr); 1073 } 1074 1075 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1076 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1077 if (len > MHLEN) 1078 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1079 else 1080 m = m_gethdr(M_NOWAIT, MT_DATA); 1081 if (m == NULL) 1082 return (m); 1083 1084 m->m_pkthdr.len = m->m_len = len; 1085 rtm = mtod(m, struct rt_msghdr *); 1086 bzero((caddr_t)rtm, len); 1087 for (i = 0; i < RTAX_MAX; i++) { 1088 if ((sa = rtinfo->rti_info[i]) == NULL) 1089 continue; 1090 rtinfo->rti_addrs |= (1 << i); 1091 dlen = SA_SIZE(sa); 1092 #ifdef INET6 1093 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1094 sin6 = (struct sockaddr_in6 *)&ss; 1095 bcopy(sa, sin6, sizeof(*sin6)); 1096 if (sa6_recoverscope(sin6) == 0) 1097 sa = (struct sockaddr *)sin6; 1098 } 1099 #endif 1100 m_copyback(m, len, dlen, (caddr_t)sa); 1101 len += dlen; 1102 } 1103 if (m->m_pkthdr.len != len) { 1104 m_freem(m); 1105 return (NULL); 1106 } 1107 rtm->rtm_msglen = len; 1108 rtm->rtm_version = RTM_VERSION; 1109 rtm->rtm_type = type; 1110 return (m); 1111 } 1112 1113 /* 1114 * Writes information related to @rtinfo object to preallocated buffer. 1115 * Stores needed size in @plen. If @w is NULL, calculates size without 1116 * writing. 1117 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1118 * 1119 * Returns 0 on success. 1120 * 1121 */ 1122 static int 1123 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1124 { 1125 int i; 1126 int len, buflen = 0, dlen; 1127 caddr_t cp = NULL; 1128 struct rt_msghdr *rtm = NULL; 1129 #ifdef INET6 1130 struct sockaddr_storage ss; 1131 struct sockaddr_in6 *sin6; 1132 #endif 1133 #ifdef COMPAT_FREEBSD32 1134 bool compat32 = false; 1135 #endif 1136 1137 switch (type) { 1138 1139 case RTM_DELADDR: 1140 case RTM_NEWADDR: 1141 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1142 #ifdef COMPAT_FREEBSD32 1143 if (w->w_req->flags & SCTL_MASK32) { 1144 len = sizeof(struct ifa_msghdrl32); 1145 compat32 = true; 1146 } else 1147 #endif 1148 len = sizeof(struct ifa_msghdrl); 1149 } else 1150 len = sizeof(struct ifa_msghdr); 1151 break; 1152 1153 case RTM_IFINFO: 1154 #ifdef COMPAT_FREEBSD32 1155 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1156 if (w->w_op == NET_RT_IFLISTL) 1157 len = sizeof(struct if_msghdrl32); 1158 else 1159 len = sizeof(struct if_msghdr32); 1160 compat32 = true; 1161 break; 1162 } 1163 #endif 1164 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1165 len = sizeof(struct if_msghdrl); 1166 else 1167 len = sizeof(struct if_msghdr); 1168 break; 1169 1170 case RTM_NEWMADDR: 1171 len = sizeof(struct ifma_msghdr); 1172 break; 1173 1174 default: 1175 len = sizeof(struct rt_msghdr); 1176 } 1177 1178 if (w != NULL) { 1179 rtm = (struct rt_msghdr *)w->w_tmem; 1180 buflen = w->w_tmemsize - len; 1181 cp = (caddr_t)w->w_tmem + len; 1182 } 1183 1184 rtinfo->rti_addrs = 0; 1185 for (i = 0; i < RTAX_MAX; i++) { 1186 struct sockaddr *sa; 1187 1188 if ((sa = rtinfo->rti_info[i]) == NULL) 1189 continue; 1190 rtinfo->rti_addrs |= (1 << i); 1191 #ifdef COMPAT_FREEBSD32 1192 if (compat32) 1193 dlen = SA_SIZE32(sa); 1194 else 1195 #endif 1196 dlen = SA_SIZE(sa); 1197 if (cp != NULL && buflen >= dlen) { 1198 #ifdef INET6 1199 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1200 sin6 = (struct sockaddr_in6 *)&ss; 1201 bcopy(sa, sin6, sizeof(*sin6)); 1202 if (sa6_recoverscope(sin6) == 0) 1203 sa = (struct sockaddr *)sin6; 1204 } 1205 #endif 1206 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1207 cp += dlen; 1208 buflen -= dlen; 1209 } else if (cp != NULL) { 1210 /* 1211 * Buffer too small. Count needed size 1212 * and return with error. 1213 */ 1214 cp = NULL; 1215 } 1216 1217 len += dlen; 1218 } 1219 1220 if (cp != NULL) { 1221 dlen = ALIGN(len) - len; 1222 if (buflen < dlen) 1223 cp = NULL; 1224 else { 1225 bzero(cp, dlen); 1226 cp += dlen; 1227 buflen -= dlen; 1228 } 1229 } 1230 len = ALIGN(len); 1231 1232 if (cp != NULL) { 1233 /* fill header iff buffer is large enough */ 1234 rtm->rtm_version = RTM_VERSION; 1235 rtm->rtm_type = type; 1236 rtm->rtm_msglen = len; 1237 } 1238 1239 *plen = len; 1240 1241 if (w != NULL && cp == NULL) 1242 return (ENOBUFS); 1243 1244 return (0); 1245 } 1246 1247 /* 1248 * This routine is called to generate a message from the routing 1249 * socket indicating that a redirect has occurred, a routing lookup 1250 * has failed, or that a protocol has detected timeouts to a particular 1251 * destination. 1252 */ 1253 void 1254 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1255 int fibnum) 1256 { 1257 struct rt_msghdr *rtm; 1258 struct mbuf *m; 1259 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1260 1261 if (V_route_cb.any_count == 0) 1262 return; 1263 m = rtsock_msg_mbuf(type, rtinfo); 1264 if (m == NULL) 1265 return; 1266 1267 if (fibnum != RT_ALL_FIBS) { 1268 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1269 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1270 M_SETFIB(m, fibnum); 1271 m->m_flags |= RTS_FILTER_FIB; 1272 } 1273 1274 rtm = mtod(m, struct rt_msghdr *); 1275 rtm->rtm_flags = RTF_DONE | flags; 1276 rtm->rtm_errno = error; 1277 rtm->rtm_addrs = rtinfo->rti_addrs; 1278 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1279 } 1280 1281 void 1282 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1283 { 1284 1285 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1286 } 1287 1288 /* 1289 * This routine is called to generate a message from the routing 1290 * socket indicating that the status of a network interface has changed. 1291 */ 1292 void 1293 rt_ifmsg(struct ifnet *ifp) 1294 { 1295 struct if_msghdr *ifm; 1296 struct mbuf *m; 1297 struct rt_addrinfo info; 1298 1299 if (V_route_cb.any_count == 0) 1300 return; 1301 bzero((caddr_t)&info, sizeof(info)); 1302 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1303 if (m == NULL) 1304 return; 1305 ifm = mtod(m, struct if_msghdr *); 1306 ifm->ifm_index = ifp->if_index; 1307 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1308 if_data_copy(ifp, &ifm->ifm_data); 1309 ifm->ifm_addrs = 0; 1310 rt_dispatch(m, AF_UNSPEC); 1311 } 1312 1313 /* 1314 * Announce interface address arrival/withdraw. 1315 * Please do not call directly, use rt_addrmsg(). 1316 * Assume input data to be valid. 1317 * Returns 0 on success. 1318 */ 1319 int 1320 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1321 { 1322 struct rt_addrinfo info; 1323 struct sockaddr *sa; 1324 int ncmd; 1325 struct mbuf *m; 1326 struct ifa_msghdr *ifam; 1327 struct ifnet *ifp = ifa->ifa_ifp; 1328 struct sockaddr_storage ss; 1329 1330 if (V_route_cb.any_count == 0) 1331 return (0); 1332 1333 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1334 1335 bzero((caddr_t)&info, sizeof(info)); 1336 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1337 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1338 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1339 info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss); 1340 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1341 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1342 return (ENOBUFS); 1343 ifam = mtod(m, struct ifa_msghdr *); 1344 ifam->ifam_index = ifp->if_index; 1345 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1346 ifam->ifam_flags = ifa->ifa_flags; 1347 ifam->ifam_addrs = info.rti_addrs; 1348 1349 if (fibnum != RT_ALL_FIBS) { 1350 M_SETFIB(m, fibnum); 1351 m->m_flags |= RTS_FILTER_FIB; 1352 } 1353 1354 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1355 1356 return (0); 1357 } 1358 1359 /* 1360 * Announce route addition/removal. 1361 * Please do not call directly, use rt_routemsg(). 1362 * Note that @rt data MAY be inconsistent/invalid: 1363 * if some userland app sends us "invalid" route message (invalid mask, 1364 * no dst, wrong address families, etc...) we need to pass it back 1365 * to app (and any other rtsock consumers) with rtm_errno field set to 1366 * non-zero value. 1367 * 1368 * Returns 0 on success. 1369 */ 1370 int 1371 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1372 int fibnum) 1373 { 1374 struct rt_addrinfo info; 1375 struct sockaddr *sa; 1376 struct mbuf *m; 1377 struct rt_msghdr *rtm; 1378 struct sockaddr_storage ss; 1379 1380 if (V_route_cb.any_count == 0) 1381 return (0); 1382 1383 bzero((caddr_t)&info, sizeof(info)); 1384 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1385 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss); 1386 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1387 if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL) 1388 return (ENOBUFS); 1389 rtm = mtod(m, struct rt_msghdr *); 1390 rtm->rtm_index = ifp->if_index; 1391 rtm->rtm_flags |= rt->rt_flags; 1392 rtm->rtm_errno = error; 1393 rtm->rtm_addrs = info.rti_addrs; 1394 1395 if (fibnum != RT_ALL_FIBS) { 1396 M_SETFIB(m, fibnum); 1397 m->m_flags |= RTS_FILTER_FIB; 1398 } 1399 1400 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1401 1402 return (0); 1403 } 1404 1405 /* 1406 * This is the analogue to the rt_newaddrmsg which performs the same 1407 * function but for multicast group memberhips. This is easier since 1408 * there is no route state to worry about. 1409 */ 1410 void 1411 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1412 { 1413 struct rt_addrinfo info; 1414 struct mbuf *m = NULL; 1415 struct ifnet *ifp = ifma->ifma_ifp; 1416 struct ifma_msghdr *ifmam; 1417 1418 if (V_route_cb.any_count == 0) 1419 return; 1420 1421 bzero((caddr_t)&info, sizeof(info)); 1422 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1423 if (ifp && ifp->if_addr) 1424 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1425 else 1426 info.rti_info[RTAX_IFP] = NULL; 1427 /* 1428 * If a link-layer address is present, present it as a ``gateway'' 1429 * (similarly to how ARP entries, e.g., are presented). 1430 */ 1431 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1432 m = rtsock_msg_mbuf(cmd, &info); 1433 if (m == NULL) 1434 return; 1435 ifmam = mtod(m, struct ifma_msghdr *); 1436 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1437 __func__)); 1438 ifmam->ifmam_index = ifp->if_index; 1439 ifmam->ifmam_addrs = info.rti_addrs; 1440 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1441 } 1442 1443 static struct mbuf * 1444 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1445 struct rt_addrinfo *info) 1446 { 1447 struct if_announcemsghdr *ifan; 1448 struct mbuf *m; 1449 1450 if (V_route_cb.any_count == 0) 1451 return NULL; 1452 bzero((caddr_t)info, sizeof(*info)); 1453 m = rtsock_msg_mbuf(type, info); 1454 if (m != NULL) { 1455 ifan = mtod(m, struct if_announcemsghdr *); 1456 ifan->ifan_index = ifp->if_index; 1457 strlcpy(ifan->ifan_name, ifp->if_xname, 1458 sizeof(ifan->ifan_name)); 1459 ifan->ifan_what = what; 1460 } 1461 return m; 1462 } 1463 1464 /* 1465 * This is called to generate routing socket messages indicating 1466 * IEEE80211 wireless events. 1467 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1468 */ 1469 void 1470 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1471 { 1472 struct mbuf *m; 1473 struct rt_addrinfo info; 1474 1475 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1476 if (m != NULL) { 1477 /* 1478 * Append the ieee80211 data. Try to stick it in the 1479 * mbuf containing the ifannounce msg; otherwise allocate 1480 * a new mbuf and append. 1481 * 1482 * NB: we assume m is a single mbuf. 1483 */ 1484 if (data_len > M_TRAILINGSPACE(m)) { 1485 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1486 if (n == NULL) { 1487 m_freem(m); 1488 return; 1489 } 1490 bcopy(data, mtod(n, void *), data_len); 1491 n->m_len = data_len; 1492 m->m_next = n; 1493 } else if (data_len > 0) { 1494 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1495 m->m_len += data_len; 1496 } 1497 if (m->m_flags & M_PKTHDR) 1498 m->m_pkthdr.len += data_len; 1499 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1500 rt_dispatch(m, AF_UNSPEC); 1501 } 1502 } 1503 1504 /* 1505 * This is called to generate routing socket messages indicating 1506 * network interface arrival and departure. 1507 */ 1508 void 1509 rt_ifannouncemsg(struct ifnet *ifp, int what) 1510 { 1511 struct mbuf *m; 1512 struct rt_addrinfo info; 1513 1514 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1515 if (m != NULL) 1516 rt_dispatch(m, AF_UNSPEC); 1517 } 1518 1519 static void 1520 rt_dispatch(struct mbuf *m, sa_family_t saf) 1521 { 1522 struct m_tag *tag; 1523 1524 /* 1525 * Preserve the family from the sockaddr, if any, in an m_tag for 1526 * use when injecting the mbuf into the routing socket buffer from 1527 * the netisr. 1528 */ 1529 if (saf != AF_UNSPEC) { 1530 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1531 M_NOWAIT); 1532 if (tag == NULL) { 1533 m_freem(m); 1534 return; 1535 } 1536 *(unsigned short *)(tag + 1) = saf; 1537 m_tag_prepend(m, tag); 1538 } 1539 #ifdef VIMAGE 1540 if (V_loif) 1541 m->m_pkthdr.rcvif = V_loif; 1542 else { 1543 m_freem(m); 1544 return; 1545 } 1546 #endif 1547 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1548 } 1549 1550 /* 1551 * This is used in dumping the kernel table via sysctl(). 1552 */ 1553 static int 1554 sysctl_dumpentry(struct radix_node *rn, void *vw) 1555 { 1556 struct walkarg *w = vw; 1557 struct rtentry *rt = (struct rtentry *)rn; 1558 int error = 0, size; 1559 struct rt_addrinfo info; 1560 struct sockaddr_storage ss; 1561 1562 IFNET_RLOCK_NOSLEEP_ASSERT(); 1563 1564 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1565 return 0; 1566 if ((rt->rt_flags & RTF_HOST) == 0 1567 ? jailed_without_vnet(w->w_req->td->td_ucred) 1568 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1569 return (0); 1570 bzero((caddr_t)&info, sizeof(info)); 1571 info.rti_info[RTAX_DST] = rt_key(rt); 1572 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1573 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1574 rt_mask(rt), &ss); 1575 info.rti_info[RTAX_GENMASK] = 0; 1576 if (rt->rt_ifp && !(rt->rt_ifp->if_flags & IFF_DYING)) { 1577 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1578 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1579 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1580 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1581 } 1582 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1583 return (error); 1584 if (w->w_req && w->w_tmem) { 1585 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1586 1587 bzero(&rtm->rtm_index, 1588 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 1589 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1590 rtm->rtm_flags = RTF_GATEWAY | 1591 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1592 else 1593 rtm->rtm_flags = rt->rt_flags; 1594 rt_getmetrics(rt, &rtm->rtm_rmx); 1595 rtm->rtm_index = rt->rt_ifp->if_index; 1596 rtm->rtm_addrs = info.rti_addrs; 1597 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1598 return (error); 1599 } 1600 return (error); 1601 } 1602 1603 static int 1604 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1605 struct rt_addrinfo *info, struct walkarg *w, int len) 1606 { 1607 struct if_msghdrl *ifm; 1608 struct if_data *ifd; 1609 1610 ifm = (struct if_msghdrl *)w->w_tmem; 1611 1612 #ifdef COMPAT_FREEBSD32 1613 if (w->w_req->flags & SCTL_MASK32) { 1614 struct if_msghdrl32 *ifm32; 1615 1616 ifm32 = (struct if_msghdrl32 *)ifm; 1617 ifm32->ifm_addrs = info->rti_addrs; 1618 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1619 ifm32->ifm_index = ifp->if_index; 1620 ifm32->_ifm_spare1 = 0; 1621 ifm32->ifm_len = sizeof(*ifm32); 1622 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1623 ifm32->_ifm_spare2 = 0; 1624 ifd = &ifm32->ifm_data; 1625 } else 1626 #endif 1627 { 1628 ifm->ifm_addrs = info->rti_addrs; 1629 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1630 ifm->ifm_index = ifp->if_index; 1631 ifm->_ifm_spare1 = 0; 1632 ifm->ifm_len = sizeof(*ifm); 1633 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1634 ifm->_ifm_spare2 = 0; 1635 ifd = &ifm->ifm_data; 1636 } 1637 1638 memcpy(ifd, src_ifd, sizeof(*ifd)); 1639 1640 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1641 } 1642 1643 static int 1644 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 1645 struct rt_addrinfo *info, struct walkarg *w, int len) 1646 { 1647 struct if_msghdr *ifm; 1648 struct if_data *ifd; 1649 1650 ifm = (struct if_msghdr *)w->w_tmem; 1651 1652 #ifdef COMPAT_FREEBSD32 1653 if (w->w_req->flags & SCTL_MASK32) { 1654 struct if_msghdr32 *ifm32; 1655 1656 ifm32 = (struct if_msghdr32 *)ifm; 1657 ifm32->ifm_addrs = info->rti_addrs; 1658 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1659 ifm32->ifm_index = ifp->if_index; 1660 ifm32->_ifm_spare1 = 0; 1661 ifd = &ifm32->ifm_data; 1662 } else 1663 #endif 1664 { 1665 ifm->ifm_addrs = info->rti_addrs; 1666 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1667 ifm->ifm_index = ifp->if_index; 1668 ifm->_ifm_spare1 = 0; 1669 ifd = &ifm->ifm_data; 1670 } 1671 1672 memcpy(ifd, src_ifd, sizeof(*ifd)); 1673 1674 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1675 } 1676 1677 static int 1678 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1679 struct walkarg *w, int len) 1680 { 1681 struct ifa_msghdrl *ifam; 1682 struct if_data *ifd; 1683 1684 ifam = (struct ifa_msghdrl *)w->w_tmem; 1685 1686 #ifdef COMPAT_FREEBSD32 1687 if (w->w_req->flags & SCTL_MASK32) { 1688 struct ifa_msghdrl32 *ifam32; 1689 1690 ifam32 = (struct ifa_msghdrl32 *)ifam; 1691 ifam32->ifam_addrs = info->rti_addrs; 1692 ifam32->ifam_flags = ifa->ifa_flags; 1693 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1694 ifam32->_ifam_spare1 = 0; 1695 ifam32->ifam_len = sizeof(*ifam32); 1696 ifam32->ifam_data_off = 1697 offsetof(struct ifa_msghdrl32, ifam_data); 1698 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1699 ifd = &ifam32->ifam_data; 1700 } else 1701 #endif 1702 { 1703 ifam->ifam_addrs = info->rti_addrs; 1704 ifam->ifam_flags = ifa->ifa_flags; 1705 ifam->ifam_index = ifa->ifa_ifp->if_index; 1706 ifam->_ifam_spare1 = 0; 1707 ifam->ifam_len = sizeof(*ifam); 1708 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1709 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1710 ifd = &ifam->ifam_data; 1711 } 1712 1713 bzero(ifd, sizeof(*ifd)); 1714 ifd->ifi_datalen = sizeof(struct if_data); 1715 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1716 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1717 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1718 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1719 1720 /* Fixup if_data carp(4) vhid. */ 1721 if (carp_get_vhid_p != NULL) 1722 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1723 1724 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1725 } 1726 1727 static int 1728 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1729 struct walkarg *w, int len) 1730 { 1731 struct ifa_msghdr *ifam; 1732 1733 ifam = (struct ifa_msghdr *)w->w_tmem; 1734 ifam->ifam_addrs = info->rti_addrs; 1735 ifam->ifam_flags = ifa->ifa_flags; 1736 ifam->ifam_index = ifa->ifa_ifp->if_index; 1737 ifam->_ifam_spare1 = 0; 1738 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1739 1740 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1741 } 1742 1743 static int 1744 sysctl_iflist(int af, struct walkarg *w) 1745 { 1746 struct ifnet *ifp; 1747 struct ifaddr *ifa; 1748 struct if_data ifd; 1749 struct rt_addrinfo info; 1750 int len, error = 0; 1751 struct sockaddr_storage ss; 1752 struct epoch_tracker et; 1753 1754 bzero((caddr_t)&info, sizeof(info)); 1755 bzero(&ifd, sizeof(ifd)); 1756 NET_EPOCH_ENTER_ET(et); 1757 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1758 if (w->w_arg && w->w_arg != ifp->if_index) 1759 continue; 1760 if_data_copy(ifp, &ifd); 1761 ifa = ifp->if_addr; 1762 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1763 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1764 if (error != 0) 1765 goto done; 1766 info.rti_info[RTAX_IFP] = NULL; 1767 if (w->w_req && w->w_tmem) { 1768 if (w->w_op == NET_RT_IFLISTL) 1769 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 1770 len); 1771 else 1772 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 1773 len); 1774 if (error) 1775 goto done; 1776 } 1777 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 1778 if (af && af != ifa->ifa_addr->sa_family) 1779 continue; 1780 if (prison_if(w->w_req->td->td_ucred, 1781 ifa->ifa_addr) != 0) 1782 continue; 1783 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1784 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1785 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1786 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1787 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1788 if (error != 0) 1789 goto done; 1790 if (w->w_req && w->w_tmem) { 1791 if (w->w_op == NET_RT_IFLISTL) 1792 error = sysctl_iflist_ifaml(ifa, &info, 1793 w, len); 1794 else 1795 error = sysctl_iflist_ifam(ifa, &info, 1796 w, len); 1797 if (error) 1798 goto done; 1799 } 1800 } 1801 info.rti_info[RTAX_IFA] = NULL; 1802 info.rti_info[RTAX_NETMASK] = NULL; 1803 info.rti_info[RTAX_BRD] = NULL; 1804 } 1805 done: 1806 NET_EPOCH_EXIT_ET(et); 1807 return (error); 1808 } 1809 1810 static int 1811 sysctl_ifmalist(int af, struct walkarg *w) 1812 { 1813 struct rt_addrinfo info; 1814 struct ifaddr *ifa; 1815 struct ifmultiaddr *ifma; 1816 struct ifnet *ifp; 1817 int error, len; 1818 1819 error = 0; 1820 bzero((caddr_t)&info, sizeof(info)); 1821 1822 IFNET_RLOCK_NOSLEEP(); 1823 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1824 if (w->w_arg && w->w_arg != ifp->if_index) 1825 continue; 1826 ifa = ifp->if_addr; 1827 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1828 IF_ADDR_RLOCK(ifp); 1829 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1830 if (af && af != ifma->ifma_addr->sa_family) 1831 continue; 1832 if (prison_if(w->w_req->td->td_ucred, 1833 ifma->ifma_addr) != 0) 1834 continue; 1835 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1836 info.rti_info[RTAX_GATEWAY] = 1837 (ifma->ifma_addr->sa_family != AF_LINK) ? 1838 ifma->ifma_lladdr : NULL; 1839 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1840 if (error != 0) 1841 break; 1842 if (w->w_req && w->w_tmem) { 1843 struct ifma_msghdr *ifmam; 1844 1845 ifmam = (struct ifma_msghdr *)w->w_tmem; 1846 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1847 ifmam->ifmam_flags = 0; 1848 ifmam->ifmam_addrs = info.rti_addrs; 1849 ifmam->_ifmam_spare1 = 0; 1850 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1851 if (error != 0) 1852 break; 1853 } 1854 } 1855 IF_ADDR_RUNLOCK(ifp); 1856 if (error != 0) 1857 break; 1858 } 1859 IFNET_RUNLOCK_NOSLEEP(); 1860 return (error); 1861 } 1862 1863 static int 1864 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1865 { 1866 RIB_RLOCK_TRACKER; 1867 int *name = (int *)arg1; 1868 u_int namelen = arg2; 1869 struct rib_head *rnh = NULL; /* silence compiler. */ 1870 int i, lim, error = EINVAL; 1871 int fib = 0; 1872 u_char af; 1873 struct walkarg w; 1874 1875 name ++; 1876 namelen--; 1877 if (req->newptr) 1878 return (EPERM); 1879 if (name[1] == NET_RT_DUMP) { 1880 if (namelen == 3) 1881 fib = req->td->td_proc->p_fibnum; 1882 else if (namelen == 4) 1883 fib = (name[3] == RT_ALL_FIBS) ? 1884 req->td->td_proc->p_fibnum : name[3]; 1885 else 1886 return ((namelen < 3) ? EISDIR : ENOTDIR); 1887 if (fib < 0 || fib >= rt_numfibs) 1888 return (EINVAL); 1889 } else if (namelen != 3) 1890 return ((namelen < 3) ? EISDIR : ENOTDIR); 1891 af = name[0]; 1892 if (af > AF_MAX) 1893 return (EINVAL); 1894 bzero(&w, sizeof(w)); 1895 w.w_op = name[1]; 1896 w.w_arg = name[2]; 1897 w.w_req = req; 1898 1899 error = sysctl_wire_old_buffer(req, 0); 1900 if (error) 1901 return (error); 1902 1903 /* 1904 * Allocate reply buffer in advance. 1905 * All rtsock messages has maximum length of u_short. 1906 */ 1907 w.w_tmemsize = 65536; 1908 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 1909 1910 switch (w.w_op) { 1911 1912 case NET_RT_DUMP: 1913 case NET_RT_FLAGS: 1914 if (af == 0) { /* dump all tables */ 1915 i = 1; 1916 lim = AF_MAX; 1917 } else /* dump only one table */ 1918 i = lim = af; 1919 1920 /* 1921 * take care of llinfo entries, the caller must 1922 * specify an AF 1923 */ 1924 if (w.w_op == NET_RT_FLAGS && 1925 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1926 if (af != 0) 1927 error = lltable_sysctl_dumparp(af, w.w_req); 1928 else 1929 error = EINVAL; 1930 break; 1931 } 1932 /* 1933 * take care of routing entries 1934 */ 1935 for (error = 0; error == 0 && i <= lim; i++) { 1936 rnh = rt_tables_get_rnh(fib, i); 1937 if (rnh != NULL) { 1938 RIB_RLOCK(rnh); 1939 IFNET_RLOCK_NOSLEEP(); 1940 error = rnh->rnh_walktree(&rnh->head, 1941 sysctl_dumpentry, &w); 1942 IFNET_RUNLOCK_NOSLEEP(); 1943 RIB_RUNLOCK(rnh); 1944 } else if (af != 0) 1945 error = EAFNOSUPPORT; 1946 } 1947 break; 1948 1949 case NET_RT_IFLIST: 1950 case NET_RT_IFLISTL: 1951 error = sysctl_iflist(af, &w); 1952 break; 1953 1954 case NET_RT_IFMALIST: 1955 error = sysctl_ifmalist(af, &w); 1956 break; 1957 } 1958 1959 free(w.w_tmem, M_TEMP); 1960 return (error); 1961 } 1962 1963 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1964 1965 /* 1966 * Definitions of protocols supported in the ROUTE domain. 1967 */ 1968 1969 static struct domain routedomain; /* or at least forward */ 1970 1971 static struct protosw routesw[] = { 1972 { 1973 .pr_type = SOCK_RAW, 1974 .pr_domain = &routedomain, 1975 .pr_flags = PR_ATOMIC|PR_ADDR, 1976 .pr_output = route_output, 1977 .pr_ctlinput = raw_ctlinput, 1978 .pr_init = raw_init, 1979 .pr_usrreqs = &route_usrreqs 1980 } 1981 }; 1982 1983 static struct domain routedomain = { 1984 .dom_family = PF_ROUTE, 1985 .dom_name = "route", 1986 .dom_protosw = routesw, 1987 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 1988 }; 1989 1990 VNET_DOMAIN_SET(route); 1991