1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 33 #include <sys/param.h> 34 #include <sys/domain.h> 35 #include <sys/kernel.h> 36 #include <sys/jail.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/proc.h> 40 #include <sys/protosw.h> 41 #include <sys/signalvar.h> 42 #include <sys/socket.h> 43 #include <sys/socketvar.h> 44 #include <sys/sysctl.h> 45 #include <sys/systm.h> 46 47 #include <net/if.h> 48 #include <net/netisr.h> 49 #include <net/raw_cb.h> 50 #include <net/route.h> 51 52 #include <netinet/in.h> 53 54 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 55 56 /* NB: these are not modified */ 57 static struct sockaddr route_dst = { 2, PF_ROUTE, }; 58 static struct sockaddr route_src = { 2, PF_ROUTE, }; 59 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 60 61 static struct { 62 int ip_count; /* attached w/ AF_INET */ 63 int ip6_count; /* attached w/ AF_INET6 */ 64 int ipx_count; /* attached w/ AF_IPX */ 65 int any_count; /* total attached */ 66 } route_cb; 67 68 struct mtx rtsock_mtx; 69 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 70 71 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 72 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 73 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 74 75 static struct ifqueue rtsintrq; 76 77 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 78 SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW, 79 &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length"); 80 81 struct walkarg { 82 int w_tmemsize; 83 int w_op, w_arg; 84 caddr_t w_tmem; 85 struct sysctl_req *w_req; 86 }; 87 88 static void rts_input(struct mbuf *m); 89 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 90 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 91 caddr_t cp, struct walkarg *w); 92 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 93 struct rt_addrinfo *rtinfo); 94 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 95 static int sysctl_iflist(int af, struct walkarg *w); 96 static int sysctl_ifmalist(int af, struct walkarg *w); 97 static int route_output(struct mbuf *m, struct socket *so); 98 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 99 struct rt_metrics_lite *out); 100 static void rt_getmetrics(const struct rt_metrics_lite *in, 101 struct rt_metrics *out); 102 static void rt_dispatch(struct mbuf *, const struct sockaddr *); 103 104 static void 105 rts_init(void) 106 { 107 int tmp; 108 109 rtsintrq.ifq_maxlen = 256; 110 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 111 rtsintrq.ifq_maxlen = tmp; 112 mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF); 113 netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, NETISR_MPSAFE); 114 } 115 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0) 116 117 static void 118 rts_input(struct mbuf *m) 119 { 120 struct sockproto route_proto; 121 unsigned short *family; 122 struct m_tag *tag; 123 124 route_proto.sp_family = PF_ROUTE; 125 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 126 if (tag != NULL) { 127 family = (unsigned short *)(tag + 1); 128 route_proto.sp_protocol = *family; 129 m_tag_delete(m, tag); 130 } else 131 route_proto.sp_protocol = 0; 132 133 raw_input(m, &route_proto, &route_src, &route_dst); 134 } 135 136 /* 137 * It really doesn't make any sense at all for this code to share much 138 * with raw_usrreq.c, since its functionality is so restricted. XXX 139 */ 140 static void 141 rts_abort(struct socket *so) 142 { 143 144 raw_usrreqs.pru_abort(so); 145 } 146 147 static void 148 rts_close(struct socket *so) 149 { 150 151 raw_usrreqs.pru_close(so); 152 } 153 154 /* pru_accept is EOPNOTSUPP */ 155 156 static int 157 rts_attach(struct socket *so, int proto, struct thread *td) 158 { 159 struct rawcb *rp; 160 int s, error; 161 162 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 163 164 /* XXX */ 165 MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 166 if (rp == NULL) 167 return ENOBUFS; 168 169 /* 170 * The splnet() is necessary to block protocols from sending 171 * error notifications (like RTM_REDIRECT or RTM_LOSING) while 172 * this PCB is extant but incompletely initialized. 173 * Probably we should try to do more of this work beforehand and 174 * eliminate the spl. 175 */ 176 s = splnet(); 177 so->so_pcb = (caddr_t)rp; 178 error = raw_attach(so, proto); 179 rp = sotorawcb(so); 180 if (error) { 181 splx(s); 182 so->so_pcb = NULL; 183 free(rp, M_PCB); 184 return error; 185 } 186 RTSOCK_LOCK(); 187 switch(rp->rcb_proto.sp_protocol) { 188 case AF_INET: 189 route_cb.ip_count++; 190 break; 191 case AF_INET6: 192 route_cb.ip6_count++; 193 break; 194 case AF_IPX: 195 route_cb.ipx_count++; 196 break; 197 } 198 rp->rcb_faddr = &route_src; 199 route_cb.any_count++; 200 RTSOCK_UNLOCK(); 201 soisconnected(so); 202 so->so_options |= SO_USELOOPBACK; 203 splx(s); 204 return 0; 205 } 206 207 static int 208 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 209 { 210 211 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 212 } 213 214 static int 215 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 216 { 217 218 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 219 } 220 221 /* pru_connect2 is EOPNOTSUPP */ 222 /* pru_control is EOPNOTSUPP */ 223 224 static void 225 rts_detach(struct socket *so) 226 { 227 struct rawcb *rp = sotorawcb(so); 228 229 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 230 231 RTSOCK_LOCK(); 232 switch(rp->rcb_proto.sp_protocol) { 233 case AF_INET: 234 route_cb.ip_count--; 235 break; 236 case AF_INET6: 237 route_cb.ip6_count--; 238 break; 239 case AF_IPX: 240 route_cb.ipx_count--; 241 break; 242 } 243 route_cb.any_count--; 244 RTSOCK_UNLOCK(); 245 raw_usrreqs.pru_detach(so); 246 } 247 248 static int 249 rts_disconnect(struct socket *so) 250 { 251 252 return (raw_usrreqs.pru_disconnect(so)); 253 } 254 255 /* pru_listen is EOPNOTSUPP */ 256 257 static int 258 rts_peeraddr(struct socket *so, struct sockaddr **nam) 259 { 260 261 return (raw_usrreqs.pru_peeraddr(so, nam)); 262 } 263 264 /* pru_rcvd is EOPNOTSUPP */ 265 /* pru_rcvoob is EOPNOTSUPP */ 266 267 static int 268 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 269 struct mbuf *control, struct thread *td) 270 { 271 272 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 273 } 274 275 /* pru_sense is null */ 276 277 static int 278 rts_shutdown(struct socket *so) 279 { 280 281 return (raw_usrreqs.pru_shutdown(so)); 282 } 283 284 static int 285 rts_sockaddr(struct socket *so, struct sockaddr **nam) 286 { 287 288 return (raw_usrreqs.pru_sockaddr(so, nam)); 289 } 290 291 static struct pr_usrreqs route_usrreqs = { 292 .pru_abort = rts_abort, 293 .pru_attach = rts_attach, 294 .pru_bind = rts_bind, 295 .pru_connect = rts_connect, 296 .pru_detach = rts_detach, 297 .pru_disconnect = rts_disconnect, 298 .pru_peeraddr = rts_peeraddr, 299 .pru_send = rts_send, 300 .pru_shutdown = rts_shutdown, 301 .pru_sockaddr = rts_sockaddr, 302 .pru_close = rts_close, 303 }; 304 305 /*ARGSUSED*/ 306 static int 307 route_output(struct mbuf *m, struct socket *so) 308 { 309 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 310 struct rt_msghdr *rtm = NULL; 311 struct rtentry *rt = NULL; 312 struct radix_node_head *rnh; 313 struct rt_addrinfo info; 314 int len, error = 0; 315 struct ifnet *ifp = NULL; 316 struct ifaddr *ifa = NULL; 317 struct sockaddr_in jail; 318 319 #define senderr(e) { error = e; goto flush;} 320 if (m == NULL || ((m->m_len < sizeof(long)) && 321 (m = m_pullup(m, sizeof(long))) == NULL)) 322 return (ENOBUFS); 323 if ((m->m_flags & M_PKTHDR) == 0) 324 panic("route_output"); 325 len = m->m_pkthdr.len; 326 if (len < sizeof(*rtm) || 327 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 328 info.rti_info[RTAX_DST] = NULL; 329 senderr(EINVAL); 330 } 331 R_Malloc(rtm, struct rt_msghdr *, len); 332 if (rtm == NULL) { 333 info.rti_info[RTAX_DST] = NULL; 334 senderr(ENOBUFS); 335 } 336 m_copydata(m, 0, len, (caddr_t)rtm); 337 if (rtm->rtm_version != RTM_VERSION) { 338 info.rti_info[RTAX_DST] = NULL; 339 senderr(EPROTONOSUPPORT); 340 } 341 rtm->rtm_pid = curproc->p_pid; 342 bzero(&info, sizeof(info)); 343 info.rti_addrs = rtm->rtm_addrs; 344 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 345 info.rti_info[RTAX_DST] = NULL; 346 senderr(EINVAL); 347 } 348 info.rti_flags = rtm->rtm_flags; 349 if (info.rti_info[RTAX_DST] == NULL || 350 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 351 (info.rti_info[RTAX_GATEWAY] != NULL && 352 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 353 senderr(EINVAL); 354 if (info.rti_info[RTAX_GENMASK]) { 355 struct radix_node *t; 356 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1); 357 if (t != NULL && 358 bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1, 359 (char *)(void *)t->rn_key + 1, 360 ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0) 361 info.rti_info[RTAX_GENMASK] = 362 (struct sockaddr *)t->rn_key; 363 else 364 senderr(ENOBUFS); 365 } 366 367 /* 368 * Verify that the caller has the appropriate privilege; RTM_GET 369 * is the only operation the non-superuser is allowed. 370 */ 371 if (rtm->rtm_type != RTM_GET && (error = suser(curthread)) != 0) 372 senderr(error); 373 374 switch (rtm->rtm_type) { 375 struct rtentry *saved_nrt; 376 377 case RTM_ADD: 378 if (info.rti_info[RTAX_GATEWAY] == NULL) 379 senderr(EINVAL); 380 saved_nrt = NULL; 381 error = rtrequest1(RTM_ADD, &info, &saved_nrt); 382 if (error == 0 && saved_nrt) { 383 RT_LOCK(saved_nrt); 384 rt_setmetrics(rtm->rtm_inits, 385 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 386 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 387 RT_REMREF(saved_nrt); 388 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; 389 RT_UNLOCK(saved_nrt); 390 } 391 break; 392 393 case RTM_DELETE: 394 saved_nrt = NULL; 395 error = rtrequest1(RTM_DELETE, &info, &saved_nrt); 396 if (error == 0) { 397 RT_LOCK(saved_nrt); 398 rt = saved_nrt; 399 goto report; 400 } 401 break; 402 403 case RTM_GET: 404 case RTM_CHANGE: 405 case RTM_LOCK: 406 rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family]; 407 if (rnh == NULL) 408 senderr(EAFNOSUPPORT); 409 RADIX_NODE_HEAD_LOCK(rnh); 410 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 411 info.rti_info[RTAX_NETMASK], rnh); 412 if (rt == NULL) { /* XXX looks bogus */ 413 RADIX_NODE_HEAD_UNLOCK(rnh); 414 senderr(ESRCH); 415 } 416 RT_LOCK(rt); 417 RT_ADDREF(rt); 418 RADIX_NODE_HEAD_UNLOCK(rnh); 419 420 /* 421 * Fix for PR: 82974 422 * 423 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 424 * returns a perfect match in case a netmask is 425 * specified. For host routes only a longest prefix 426 * match is returned so it is necessary to compare the 427 * existence of the netmask. If both have a netmask 428 * rnh_lookup() did a perfect match and if none of them 429 * have a netmask both are host routes which is also a 430 * perfect match. 431 */ 432 433 if (rtm->rtm_type != RTM_GET && 434 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 435 RT_UNLOCK(rt); 436 senderr(ESRCH); 437 } 438 439 switch(rtm->rtm_type) { 440 441 case RTM_GET: 442 report: 443 RT_LOCK_ASSERT(rt); 444 info.rti_info[RTAX_DST] = rt_key(rt); 445 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 446 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 447 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 448 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 449 ifp = rt->rt_ifp; 450 if (ifp) { 451 info.rti_info[RTAX_IFP] = 452 ifp->if_addr->ifa_addr; 453 if (jailed(so->so_cred)) { 454 bzero(&jail, sizeof(jail)); 455 jail.sin_family = PF_INET; 456 jail.sin_len = sizeof(jail); 457 jail.sin_addr.s_addr = 458 htonl(prison_getip(so->so_cred)); 459 info.rti_info[RTAX_IFA] = 460 (struct sockaddr *)&jail; 461 } else 462 info.rti_info[RTAX_IFA] = 463 rt->rt_ifa->ifa_addr; 464 if (ifp->if_flags & IFF_POINTOPOINT) 465 info.rti_info[RTAX_BRD] = 466 rt->rt_ifa->ifa_dstaddr; 467 rtm->rtm_index = ifp->if_index; 468 } else { 469 info.rti_info[RTAX_IFP] = NULL; 470 info.rti_info[RTAX_IFA] = NULL; 471 } 472 } else if ((ifp = rt->rt_ifp) != NULL) { 473 rtm->rtm_index = ifp->if_index; 474 } 475 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 476 if (len > rtm->rtm_msglen) { 477 struct rt_msghdr *new_rtm; 478 R_Malloc(new_rtm, struct rt_msghdr *, len); 479 if (new_rtm == NULL) { 480 RT_UNLOCK(rt); 481 senderr(ENOBUFS); 482 } 483 bcopy(rtm, new_rtm, rtm->rtm_msglen); 484 Free(rtm); rtm = new_rtm; 485 } 486 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 487 rtm->rtm_flags = rt->rt_flags; 488 rtm->rtm_use = 0; 489 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 490 rtm->rtm_addrs = info.rti_addrs; 491 break; 492 493 case RTM_CHANGE: 494 /* 495 * New gateway could require new ifaddr, ifp; 496 * flags may also be different; ifp may be specified 497 * by ll sockaddr when protocol address is ambiguous 498 */ 499 if (((rt->rt_flags & RTF_GATEWAY) && 500 info.rti_info[RTAX_GATEWAY] != NULL) || 501 info.rti_info[RTAX_IFP] != NULL || 502 (info.rti_info[RTAX_IFA] != NULL && 503 !sa_equal(info.rti_info[RTAX_IFA], 504 rt->rt_ifa->ifa_addr))) { 505 RT_UNLOCK(rt); 506 if ((error = rt_getifa(&info)) != 0) 507 senderr(error); 508 RT_LOCK(rt); 509 } 510 if (info.rti_info[RTAX_GATEWAY] != NULL && 511 (error = rt_setgate(rt, rt_key(rt), 512 info.rti_info[RTAX_GATEWAY])) != 0) { 513 RT_UNLOCK(rt); 514 senderr(error); 515 } 516 if ((ifa = info.rti_ifa) != NULL) { 517 struct ifaddr *oifa = rt->rt_ifa; 518 if (oifa != ifa) { 519 if (oifa) { 520 if (oifa->ifa_rtrequest) 521 oifa->ifa_rtrequest( 522 RTM_DELETE, rt, 523 &info); 524 IFAFREE(oifa); 525 } 526 IFAREF(ifa); 527 rt->rt_ifa = ifa; 528 rt->rt_ifp = info.rti_ifp; 529 } 530 } 531 /* Allow some flags to be toggled on change. */ 532 if (rtm->rtm_fmask & RTF_FMASK) 533 rt->rt_flags = (rt->rt_flags & 534 ~rtm->rtm_fmask) | 535 (rtm->rtm_flags & rtm->rtm_fmask); 536 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 537 &rt->rt_rmx); 538 rtm->rtm_index = rt->rt_ifp->if_index; 539 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 540 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 541 if (info.rti_info[RTAX_GENMASK]) 542 rt->rt_genmask = info.rti_info[RTAX_GENMASK]; 543 /* FALLTHROUGH */ 544 case RTM_LOCK: 545 /* We don't support locks anymore */ 546 break; 547 } 548 RT_UNLOCK(rt); 549 break; 550 551 default: 552 senderr(EOPNOTSUPP); 553 } 554 555 flush: 556 if (rtm) { 557 if (error) 558 rtm->rtm_errno = error; 559 else 560 rtm->rtm_flags |= RTF_DONE; 561 } 562 if (rt) /* XXX can this be true? */ 563 RTFREE(rt); 564 { 565 struct rawcb *rp = NULL; 566 /* 567 * Check to see if we don't want our own messages. 568 */ 569 if ((so->so_options & SO_USELOOPBACK) == 0) { 570 if (route_cb.any_count <= 1) { 571 if (rtm) 572 Free(rtm); 573 m_freem(m); 574 return (error); 575 } 576 /* There is another listener, so construct message */ 577 rp = sotorawcb(so); 578 } 579 if (rtm) { 580 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 581 if (m->m_pkthdr.len < rtm->rtm_msglen) { 582 m_freem(m); 583 m = NULL; 584 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 585 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 586 Free(rtm); 587 } 588 if (m) { 589 if (rp) { 590 /* 591 * XXX insure we don't get a copy by 592 * invalidating our protocol 593 */ 594 unsigned short family = rp->rcb_proto.sp_family; 595 rp->rcb_proto.sp_family = 0; 596 rt_dispatch(m, info.rti_info[RTAX_DST]); 597 rp->rcb_proto.sp_family = family; 598 } else 599 rt_dispatch(m, info.rti_info[RTAX_DST]); 600 } 601 } 602 return (error); 603 #undef sa_equal 604 } 605 606 static void 607 rt_setmetrics(u_long which, const struct rt_metrics *in, 608 struct rt_metrics_lite *out) 609 { 610 #define metric(f, e) if (which & (f)) out->e = in->e; 611 /* 612 * Only these are stored in the routing entry since introduction 613 * of tcp hostcache. The rest is ignored. 614 */ 615 metric(RTV_MTU, rmx_mtu); 616 /* Userland -> kernel timebase conversion. */ 617 if (which & RTV_EXPIRE) 618 out->rmx_expire = in->rmx_expire ? 619 in->rmx_expire - time_second + time_uptime : 0; 620 #undef metric 621 } 622 623 static void 624 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 625 { 626 #define metric(e) out->e = in->e; 627 bzero(out, sizeof(*out)); 628 metric(rmx_mtu); 629 /* Kernel -> userland timebase conversion. */ 630 out->rmx_expire = in->rmx_expire ? 631 in->rmx_expire - time_uptime + time_second : 0; 632 #undef metric 633 } 634 635 /* 636 * Extract the addresses of the passed sockaddrs. 637 * Do a little sanity checking so as to avoid bad memory references. 638 * This data is derived straight from userland. 639 */ 640 static int 641 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 642 { 643 struct sockaddr *sa; 644 int i; 645 646 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 647 if ((rtinfo->rti_addrs & (1 << i)) == 0) 648 continue; 649 sa = (struct sockaddr *)cp; 650 /* 651 * It won't fit. 652 */ 653 if (cp + sa->sa_len > cplim) 654 return (EINVAL); 655 /* 656 * there are no more.. quit now 657 * If there are more bits, they are in error. 658 * I've seen this. route(1) can evidently generate these. 659 * This causes kernel to core dump. 660 * for compatibility, If we see this, point to a safe address. 661 */ 662 if (sa->sa_len == 0) { 663 rtinfo->rti_info[i] = &sa_zero; 664 return (0); /* should be EINVAL but for compat */ 665 } 666 /* accept it */ 667 rtinfo->rti_info[i] = sa; 668 cp += SA_SIZE(sa); 669 } 670 return (0); 671 } 672 673 static struct mbuf * 674 rt_msg1(int type, struct rt_addrinfo *rtinfo) 675 { 676 struct rt_msghdr *rtm; 677 struct mbuf *m; 678 int i; 679 struct sockaddr *sa; 680 int len, dlen; 681 682 switch (type) { 683 684 case RTM_DELADDR: 685 case RTM_NEWADDR: 686 len = sizeof(struct ifa_msghdr); 687 break; 688 689 case RTM_DELMADDR: 690 case RTM_NEWMADDR: 691 len = sizeof(struct ifma_msghdr); 692 break; 693 694 case RTM_IFINFO: 695 len = sizeof(struct if_msghdr); 696 break; 697 698 case RTM_IFANNOUNCE: 699 case RTM_IEEE80211: 700 len = sizeof(struct if_announcemsghdr); 701 break; 702 703 default: 704 len = sizeof(struct rt_msghdr); 705 } 706 if (len > MCLBYTES) 707 panic("rt_msg1"); 708 m = m_gethdr(M_DONTWAIT, MT_DATA); 709 if (m && len > MHLEN) { 710 MCLGET(m, M_DONTWAIT); 711 if ((m->m_flags & M_EXT) == 0) { 712 m_free(m); 713 m = NULL; 714 } 715 } 716 if (m == NULL) 717 return (m); 718 m->m_pkthdr.len = m->m_len = len; 719 m->m_pkthdr.rcvif = NULL; 720 rtm = mtod(m, struct rt_msghdr *); 721 bzero((caddr_t)rtm, len); 722 for (i = 0; i < RTAX_MAX; i++) { 723 if ((sa = rtinfo->rti_info[i]) == NULL) 724 continue; 725 rtinfo->rti_addrs |= (1 << i); 726 dlen = SA_SIZE(sa); 727 m_copyback(m, len, dlen, (caddr_t)sa); 728 len += dlen; 729 } 730 if (m->m_pkthdr.len != len) { 731 m_freem(m); 732 return (NULL); 733 } 734 rtm->rtm_msglen = len; 735 rtm->rtm_version = RTM_VERSION; 736 rtm->rtm_type = type; 737 return (m); 738 } 739 740 static int 741 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 742 { 743 int i; 744 int len, dlen, second_time = 0; 745 caddr_t cp0; 746 747 rtinfo->rti_addrs = 0; 748 again: 749 switch (type) { 750 751 case RTM_DELADDR: 752 case RTM_NEWADDR: 753 len = sizeof(struct ifa_msghdr); 754 break; 755 756 case RTM_IFINFO: 757 len = sizeof(struct if_msghdr); 758 break; 759 760 case RTM_NEWMADDR: 761 len = sizeof(struct ifma_msghdr); 762 break; 763 764 default: 765 len = sizeof(struct rt_msghdr); 766 } 767 cp0 = cp; 768 if (cp0) 769 cp += len; 770 for (i = 0; i < RTAX_MAX; i++) { 771 struct sockaddr *sa; 772 773 if ((sa = rtinfo->rti_info[i]) == NULL) 774 continue; 775 rtinfo->rti_addrs |= (1 << i); 776 dlen = SA_SIZE(sa); 777 if (cp) { 778 bcopy((caddr_t)sa, cp, (unsigned)dlen); 779 cp += dlen; 780 } 781 len += dlen; 782 } 783 len = ALIGN(len); 784 if (cp == NULL && w != NULL && !second_time) { 785 struct walkarg *rw = w; 786 787 if (rw->w_req) { 788 if (rw->w_tmemsize < len) { 789 if (rw->w_tmem) 790 free(rw->w_tmem, M_RTABLE); 791 rw->w_tmem = (caddr_t) 792 malloc(len, M_RTABLE, M_NOWAIT); 793 if (rw->w_tmem) 794 rw->w_tmemsize = len; 795 } 796 if (rw->w_tmem) { 797 cp = rw->w_tmem; 798 second_time = 1; 799 goto again; 800 } 801 } 802 } 803 if (cp) { 804 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 805 806 rtm->rtm_version = RTM_VERSION; 807 rtm->rtm_type = type; 808 rtm->rtm_msglen = len; 809 } 810 return (len); 811 } 812 813 /* 814 * This routine is called to generate a message from the routing 815 * socket indicating that a redirect has occured, a routing lookup 816 * has failed, or that a protocol has detected timeouts to a particular 817 * destination. 818 */ 819 void 820 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 821 { 822 struct rt_msghdr *rtm; 823 struct mbuf *m; 824 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 825 826 if (route_cb.any_count == 0) 827 return; 828 m = rt_msg1(type, rtinfo); 829 if (m == NULL) 830 return; 831 rtm = mtod(m, struct rt_msghdr *); 832 rtm->rtm_flags = RTF_DONE | flags; 833 rtm->rtm_errno = error; 834 rtm->rtm_addrs = rtinfo->rti_addrs; 835 rt_dispatch(m, sa); 836 } 837 838 /* 839 * This routine is called to generate a message from the routing 840 * socket indicating that the status of a network interface has changed. 841 */ 842 void 843 rt_ifmsg(struct ifnet *ifp) 844 { 845 struct if_msghdr *ifm; 846 struct mbuf *m; 847 struct rt_addrinfo info; 848 849 if (route_cb.any_count == 0) 850 return; 851 bzero((caddr_t)&info, sizeof(info)); 852 m = rt_msg1(RTM_IFINFO, &info); 853 if (m == NULL) 854 return; 855 ifm = mtod(m, struct if_msghdr *); 856 ifm->ifm_index = ifp->if_index; 857 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 858 ifm->ifm_data = ifp->if_data; 859 ifm->ifm_addrs = 0; 860 rt_dispatch(m, NULL); 861 } 862 863 /* 864 * This is called to generate messages from the routing socket 865 * indicating a network interface has had addresses associated with it. 866 * if we ever reverse the logic and replace messages TO the routing 867 * socket indicate a request to configure interfaces, then it will 868 * be unnecessary as the routing socket will automatically generate 869 * copies of it. 870 */ 871 void 872 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 873 { 874 struct rt_addrinfo info; 875 struct sockaddr *sa = NULL; 876 int pass; 877 struct mbuf *m = NULL; 878 struct ifnet *ifp = ifa->ifa_ifp; 879 880 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 881 ("unexpected cmd %u", cmd)); 882 883 if (route_cb.any_count == 0) 884 return; 885 for (pass = 1; pass < 3; pass++) { 886 bzero((caddr_t)&info, sizeof(info)); 887 if ((cmd == RTM_ADD && pass == 1) || 888 (cmd == RTM_DELETE && pass == 2)) { 889 struct ifa_msghdr *ifam; 890 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 891 892 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 893 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 894 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 895 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 896 if ((m = rt_msg1(ncmd, &info)) == NULL) 897 continue; 898 ifam = mtod(m, struct ifa_msghdr *); 899 ifam->ifam_index = ifp->if_index; 900 ifam->ifam_metric = ifa->ifa_metric; 901 ifam->ifam_flags = ifa->ifa_flags; 902 ifam->ifam_addrs = info.rti_addrs; 903 } 904 if ((cmd == RTM_ADD && pass == 2) || 905 (cmd == RTM_DELETE && pass == 1)) { 906 struct rt_msghdr *rtm; 907 908 if (rt == NULL) 909 continue; 910 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 911 info.rti_info[RTAX_DST] = sa = rt_key(rt); 912 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 913 if ((m = rt_msg1(cmd, &info)) == NULL) 914 continue; 915 rtm = mtod(m, struct rt_msghdr *); 916 rtm->rtm_index = ifp->if_index; 917 rtm->rtm_flags |= rt->rt_flags; 918 rtm->rtm_errno = error; 919 rtm->rtm_addrs = info.rti_addrs; 920 } 921 rt_dispatch(m, sa); 922 } 923 } 924 925 /* 926 * This is the analogue to the rt_newaddrmsg which performs the same 927 * function but for multicast group memberhips. This is easier since 928 * there is no route state to worry about. 929 */ 930 void 931 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 932 { 933 struct rt_addrinfo info; 934 struct mbuf *m = NULL; 935 struct ifnet *ifp = ifma->ifma_ifp; 936 struct ifma_msghdr *ifmam; 937 938 if (route_cb.any_count == 0) 939 return; 940 941 bzero((caddr_t)&info, sizeof(info)); 942 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 943 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 944 /* 945 * If a link-layer address is present, present it as a ``gateway'' 946 * (similarly to how ARP entries, e.g., are presented). 947 */ 948 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 949 m = rt_msg1(cmd, &info); 950 if (m == NULL) 951 return; 952 ifmam = mtod(m, struct ifma_msghdr *); 953 ifmam->ifmam_index = ifp->if_index; 954 ifmam->ifmam_addrs = info.rti_addrs; 955 rt_dispatch(m, ifma->ifma_addr); 956 } 957 958 static struct mbuf * 959 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 960 struct rt_addrinfo *info) 961 { 962 struct if_announcemsghdr *ifan; 963 struct mbuf *m; 964 965 if (route_cb.any_count == 0) 966 return NULL; 967 bzero((caddr_t)info, sizeof(*info)); 968 m = rt_msg1(type, info); 969 if (m != NULL) { 970 ifan = mtod(m, struct if_announcemsghdr *); 971 ifan->ifan_index = ifp->if_index; 972 strlcpy(ifan->ifan_name, ifp->if_xname, 973 sizeof(ifan->ifan_name)); 974 ifan->ifan_what = what; 975 } 976 return m; 977 } 978 979 /* 980 * This is called to generate routing socket messages indicating 981 * IEEE80211 wireless events. 982 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 983 */ 984 void 985 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 986 { 987 struct mbuf *m; 988 struct rt_addrinfo info; 989 990 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 991 if (m != NULL) { 992 /* 993 * Append the ieee80211 data. Try to stick it in the 994 * mbuf containing the ifannounce msg; otherwise allocate 995 * a new mbuf and append. 996 * 997 * NB: we assume m is a single mbuf. 998 */ 999 if (data_len > M_TRAILINGSPACE(m)) { 1000 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1001 if (n == NULL) { 1002 m_freem(m); 1003 return; 1004 } 1005 bcopy(data, mtod(n, void *), data_len); 1006 n->m_len = data_len; 1007 m->m_next = n; 1008 } else if (data_len > 0) { 1009 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1010 m->m_len += data_len; 1011 } 1012 if (m->m_flags & M_PKTHDR) 1013 m->m_pkthdr.len += data_len; 1014 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1015 rt_dispatch(m, NULL); 1016 } 1017 } 1018 1019 /* 1020 * This is called to generate routing socket messages indicating 1021 * network interface arrival and departure. 1022 */ 1023 void 1024 rt_ifannouncemsg(struct ifnet *ifp, int what) 1025 { 1026 struct mbuf *m; 1027 struct rt_addrinfo info; 1028 1029 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1030 if (m != NULL) 1031 rt_dispatch(m, NULL); 1032 } 1033 1034 static void 1035 rt_dispatch(struct mbuf *m, const struct sockaddr *sa) 1036 { 1037 struct m_tag *tag; 1038 1039 /* 1040 * Preserve the family from the sockaddr, if any, in an m_tag for 1041 * use when injecting the mbuf into the routing socket buffer from 1042 * the netisr. 1043 */ 1044 if (sa != NULL) { 1045 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1046 M_NOWAIT); 1047 if (tag == NULL) { 1048 m_freem(m); 1049 return; 1050 } 1051 *(unsigned short *)(tag + 1) = sa->sa_family; 1052 m_tag_prepend(m, tag); 1053 } 1054 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1055 } 1056 1057 /* 1058 * This is used in dumping the kernel table via sysctl(). 1059 */ 1060 static int 1061 sysctl_dumpentry(struct radix_node *rn, void *vw) 1062 { 1063 struct walkarg *w = vw; 1064 struct rtentry *rt = (struct rtentry *)rn; 1065 int error = 0, size; 1066 struct rt_addrinfo info; 1067 1068 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1069 return 0; 1070 bzero((caddr_t)&info, sizeof(info)); 1071 info.rti_info[RTAX_DST] = rt_key(rt); 1072 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1073 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1074 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 1075 if (rt->rt_ifp) { 1076 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1077 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1078 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1079 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1080 } 1081 size = rt_msg2(RTM_GET, &info, NULL, w); 1082 if (w->w_req && w->w_tmem) { 1083 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1084 1085 rtm->rtm_flags = rt->rt_flags; 1086 rtm->rtm_use = rt->rt_rmx.rmx_pksent; 1087 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1088 rtm->rtm_index = rt->rt_ifp->if_index; 1089 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1090 rtm->rtm_addrs = info.rti_addrs; 1091 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1092 return (error); 1093 } 1094 return (error); 1095 } 1096 1097 static int 1098 sysctl_iflist(int af, struct walkarg *w) 1099 { 1100 struct ifnet *ifp; 1101 struct ifaddr *ifa; 1102 struct rt_addrinfo info; 1103 int len, error = 0; 1104 1105 bzero((caddr_t)&info, sizeof(info)); 1106 IFNET_RLOCK(); 1107 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1108 if (w->w_arg && w->w_arg != ifp->if_index) 1109 continue; 1110 ifa = ifp->if_addr; 1111 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1112 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1113 info.rti_info[RTAX_IFP] = NULL; 1114 if (w->w_req && w->w_tmem) { 1115 struct if_msghdr *ifm; 1116 1117 ifm = (struct if_msghdr *)w->w_tmem; 1118 ifm->ifm_index = ifp->if_index; 1119 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1120 ifm->ifm_data = ifp->if_data; 1121 ifm->ifm_addrs = info.rti_addrs; 1122 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); 1123 if (error) 1124 goto done; 1125 } 1126 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1127 if (af && af != ifa->ifa_addr->sa_family) 1128 continue; 1129 if (jailed(curthread->td_ucred) && 1130 prison_if(curthread->td_ucred, ifa->ifa_addr)) 1131 continue; 1132 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1133 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1134 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1135 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1136 if (w->w_req && w->w_tmem) { 1137 struct ifa_msghdr *ifam; 1138 1139 ifam = (struct ifa_msghdr *)w->w_tmem; 1140 ifam->ifam_index = ifa->ifa_ifp->if_index; 1141 ifam->ifam_flags = ifa->ifa_flags; 1142 ifam->ifam_metric = ifa->ifa_metric; 1143 ifam->ifam_addrs = info.rti_addrs; 1144 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1145 if (error) 1146 goto done; 1147 } 1148 } 1149 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1150 info.rti_info[RTAX_BRD] = NULL; 1151 } 1152 done: 1153 IFNET_RUNLOCK(); 1154 return (error); 1155 } 1156 1157 int 1158 sysctl_ifmalist(int af, struct walkarg *w) 1159 { 1160 struct ifnet *ifp; 1161 struct ifmultiaddr *ifma; 1162 struct rt_addrinfo info; 1163 int len, error = 0; 1164 struct ifaddr *ifa; 1165 1166 bzero((caddr_t)&info, sizeof(info)); 1167 IFNET_RLOCK(); 1168 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1169 if (w->w_arg && w->w_arg != ifp->if_index) 1170 continue; 1171 ifa = ifp->if_addr; 1172 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1173 IF_ADDR_LOCK(ifp); 1174 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1175 if (af && af != ifma->ifma_addr->sa_family) 1176 continue; 1177 if (jailed(curproc->p_ucred) && 1178 prison_if(curproc->p_ucred, ifma->ifma_addr)) 1179 continue; 1180 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1181 info.rti_info[RTAX_GATEWAY] = 1182 (ifma->ifma_addr->sa_family != AF_LINK) ? 1183 ifma->ifma_lladdr : NULL; 1184 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1185 if (w->w_req && w->w_tmem) { 1186 struct ifma_msghdr *ifmam; 1187 1188 ifmam = (struct ifma_msghdr *)w->w_tmem; 1189 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1190 ifmam->ifmam_flags = 0; 1191 ifmam->ifmam_addrs = info.rti_addrs; 1192 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1193 if (error) { 1194 IF_ADDR_UNLOCK(ifp); 1195 goto done; 1196 } 1197 } 1198 } 1199 IF_ADDR_UNLOCK(ifp); 1200 } 1201 done: 1202 IFNET_RUNLOCK(); 1203 return (error); 1204 } 1205 1206 static int 1207 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1208 { 1209 int *name = (int *)arg1; 1210 u_int namelen = arg2; 1211 struct radix_node_head *rnh; 1212 int i, lim, error = EINVAL; 1213 u_char af; 1214 struct walkarg w; 1215 1216 name ++; 1217 namelen--; 1218 if (req->newptr) 1219 return (EPERM); 1220 if (namelen != 3) 1221 return ((namelen < 3) ? EISDIR : ENOTDIR); 1222 af = name[0]; 1223 if (af > AF_MAX) 1224 return (EINVAL); 1225 bzero(&w, sizeof(w)); 1226 w.w_op = name[1]; 1227 w.w_arg = name[2]; 1228 w.w_req = req; 1229 1230 error = sysctl_wire_old_buffer(req, 0); 1231 if (error) 1232 return (error); 1233 switch (w.w_op) { 1234 1235 case NET_RT_DUMP: 1236 case NET_RT_FLAGS: 1237 if (af == 0) { /* dump all tables */ 1238 i = 1; 1239 lim = AF_MAX; 1240 } else /* dump only one table */ 1241 i = lim = af; 1242 for (error = 0; error == 0 && i <= lim; i++) 1243 if ((rnh = rt_tables[i]) != NULL) { 1244 RADIX_NODE_HEAD_LOCK(rnh); 1245 error = rnh->rnh_walktree(rnh, 1246 sysctl_dumpentry, &w); 1247 RADIX_NODE_HEAD_UNLOCK(rnh); 1248 } else if (af != 0) 1249 error = EAFNOSUPPORT; 1250 break; 1251 1252 case NET_RT_IFLIST: 1253 error = sysctl_iflist(af, &w); 1254 break; 1255 1256 case NET_RT_IFMALIST: 1257 error = sysctl_ifmalist(af, &w); 1258 break; 1259 } 1260 if (w.w_tmem) 1261 free(w.w_tmem, M_RTABLE); 1262 return (error); 1263 } 1264 1265 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1266 1267 /* 1268 * Definitions of protocols supported in the ROUTE domain. 1269 */ 1270 1271 static struct domain routedomain; /* or at least forward */ 1272 1273 static struct protosw routesw[] = { 1274 { 1275 .pr_type = SOCK_RAW, 1276 .pr_domain = &routedomain, 1277 .pr_flags = PR_ATOMIC|PR_ADDR, 1278 .pr_output = route_output, 1279 .pr_ctlinput = raw_ctlinput, 1280 .pr_init = raw_init, 1281 .pr_usrreqs = &route_usrreqs 1282 } 1283 }; 1284 1285 static struct domain routedomain = { 1286 .dom_family = PF_ROUTE, 1287 .dom_name = "route", 1288 .dom_protosw = routesw, 1289 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1290 }; 1291 1292 DOMAIN_SET(route); 1293