1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_ddb.h" 35 #include "opt_mpath.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/domain.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/rmlock.h> 50 #include <sys/rwlock.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_dl.h> 60 #include <net/if_llatbl.h> 61 #include <net/if_types.h> 62 #include <net/netisr.h> 63 #include <net/raw_cb.h> 64 #include <net/route.h> 65 #include <net/route/route_ctl.h> 66 #include <net/route/route_var.h> 67 #ifdef RADIX_MPATH 68 #include <net/radix_mpath.h> 69 #endif 70 #include <net/vnet.h> 71 72 #include <netinet/in.h> 73 #include <netinet/if_ether.h> 74 #include <netinet/ip_carp.h> 75 #ifdef INET6 76 #include <netinet6/ip6_var.h> 77 #include <netinet6/scope6_var.h> 78 #endif 79 #include <net/route/nhop.h> 80 81 #ifdef COMPAT_FREEBSD32 82 #include <sys/mount.h> 83 #include <compat/freebsd32/freebsd32.h> 84 85 struct if_msghdr32 { 86 uint16_t ifm_msglen; 87 uint8_t ifm_version; 88 uint8_t ifm_type; 89 int32_t ifm_addrs; 90 int32_t ifm_flags; 91 uint16_t ifm_index; 92 uint16_t _ifm_spare1; 93 struct if_data ifm_data; 94 }; 95 96 struct if_msghdrl32 { 97 uint16_t ifm_msglen; 98 uint8_t ifm_version; 99 uint8_t ifm_type; 100 int32_t ifm_addrs; 101 int32_t ifm_flags; 102 uint16_t ifm_index; 103 uint16_t _ifm_spare1; 104 uint16_t ifm_len; 105 uint16_t ifm_data_off; 106 uint32_t _ifm_spare2; 107 struct if_data ifm_data; 108 }; 109 110 struct ifa_msghdrl32 { 111 uint16_t ifam_msglen; 112 uint8_t ifam_version; 113 uint8_t ifam_type; 114 int32_t ifam_addrs; 115 int32_t ifam_flags; 116 uint16_t ifam_index; 117 uint16_t _ifam_spare1; 118 uint16_t ifam_len; 119 uint16_t ifam_data_off; 120 int32_t ifam_metric; 121 struct if_data ifam_data; 122 }; 123 124 #define SA_SIZE32(sa) \ 125 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 126 sizeof(int) : \ 127 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 128 129 #endif /* COMPAT_FREEBSD32 */ 130 131 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 132 133 /* NB: these are not modified */ 134 static struct sockaddr route_src = { 2, PF_ROUTE, }; 135 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 136 137 /* These are external hooks for CARP. */ 138 int (*carp_get_vhid_p)(struct ifaddr *); 139 140 /* 141 * Used by rtsock/raw_input callback code to decide whether to filter the update 142 * notification to a socket bound to a particular FIB. 143 */ 144 #define RTS_FILTER_FIB M_PROTO8 145 146 typedef struct { 147 int ip_count; /* attached w/ AF_INET */ 148 int ip6_count; /* attached w/ AF_INET6 */ 149 int any_count; /* total attached */ 150 } route_cb_t; 151 VNET_DEFINE_STATIC(route_cb_t, route_cb); 152 #define V_route_cb VNET(route_cb) 153 154 struct mtx rtsock_mtx; 155 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 156 157 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 158 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 159 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 160 161 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 162 ""); 163 164 struct walkarg { 165 int w_tmemsize; 166 int w_op, w_arg; 167 caddr_t w_tmem; 168 struct sysctl_req *w_req; 169 }; 170 171 static void rts_input(struct mbuf *m); 172 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 173 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 174 struct walkarg *w, int *plen); 175 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 176 struct rt_addrinfo *rtinfo); 177 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 178 static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, 179 uint32_t weight, struct walkarg *w); 180 static int sysctl_iflist(int af, struct walkarg *w); 181 static int sysctl_ifmalist(int af, struct walkarg *w); 182 static int route_output(struct mbuf *m, struct socket *so, ...); 183 static void rt_getmetrics(const struct rtentry *rt, 184 const struct nhop_object *nh, struct rt_metrics *out); 185 static void rt_dispatch(struct mbuf *, sa_family_t); 186 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 187 struct rt_msghdr *rtm, struct rib_cmd_info *rc); 188 static int update_rtm_from_rc(struct rt_addrinfo *info, 189 struct rt_msghdr **prtm, int alloc_len, 190 struct rib_cmd_info *rc, struct nhop_object *nh); 191 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 192 struct mbuf *m, sa_family_t saf, u_int fibnum, 193 int rtm_errno); 194 static int can_export_rte(struct ucred *td_ucred, const struct rtentry *rt); 195 196 static struct netisr_handler rtsock_nh = { 197 .nh_name = "rtsock", 198 .nh_handler = rts_input, 199 .nh_proto = NETISR_ROUTE, 200 .nh_policy = NETISR_POLICY_SOURCE, 201 }; 202 203 static int 204 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 205 { 206 int error, qlimit; 207 208 netisr_getqlimit(&rtsock_nh, &qlimit); 209 error = sysctl_handle_int(oidp, &qlimit, 0, req); 210 if (error || !req->newptr) 211 return (error); 212 if (qlimit < 1) 213 return (EINVAL); 214 return (netisr_setqlimit(&rtsock_nh, qlimit)); 215 } 216 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 217 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 218 0, 0, sysctl_route_netisr_maxqlen, "I", 219 "maximum routing socket dispatch queue length"); 220 221 static void 222 vnet_rts_init(void) 223 { 224 int tmp; 225 226 if (IS_DEFAULT_VNET(curvnet)) { 227 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 228 rtsock_nh.nh_qlimit = tmp; 229 netisr_register(&rtsock_nh); 230 } 231 #ifdef VIMAGE 232 else 233 netisr_register_vnet(&rtsock_nh); 234 #endif 235 } 236 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 237 vnet_rts_init, 0); 238 239 #ifdef VIMAGE 240 static void 241 vnet_rts_uninit(void) 242 { 243 244 netisr_unregister_vnet(&rtsock_nh); 245 } 246 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 247 vnet_rts_uninit, 0); 248 #endif 249 250 static int 251 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 252 struct rawcb *rp) 253 { 254 int fibnum; 255 256 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 257 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 258 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 259 260 /* No filtering requested. */ 261 if ((m->m_flags & RTS_FILTER_FIB) == 0) 262 return (0); 263 264 /* Check if it is a rts and the fib matches the one of the socket. */ 265 fibnum = M_GETFIB(m); 266 if (proto->sp_family != PF_ROUTE || 267 rp->rcb_socket == NULL || 268 rp->rcb_socket->so_fibnum == fibnum) 269 return (0); 270 271 /* Filtering requested and no match, the socket shall be skipped. */ 272 return (1); 273 } 274 275 static void 276 rts_input(struct mbuf *m) 277 { 278 struct sockproto route_proto; 279 unsigned short *family; 280 struct m_tag *tag; 281 282 route_proto.sp_family = PF_ROUTE; 283 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 284 if (tag != NULL) { 285 family = (unsigned short *)(tag + 1); 286 route_proto.sp_protocol = *family; 287 m_tag_delete(m, tag); 288 } else 289 route_proto.sp_protocol = 0; 290 291 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 292 } 293 294 /* 295 * It really doesn't make any sense at all for this code to share much 296 * with raw_usrreq.c, since its functionality is so restricted. XXX 297 */ 298 static void 299 rts_abort(struct socket *so) 300 { 301 302 raw_usrreqs.pru_abort(so); 303 } 304 305 static void 306 rts_close(struct socket *so) 307 { 308 309 raw_usrreqs.pru_close(so); 310 } 311 312 /* pru_accept is EOPNOTSUPP */ 313 314 static int 315 rts_attach(struct socket *so, int proto, struct thread *td) 316 { 317 struct rawcb *rp; 318 int error; 319 320 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 321 322 /* XXX */ 323 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 324 325 so->so_pcb = (caddr_t)rp; 326 so->so_fibnum = td->td_proc->p_fibnum; 327 error = raw_attach(so, proto); 328 rp = sotorawcb(so); 329 if (error) { 330 so->so_pcb = NULL; 331 free(rp, M_PCB); 332 return error; 333 } 334 RTSOCK_LOCK(); 335 switch(rp->rcb_proto.sp_protocol) { 336 case AF_INET: 337 V_route_cb.ip_count++; 338 break; 339 case AF_INET6: 340 V_route_cb.ip6_count++; 341 break; 342 } 343 V_route_cb.any_count++; 344 RTSOCK_UNLOCK(); 345 soisconnected(so); 346 so->so_options |= SO_USELOOPBACK; 347 return 0; 348 } 349 350 static int 351 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 352 { 353 354 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 355 } 356 357 static int 358 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 359 { 360 361 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 362 } 363 364 /* pru_connect2 is EOPNOTSUPP */ 365 /* pru_control is EOPNOTSUPP */ 366 367 static void 368 rts_detach(struct socket *so) 369 { 370 struct rawcb *rp = sotorawcb(so); 371 372 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 373 374 RTSOCK_LOCK(); 375 switch(rp->rcb_proto.sp_protocol) { 376 case AF_INET: 377 V_route_cb.ip_count--; 378 break; 379 case AF_INET6: 380 V_route_cb.ip6_count--; 381 break; 382 } 383 V_route_cb.any_count--; 384 RTSOCK_UNLOCK(); 385 raw_usrreqs.pru_detach(so); 386 } 387 388 static int 389 rts_disconnect(struct socket *so) 390 { 391 392 return (raw_usrreqs.pru_disconnect(so)); 393 } 394 395 /* pru_listen is EOPNOTSUPP */ 396 397 static int 398 rts_peeraddr(struct socket *so, struct sockaddr **nam) 399 { 400 401 return (raw_usrreqs.pru_peeraddr(so, nam)); 402 } 403 404 /* pru_rcvd is EOPNOTSUPP */ 405 /* pru_rcvoob is EOPNOTSUPP */ 406 407 static int 408 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 409 struct mbuf *control, struct thread *td) 410 { 411 412 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 413 } 414 415 /* pru_sense is null */ 416 417 static int 418 rts_shutdown(struct socket *so) 419 { 420 421 return (raw_usrreqs.pru_shutdown(so)); 422 } 423 424 static int 425 rts_sockaddr(struct socket *so, struct sockaddr **nam) 426 { 427 428 return (raw_usrreqs.pru_sockaddr(so, nam)); 429 } 430 431 static struct pr_usrreqs route_usrreqs = { 432 .pru_abort = rts_abort, 433 .pru_attach = rts_attach, 434 .pru_bind = rts_bind, 435 .pru_connect = rts_connect, 436 .pru_detach = rts_detach, 437 .pru_disconnect = rts_disconnect, 438 .pru_peeraddr = rts_peeraddr, 439 .pru_send = rts_send, 440 .pru_shutdown = rts_shutdown, 441 .pru_sockaddr = rts_sockaddr, 442 .pru_close = rts_close, 443 }; 444 445 #ifndef _SOCKADDR_UNION_DEFINED 446 #define _SOCKADDR_UNION_DEFINED 447 /* 448 * The union of all possible address formats we handle. 449 */ 450 union sockaddr_union { 451 struct sockaddr sa; 452 struct sockaddr_in sin; 453 struct sockaddr_in6 sin6; 454 }; 455 #endif /* _SOCKADDR_UNION_DEFINED */ 456 457 static int 458 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 459 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 460 { 461 #if defined(INET) || defined(INET6) 462 struct epoch_tracker et; 463 #endif 464 465 /* First, see if the returned address is part of the jail. */ 466 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 467 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 468 return (0); 469 } 470 471 switch (info->rti_info[RTAX_DST]->sa_family) { 472 #ifdef INET 473 case AF_INET: 474 { 475 struct in_addr ia; 476 struct ifaddr *ifa; 477 int found; 478 479 found = 0; 480 /* 481 * Try to find an address on the given outgoing interface 482 * that belongs to the jail. 483 */ 484 NET_EPOCH_ENTER(et); 485 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 486 struct sockaddr *sa; 487 sa = ifa->ifa_addr; 488 if (sa->sa_family != AF_INET) 489 continue; 490 ia = ((struct sockaddr_in *)sa)->sin_addr; 491 if (prison_check_ip4(cred, &ia) == 0) { 492 found = 1; 493 break; 494 } 495 } 496 NET_EPOCH_EXIT(et); 497 if (!found) { 498 /* 499 * As a last resort return the 'default' jail address. 500 */ 501 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 502 sin_addr; 503 if (prison_get_ip4(cred, &ia) != 0) 504 return (ESRCH); 505 } 506 bzero(&saun->sin, sizeof(struct sockaddr_in)); 507 saun->sin.sin_len = sizeof(struct sockaddr_in); 508 saun->sin.sin_family = AF_INET; 509 saun->sin.sin_addr.s_addr = ia.s_addr; 510 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 511 break; 512 } 513 #endif 514 #ifdef INET6 515 case AF_INET6: 516 { 517 struct in6_addr ia6; 518 struct ifaddr *ifa; 519 int found; 520 521 found = 0; 522 /* 523 * Try to find an address on the given outgoing interface 524 * that belongs to the jail. 525 */ 526 NET_EPOCH_ENTER(et); 527 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 528 struct sockaddr *sa; 529 sa = ifa->ifa_addr; 530 if (sa->sa_family != AF_INET6) 531 continue; 532 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 533 &ia6, sizeof(struct in6_addr)); 534 if (prison_check_ip6(cred, &ia6) == 0) { 535 found = 1; 536 break; 537 } 538 } 539 NET_EPOCH_EXIT(et); 540 if (!found) { 541 /* 542 * As a last resort return the 'default' jail address. 543 */ 544 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 545 sin6_addr; 546 if (prison_get_ip6(cred, &ia6) != 0) 547 return (ESRCH); 548 } 549 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 550 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 551 saun->sin6.sin6_family = AF_INET6; 552 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 553 if (sa6_recoverscope(&saun->sin6) != 0) 554 return (ESRCH); 555 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 556 break; 557 } 558 #endif 559 default: 560 return (ESRCH); 561 } 562 return (0); 563 } 564 565 /* 566 * Fills in @info based on userland-provided @rtm message. 567 * 568 * Returns 0 on success. 569 */ 570 static int 571 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info) 572 { 573 int error; 574 sa_family_t saf; 575 576 rtm->rtm_pid = curproc->p_pid; 577 info->rti_addrs = rtm->rtm_addrs; 578 579 info->rti_mflags = rtm->rtm_inits; 580 info->rti_rmx = &rtm->rtm_rmx; 581 582 /* 583 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 584 * link-local address because rtrequest requires addresses with 585 * embedded scope id. 586 */ 587 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 588 return (EINVAL); 589 590 if (rtm->rtm_flags & RTF_RNH_LOCKED) 591 return (EINVAL); 592 info->rti_flags = rtm->rtm_flags; 593 if (info->rti_info[RTAX_DST] == NULL || 594 info->rti_info[RTAX_DST]->sa_family >= AF_MAX || 595 (info->rti_info[RTAX_GATEWAY] != NULL && 596 info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 597 return (EINVAL); 598 saf = info->rti_info[RTAX_DST]->sa_family; 599 /* 600 * Verify that the caller has the appropriate privilege; RTM_GET 601 * is the only operation the non-superuser is allowed. 602 */ 603 if (rtm->rtm_type != RTM_GET) { 604 error = priv_check(curthread, PRIV_NET_ROUTE); 605 if (error != 0) 606 return (error); 607 } 608 609 /* 610 * The given gateway address may be an interface address. 611 * For example, issuing a "route change" command on a route 612 * entry that was created from a tunnel, and the gateway 613 * address given is the local end point. In this case the 614 * RTF_GATEWAY flag must be cleared or the destination will 615 * not be reachable even though there is no error message. 616 */ 617 if (info->rti_info[RTAX_GATEWAY] != NULL && 618 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 619 struct rt_addrinfo ginfo; 620 struct sockaddr *gdst; 621 struct sockaddr_storage ss; 622 623 bzero(&ginfo, sizeof(ginfo)); 624 bzero(&ss, sizeof(ss)); 625 ss.ss_len = sizeof(ss); 626 627 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 628 gdst = info->rti_info[RTAX_GATEWAY]; 629 630 /* 631 * A host route through the loopback interface is 632 * installed for each interface adddress. In pre 8.0 633 * releases the interface address of a PPP link type 634 * is not reachable locally. This behavior is fixed as 635 * part of the new L2/L3 redesign and rewrite work. The 636 * signature of this interface address route is the 637 * AF_LINK sa_family type of the gateway, and the 638 * rt_ifp has the IFF_LOOPBACK flag set. 639 */ 640 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 641 if (ss.ss_family == AF_LINK && 642 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 643 info->rti_flags &= ~RTF_GATEWAY; 644 info->rti_flags |= RTF_GWFLAG_COMPAT; 645 } 646 rib_free_info(&ginfo); 647 } 648 } 649 650 return (0); 651 } 652 653 /* 654 * Handles RTM_GET message from routing socket, returning matching rt. 655 * 656 * Returns: 657 * 0 on success, with locked and referenced matching rt in @rt_nrt 658 * errno of failure 659 */ 660 static int 661 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 662 struct rt_msghdr *rtm, struct rib_cmd_info *rc) 663 { 664 RIB_RLOCK_TRACKER; 665 struct rib_head *rnh; 666 sa_family_t saf; 667 668 saf = info->rti_info[RTAX_DST]->sa_family; 669 670 rnh = rt_tables_get_rnh(fibnum, saf); 671 if (rnh == NULL) 672 return (EAFNOSUPPORT); 673 674 RIB_RLOCK(rnh); 675 676 if (info->rti_info[RTAX_NETMASK] == NULL) { 677 /* 678 * Provide longest prefix match for 679 * address lookup (no mask). 680 * 'route -n get addr' 681 */ 682 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( 683 info->rti_info[RTAX_DST], &rnh->head); 684 } else 685 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( 686 info->rti_info[RTAX_DST], 687 info->rti_info[RTAX_NETMASK], &rnh->head); 688 689 if (rc->rc_rt == NULL) { 690 RIB_RUNLOCK(rnh); 691 return (ESRCH); 692 } 693 #ifdef RADIX_MPATH 694 /* 695 * for RTM_GET, gate is optional even with multipath. 696 * if gate == NULL the first match is returned. 697 * (no need to call rt_mpath_matchgate if gate == NULL) 698 */ 699 if (rt_mpath_capable(rnh) && info->rti_info[RTAX_GATEWAY]) { 700 rc->rc_rt = rt_mpath_matchgate(rc->rc_rt, 701 info->rti_info[RTAX_GATEWAY]); 702 if (rc->rc_rt == NULL) { 703 RIB_RUNLOCK(rnh); 704 return (ESRCH); 705 } 706 } 707 #endif 708 /* 709 * If performing proxied L2 entry insertion, and 710 * the actual PPP host entry is found, perform 711 * another search to retrieve the prefix route of 712 * the local end point of the PPP link. 713 * TODO: move this logic to userland. 714 */ 715 if (rtm->rtm_flags & RTF_ANNOUNCE) { 716 struct sockaddr laddr; 717 struct nhop_object *nh; 718 719 nh = rc->rc_rt->rt_nhop; 720 if (nh->nh_ifp != NULL && 721 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 722 struct ifaddr *ifa; 723 724 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 725 RT_ALL_FIBS); 726 if (ifa != NULL) 727 rt_maskedcopy(ifa->ifa_addr, 728 &laddr, 729 ifa->ifa_netmask); 730 } else 731 rt_maskedcopy(nh->nh_ifa->ifa_addr, 732 &laddr, 733 nh->nh_ifa->ifa_netmask); 734 /* 735 * refactor rt and no lock operation necessary 736 */ 737 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 738 &rnh->head); 739 if (rc->rc_rt == NULL) { 740 RIB_RUNLOCK(rnh); 741 return (ESRCH); 742 } 743 } 744 rc->rc_nh_new = rc->rc_rt->rt_nhop; 745 rc->rc_nh_weight = rc->rc_rt->rt_weight; 746 RIB_RUNLOCK(rnh); 747 748 return (0); 749 } 750 751 /* 752 * Update sockaddrs, flags, etc in @prtm based on @rc data. 753 * rtm can be reallocated. 754 * 755 * Returns 0 on success, along with pointer to (potentially reallocated) 756 * rtm. 757 * 758 */ 759 static int 760 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, 761 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) 762 { 763 struct sockaddr_storage netmask_ss; 764 struct walkarg w; 765 union sockaddr_union saun; 766 struct rt_msghdr *rtm, *orig_rtm = NULL; 767 struct ifnet *ifp; 768 int error, len; 769 770 rtm = *prtm; 771 772 info->rti_info[RTAX_DST] = rt_key(rc->rc_rt); 773 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 774 info->rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rc->rc_rt), 775 rt_mask(rc->rc_rt), &netmask_ss); 776 info->rti_info[RTAX_GENMASK] = 0; 777 ifp = nh->nh_ifp; 778 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 779 if (ifp) { 780 info->rti_info[RTAX_IFP] = 781 ifp->if_addr->ifa_addr; 782 error = rtm_get_jailed(info, ifp, nh, 783 &saun, curthread->td_ucred); 784 if (error != 0) 785 return (error); 786 if (ifp->if_flags & IFF_POINTOPOINT) 787 info->rti_info[RTAX_BRD] = 788 nh->nh_ifa->ifa_dstaddr; 789 rtm->rtm_index = ifp->if_index; 790 } else { 791 info->rti_info[RTAX_IFP] = NULL; 792 info->rti_info[RTAX_IFA] = NULL; 793 } 794 } else if (ifp != NULL) 795 rtm->rtm_index = ifp->if_index; 796 797 /* Check if we need to realloc storage */ 798 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 799 if (len > alloc_len) { 800 struct rt_msghdr *tmp_rtm; 801 802 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 803 if (tmp_rtm == NULL) 804 return (ENOBUFS); 805 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 806 orig_rtm = rtm; 807 rtm = tmp_rtm; 808 alloc_len = len; 809 810 /* 811 * Delay freeing original rtm as info contains 812 * data referencing it. 813 */ 814 } 815 816 w.w_tmem = (caddr_t)rtm; 817 w.w_tmemsize = alloc_len; 818 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 819 820 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); 821 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 822 rtm->rtm_flags = RTF_GATEWAY | 823 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 824 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); 825 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; 826 rtm->rtm_addrs = info->rti_addrs; 827 828 if (orig_rtm != NULL) 829 free(orig_rtm, M_TEMP); 830 *prtm = rtm; 831 832 return (0); 833 } 834 835 /*ARGSUSED*/ 836 static int 837 route_output(struct mbuf *m, struct socket *so, ...) 838 { 839 struct rt_msghdr *rtm = NULL; 840 struct rtentry *rt = NULL; 841 struct rt_addrinfo info; 842 struct epoch_tracker et; 843 #ifdef INET6 844 struct sockaddr_storage ss; 845 struct sockaddr_in6 *sin6; 846 int i, rti_need_deembed = 0; 847 #endif 848 int alloc_len = 0, len, error = 0, fibnum; 849 sa_family_t saf = AF_UNSPEC; 850 struct walkarg w; 851 struct rib_cmd_info rc; 852 struct nhop_object *nh; 853 854 fibnum = so->so_fibnum; 855 #define senderr(e) { error = e; goto flush;} 856 if (m == NULL || ((m->m_len < sizeof(long)) && 857 (m = m_pullup(m, sizeof(long))) == NULL)) 858 return (ENOBUFS); 859 if ((m->m_flags & M_PKTHDR) == 0) 860 panic("route_output"); 861 NET_EPOCH_ENTER(et); 862 len = m->m_pkthdr.len; 863 if (len < sizeof(*rtm) || 864 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 865 senderr(EINVAL); 866 867 /* 868 * Most of current messages are in range 200-240 bytes, 869 * minimize possible re-allocation on reply using larger size 870 * buffer aligned on 1k boundaty. 871 */ 872 alloc_len = roundup2(len, 1024); 873 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 874 senderr(ENOBUFS); 875 876 m_copydata(m, 0, len, (caddr_t)rtm); 877 bzero(&info, sizeof(info)); 878 bzero(&w, sizeof(w)); 879 nh = NULL; 880 881 if (rtm->rtm_version != RTM_VERSION) { 882 /* Do not touch message since format is unknown */ 883 free(rtm, M_TEMP); 884 rtm = NULL; 885 senderr(EPROTONOSUPPORT); 886 } 887 888 /* 889 * Starting from here, it is possible 890 * to alter original message and insert 891 * caller PID and error value. 892 */ 893 894 if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) { 895 senderr(error); 896 } 897 898 saf = info.rti_info[RTAX_DST]->sa_family; 899 900 /* support for new ARP code */ 901 if (rtm->rtm_flags & RTF_LLDATA) { 902 error = lla_rt_output(rtm, &info); 903 #ifdef INET6 904 if (error == 0) 905 rti_need_deembed = 1; 906 #endif 907 goto flush; 908 } 909 910 switch (rtm->rtm_type) { 911 case RTM_ADD: 912 case RTM_CHANGE: 913 if (rtm->rtm_type == RTM_ADD) { 914 if (info.rti_info[RTAX_GATEWAY] == NULL) 915 senderr(EINVAL); 916 } 917 error = rib_action(fibnum, rtm->rtm_type, &info, &rc); 918 if (error == 0) { 919 #ifdef INET6 920 rti_need_deembed = 1; 921 #endif 922 nh = rc.rc_nh_new; 923 rtm->rtm_index = nh->nh_ifp->if_index; 924 } 925 break; 926 927 case RTM_DELETE: 928 error = rib_action(fibnum, RTM_DELETE, &info, &rc); 929 if (error == 0) { 930 nh = rc.rc_nh_old; 931 goto report; 932 } 933 #ifdef INET6 934 /* rt_msg2() will not be used when RTM_DELETE fails. */ 935 rti_need_deembed = 1; 936 #endif 937 break; 938 939 case RTM_GET: 940 error = handle_rtm_get(&info, fibnum, rtm, &rc); 941 if (error != 0) 942 senderr(error); 943 nh = rc.rc_nh_new; 944 945 report: 946 if (!can_export_rte(curthread->td_ucred, rc.rc_rt)) { 947 senderr(ESRCH); 948 } 949 950 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); 951 /* 952 * Note that some sockaddr pointers may have changed to 953 * point to memory outsize @rtm. Some may be pointing 954 * to the on-stack variables. 955 * Given that, any pointer in @info CANNOT BE USED. 956 */ 957 958 /* 959 * scopeid deembedding has been performed while 960 * writing updated rtm in rtsock_msg_buffer(). 961 * With that in mind, skip deembedding procedure below. 962 */ 963 #ifdef INET6 964 rti_need_deembed = 0; 965 #endif 966 if (error != 0) 967 senderr(error); 968 break; 969 970 default: 971 senderr(EOPNOTSUPP); 972 } 973 974 flush: 975 NET_EPOCH_EXIT(et); 976 rt = NULL; 977 978 #ifdef INET6 979 if (rtm != NULL) { 980 if (rti_need_deembed) { 981 /* sin6_scope_id is recovered before sending rtm. */ 982 sin6 = (struct sockaddr_in6 *)&ss; 983 for (i = 0; i < RTAX_MAX; i++) { 984 if (info.rti_info[i] == NULL) 985 continue; 986 if (info.rti_info[i]->sa_family != AF_INET6) 987 continue; 988 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 989 if (sa6_recoverscope(sin6) == 0) 990 bcopy(sin6, info.rti_info[i], 991 sizeof(*sin6)); 992 } 993 } 994 } 995 #endif 996 send_rtm_reply(so, rtm, m, saf, fibnum, error); 997 998 return (error); 999 } 1000 1001 /* 1002 * Sends the prepared reply message in @rtm to all rtsock clients. 1003 * Frees @m and @rtm. 1004 * 1005 */ 1006 static void 1007 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1008 sa_family_t saf, u_int fibnum, int rtm_errno) 1009 { 1010 struct rawcb *rp = NULL; 1011 1012 /* 1013 * Check to see if we don't want our own messages. 1014 */ 1015 if ((so->so_options & SO_USELOOPBACK) == 0) { 1016 if (V_route_cb.any_count <= 1) { 1017 if (rtm != NULL) 1018 free(rtm, M_TEMP); 1019 m_freem(m); 1020 return; 1021 } 1022 /* There is another listener, so construct message */ 1023 rp = sotorawcb(so); 1024 } 1025 1026 if (rtm != NULL) { 1027 if (rtm_errno!= 0) 1028 rtm->rtm_errno = rtm_errno; 1029 else 1030 rtm->rtm_flags |= RTF_DONE; 1031 1032 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1033 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1034 m_freem(m); 1035 m = NULL; 1036 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1037 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1038 1039 free(rtm, M_TEMP); 1040 } 1041 if (m != NULL) { 1042 M_SETFIB(m, fibnum); 1043 m->m_flags |= RTS_FILTER_FIB; 1044 if (rp) { 1045 /* 1046 * XXX insure we don't get a copy by 1047 * invalidating our protocol 1048 */ 1049 unsigned short family = rp->rcb_proto.sp_family; 1050 rp->rcb_proto.sp_family = 0; 1051 rt_dispatch(m, saf); 1052 rp->rcb_proto.sp_family = family; 1053 } else 1054 rt_dispatch(m, saf); 1055 } 1056 } 1057 1058 static void 1059 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, 1060 struct rt_metrics *out) 1061 { 1062 1063 bzero(out, sizeof(*out)); 1064 out->rmx_mtu = nh->nh_mtu; 1065 out->rmx_weight = rt->rt_weight; 1066 out->rmx_nhidx = nhop_get_idx(nh); 1067 /* Kernel -> userland timebase conversion. */ 1068 out->rmx_expire = rt->rt_expire ? 1069 rt->rt_expire - time_uptime + time_second : 0; 1070 } 1071 1072 /* 1073 * Extract the addresses of the passed sockaddrs. 1074 * Do a little sanity checking so as to avoid bad memory references. 1075 * This data is derived straight from userland. 1076 */ 1077 static int 1078 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1079 { 1080 struct sockaddr *sa; 1081 int i; 1082 1083 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1084 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1085 continue; 1086 sa = (struct sockaddr *)cp; 1087 /* 1088 * It won't fit. 1089 */ 1090 if (cp + sa->sa_len > cplim) 1091 return (EINVAL); 1092 /* 1093 * there are no more.. quit now 1094 * If there are more bits, they are in error. 1095 * I've seen this. route(1) can evidently generate these. 1096 * This causes kernel to core dump. 1097 * for compatibility, If we see this, point to a safe address. 1098 */ 1099 if (sa->sa_len == 0) { 1100 rtinfo->rti_info[i] = &sa_zero; 1101 return (0); /* should be EINVAL but for compat */ 1102 } 1103 /* accept it */ 1104 #ifdef INET6 1105 if (sa->sa_family == AF_INET6) 1106 sa6_embedscope((struct sockaddr_in6 *)sa, 1107 V_ip6_use_defzone); 1108 #endif 1109 rtinfo->rti_info[i] = sa; 1110 cp += SA_SIZE(sa); 1111 } 1112 return (0); 1113 } 1114 1115 /* 1116 * Fill in @dmask with valid netmask leaving original @smask 1117 * intact. Mostly used with radix netmasks. 1118 */ 1119 struct sockaddr * 1120 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1121 struct sockaddr_storage *dmask) 1122 { 1123 if (dst == NULL || smask == NULL) 1124 return (NULL); 1125 1126 memset(dmask, 0, dst->sa_len); 1127 memcpy(dmask, smask, smask->sa_len); 1128 dmask->ss_len = dst->sa_len; 1129 dmask->ss_family = dst->sa_family; 1130 1131 return ((struct sockaddr *)dmask); 1132 } 1133 1134 /* 1135 * Writes information related to @rtinfo object to newly-allocated mbuf. 1136 * Assumes MCLBYTES is enough to construct any message. 1137 * Used for OS notifications of vaious events (if/ifa announces,etc) 1138 * 1139 * Returns allocated mbuf or NULL on failure. 1140 */ 1141 static struct mbuf * 1142 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1143 { 1144 struct rt_msghdr *rtm; 1145 struct mbuf *m; 1146 int i; 1147 struct sockaddr *sa; 1148 #ifdef INET6 1149 struct sockaddr_storage ss; 1150 struct sockaddr_in6 *sin6; 1151 #endif 1152 int len, dlen; 1153 1154 switch (type) { 1155 case RTM_DELADDR: 1156 case RTM_NEWADDR: 1157 len = sizeof(struct ifa_msghdr); 1158 break; 1159 1160 case RTM_DELMADDR: 1161 case RTM_NEWMADDR: 1162 len = sizeof(struct ifma_msghdr); 1163 break; 1164 1165 case RTM_IFINFO: 1166 len = sizeof(struct if_msghdr); 1167 break; 1168 1169 case RTM_IFANNOUNCE: 1170 case RTM_IEEE80211: 1171 len = sizeof(struct if_announcemsghdr); 1172 break; 1173 1174 default: 1175 len = sizeof(struct rt_msghdr); 1176 } 1177 1178 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1179 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1180 if (len > MHLEN) 1181 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1182 else 1183 m = m_gethdr(M_NOWAIT, MT_DATA); 1184 if (m == NULL) 1185 return (m); 1186 1187 m->m_pkthdr.len = m->m_len = len; 1188 rtm = mtod(m, struct rt_msghdr *); 1189 bzero((caddr_t)rtm, len); 1190 for (i = 0; i < RTAX_MAX; i++) { 1191 if ((sa = rtinfo->rti_info[i]) == NULL) 1192 continue; 1193 rtinfo->rti_addrs |= (1 << i); 1194 dlen = SA_SIZE(sa); 1195 #ifdef INET6 1196 if (sa->sa_family == AF_INET6) { 1197 sin6 = (struct sockaddr_in6 *)&ss; 1198 bcopy(sa, sin6, sizeof(*sin6)); 1199 if (sa6_recoverscope(sin6) == 0) 1200 sa = (struct sockaddr *)sin6; 1201 } 1202 #endif 1203 m_copyback(m, len, dlen, (caddr_t)sa); 1204 len += dlen; 1205 } 1206 if (m->m_pkthdr.len != len) { 1207 m_freem(m); 1208 return (NULL); 1209 } 1210 rtm->rtm_msglen = len; 1211 rtm->rtm_version = RTM_VERSION; 1212 rtm->rtm_type = type; 1213 return (m); 1214 } 1215 1216 /* 1217 * Writes information related to @rtinfo object to preallocated buffer. 1218 * Stores needed size in @plen. If @w is NULL, calculates size without 1219 * writing. 1220 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1221 * 1222 * Returns 0 on success. 1223 * 1224 */ 1225 static int 1226 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1227 { 1228 int i; 1229 int len, buflen = 0, dlen; 1230 caddr_t cp = NULL; 1231 struct rt_msghdr *rtm = NULL; 1232 #ifdef INET6 1233 struct sockaddr_storage ss; 1234 struct sockaddr_in6 *sin6; 1235 #endif 1236 #ifdef COMPAT_FREEBSD32 1237 bool compat32 = false; 1238 #endif 1239 1240 switch (type) { 1241 case RTM_DELADDR: 1242 case RTM_NEWADDR: 1243 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1244 #ifdef COMPAT_FREEBSD32 1245 if (w->w_req->flags & SCTL_MASK32) { 1246 len = sizeof(struct ifa_msghdrl32); 1247 compat32 = true; 1248 } else 1249 #endif 1250 len = sizeof(struct ifa_msghdrl); 1251 } else 1252 len = sizeof(struct ifa_msghdr); 1253 break; 1254 1255 case RTM_IFINFO: 1256 #ifdef COMPAT_FREEBSD32 1257 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1258 if (w->w_op == NET_RT_IFLISTL) 1259 len = sizeof(struct if_msghdrl32); 1260 else 1261 len = sizeof(struct if_msghdr32); 1262 compat32 = true; 1263 break; 1264 } 1265 #endif 1266 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1267 len = sizeof(struct if_msghdrl); 1268 else 1269 len = sizeof(struct if_msghdr); 1270 break; 1271 1272 case RTM_NEWMADDR: 1273 len = sizeof(struct ifma_msghdr); 1274 break; 1275 1276 default: 1277 len = sizeof(struct rt_msghdr); 1278 } 1279 1280 if (w != NULL) { 1281 rtm = (struct rt_msghdr *)w->w_tmem; 1282 buflen = w->w_tmemsize - len; 1283 cp = (caddr_t)w->w_tmem + len; 1284 } 1285 1286 rtinfo->rti_addrs = 0; 1287 for (i = 0; i < RTAX_MAX; i++) { 1288 struct sockaddr *sa; 1289 1290 if ((sa = rtinfo->rti_info[i]) == NULL) 1291 continue; 1292 rtinfo->rti_addrs |= (1 << i); 1293 #ifdef COMPAT_FREEBSD32 1294 if (compat32) 1295 dlen = SA_SIZE32(sa); 1296 else 1297 #endif 1298 dlen = SA_SIZE(sa); 1299 if (cp != NULL && buflen >= dlen) { 1300 #ifdef INET6 1301 if (sa->sa_family == AF_INET6) { 1302 sin6 = (struct sockaddr_in6 *)&ss; 1303 bcopy(sa, sin6, sizeof(*sin6)); 1304 if (sa6_recoverscope(sin6) == 0) 1305 sa = (struct sockaddr *)sin6; 1306 } 1307 #endif 1308 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1309 cp += dlen; 1310 buflen -= dlen; 1311 } else if (cp != NULL) { 1312 /* 1313 * Buffer too small. Count needed size 1314 * and return with error. 1315 */ 1316 cp = NULL; 1317 } 1318 1319 len += dlen; 1320 } 1321 1322 if (cp != NULL) { 1323 dlen = ALIGN(len) - len; 1324 if (buflen < dlen) 1325 cp = NULL; 1326 else { 1327 bzero(cp, dlen); 1328 cp += dlen; 1329 buflen -= dlen; 1330 } 1331 } 1332 len = ALIGN(len); 1333 1334 if (cp != NULL) { 1335 /* fill header iff buffer is large enough */ 1336 rtm->rtm_version = RTM_VERSION; 1337 rtm->rtm_type = type; 1338 rtm->rtm_msglen = len; 1339 } 1340 1341 *plen = len; 1342 1343 if (w != NULL && cp == NULL) 1344 return (ENOBUFS); 1345 1346 return (0); 1347 } 1348 1349 /* 1350 * This routine is called to generate a message from the routing 1351 * socket indicating that a redirect has occurred, a routing lookup 1352 * has failed, or that a protocol has detected timeouts to a particular 1353 * destination. 1354 */ 1355 void 1356 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1357 int fibnum) 1358 { 1359 struct rt_msghdr *rtm; 1360 struct mbuf *m; 1361 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1362 1363 if (V_route_cb.any_count == 0) 1364 return; 1365 m = rtsock_msg_mbuf(type, rtinfo); 1366 if (m == NULL) 1367 return; 1368 1369 if (fibnum != RT_ALL_FIBS) { 1370 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1371 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1372 M_SETFIB(m, fibnum); 1373 m->m_flags |= RTS_FILTER_FIB; 1374 } 1375 1376 rtm = mtod(m, struct rt_msghdr *); 1377 rtm->rtm_flags = RTF_DONE | flags; 1378 rtm->rtm_errno = error; 1379 rtm->rtm_addrs = rtinfo->rti_addrs; 1380 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1381 } 1382 1383 void 1384 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1385 { 1386 1387 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1388 } 1389 1390 /* 1391 * This routine is called to generate a message from the routing 1392 * socket indicating that the status of a network interface has changed. 1393 */ 1394 void 1395 rt_ifmsg(struct ifnet *ifp) 1396 { 1397 struct if_msghdr *ifm; 1398 struct mbuf *m; 1399 struct rt_addrinfo info; 1400 1401 if (V_route_cb.any_count == 0) 1402 return; 1403 bzero((caddr_t)&info, sizeof(info)); 1404 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1405 if (m == NULL) 1406 return; 1407 ifm = mtod(m, struct if_msghdr *); 1408 ifm->ifm_index = ifp->if_index; 1409 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1410 if_data_copy(ifp, &ifm->ifm_data); 1411 ifm->ifm_addrs = 0; 1412 rt_dispatch(m, AF_UNSPEC); 1413 } 1414 1415 /* 1416 * Announce interface address arrival/withdraw. 1417 * Please do not call directly, use rt_addrmsg(). 1418 * Assume input data to be valid. 1419 * Returns 0 on success. 1420 */ 1421 int 1422 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1423 { 1424 struct rt_addrinfo info; 1425 struct sockaddr *sa; 1426 int ncmd; 1427 struct mbuf *m; 1428 struct ifa_msghdr *ifam; 1429 struct ifnet *ifp = ifa->ifa_ifp; 1430 struct sockaddr_storage ss; 1431 1432 if (V_route_cb.any_count == 0) 1433 return (0); 1434 1435 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1436 1437 bzero((caddr_t)&info, sizeof(info)); 1438 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1439 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1440 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1441 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 1442 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1443 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1444 return (ENOBUFS); 1445 ifam = mtod(m, struct ifa_msghdr *); 1446 ifam->ifam_index = ifp->if_index; 1447 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1448 ifam->ifam_flags = ifa->ifa_flags; 1449 ifam->ifam_addrs = info.rti_addrs; 1450 1451 if (fibnum != RT_ALL_FIBS) { 1452 M_SETFIB(m, fibnum); 1453 m->m_flags |= RTS_FILTER_FIB; 1454 } 1455 1456 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1457 1458 return (0); 1459 } 1460 1461 /* 1462 * Announce route addition/removal to rtsock based on @rt data. 1463 * Callers are advives to use rt_routemsg() instead of using this 1464 * function directly. 1465 * Assume @rt data is consistent. 1466 * 1467 * Returns 0 on success. 1468 */ 1469 int 1470 rtsock_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs, 1471 int fibnum) 1472 { 1473 struct sockaddr_storage ss; 1474 struct rt_addrinfo info; 1475 struct nhop_object *nh; 1476 1477 if (V_route_cb.any_count == 0) 1478 return (0); 1479 1480 nh = rt->rt_nhop; 1481 bzero((caddr_t)&info, sizeof(info)); 1482 info.rti_info[RTAX_DST] = rt_key(rt); 1483 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), rt_mask(rt), &ss); 1484 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 1485 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); 1486 info.rti_ifp = ifp; 1487 1488 return (rtsock_routemsg_info(cmd, &info, fibnum)); 1489 } 1490 1491 int 1492 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 1493 { 1494 struct rt_msghdr *rtm; 1495 struct sockaddr *sa; 1496 struct mbuf *m; 1497 1498 if (V_route_cb.any_count == 0) 1499 return (0); 1500 1501 if (info->rti_flags & RTF_HOST) 1502 info->rti_info[RTAX_NETMASK] = NULL; 1503 1504 m = rtsock_msg_mbuf(cmd, info); 1505 if (m == NULL) 1506 return (ENOBUFS); 1507 1508 if (fibnum != RT_ALL_FIBS) { 1509 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1510 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1511 M_SETFIB(m, fibnum); 1512 m->m_flags |= RTS_FILTER_FIB; 1513 } 1514 1515 rtm = mtod(m, struct rt_msghdr *); 1516 rtm->rtm_addrs = info->rti_addrs; 1517 if (info->rti_ifp != NULL) 1518 rtm->rtm_index = info->rti_ifp->if_index; 1519 /* Add RTF_DONE to indicate command 'completion' required by API */ 1520 info->rti_flags |= RTF_DONE; 1521 /* Reported routes has to be up */ 1522 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 1523 info->rti_flags |= RTF_UP; 1524 rtm->rtm_flags = info->rti_flags; 1525 1526 sa = info->rti_info[RTAX_DST]; 1527 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1528 1529 return (0); 1530 } 1531 1532 /* 1533 * This is the analogue to the rt_newaddrmsg which performs the same 1534 * function but for multicast group memberhips. This is easier since 1535 * there is no route state to worry about. 1536 */ 1537 void 1538 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1539 { 1540 struct rt_addrinfo info; 1541 struct mbuf *m = NULL; 1542 struct ifnet *ifp = ifma->ifma_ifp; 1543 struct ifma_msghdr *ifmam; 1544 1545 if (V_route_cb.any_count == 0) 1546 return; 1547 1548 bzero((caddr_t)&info, sizeof(info)); 1549 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1550 if (ifp && ifp->if_addr) 1551 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1552 else 1553 info.rti_info[RTAX_IFP] = NULL; 1554 /* 1555 * If a link-layer address is present, present it as a ``gateway'' 1556 * (similarly to how ARP entries, e.g., are presented). 1557 */ 1558 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1559 m = rtsock_msg_mbuf(cmd, &info); 1560 if (m == NULL) 1561 return; 1562 ifmam = mtod(m, struct ifma_msghdr *); 1563 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1564 __func__)); 1565 ifmam->ifmam_index = ifp->if_index; 1566 ifmam->ifmam_addrs = info.rti_addrs; 1567 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1568 } 1569 1570 static struct mbuf * 1571 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1572 struct rt_addrinfo *info) 1573 { 1574 struct if_announcemsghdr *ifan; 1575 struct mbuf *m; 1576 1577 if (V_route_cb.any_count == 0) 1578 return NULL; 1579 bzero((caddr_t)info, sizeof(*info)); 1580 m = rtsock_msg_mbuf(type, info); 1581 if (m != NULL) { 1582 ifan = mtod(m, struct if_announcemsghdr *); 1583 ifan->ifan_index = ifp->if_index; 1584 strlcpy(ifan->ifan_name, ifp->if_xname, 1585 sizeof(ifan->ifan_name)); 1586 ifan->ifan_what = what; 1587 } 1588 return m; 1589 } 1590 1591 /* 1592 * This is called to generate routing socket messages indicating 1593 * IEEE80211 wireless events. 1594 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1595 */ 1596 void 1597 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1598 { 1599 struct mbuf *m; 1600 struct rt_addrinfo info; 1601 1602 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1603 if (m != NULL) { 1604 /* 1605 * Append the ieee80211 data. Try to stick it in the 1606 * mbuf containing the ifannounce msg; otherwise allocate 1607 * a new mbuf and append. 1608 * 1609 * NB: we assume m is a single mbuf. 1610 */ 1611 if (data_len > M_TRAILINGSPACE(m)) { 1612 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1613 if (n == NULL) { 1614 m_freem(m); 1615 return; 1616 } 1617 bcopy(data, mtod(n, void *), data_len); 1618 n->m_len = data_len; 1619 m->m_next = n; 1620 } else if (data_len > 0) { 1621 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1622 m->m_len += data_len; 1623 } 1624 if (m->m_flags & M_PKTHDR) 1625 m->m_pkthdr.len += data_len; 1626 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1627 rt_dispatch(m, AF_UNSPEC); 1628 } 1629 } 1630 1631 /* 1632 * This is called to generate routing socket messages indicating 1633 * network interface arrival and departure. 1634 */ 1635 void 1636 rt_ifannouncemsg(struct ifnet *ifp, int what) 1637 { 1638 struct mbuf *m; 1639 struct rt_addrinfo info; 1640 1641 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1642 if (m != NULL) 1643 rt_dispatch(m, AF_UNSPEC); 1644 } 1645 1646 static void 1647 rt_dispatch(struct mbuf *m, sa_family_t saf) 1648 { 1649 struct m_tag *tag; 1650 1651 /* 1652 * Preserve the family from the sockaddr, if any, in an m_tag for 1653 * use when injecting the mbuf into the routing socket buffer from 1654 * the netisr. 1655 */ 1656 if (saf != AF_UNSPEC) { 1657 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1658 M_NOWAIT); 1659 if (tag == NULL) { 1660 m_freem(m); 1661 return; 1662 } 1663 *(unsigned short *)(tag + 1) = saf; 1664 m_tag_prepend(m, tag); 1665 } 1666 #ifdef VIMAGE 1667 if (V_loif) 1668 m->m_pkthdr.rcvif = V_loif; 1669 else { 1670 m_freem(m); 1671 return; 1672 } 1673 #endif 1674 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1675 } 1676 1677 /* 1678 * Checks if rte can be exported v.r.t jails/vnets. 1679 * 1680 * Returns 1 if it can, 0 otherwise. 1681 */ 1682 static int 1683 can_export_rte(struct ucred *td_ucred, const struct rtentry *rt) 1684 { 1685 1686 if ((rt->rte_flags & RTF_HOST) == 0 1687 ? jailed_without_vnet(td_ucred) 1688 : prison_if(td_ucred, rt_key_const(rt)) != 0) 1689 return (0); 1690 return (1); 1691 } 1692 1693 /* 1694 * This is used in dumping the kernel table via sysctl(). 1695 */ 1696 static int 1697 sysctl_dumpentry(struct radix_node *rn, void *vw) 1698 { 1699 struct walkarg *w = vw; 1700 struct rtentry *rt = (struct rtentry *)rn; 1701 struct nhop_object *nh; 1702 int error = 0; 1703 1704 NET_EPOCH_ASSERT(); 1705 1706 if (w->w_op == NET_RT_FLAGS && !(rt->rte_flags & w->w_arg)) 1707 return 0; 1708 if (!can_export_rte(w->w_req->td->td_ucred, rt)) 1709 return (0); 1710 nh = rt->rt_nhop; 1711 error = sysctl_dumpnhop(rt, nh, rt->rt_weight, w); 1712 1713 return (0); 1714 } 1715 1716 1717 static int 1718 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, 1719 struct walkarg *w) 1720 { 1721 struct rt_addrinfo info; 1722 int error = 0, size; 1723 struct sockaddr_storage ss; 1724 1725 bzero((caddr_t)&info, sizeof(info)); 1726 info.rti_info[RTAX_DST] = rt_key(rt); 1727 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 1728 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1729 rt_mask(rt), &ss); 1730 info.rti_info[RTAX_GENMASK] = 0; 1731 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 1732 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 1733 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 1734 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 1735 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 1736 } 1737 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1738 return (error); 1739 if (w->w_req && w->w_tmem) { 1740 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1741 1742 bzero(&rtm->rtm_index, 1743 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 1744 if (rt->rte_flags & RTF_GWFLAG_COMPAT) 1745 rtm->rtm_flags = RTF_GATEWAY | 1746 (rt->rte_flags & ~RTF_GWFLAG_COMPAT); 1747 else 1748 rtm->rtm_flags = rt->rte_flags; 1749 rtm->rtm_flags |= nhop_get_rtflags(nh); 1750 rt_getmetrics(rt, nh, &rtm->rtm_rmx); 1751 rtm->rtm_index = nh->nh_ifp->if_index; 1752 rtm->rtm_addrs = info.rti_addrs; 1753 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1754 return (error); 1755 } 1756 return (error); 1757 } 1758 1759 static int 1760 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1761 struct rt_addrinfo *info, struct walkarg *w, int len) 1762 { 1763 struct if_msghdrl *ifm; 1764 struct if_data *ifd; 1765 1766 ifm = (struct if_msghdrl *)w->w_tmem; 1767 1768 #ifdef COMPAT_FREEBSD32 1769 if (w->w_req->flags & SCTL_MASK32) { 1770 struct if_msghdrl32 *ifm32; 1771 1772 ifm32 = (struct if_msghdrl32 *)ifm; 1773 ifm32->ifm_addrs = info->rti_addrs; 1774 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1775 ifm32->ifm_index = ifp->if_index; 1776 ifm32->_ifm_spare1 = 0; 1777 ifm32->ifm_len = sizeof(*ifm32); 1778 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1779 ifm32->_ifm_spare2 = 0; 1780 ifd = &ifm32->ifm_data; 1781 } else 1782 #endif 1783 { 1784 ifm->ifm_addrs = info->rti_addrs; 1785 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1786 ifm->ifm_index = ifp->if_index; 1787 ifm->_ifm_spare1 = 0; 1788 ifm->ifm_len = sizeof(*ifm); 1789 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1790 ifm->_ifm_spare2 = 0; 1791 ifd = &ifm->ifm_data; 1792 } 1793 1794 memcpy(ifd, src_ifd, sizeof(*ifd)); 1795 1796 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1797 } 1798 1799 static int 1800 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 1801 struct rt_addrinfo *info, struct walkarg *w, int len) 1802 { 1803 struct if_msghdr *ifm; 1804 struct if_data *ifd; 1805 1806 ifm = (struct if_msghdr *)w->w_tmem; 1807 1808 #ifdef COMPAT_FREEBSD32 1809 if (w->w_req->flags & SCTL_MASK32) { 1810 struct if_msghdr32 *ifm32; 1811 1812 ifm32 = (struct if_msghdr32 *)ifm; 1813 ifm32->ifm_addrs = info->rti_addrs; 1814 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1815 ifm32->ifm_index = ifp->if_index; 1816 ifm32->_ifm_spare1 = 0; 1817 ifd = &ifm32->ifm_data; 1818 } else 1819 #endif 1820 { 1821 ifm->ifm_addrs = info->rti_addrs; 1822 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1823 ifm->ifm_index = ifp->if_index; 1824 ifm->_ifm_spare1 = 0; 1825 ifd = &ifm->ifm_data; 1826 } 1827 1828 memcpy(ifd, src_ifd, sizeof(*ifd)); 1829 1830 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1831 } 1832 1833 static int 1834 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1835 struct walkarg *w, int len) 1836 { 1837 struct ifa_msghdrl *ifam; 1838 struct if_data *ifd; 1839 1840 ifam = (struct ifa_msghdrl *)w->w_tmem; 1841 1842 #ifdef COMPAT_FREEBSD32 1843 if (w->w_req->flags & SCTL_MASK32) { 1844 struct ifa_msghdrl32 *ifam32; 1845 1846 ifam32 = (struct ifa_msghdrl32 *)ifam; 1847 ifam32->ifam_addrs = info->rti_addrs; 1848 ifam32->ifam_flags = ifa->ifa_flags; 1849 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1850 ifam32->_ifam_spare1 = 0; 1851 ifam32->ifam_len = sizeof(*ifam32); 1852 ifam32->ifam_data_off = 1853 offsetof(struct ifa_msghdrl32, ifam_data); 1854 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1855 ifd = &ifam32->ifam_data; 1856 } else 1857 #endif 1858 { 1859 ifam->ifam_addrs = info->rti_addrs; 1860 ifam->ifam_flags = ifa->ifa_flags; 1861 ifam->ifam_index = ifa->ifa_ifp->if_index; 1862 ifam->_ifam_spare1 = 0; 1863 ifam->ifam_len = sizeof(*ifam); 1864 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1865 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1866 ifd = &ifam->ifam_data; 1867 } 1868 1869 bzero(ifd, sizeof(*ifd)); 1870 ifd->ifi_datalen = sizeof(struct if_data); 1871 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1872 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1873 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1874 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1875 1876 /* Fixup if_data carp(4) vhid. */ 1877 if (carp_get_vhid_p != NULL) 1878 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1879 1880 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1881 } 1882 1883 static int 1884 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1885 struct walkarg *w, int len) 1886 { 1887 struct ifa_msghdr *ifam; 1888 1889 ifam = (struct ifa_msghdr *)w->w_tmem; 1890 ifam->ifam_addrs = info->rti_addrs; 1891 ifam->ifam_flags = ifa->ifa_flags; 1892 ifam->ifam_index = ifa->ifa_ifp->if_index; 1893 ifam->_ifam_spare1 = 0; 1894 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1895 1896 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1897 } 1898 1899 static int 1900 sysctl_iflist(int af, struct walkarg *w) 1901 { 1902 struct ifnet *ifp; 1903 struct ifaddr *ifa; 1904 struct if_data ifd; 1905 struct rt_addrinfo info; 1906 int len, error = 0; 1907 struct sockaddr_storage ss; 1908 1909 bzero((caddr_t)&info, sizeof(info)); 1910 bzero(&ifd, sizeof(ifd)); 1911 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1912 if (w->w_arg && w->w_arg != ifp->if_index) 1913 continue; 1914 if_data_copy(ifp, &ifd); 1915 ifa = ifp->if_addr; 1916 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1917 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1918 if (error != 0) 1919 goto done; 1920 info.rti_info[RTAX_IFP] = NULL; 1921 if (w->w_req && w->w_tmem) { 1922 if (w->w_op == NET_RT_IFLISTL) 1923 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 1924 len); 1925 else 1926 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 1927 len); 1928 if (error) 1929 goto done; 1930 } 1931 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 1932 if (af && af != ifa->ifa_addr->sa_family) 1933 continue; 1934 if (prison_if(w->w_req->td->td_ucred, 1935 ifa->ifa_addr) != 0) 1936 continue; 1937 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1938 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1939 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1940 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1941 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1942 if (error != 0) 1943 goto done; 1944 if (w->w_req && w->w_tmem) { 1945 if (w->w_op == NET_RT_IFLISTL) 1946 error = sysctl_iflist_ifaml(ifa, &info, 1947 w, len); 1948 else 1949 error = sysctl_iflist_ifam(ifa, &info, 1950 w, len); 1951 if (error) 1952 goto done; 1953 } 1954 } 1955 info.rti_info[RTAX_IFA] = NULL; 1956 info.rti_info[RTAX_NETMASK] = NULL; 1957 info.rti_info[RTAX_BRD] = NULL; 1958 } 1959 done: 1960 return (error); 1961 } 1962 1963 static int 1964 sysctl_ifmalist(int af, struct walkarg *w) 1965 { 1966 struct rt_addrinfo info; 1967 struct ifaddr *ifa; 1968 struct ifmultiaddr *ifma; 1969 struct ifnet *ifp; 1970 int error, len; 1971 1972 NET_EPOCH_ASSERT(); 1973 1974 error = 0; 1975 bzero((caddr_t)&info, sizeof(info)); 1976 1977 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1978 if (w->w_arg && w->w_arg != ifp->if_index) 1979 continue; 1980 ifa = ifp->if_addr; 1981 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1982 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1983 if (af && af != ifma->ifma_addr->sa_family) 1984 continue; 1985 if (prison_if(w->w_req->td->td_ucred, 1986 ifma->ifma_addr) != 0) 1987 continue; 1988 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1989 info.rti_info[RTAX_GATEWAY] = 1990 (ifma->ifma_addr->sa_family != AF_LINK) ? 1991 ifma->ifma_lladdr : NULL; 1992 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1993 if (error != 0) 1994 break; 1995 if (w->w_req && w->w_tmem) { 1996 struct ifma_msghdr *ifmam; 1997 1998 ifmam = (struct ifma_msghdr *)w->w_tmem; 1999 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 2000 ifmam->ifmam_flags = 0; 2001 ifmam->ifmam_addrs = info.rti_addrs; 2002 ifmam->_ifmam_spare1 = 0; 2003 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 2004 if (error != 0) 2005 break; 2006 } 2007 } 2008 if (error != 0) 2009 break; 2010 } 2011 return (error); 2012 } 2013 2014 static int 2015 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2016 { 2017 RIB_RLOCK_TRACKER; 2018 struct epoch_tracker et; 2019 int *name = (int *)arg1; 2020 u_int namelen = arg2; 2021 struct rib_head *rnh = NULL; /* silence compiler. */ 2022 int i, lim, error = EINVAL; 2023 int fib = 0; 2024 u_char af; 2025 struct walkarg w; 2026 2027 name ++; 2028 namelen--; 2029 if (req->newptr) 2030 return (EPERM); 2031 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP) { 2032 if (namelen == 3) 2033 fib = req->td->td_proc->p_fibnum; 2034 else if (namelen == 4) 2035 fib = (name[3] == RT_ALL_FIBS) ? 2036 req->td->td_proc->p_fibnum : name[3]; 2037 else 2038 return ((namelen < 3) ? EISDIR : ENOTDIR); 2039 if (fib < 0 || fib >= rt_numfibs) 2040 return (EINVAL); 2041 } else if (namelen != 3) 2042 return ((namelen < 3) ? EISDIR : ENOTDIR); 2043 af = name[0]; 2044 if (af > AF_MAX) 2045 return (EINVAL); 2046 bzero(&w, sizeof(w)); 2047 w.w_op = name[1]; 2048 w.w_arg = name[2]; 2049 w.w_req = req; 2050 2051 error = sysctl_wire_old_buffer(req, 0); 2052 if (error) 2053 return (error); 2054 2055 /* 2056 * Allocate reply buffer in advance. 2057 * All rtsock messages has maximum length of u_short. 2058 */ 2059 w.w_tmemsize = 65536; 2060 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2061 2062 NET_EPOCH_ENTER(et); 2063 switch (w.w_op) { 2064 case NET_RT_DUMP: 2065 case NET_RT_FLAGS: 2066 if (af == 0) { /* dump all tables */ 2067 i = 1; 2068 lim = AF_MAX; 2069 } else /* dump only one table */ 2070 i = lim = af; 2071 2072 /* 2073 * take care of llinfo entries, the caller must 2074 * specify an AF 2075 */ 2076 if (w.w_op == NET_RT_FLAGS && 2077 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2078 if (af != 0) 2079 error = lltable_sysctl_dumparp(af, w.w_req); 2080 else 2081 error = EINVAL; 2082 break; 2083 } 2084 /* 2085 * take care of routing entries 2086 */ 2087 for (error = 0; error == 0 && i <= lim; i++) { 2088 rnh = rt_tables_get_rnh(fib, i); 2089 if (rnh != NULL) { 2090 RIB_RLOCK(rnh); 2091 error = rnh->rnh_walktree(&rnh->head, 2092 sysctl_dumpentry, &w); 2093 RIB_RUNLOCK(rnh); 2094 } else if (af != 0) 2095 error = EAFNOSUPPORT; 2096 } 2097 break; 2098 case NET_RT_NHOP: 2099 /* Allow dumping one specific af/fib at a time */ 2100 if (namelen < 4) { 2101 error = EINVAL; 2102 break; 2103 } 2104 fib = name[3]; 2105 if (fib < 0 || fib > rt_numfibs) { 2106 error = EINVAL; 2107 break; 2108 } 2109 rnh = rt_tables_get_rnh(fib, af); 2110 if (rnh == NULL) { 2111 error = EAFNOSUPPORT; 2112 break; 2113 } 2114 if (w.w_op == NET_RT_NHOP) 2115 error = nhops_dump_sysctl(rnh, w.w_req); 2116 break; 2117 case NET_RT_IFLIST: 2118 case NET_RT_IFLISTL: 2119 error = sysctl_iflist(af, &w); 2120 break; 2121 2122 case NET_RT_IFMALIST: 2123 error = sysctl_ifmalist(af, &w); 2124 break; 2125 } 2126 NET_EPOCH_EXIT(et); 2127 2128 free(w.w_tmem, M_TEMP); 2129 return (error); 2130 } 2131 2132 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2133 sysctl_rtsock, "Return route tables and interface/address lists"); 2134 2135 /* 2136 * Definitions of protocols supported in the ROUTE domain. 2137 */ 2138 2139 static struct domain routedomain; /* or at least forward */ 2140 2141 static struct protosw routesw[] = { 2142 { 2143 .pr_type = SOCK_RAW, 2144 .pr_domain = &routedomain, 2145 .pr_flags = PR_ATOMIC|PR_ADDR, 2146 .pr_output = route_output, 2147 .pr_ctlinput = raw_ctlinput, 2148 .pr_init = raw_init, 2149 .pr_usrreqs = &route_usrreqs 2150 } 2151 }; 2152 2153 static struct domain routedomain = { 2154 .dom_family = PF_ROUTE, 2155 .dom_name = "route", 2156 .dom_protosw = routesw, 2157 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 2158 }; 2159 2160 VNET_DOMAIN_SET(route); 2161