1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_compat.h" 33 #include "opt_mpath.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 37 #include <sys/param.h> 38 #include <sys/jail.h> 39 #include <sys/kernel.h> 40 #include <sys/domain.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/rwlock.h> 48 #include <sys/signalvar.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/systm.h> 53 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_dl.h> 57 #include <net/if_llatbl.h> 58 #include <net/if_types.h> 59 #include <net/netisr.h> 60 #include <net/raw_cb.h> 61 #include <net/route.h> 62 #include <net/vnet.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 #include <netinet/ip_carp.h> 67 #ifdef INET6 68 #include <netinet6/ip6_var.h> 69 #include <netinet6/scope6_var.h> 70 #endif 71 72 #ifdef COMPAT_FREEBSD32 73 #include <sys/mount.h> 74 #include <compat/freebsd32/freebsd32.h> 75 76 struct if_msghdr32 { 77 uint16_t ifm_msglen; 78 uint8_t ifm_version; 79 uint8_t ifm_type; 80 int32_t ifm_addrs; 81 int32_t ifm_flags; 82 uint16_t ifm_index; 83 struct if_data ifm_data; 84 }; 85 86 struct if_msghdrl32 { 87 uint16_t ifm_msglen; 88 uint8_t ifm_version; 89 uint8_t ifm_type; 90 int32_t ifm_addrs; 91 int32_t ifm_flags; 92 uint16_t ifm_index; 93 uint16_t _ifm_spare1; 94 uint16_t ifm_len; 95 uint16_t ifm_data_off; 96 struct if_data ifm_data; 97 }; 98 99 struct ifa_msghdrl32 { 100 uint16_t ifam_msglen; 101 uint8_t ifam_version; 102 uint8_t ifam_type; 103 int32_t ifam_addrs; 104 int32_t ifam_flags; 105 uint16_t ifam_index; 106 uint16_t _ifam_spare1; 107 uint16_t ifam_len; 108 uint16_t ifam_data_off; 109 int32_t ifam_metric; 110 struct if_data ifam_data; 111 }; 112 #endif /* COMPAT_FREEBSD32 */ 113 114 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 115 116 /* NB: these are not modified */ 117 static struct sockaddr route_src = { 2, PF_ROUTE, }; 118 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 119 120 /* These are external hooks for CARP. */ 121 int (*carp_get_vhid_p)(struct ifaddr *); 122 123 /* 124 * Used by rtsock/raw_input callback code to decide whether to filter the update 125 * notification to a socket bound to a particular FIB. 126 */ 127 #define RTS_FILTER_FIB M_PROTO8 128 129 typedef struct { 130 int ip_count; /* attached w/ AF_INET */ 131 int ip6_count; /* attached w/ AF_INET6 */ 132 int any_count; /* total attached */ 133 } route_cb_t; 134 static VNET_DEFINE(route_cb_t, route_cb); 135 #define V_route_cb VNET(route_cb) 136 137 struct mtx rtsock_mtx; 138 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 139 140 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 141 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 142 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 143 144 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 145 146 struct walkarg { 147 int w_tmemsize; 148 int w_op, w_arg; 149 caddr_t w_tmem; 150 struct sysctl_req *w_req; 151 }; 152 153 static void rts_input(struct mbuf *m); 154 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 155 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 156 struct walkarg *w, int *plen); 157 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 158 struct rt_addrinfo *rtinfo); 159 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 160 static int sysctl_iflist(int af, struct walkarg *w); 161 static int sysctl_ifmalist(int af, struct walkarg *w); 162 static int route_output(struct mbuf *m, struct socket *so); 163 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 164 static void rt_dispatch(struct mbuf *, sa_family_t); 165 static struct sockaddr *rtsock_fix_netmask(struct sockaddr *dst, 166 struct sockaddr *smask, struct sockaddr_storage *dmask); 167 168 static struct netisr_handler rtsock_nh = { 169 .nh_name = "rtsock", 170 .nh_handler = rts_input, 171 .nh_proto = NETISR_ROUTE, 172 .nh_policy = NETISR_POLICY_SOURCE, 173 }; 174 175 static int 176 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 177 { 178 int error, qlimit; 179 180 netisr_getqlimit(&rtsock_nh, &qlimit); 181 error = sysctl_handle_int(oidp, &qlimit, 0, req); 182 if (error || !req->newptr) 183 return (error); 184 if (qlimit < 1) 185 return (EINVAL); 186 return (netisr_setqlimit(&rtsock_nh, qlimit)); 187 } 188 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 189 0, 0, sysctl_route_netisr_maxqlen, "I", 190 "maximum routing socket dispatch queue length"); 191 192 static void 193 rts_init(void) 194 { 195 int tmp; 196 197 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 198 rtsock_nh.nh_qlimit = tmp; 199 netisr_register(&rtsock_nh); 200 } 201 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 202 203 static int 204 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 205 struct rawcb *rp) 206 { 207 int fibnum; 208 209 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 210 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 211 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 212 213 /* No filtering requested. */ 214 if ((m->m_flags & RTS_FILTER_FIB) == 0) 215 return (0); 216 217 /* Check if it is a rts and the fib matches the one of the socket. */ 218 fibnum = M_GETFIB(m); 219 if (proto->sp_family != PF_ROUTE || 220 rp->rcb_socket == NULL || 221 rp->rcb_socket->so_fibnum == fibnum) 222 return (0); 223 224 /* Filtering requested and no match, the socket shall be skipped. */ 225 return (1); 226 } 227 228 static void 229 rts_input(struct mbuf *m) 230 { 231 struct sockproto route_proto; 232 unsigned short *family; 233 struct m_tag *tag; 234 235 route_proto.sp_family = PF_ROUTE; 236 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 237 if (tag != NULL) { 238 family = (unsigned short *)(tag + 1); 239 route_proto.sp_protocol = *family; 240 m_tag_delete(m, tag); 241 } else 242 route_proto.sp_protocol = 0; 243 244 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 245 } 246 247 /* 248 * It really doesn't make any sense at all for this code to share much 249 * with raw_usrreq.c, since its functionality is so restricted. XXX 250 */ 251 static void 252 rts_abort(struct socket *so) 253 { 254 255 raw_usrreqs.pru_abort(so); 256 } 257 258 static void 259 rts_close(struct socket *so) 260 { 261 262 raw_usrreqs.pru_close(so); 263 } 264 265 /* pru_accept is EOPNOTSUPP */ 266 267 static int 268 rts_attach(struct socket *so, int proto, struct thread *td) 269 { 270 struct rawcb *rp; 271 int error; 272 273 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 274 275 /* XXX */ 276 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 277 if (rp == NULL) 278 return ENOBUFS; 279 280 so->so_pcb = (caddr_t)rp; 281 so->so_fibnum = td->td_proc->p_fibnum; 282 error = raw_attach(so, proto); 283 rp = sotorawcb(so); 284 if (error) { 285 so->so_pcb = NULL; 286 free(rp, M_PCB); 287 return error; 288 } 289 RTSOCK_LOCK(); 290 switch(rp->rcb_proto.sp_protocol) { 291 case AF_INET: 292 V_route_cb.ip_count++; 293 break; 294 case AF_INET6: 295 V_route_cb.ip6_count++; 296 break; 297 } 298 V_route_cb.any_count++; 299 RTSOCK_UNLOCK(); 300 soisconnected(so); 301 so->so_options |= SO_USELOOPBACK; 302 return 0; 303 } 304 305 static int 306 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 307 { 308 309 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 310 } 311 312 static int 313 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 314 { 315 316 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 317 } 318 319 /* pru_connect2 is EOPNOTSUPP */ 320 /* pru_control is EOPNOTSUPP */ 321 322 static void 323 rts_detach(struct socket *so) 324 { 325 struct rawcb *rp = sotorawcb(so); 326 327 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 328 329 RTSOCK_LOCK(); 330 switch(rp->rcb_proto.sp_protocol) { 331 case AF_INET: 332 V_route_cb.ip_count--; 333 break; 334 case AF_INET6: 335 V_route_cb.ip6_count--; 336 break; 337 } 338 V_route_cb.any_count--; 339 RTSOCK_UNLOCK(); 340 raw_usrreqs.pru_detach(so); 341 } 342 343 static int 344 rts_disconnect(struct socket *so) 345 { 346 347 return (raw_usrreqs.pru_disconnect(so)); 348 } 349 350 /* pru_listen is EOPNOTSUPP */ 351 352 static int 353 rts_peeraddr(struct socket *so, struct sockaddr **nam) 354 { 355 356 return (raw_usrreqs.pru_peeraddr(so, nam)); 357 } 358 359 /* pru_rcvd is EOPNOTSUPP */ 360 /* pru_rcvoob is EOPNOTSUPP */ 361 362 static int 363 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 364 struct mbuf *control, struct thread *td) 365 { 366 367 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 368 } 369 370 /* pru_sense is null */ 371 372 static int 373 rts_shutdown(struct socket *so) 374 { 375 376 return (raw_usrreqs.pru_shutdown(so)); 377 } 378 379 static int 380 rts_sockaddr(struct socket *so, struct sockaddr **nam) 381 { 382 383 return (raw_usrreqs.pru_sockaddr(so, nam)); 384 } 385 386 static struct pr_usrreqs route_usrreqs = { 387 .pru_abort = rts_abort, 388 .pru_attach = rts_attach, 389 .pru_bind = rts_bind, 390 .pru_connect = rts_connect, 391 .pru_detach = rts_detach, 392 .pru_disconnect = rts_disconnect, 393 .pru_peeraddr = rts_peeraddr, 394 .pru_send = rts_send, 395 .pru_shutdown = rts_shutdown, 396 .pru_sockaddr = rts_sockaddr, 397 .pru_close = rts_close, 398 }; 399 400 #ifndef _SOCKADDR_UNION_DEFINED 401 #define _SOCKADDR_UNION_DEFINED 402 /* 403 * The union of all possible address formats we handle. 404 */ 405 union sockaddr_union { 406 struct sockaddr sa; 407 struct sockaddr_in sin; 408 struct sockaddr_in6 sin6; 409 }; 410 #endif /* _SOCKADDR_UNION_DEFINED */ 411 412 static int 413 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 414 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 415 { 416 417 /* First, see if the returned address is part of the jail. */ 418 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 419 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 420 return (0); 421 } 422 423 switch (info->rti_info[RTAX_DST]->sa_family) { 424 #ifdef INET 425 case AF_INET: 426 { 427 struct in_addr ia; 428 struct ifaddr *ifa; 429 int found; 430 431 found = 0; 432 /* 433 * Try to find an address on the given outgoing interface 434 * that belongs to the jail. 435 */ 436 IF_ADDR_RLOCK(ifp); 437 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 438 struct sockaddr *sa; 439 sa = ifa->ifa_addr; 440 if (sa->sa_family != AF_INET) 441 continue; 442 ia = ((struct sockaddr_in *)sa)->sin_addr; 443 if (prison_check_ip4(cred, &ia) == 0) { 444 found = 1; 445 break; 446 } 447 } 448 IF_ADDR_RUNLOCK(ifp); 449 if (!found) { 450 /* 451 * As a last resort return the 'default' jail address. 452 */ 453 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 454 sin_addr; 455 if (prison_get_ip4(cred, &ia) != 0) 456 return (ESRCH); 457 } 458 bzero(&saun->sin, sizeof(struct sockaddr_in)); 459 saun->sin.sin_len = sizeof(struct sockaddr_in); 460 saun->sin.sin_family = AF_INET; 461 saun->sin.sin_addr.s_addr = ia.s_addr; 462 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 463 break; 464 } 465 #endif 466 #ifdef INET6 467 case AF_INET6: 468 { 469 struct in6_addr ia6; 470 struct ifaddr *ifa; 471 int found; 472 473 found = 0; 474 /* 475 * Try to find an address on the given outgoing interface 476 * that belongs to the jail. 477 */ 478 IF_ADDR_RLOCK(ifp); 479 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 480 struct sockaddr *sa; 481 sa = ifa->ifa_addr; 482 if (sa->sa_family != AF_INET6) 483 continue; 484 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 485 &ia6, sizeof(struct in6_addr)); 486 if (prison_check_ip6(cred, &ia6) == 0) { 487 found = 1; 488 break; 489 } 490 } 491 IF_ADDR_RUNLOCK(ifp); 492 if (!found) { 493 /* 494 * As a last resort return the 'default' jail address. 495 */ 496 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 497 sin6_addr; 498 if (prison_get_ip6(cred, &ia6) != 0) 499 return (ESRCH); 500 } 501 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 502 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 503 saun->sin6.sin6_family = AF_INET6; 504 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 505 if (sa6_recoverscope(&saun->sin6) != 0) 506 return (ESRCH); 507 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 508 break; 509 } 510 #endif 511 default: 512 return (ESRCH); 513 } 514 return (0); 515 } 516 517 /*ARGSUSED*/ 518 static int 519 route_output(struct mbuf *m, struct socket *so) 520 { 521 struct rt_msghdr *rtm = NULL; 522 struct rtentry *rt = NULL; 523 struct radix_node_head *rnh; 524 struct rt_addrinfo info; 525 struct sockaddr_storage ss; 526 #ifdef INET6 527 struct sockaddr_in6 *sin6; 528 int i, rti_need_deembed = 0; 529 #endif 530 int alloc_len = 0, len, error = 0, fibnum; 531 struct ifnet *ifp = NULL; 532 union sockaddr_union saun; 533 sa_family_t saf = AF_UNSPEC; 534 struct rawcb *rp = NULL; 535 struct walkarg w; 536 537 fibnum = so->so_fibnum; 538 539 #define senderr(e) { error = e; goto flush;} 540 if (m == NULL || ((m->m_len < sizeof(long)) && 541 (m = m_pullup(m, sizeof(long))) == NULL)) 542 return (ENOBUFS); 543 if ((m->m_flags & M_PKTHDR) == 0) 544 panic("route_output"); 545 len = m->m_pkthdr.len; 546 if (len < sizeof(*rtm) || 547 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 548 senderr(EINVAL); 549 550 /* 551 * Most of current messages are in range 200-240 bytes, 552 * minimize possible re-allocation on reply using larger size 553 * buffer aligned on 1k boundaty. 554 */ 555 alloc_len = roundup2(len, 1024); 556 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 557 senderr(ENOBUFS); 558 559 m_copydata(m, 0, len, (caddr_t)rtm); 560 bzero(&info, sizeof(info)); 561 bzero(&w, sizeof(w)); 562 563 if (rtm->rtm_version != RTM_VERSION) { 564 /* Do not touch message since format is unknown */ 565 free(rtm, M_TEMP); 566 rtm = NULL; 567 senderr(EPROTONOSUPPORT); 568 } 569 570 /* 571 * Starting from here, it is possible 572 * to alter original message and insert 573 * caller PID and error value. 574 */ 575 576 rtm->rtm_pid = curproc->p_pid; 577 info.rti_addrs = rtm->rtm_addrs; 578 579 info.rti_mflags = rtm->rtm_inits; 580 info.rti_rmx = &rtm->rtm_rmx; 581 582 /* 583 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 584 * link-local address because rtrequest requires addresses with 585 * embedded scope id. 586 */ 587 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) 588 senderr(EINVAL); 589 590 info.rti_flags = rtm->rtm_flags; 591 if (info.rti_info[RTAX_DST] == NULL || 592 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 593 (info.rti_info[RTAX_GATEWAY] != NULL && 594 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 595 senderr(EINVAL); 596 saf = info.rti_info[RTAX_DST]->sa_family; 597 /* 598 * Verify that the caller has the appropriate privilege; RTM_GET 599 * is the only operation the non-superuser is allowed. 600 */ 601 if (rtm->rtm_type != RTM_GET) { 602 error = priv_check(curthread, PRIV_NET_ROUTE); 603 if (error) 604 senderr(error); 605 } 606 607 /* 608 * The given gateway address may be an interface address. 609 * For example, issuing a "route change" command on a route 610 * entry that was created from a tunnel, and the gateway 611 * address given is the local end point. In this case the 612 * RTF_GATEWAY flag must be cleared or the destination will 613 * not be reachable even though there is no error message. 614 */ 615 if (info.rti_info[RTAX_GATEWAY] != NULL && 616 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 617 struct route gw_ro; 618 619 bzero(&gw_ro, sizeof(gw_ro)); 620 gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY]; 621 rtalloc_ign_fib(&gw_ro, 0, fibnum); 622 /* 623 * A host route through the loopback interface is 624 * installed for each interface adddress. In pre 8.0 625 * releases the interface address of a PPP link type 626 * is not reachable locally. This behavior is fixed as 627 * part of the new L2/L3 redesign and rewrite work. The 628 * signature of this interface address route is the 629 * AF_LINK sa_family type of the rt_gateway, and the 630 * rt_ifp has the IFF_LOOPBACK flag set. 631 */ 632 if (gw_ro.ro_rt != NULL && 633 gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK && 634 gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) { 635 info.rti_flags &= ~RTF_GATEWAY; 636 info.rti_flags |= RTF_GWFLAG_COMPAT; 637 } 638 if (gw_ro.ro_rt != NULL) 639 RTFREE(gw_ro.ro_rt); 640 } 641 642 switch (rtm->rtm_type) { 643 struct rtentry *saved_nrt; 644 645 case RTM_ADD: 646 case RTM_CHANGE: 647 if (info.rti_info[RTAX_GATEWAY] == NULL) 648 senderr(EINVAL); 649 saved_nrt = NULL; 650 651 /* support for new ARP code */ 652 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 653 (rtm->rtm_flags & RTF_LLDATA) != 0) { 654 error = lla_rt_output(rtm, &info); 655 #ifdef INET6 656 if (error == 0) 657 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 658 #endif 659 break; 660 } 661 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt, 662 fibnum); 663 if (error == 0 && saved_nrt != NULL) { 664 #ifdef INET6 665 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 666 #endif 667 RT_LOCK(saved_nrt); 668 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 669 RT_REMREF(saved_nrt); 670 RT_UNLOCK(saved_nrt); 671 } 672 break; 673 674 case RTM_DELETE: 675 saved_nrt = NULL; 676 /* support for new ARP code */ 677 if (info.rti_info[RTAX_GATEWAY] && 678 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 679 (rtm->rtm_flags & RTF_LLDATA) != 0) { 680 error = lla_rt_output(rtm, &info); 681 #ifdef INET6 682 if (error == 0) 683 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 684 #endif 685 break; 686 } 687 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum); 688 if (error == 0) { 689 RT_LOCK(saved_nrt); 690 rt = saved_nrt; 691 goto report; 692 } 693 #ifdef INET6 694 /* rt_msg2() will not be used when RTM_DELETE fails. */ 695 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 696 #endif 697 break; 698 699 case RTM_GET: 700 rnh = rt_tables_get_rnh(fibnum, saf); 701 if (rnh == NULL) 702 senderr(EAFNOSUPPORT); 703 704 RADIX_NODE_HEAD_RLOCK(rnh); 705 706 if (info.rti_info[RTAX_NETMASK] == NULL && 707 rtm->rtm_type == RTM_GET) { 708 /* 709 * Provide logest prefix match for 710 * address lookup (no mask). 711 * 'route -n get addr' 712 */ 713 rt = (struct rtentry *) rnh->rnh_matchaddr( 714 info.rti_info[RTAX_DST], rnh); 715 } else 716 rt = (struct rtentry *) rnh->rnh_lookup( 717 info.rti_info[RTAX_DST], 718 info.rti_info[RTAX_NETMASK], rnh); 719 720 if (rt == NULL) { 721 RADIX_NODE_HEAD_RUNLOCK(rnh); 722 senderr(ESRCH); 723 } 724 #ifdef RADIX_MPATH 725 /* 726 * for RTM_CHANGE/LOCK, if we got multipath routes, 727 * we require users to specify a matching RTAX_GATEWAY. 728 * 729 * for RTM_GET, gate is optional even with multipath. 730 * if gate == NULL the first match is returned. 731 * (no need to call rt_mpath_matchgate if gate == NULL) 732 */ 733 if (rn_mpath_capable(rnh) && 734 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 735 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 736 if (!rt) { 737 RADIX_NODE_HEAD_RUNLOCK(rnh); 738 senderr(ESRCH); 739 } 740 } 741 #endif 742 /* 743 * If performing proxied L2 entry insertion, and 744 * the actual PPP host entry is found, perform 745 * another search to retrieve the prefix route of 746 * the local end point of the PPP link. 747 */ 748 if (rtm->rtm_flags & RTF_ANNOUNCE) { 749 struct sockaddr laddr; 750 751 if (rt->rt_ifp != NULL && 752 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 753 struct ifaddr *ifa; 754 755 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1); 756 if (ifa != NULL) 757 rt_maskedcopy(ifa->ifa_addr, 758 &laddr, 759 ifa->ifa_netmask); 760 } else 761 rt_maskedcopy(rt->rt_ifa->ifa_addr, 762 &laddr, 763 rt->rt_ifa->ifa_netmask); 764 /* 765 * refactor rt and no lock operation necessary 766 */ 767 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh); 768 if (rt == NULL) { 769 RADIX_NODE_HEAD_RUNLOCK(rnh); 770 senderr(ESRCH); 771 } 772 } 773 RT_LOCK(rt); 774 RT_ADDREF(rt); 775 RADIX_NODE_HEAD_RUNLOCK(rnh); 776 777 report: 778 RT_LOCK_ASSERT(rt); 779 if ((rt->rt_flags & RTF_HOST) == 0 780 ? jailed_without_vnet(curthread->td_ucred) 781 : prison_if(curthread->td_ucred, 782 rt_key(rt)) != 0) { 783 RT_UNLOCK(rt); 784 senderr(ESRCH); 785 } 786 info.rti_info[RTAX_DST] = rt_key(rt); 787 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 788 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 789 rt_mask(rt), &ss); 790 info.rti_info[RTAX_GENMASK] = 0; 791 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 792 ifp = rt->rt_ifp; 793 if (ifp) { 794 info.rti_info[RTAX_IFP] = 795 ifp->if_addr->ifa_addr; 796 error = rtm_get_jailed(&info, ifp, rt, 797 &saun, curthread->td_ucred); 798 if (error != 0) { 799 RT_UNLOCK(rt); 800 senderr(error); 801 } 802 if (ifp->if_flags & IFF_POINTOPOINT) 803 info.rti_info[RTAX_BRD] = 804 rt->rt_ifa->ifa_dstaddr; 805 rtm->rtm_index = ifp->if_index; 806 } else { 807 info.rti_info[RTAX_IFP] = NULL; 808 info.rti_info[RTAX_IFA] = NULL; 809 } 810 } else if ((ifp = rt->rt_ifp) != NULL) { 811 rtm->rtm_index = ifp->if_index; 812 } 813 814 /* Check if we need to realloc storage */ 815 rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len); 816 if (len > alloc_len) { 817 struct rt_msghdr *new_rtm; 818 new_rtm = malloc(len, M_TEMP, M_NOWAIT); 819 if (new_rtm == NULL) { 820 RT_UNLOCK(rt); 821 senderr(ENOBUFS); 822 } 823 bcopy(rtm, new_rtm, rtm->rtm_msglen); 824 free(rtm, M_TEMP); 825 rtm = new_rtm; 826 alloc_len = len; 827 } 828 829 w.w_tmem = (caddr_t)rtm; 830 w.w_tmemsize = alloc_len; 831 rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len); 832 833 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 834 rtm->rtm_flags = RTF_GATEWAY | 835 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 836 else 837 rtm->rtm_flags = rt->rt_flags; 838 rt_getmetrics(rt, &rtm->rtm_rmx); 839 rtm->rtm_addrs = info.rti_addrs; 840 841 RT_UNLOCK(rt); 842 break; 843 844 default: 845 senderr(EOPNOTSUPP); 846 } 847 848 flush: 849 if (rt != NULL) 850 RTFREE(rt); 851 /* 852 * Check to see if we don't want our own messages. 853 */ 854 if ((so->so_options & SO_USELOOPBACK) == 0) { 855 if (V_route_cb.any_count <= 1) { 856 if (rtm != NULL) 857 free(rtm, M_TEMP); 858 m_freem(m); 859 return (error); 860 } 861 /* There is another listener, so construct message */ 862 rp = sotorawcb(so); 863 } 864 865 if (rtm != NULL) { 866 #ifdef INET6 867 if (rti_need_deembed) { 868 /* sin6_scope_id is recovered before sending rtm. */ 869 sin6 = (struct sockaddr_in6 *)&ss; 870 for (i = 0; i < RTAX_MAX; i++) { 871 if (info.rti_info[i] == NULL) 872 continue; 873 if (info.rti_info[i]->sa_family != AF_INET6) 874 continue; 875 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 876 if (sa6_recoverscope(sin6) == 0) 877 bcopy(sin6, info.rti_info[i], 878 sizeof(*sin6)); 879 } 880 } 881 #endif 882 if (error != 0) 883 rtm->rtm_errno = error; 884 else 885 rtm->rtm_flags |= RTF_DONE; 886 887 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 888 if (m->m_pkthdr.len < rtm->rtm_msglen) { 889 m_freem(m); 890 m = NULL; 891 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 892 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 893 894 free(rtm, M_TEMP); 895 } 896 if (m != NULL) { 897 M_SETFIB(m, fibnum); 898 m->m_flags |= RTS_FILTER_FIB; 899 if (rp) { 900 /* 901 * XXX insure we don't get a copy by 902 * invalidating our protocol 903 */ 904 unsigned short family = rp->rcb_proto.sp_family; 905 rp->rcb_proto.sp_family = 0; 906 rt_dispatch(m, saf); 907 rp->rcb_proto.sp_family = family; 908 } else 909 rt_dispatch(m, saf); 910 } 911 912 return (error); 913 } 914 915 static void 916 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 917 { 918 919 bzero(out, sizeof(*out)); 920 out->rmx_mtu = rt->rt_mtu; 921 out->rmx_weight = rt->rt_weight; 922 out->rmx_pksent = counter_u64_fetch(rt->rt_pksent); 923 /* Kernel -> userland timebase conversion. */ 924 out->rmx_expire = rt->rt_expire ? 925 rt->rt_expire - time_uptime + time_second : 0; 926 } 927 928 /* 929 * Extract the addresses of the passed sockaddrs. 930 * Do a little sanity checking so as to avoid bad memory references. 931 * This data is derived straight from userland. 932 */ 933 static int 934 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 935 { 936 struct sockaddr *sa; 937 int i; 938 939 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 940 if ((rtinfo->rti_addrs & (1 << i)) == 0) 941 continue; 942 sa = (struct sockaddr *)cp; 943 /* 944 * It won't fit. 945 */ 946 if (cp + sa->sa_len > cplim) 947 return (EINVAL); 948 /* 949 * there are no more.. quit now 950 * If there are more bits, they are in error. 951 * I've seen this. route(1) can evidently generate these. 952 * This causes kernel to core dump. 953 * for compatibility, If we see this, point to a safe address. 954 */ 955 if (sa->sa_len == 0) { 956 rtinfo->rti_info[i] = &sa_zero; 957 return (0); /* should be EINVAL but for compat */ 958 } 959 /* accept it */ 960 #ifdef INET6 961 if (sa->sa_family == AF_INET6) 962 sa6_embedscope((struct sockaddr_in6 *)sa, 963 V_ip6_use_defzone); 964 #endif 965 rtinfo->rti_info[i] = sa; 966 cp += SA_SIZE(sa); 967 } 968 return (0); 969 } 970 971 /* 972 * Fill in @dmask with valid netmask leaving original @smask 973 * intact. Mostly used with radix netmasks. 974 */ 975 static struct sockaddr * 976 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask, 977 struct sockaddr_storage *dmask) 978 { 979 if (dst == NULL || smask == NULL) 980 return (NULL); 981 982 memset(dmask, 0, dst->sa_len); 983 memcpy(dmask, smask, smask->sa_len); 984 dmask->ss_len = dst->sa_len; 985 dmask->ss_family = dst->sa_family; 986 987 return ((struct sockaddr *)dmask); 988 } 989 990 /* 991 * Writes information related to @rtinfo object to newly-allocated mbuf. 992 * Assumes MCLBYTES is enough to construct any message. 993 * Used for OS notifications of vaious events (if/ifa announces,etc) 994 * 995 * Returns allocated mbuf or NULL on failure. 996 */ 997 static struct mbuf * 998 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 999 { 1000 struct rt_msghdr *rtm; 1001 struct mbuf *m; 1002 int i; 1003 struct sockaddr *sa; 1004 #ifdef INET6 1005 struct sockaddr_storage ss; 1006 struct sockaddr_in6 *sin6; 1007 #endif 1008 int len, dlen; 1009 1010 switch (type) { 1011 1012 case RTM_DELADDR: 1013 case RTM_NEWADDR: 1014 len = sizeof(struct ifa_msghdr); 1015 break; 1016 1017 case RTM_DELMADDR: 1018 case RTM_NEWMADDR: 1019 len = sizeof(struct ifma_msghdr); 1020 break; 1021 1022 case RTM_IFINFO: 1023 len = sizeof(struct if_msghdr); 1024 break; 1025 1026 case RTM_IFANNOUNCE: 1027 case RTM_IEEE80211: 1028 len = sizeof(struct if_announcemsghdr); 1029 break; 1030 1031 default: 1032 len = sizeof(struct rt_msghdr); 1033 } 1034 1035 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1036 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1037 if (len > MHLEN) 1038 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1039 else 1040 m = m_gethdr(M_NOWAIT, MT_DATA); 1041 if (m == NULL) 1042 return (m); 1043 1044 m->m_pkthdr.len = m->m_len = len; 1045 rtm = mtod(m, struct rt_msghdr *); 1046 bzero((caddr_t)rtm, len); 1047 for (i = 0; i < RTAX_MAX; i++) { 1048 if ((sa = rtinfo->rti_info[i]) == NULL) 1049 continue; 1050 rtinfo->rti_addrs |= (1 << i); 1051 dlen = SA_SIZE(sa); 1052 #ifdef INET6 1053 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1054 sin6 = (struct sockaddr_in6 *)&ss; 1055 bcopy(sa, sin6, sizeof(*sin6)); 1056 if (sa6_recoverscope(sin6) == 0) 1057 sa = (struct sockaddr *)sin6; 1058 } 1059 #endif 1060 m_copyback(m, len, dlen, (caddr_t)sa); 1061 len += dlen; 1062 } 1063 if (m->m_pkthdr.len != len) { 1064 m_freem(m); 1065 return (NULL); 1066 } 1067 rtm->rtm_msglen = len; 1068 rtm->rtm_version = RTM_VERSION; 1069 rtm->rtm_type = type; 1070 return (m); 1071 } 1072 1073 /* 1074 * Writes information related to @rtinfo object to preallocated buffer. 1075 * Stores needed size in @plen. If @w is NULL, calculates size without 1076 * writing. 1077 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1078 * 1079 * Returns 0 on success. 1080 * 1081 */ 1082 static int 1083 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1084 { 1085 int i; 1086 int len, buflen = 0, dlen; 1087 caddr_t cp = NULL; 1088 struct rt_msghdr *rtm = NULL; 1089 #ifdef INET6 1090 struct sockaddr_storage ss; 1091 struct sockaddr_in6 *sin6; 1092 #endif 1093 1094 switch (type) { 1095 1096 case RTM_DELADDR: 1097 case RTM_NEWADDR: 1098 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1099 #ifdef COMPAT_FREEBSD32 1100 if (w->w_req->flags & SCTL_MASK32) 1101 len = sizeof(struct ifa_msghdrl32); 1102 else 1103 #endif 1104 len = sizeof(struct ifa_msghdrl); 1105 } else 1106 len = sizeof(struct ifa_msghdr); 1107 break; 1108 1109 case RTM_IFINFO: 1110 #ifdef COMPAT_FREEBSD32 1111 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1112 if (w->w_op == NET_RT_IFLISTL) 1113 len = sizeof(struct if_msghdrl32); 1114 else 1115 len = sizeof(struct if_msghdr32); 1116 break; 1117 } 1118 #endif 1119 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1120 len = sizeof(struct if_msghdrl); 1121 else 1122 len = sizeof(struct if_msghdr); 1123 break; 1124 1125 case RTM_NEWMADDR: 1126 len = sizeof(struct ifma_msghdr); 1127 break; 1128 1129 default: 1130 len = sizeof(struct rt_msghdr); 1131 } 1132 1133 if (w != NULL) { 1134 rtm = (struct rt_msghdr *)w->w_tmem; 1135 buflen = w->w_tmemsize - len; 1136 cp = (caddr_t)w->w_tmem + len; 1137 } 1138 1139 rtinfo->rti_addrs = 0; 1140 for (i = 0; i < RTAX_MAX; i++) { 1141 struct sockaddr *sa; 1142 1143 if ((sa = rtinfo->rti_info[i]) == NULL) 1144 continue; 1145 rtinfo->rti_addrs |= (1 << i); 1146 dlen = SA_SIZE(sa); 1147 if (cp != NULL && buflen >= dlen) { 1148 #ifdef INET6 1149 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1150 sin6 = (struct sockaddr_in6 *)&ss; 1151 bcopy(sa, sin6, sizeof(*sin6)); 1152 if (sa6_recoverscope(sin6) == 0) 1153 sa = (struct sockaddr *)sin6; 1154 } 1155 #endif 1156 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1157 cp += dlen; 1158 buflen -= dlen; 1159 } else if (cp != NULL) { 1160 /* 1161 * Buffer too small. Count needed size 1162 * and return with error. 1163 */ 1164 cp = NULL; 1165 } 1166 1167 len += dlen; 1168 } 1169 1170 if (cp != NULL) { 1171 dlen = ALIGN(len) - len; 1172 if (buflen < dlen) 1173 cp = NULL; 1174 else 1175 buflen -= dlen; 1176 } 1177 len = ALIGN(len); 1178 1179 if (cp != NULL) { 1180 /* fill header iff buffer is large enough */ 1181 rtm->rtm_version = RTM_VERSION; 1182 rtm->rtm_type = type; 1183 rtm->rtm_msglen = len; 1184 } 1185 1186 *plen = len; 1187 1188 if (w != NULL && cp == NULL) 1189 return (ENOBUFS); 1190 1191 return (0); 1192 } 1193 1194 /* 1195 * This routine is called to generate a message from the routing 1196 * socket indicating that a redirect has occured, a routing lookup 1197 * has failed, or that a protocol has detected timeouts to a particular 1198 * destination. 1199 */ 1200 void 1201 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1202 int fibnum) 1203 { 1204 struct rt_msghdr *rtm; 1205 struct mbuf *m; 1206 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1207 1208 if (V_route_cb.any_count == 0) 1209 return; 1210 m = rtsock_msg_mbuf(type, rtinfo); 1211 if (m == NULL) 1212 return; 1213 1214 if (fibnum != RT_ALL_FIBS) { 1215 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1216 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1217 M_SETFIB(m, fibnum); 1218 m->m_flags |= RTS_FILTER_FIB; 1219 } 1220 1221 rtm = mtod(m, struct rt_msghdr *); 1222 rtm->rtm_flags = RTF_DONE | flags; 1223 rtm->rtm_errno = error; 1224 rtm->rtm_addrs = rtinfo->rti_addrs; 1225 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1226 } 1227 1228 void 1229 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1230 { 1231 1232 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1233 } 1234 1235 /* 1236 * This routine is called to generate a message from the routing 1237 * socket indicating that the status of a network interface has changed. 1238 */ 1239 void 1240 rt_ifmsg(struct ifnet *ifp) 1241 { 1242 struct if_msghdr *ifm; 1243 struct mbuf *m; 1244 struct rt_addrinfo info; 1245 1246 if (V_route_cb.any_count == 0) 1247 return; 1248 bzero((caddr_t)&info, sizeof(info)); 1249 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1250 if (m == NULL) 1251 return; 1252 ifm = mtod(m, struct if_msghdr *); 1253 ifm->ifm_index = ifp->if_index; 1254 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1255 ifm->ifm_data = ifp->if_data; 1256 ifm->ifm_addrs = 0; 1257 rt_dispatch(m, AF_UNSPEC); 1258 } 1259 1260 /* 1261 * Announce interface address arrival/withdraw. 1262 * Please do not call directly, use rt_addrmsg(). 1263 * Assume input data to be valid. 1264 * Returns 0 on success. 1265 */ 1266 int 1267 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1268 { 1269 struct rt_addrinfo info; 1270 struct sockaddr *sa; 1271 int ncmd; 1272 struct mbuf *m; 1273 struct ifa_msghdr *ifam; 1274 struct ifnet *ifp = ifa->ifa_ifp; 1275 struct sockaddr_storage ss; 1276 1277 if (V_route_cb.any_count == 0) 1278 return (0); 1279 1280 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1281 1282 bzero((caddr_t)&info, sizeof(info)); 1283 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1284 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1285 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1286 info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss); 1287 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1288 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1289 return (ENOBUFS); 1290 ifam = mtod(m, struct ifa_msghdr *); 1291 ifam->ifam_index = ifp->if_index; 1292 ifam->ifam_metric = ifa->ifa_metric; 1293 ifam->ifam_flags = ifa->ifa_flags; 1294 ifam->ifam_addrs = info.rti_addrs; 1295 1296 if (fibnum != RT_ALL_FIBS) { 1297 M_SETFIB(m, fibnum); 1298 m->m_flags |= RTS_FILTER_FIB; 1299 } 1300 1301 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1302 1303 return (0); 1304 } 1305 1306 /* 1307 * Announce route addition/removal. 1308 * Please do not call directly, use rt_routemsg(). 1309 * Note that @rt data MAY be inconsistent/invalid: 1310 * if some userland app sends us "invalid" route message (invalid mask, 1311 * no dst, wrong address families, etc...) we need to pass it back 1312 * to app (and any other rtsock consumers) with rtm_errno field set to 1313 * non-zero value. 1314 * 1315 * Returns 0 on success. 1316 */ 1317 int 1318 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1319 int fibnum) 1320 { 1321 struct rt_addrinfo info; 1322 struct sockaddr *sa; 1323 struct mbuf *m; 1324 struct rt_msghdr *rtm; 1325 struct sockaddr_storage ss; 1326 1327 if (V_route_cb.any_count == 0) 1328 return (0); 1329 1330 bzero((caddr_t)&info, sizeof(info)); 1331 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1332 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss); 1333 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1334 if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL) 1335 return (ENOBUFS); 1336 rtm = mtod(m, struct rt_msghdr *); 1337 rtm->rtm_index = ifp->if_index; 1338 rtm->rtm_flags |= rt->rt_flags; 1339 rtm->rtm_errno = error; 1340 rtm->rtm_addrs = info.rti_addrs; 1341 1342 if (fibnum != RT_ALL_FIBS) { 1343 M_SETFIB(m, fibnum); 1344 m->m_flags |= RTS_FILTER_FIB; 1345 } 1346 1347 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1348 1349 return (0); 1350 } 1351 1352 /* 1353 * This is the analogue to the rt_newaddrmsg which performs the same 1354 * function but for multicast group memberhips. This is easier since 1355 * there is no route state to worry about. 1356 */ 1357 void 1358 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1359 { 1360 struct rt_addrinfo info; 1361 struct mbuf *m = NULL; 1362 struct ifnet *ifp = ifma->ifma_ifp; 1363 struct ifma_msghdr *ifmam; 1364 1365 if (V_route_cb.any_count == 0) 1366 return; 1367 1368 bzero((caddr_t)&info, sizeof(info)); 1369 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1370 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1371 /* 1372 * If a link-layer address is present, present it as a ``gateway'' 1373 * (similarly to how ARP entries, e.g., are presented). 1374 */ 1375 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1376 m = rtsock_msg_mbuf(cmd, &info); 1377 if (m == NULL) 1378 return; 1379 ifmam = mtod(m, struct ifma_msghdr *); 1380 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1381 __func__)); 1382 ifmam->ifmam_index = ifp->if_index; 1383 ifmam->ifmam_addrs = info.rti_addrs; 1384 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1385 } 1386 1387 static struct mbuf * 1388 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1389 struct rt_addrinfo *info) 1390 { 1391 struct if_announcemsghdr *ifan; 1392 struct mbuf *m; 1393 1394 if (V_route_cb.any_count == 0) 1395 return NULL; 1396 bzero((caddr_t)info, sizeof(*info)); 1397 m = rtsock_msg_mbuf(type, info); 1398 if (m != NULL) { 1399 ifan = mtod(m, struct if_announcemsghdr *); 1400 ifan->ifan_index = ifp->if_index; 1401 strlcpy(ifan->ifan_name, ifp->if_xname, 1402 sizeof(ifan->ifan_name)); 1403 ifan->ifan_what = what; 1404 } 1405 return m; 1406 } 1407 1408 /* 1409 * This is called to generate routing socket messages indicating 1410 * IEEE80211 wireless events. 1411 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1412 */ 1413 void 1414 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1415 { 1416 struct mbuf *m; 1417 struct rt_addrinfo info; 1418 1419 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1420 if (m != NULL) { 1421 /* 1422 * Append the ieee80211 data. Try to stick it in the 1423 * mbuf containing the ifannounce msg; otherwise allocate 1424 * a new mbuf and append. 1425 * 1426 * NB: we assume m is a single mbuf. 1427 */ 1428 if (data_len > M_TRAILINGSPACE(m)) { 1429 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1430 if (n == NULL) { 1431 m_freem(m); 1432 return; 1433 } 1434 bcopy(data, mtod(n, void *), data_len); 1435 n->m_len = data_len; 1436 m->m_next = n; 1437 } else if (data_len > 0) { 1438 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1439 m->m_len += data_len; 1440 } 1441 if (m->m_flags & M_PKTHDR) 1442 m->m_pkthdr.len += data_len; 1443 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1444 rt_dispatch(m, AF_UNSPEC); 1445 } 1446 } 1447 1448 /* 1449 * This is called to generate routing socket messages indicating 1450 * network interface arrival and departure. 1451 */ 1452 void 1453 rt_ifannouncemsg(struct ifnet *ifp, int what) 1454 { 1455 struct mbuf *m; 1456 struct rt_addrinfo info; 1457 1458 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1459 if (m != NULL) 1460 rt_dispatch(m, AF_UNSPEC); 1461 } 1462 1463 static void 1464 rt_dispatch(struct mbuf *m, sa_family_t saf) 1465 { 1466 struct m_tag *tag; 1467 1468 /* 1469 * Preserve the family from the sockaddr, if any, in an m_tag for 1470 * use when injecting the mbuf into the routing socket buffer from 1471 * the netisr. 1472 */ 1473 if (saf != AF_UNSPEC) { 1474 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1475 M_NOWAIT); 1476 if (tag == NULL) { 1477 m_freem(m); 1478 return; 1479 } 1480 *(unsigned short *)(tag + 1) = saf; 1481 m_tag_prepend(m, tag); 1482 } 1483 #ifdef VIMAGE 1484 if (V_loif) 1485 m->m_pkthdr.rcvif = V_loif; 1486 else { 1487 m_freem(m); 1488 return; 1489 } 1490 #endif 1491 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1492 } 1493 1494 /* 1495 * This is used in dumping the kernel table via sysctl(). 1496 */ 1497 static int 1498 sysctl_dumpentry(struct radix_node *rn, void *vw) 1499 { 1500 struct walkarg *w = vw; 1501 struct rtentry *rt = (struct rtentry *)rn; 1502 int error = 0, size; 1503 struct rt_addrinfo info; 1504 struct sockaddr_storage ss; 1505 1506 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1507 return 0; 1508 if ((rt->rt_flags & RTF_HOST) == 0 1509 ? jailed_without_vnet(w->w_req->td->td_ucred) 1510 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1511 return (0); 1512 bzero((caddr_t)&info, sizeof(info)); 1513 info.rti_info[RTAX_DST] = rt_key(rt); 1514 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1515 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1516 rt_mask(rt), &ss); 1517 info.rti_info[RTAX_GENMASK] = 0; 1518 if (rt->rt_ifp) { 1519 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1520 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1521 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1522 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1523 } 1524 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1525 return (error); 1526 if (w->w_req && w->w_tmem) { 1527 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1528 1529 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1530 rtm->rtm_flags = RTF_GATEWAY | 1531 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1532 else 1533 rtm->rtm_flags = rt->rt_flags; 1534 rt_getmetrics(rt, &rtm->rtm_rmx); 1535 rtm->rtm_index = rt->rt_ifp->if_index; 1536 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1537 rtm->rtm_addrs = info.rti_addrs; 1538 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1539 return (error); 1540 } 1541 return (error); 1542 } 1543 1544 static int 1545 sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info, 1546 struct walkarg *w, int len) 1547 { 1548 struct if_msghdrl *ifm; 1549 struct if_data *ifd; 1550 1551 ifm = (struct if_msghdrl *)w->w_tmem; 1552 1553 #ifdef COMPAT_FREEBSD32 1554 if (w->w_req->flags & SCTL_MASK32) { 1555 struct if_msghdrl32 *ifm32; 1556 1557 ifm32 = (struct if_msghdrl32 *)ifm; 1558 ifm32->ifm_addrs = info->rti_addrs; 1559 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1560 ifm32->ifm_index = ifp->if_index; 1561 ifm32->_ifm_spare1 = 0; 1562 ifm32->ifm_len = sizeof(*ifm32); 1563 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1564 ifd = &ifm32->ifm_data; 1565 } else 1566 #endif 1567 { 1568 ifm->ifm_addrs = info->rti_addrs; 1569 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1570 ifm->ifm_index = ifp->if_index; 1571 ifm->_ifm_spare1 = 0; 1572 ifm->ifm_len = sizeof(*ifm); 1573 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1574 ifd = &ifm->ifm_data; 1575 } 1576 1577 *ifd = ifp->if_data; 1578 1579 /* Some drivers still use ifqueue(9), add its stats. */ 1580 ifd->ifi_oqdrops += ifp->if_snd.ifq_drops; 1581 1582 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1583 } 1584 1585 static int 1586 sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info, 1587 struct walkarg *w, int len) 1588 { 1589 struct if_msghdr *ifm; 1590 struct if_data *ifd; 1591 1592 ifm = (struct if_msghdr *)w->w_tmem; 1593 1594 #ifdef COMPAT_FREEBSD32 1595 if (w->w_req->flags & SCTL_MASK32) { 1596 struct if_msghdr32 *ifm32; 1597 1598 ifm32 = (struct if_msghdr32 *)ifm; 1599 ifm32->ifm_addrs = info->rti_addrs; 1600 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1601 ifm32->ifm_index = ifp->if_index; 1602 ifd = &ifm32->ifm_data; 1603 } else 1604 #endif 1605 { 1606 ifm->ifm_addrs = info->rti_addrs; 1607 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1608 ifm->ifm_index = ifp->if_index; 1609 ifd = &ifm->ifm_data; 1610 } 1611 1612 *ifd = ifp->if_data; 1613 1614 /* Some drivers still use ifqueue(9), add its stats. */ 1615 ifd->ifi_oqdrops += ifp->if_snd.ifq_drops; 1616 1617 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1618 } 1619 1620 static int 1621 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1622 struct walkarg *w, int len) 1623 { 1624 struct ifa_msghdrl *ifam; 1625 struct if_data *ifd; 1626 1627 ifam = (struct ifa_msghdrl *)w->w_tmem; 1628 1629 #ifdef COMPAT_FREEBSD32 1630 if (w->w_req->flags & SCTL_MASK32) { 1631 struct ifa_msghdrl32 *ifam32; 1632 1633 ifam32 = (struct ifa_msghdrl32 *)ifam; 1634 ifam32->ifam_addrs = info->rti_addrs; 1635 ifam32->ifam_flags = ifa->ifa_flags; 1636 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1637 ifam32->_ifam_spare1 = 0; 1638 ifam32->ifam_len = sizeof(*ifam32); 1639 ifam32->ifam_data_off = 1640 offsetof(struct ifa_msghdrl32, ifam_data); 1641 ifam32->ifam_metric = ifa->ifa_metric; 1642 ifd = &ifam32->ifam_data; 1643 } else 1644 #endif 1645 { 1646 ifam->ifam_addrs = info->rti_addrs; 1647 ifam->ifam_flags = ifa->ifa_flags; 1648 ifam->ifam_index = ifa->ifa_ifp->if_index; 1649 ifam->_ifam_spare1 = 0; 1650 ifam->ifam_len = sizeof(*ifam); 1651 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1652 ifam->ifam_metric = ifa->ifa_metric; 1653 ifd = &ifam->ifam_data; 1654 } 1655 1656 bzero(ifd, sizeof(*ifd)); 1657 ifd->ifi_datalen = sizeof(struct if_data); 1658 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1659 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1660 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1661 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1662 1663 /* Fixup if_data carp(4) vhid. */ 1664 if (carp_get_vhid_p != NULL) 1665 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1666 1667 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1668 } 1669 1670 static int 1671 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1672 struct walkarg *w, int len) 1673 { 1674 struct ifa_msghdr *ifam; 1675 1676 ifam = (struct ifa_msghdr *)w->w_tmem; 1677 ifam->ifam_addrs = info->rti_addrs; 1678 ifam->ifam_flags = ifa->ifa_flags; 1679 ifam->ifam_index = ifa->ifa_ifp->if_index; 1680 ifam->ifam_metric = ifa->ifa_metric; 1681 1682 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1683 } 1684 1685 static int 1686 sysctl_iflist(int af, struct walkarg *w) 1687 { 1688 struct ifnet *ifp; 1689 struct ifaddr *ifa; 1690 struct rt_addrinfo info; 1691 int len, error = 0; 1692 struct sockaddr_storage ss; 1693 1694 bzero((caddr_t)&info, sizeof(info)); 1695 IFNET_RLOCK_NOSLEEP(); 1696 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1697 if (w->w_arg && w->w_arg != ifp->if_index) 1698 continue; 1699 IF_ADDR_RLOCK(ifp); 1700 ifa = ifp->if_addr; 1701 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1702 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1703 if (error != 0) 1704 goto done; 1705 info.rti_info[RTAX_IFP] = NULL; 1706 if (w->w_req && w->w_tmem) { 1707 if (w->w_op == NET_RT_IFLISTL) 1708 error = sysctl_iflist_ifml(ifp, &info, w, len); 1709 else 1710 error = sysctl_iflist_ifm(ifp, &info, w, len); 1711 if (error) 1712 goto done; 1713 } 1714 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1715 if (af && af != ifa->ifa_addr->sa_family) 1716 continue; 1717 if (prison_if(w->w_req->td->td_ucred, 1718 ifa->ifa_addr) != 0) 1719 continue; 1720 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1721 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1722 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1723 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1724 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1725 if (error != 0) 1726 goto done; 1727 if (w->w_req && w->w_tmem) { 1728 if (w->w_op == NET_RT_IFLISTL) 1729 error = sysctl_iflist_ifaml(ifa, &info, 1730 w, len); 1731 else 1732 error = sysctl_iflist_ifam(ifa, &info, 1733 w, len); 1734 if (error) 1735 goto done; 1736 } 1737 } 1738 IF_ADDR_RUNLOCK(ifp); 1739 info.rti_info[RTAX_IFA] = NULL; 1740 info.rti_info[RTAX_NETMASK] = NULL; 1741 info.rti_info[RTAX_BRD] = NULL; 1742 } 1743 done: 1744 if (ifp != NULL) 1745 IF_ADDR_RUNLOCK(ifp); 1746 IFNET_RUNLOCK_NOSLEEP(); 1747 return (error); 1748 } 1749 1750 static int 1751 sysctl_ifmalist(int af, struct walkarg *w) 1752 { 1753 struct ifnet *ifp; 1754 struct ifmultiaddr *ifma; 1755 struct rt_addrinfo info; 1756 int len, error = 0; 1757 struct ifaddr *ifa; 1758 1759 bzero((caddr_t)&info, sizeof(info)); 1760 IFNET_RLOCK_NOSLEEP(); 1761 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1762 if (w->w_arg && w->w_arg != ifp->if_index) 1763 continue; 1764 ifa = ifp->if_addr; 1765 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1766 IF_ADDR_RLOCK(ifp); 1767 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1768 if (af && af != ifma->ifma_addr->sa_family) 1769 continue; 1770 if (prison_if(w->w_req->td->td_ucred, 1771 ifma->ifma_addr) != 0) 1772 continue; 1773 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1774 info.rti_info[RTAX_GATEWAY] = 1775 (ifma->ifma_addr->sa_family != AF_LINK) ? 1776 ifma->ifma_lladdr : NULL; 1777 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1778 if (error != 0) 1779 goto done; 1780 if (w->w_req && w->w_tmem) { 1781 struct ifma_msghdr *ifmam; 1782 1783 ifmam = (struct ifma_msghdr *)w->w_tmem; 1784 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1785 ifmam->ifmam_flags = 0; 1786 ifmam->ifmam_addrs = info.rti_addrs; 1787 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1788 if (error) { 1789 IF_ADDR_RUNLOCK(ifp); 1790 goto done; 1791 } 1792 } 1793 } 1794 IF_ADDR_RUNLOCK(ifp); 1795 } 1796 done: 1797 IFNET_RUNLOCK_NOSLEEP(); 1798 return (error); 1799 } 1800 1801 static int 1802 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1803 { 1804 int *name = (int *)arg1; 1805 u_int namelen = arg2; 1806 struct radix_node_head *rnh = NULL; /* silence compiler. */ 1807 int i, lim, error = EINVAL; 1808 int fib = 0; 1809 u_char af; 1810 struct walkarg w; 1811 1812 name ++; 1813 namelen--; 1814 if (req->newptr) 1815 return (EPERM); 1816 if (name[1] == NET_RT_DUMP) { 1817 if (namelen == 3) 1818 fib = req->td->td_proc->p_fibnum; 1819 else if (namelen == 4) 1820 fib = (name[3] == RT_ALL_FIBS) ? 1821 req->td->td_proc->p_fibnum : name[3]; 1822 else 1823 return ((namelen < 3) ? EISDIR : ENOTDIR); 1824 if (fib < 0 || fib >= rt_numfibs) 1825 return (EINVAL); 1826 } else if (namelen != 3) 1827 return ((namelen < 3) ? EISDIR : ENOTDIR); 1828 af = name[0]; 1829 if (af > AF_MAX) 1830 return (EINVAL); 1831 bzero(&w, sizeof(w)); 1832 w.w_op = name[1]; 1833 w.w_arg = name[2]; 1834 w.w_req = req; 1835 1836 error = sysctl_wire_old_buffer(req, 0); 1837 if (error) 1838 return (error); 1839 1840 /* 1841 * Allocate reply buffer in advance. 1842 * All rtsock messages has maximum length of u_short. 1843 */ 1844 w.w_tmemsize = 65536; 1845 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 1846 1847 switch (w.w_op) { 1848 1849 case NET_RT_DUMP: 1850 case NET_RT_FLAGS: 1851 if (af == 0) { /* dump all tables */ 1852 i = 1; 1853 lim = AF_MAX; 1854 } else /* dump only one table */ 1855 i = lim = af; 1856 1857 /* 1858 * take care of llinfo entries, the caller must 1859 * specify an AF 1860 */ 1861 if (w.w_op == NET_RT_FLAGS && 1862 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1863 if (af != 0) 1864 error = lltable_sysctl_dumparp(af, w.w_req); 1865 else 1866 error = EINVAL; 1867 break; 1868 } 1869 /* 1870 * take care of routing entries 1871 */ 1872 for (error = 0; error == 0 && i <= lim; i++) { 1873 rnh = rt_tables_get_rnh(fib, i); 1874 if (rnh != NULL) { 1875 RADIX_NODE_HEAD_RLOCK(rnh); 1876 error = rnh->rnh_walktree(rnh, 1877 sysctl_dumpentry, &w); 1878 RADIX_NODE_HEAD_RUNLOCK(rnh); 1879 } else if (af != 0) 1880 error = EAFNOSUPPORT; 1881 } 1882 break; 1883 1884 case NET_RT_IFLIST: 1885 case NET_RT_IFLISTL: 1886 error = sysctl_iflist(af, &w); 1887 break; 1888 1889 case NET_RT_IFMALIST: 1890 error = sysctl_ifmalist(af, &w); 1891 break; 1892 } 1893 1894 free(w.w_tmem, M_TEMP); 1895 return (error); 1896 } 1897 1898 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1899 1900 /* 1901 * Definitions of protocols supported in the ROUTE domain. 1902 */ 1903 1904 static struct domain routedomain; /* or at least forward */ 1905 1906 static struct protosw routesw[] = { 1907 { 1908 .pr_type = SOCK_RAW, 1909 .pr_domain = &routedomain, 1910 .pr_flags = PR_ATOMIC|PR_ADDR, 1911 .pr_output = route_output, 1912 .pr_ctlinput = raw_ctlinput, 1913 .pr_init = raw_init, 1914 .pr_usrreqs = &route_usrreqs 1915 } 1916 }; 1917 1918 static struct domain routedomain = { 1919 .dom_family = PF_ROUTE, 1920 .dom_name = "route", 1921 .dom_protosw = routesw, 1922 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1923 }; 1924 1925 VNET_DOMAIN_SET(route); 1926