1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_ddb.h" 35 #include "opt_mpath.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/domain.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/rmlock.h> 50 #include <sys/rwlock.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_dl.h> 60 #include <net/if_llatbl.h> 61 #include <net/if_types.h> 62 #include <net/netisr.h> 63 #include <net/raw_cb.h> 64 #include <net/route.h> 65 #include <net/route/route_ctl.h> 66 #include <net/route/route_var.h> 67 #ifdef RADIX_MPATH 68 #include <net/radix_mpath.h> 69 #endif 70 #include <net/vnet.h> 71 72 #include <netinet/in.h> 73 #include <netinet/if_ether.h> 74 #include <netinet/ip_carp.h> 75 #ifdef INET6 76 #include <netinet6/ip6_var.h> 77 #include <netinet6/scope6_var.h> 78 #endif 79 #include <net/route/nhop.h> 80 #include <net/route/shared.h> 81 82 #ifdef COMPAT_FREEBSD32 83 #include <sys/mount.h> 84 #include <compat/freebsd32/freebsd32.h> 85 86 struct if_msghdr32 { 87 uint16_t ifm_msglen; 88 uint8_t ifm_version; 89 uint8_t ifm_type; 90 int32_t ifm_addrs; 91 int32_t ifm_flags; 92 uint16_t ifm_index; 93 uint16_t _ifm_spare1; 94 struct if_data ifm_data; 95 }; 96 97 struct if_msghdrl32 { 98 uint16_t ifm_msglen; 99 uint8_t ifm_version; 100 uint8_t ifm_type; 101 int32_t ifm_addrs; 102 int32_t ifm_flags; 103 uint16_t ifm_index; 104 uint16_t _ifm_spare1; 105 uint16_t ifm_len; 106 uint16_t ifm_data_off; 107 uint32_t _ifm_spare2; 108 struct if_data ifm_data; 109 }; 110 111 struct ifa_msghdrl32 { 112 uint16_t ifam_msglen; 113 uint8_t ifam_version; 114 uint8_t ifam_type; 115 int32_t ifam_addrs; 116 int32_t ifam_flags; 117 uint16_t ifam_index; 118 uint16_t _ifam_spare1; 119 uint16_t ifam_len; 120 uint16_t ifam_data_off; 121 int32_t ifam_metric; 122 struct if_data ifam_data; 123 }; 124 125 #define SA_SIZE32(sa) \ 126 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 127 sizeof(int) : \ 128 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 129 130 #endif /* COMPAT_FREEBSD32 */ 131 132 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 133 134 /* NB: these are not modified */ 135 static struct sockaddr route_src = { 2, PF_ROUTE, }; 136 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 137 138 /* These are external hooks for CARP. */ 139 int (*carp_get_vhid_p)(struct ifaddr *); 140 141 /* 142 * Used by rtsock/raw_input callback code to decide whether to filter the update 143 * notification to a socket bound to a particular FIB. 144 */ 145 #define RTS_FILTER_FIB M_PROTO8 146 147 typedef struct { 148 int ip_count; /* attached w/ AF_INET */ 149 int ip6_count; /* attached w/ AF_INET6 */ 150 int any_count; /* total attached */ 151 } route_cb_t; 152 VNET_DEFINE_STATIC(route_cb_t, route_cb); 153 #define V_route_cb VNET(route_cb) 154 155 struct mtx rtsock_mtx; 156 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 157 158 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 159 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 160 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 161 162 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 163 ""); 164 165 struct walkarg { 166 int w_tmemsize; 167 int w_op, w_arg; 168 caddr_t w_tmem; 169 struct sysctl_req *w_req; 170 }; 171 172 static void rts_input(struct mbuf *m); 173 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 174 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 175 struct walkarg *w, int *plen); 176 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 177 struct rt_addrinfo *rtinfo); 178 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 179 static int sysctl_iflist(int af, struct walkarg *w); 180 static int sysctl_ifmalist(int af, struct walkarg *w); 181 static int route_output(struct mbuf *m, struct socket *so, ...); 182 static void rt_getmetrics(const struct rtentry *rt, 183 const struct nhop_object *nh, struct rt_metrics *out); 184 static void rt_dispatch(struct mbuf *, sa_family_t); 185 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 186 struct rt_msghdr *rtm, struct rib_cmd_info *rc); 187 static int update_rtm_from_rc(struct rt_addrinfo *info, 188 struct rt_msghdr **prtm, int alloc_len, 189 struct rib_cmd_info *rc, struct nhop_object *nh); 190 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 191 struct mbuf *m, sa_family_t saf, u_int fibnum, 192 int rtm_errno); 193 static int can_export_rte(struct ucred *td_ucred, const struct rtentry *rt); 194 195 static struct netisr_handler rtsock_nh = { 196 .nh_name = "rtsock", 197 .nh_handler = rts_input, 198 .nh_proto = NETISR_ROUTE, 199 .nh_policy = NETISR_POLICY_SOURCE, 200 }; 201 202 static int 203 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 204 { 205 int error, qlimit; 206 207 netisr_getqlimit(&rtsock_nh, &qlimit); 208 error = sysctl_handle_int(oidp, &qlimit, 0, req); 209 if (error || !req->newptr) 210 return (error); 211 if (qlimit < 1) 212 return (EINVAL); 213 return (netisr_setqlimit(&rtsock_nh, qlimit)); 214 } 215 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 216 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 217 0, 0, sysctl_route_netisr_maxqlen, "I", 218 "maximum routing socket dispatch queue length"); 219 220 static void 221 vnet_rts_init(void) 222 { 223 int tmp; 224 225 if (IS_DEFAULT_VNET(curvnet)) { 226 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 227 rtsock_nh.nh_qlimit = tmp; 228 netisr_register(&rtsock_nh); 229 } 230 #ifdef VIMAGE 231 else 232 netisr_register_vnet(&rtsock_nh); 233 #endif 234 } 235 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 236 vnet_rts_init, 0); 237 238 #ifdef VIMAGE 239 static void 240 vnet_rts_uninit(void) 241 { 242 243 netisr_unregister_vnet(&rtsock_nh); 244 } 245 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 246 vnet_rts_uninit, 0); 247 #endif 248 249 static int 250 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 251 struct rawcb *rp) 252 { 253 int fibnum; 254 255 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 256 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 257 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 258 259 /* No filtering requested. */ 260 if ((m->m_flags & RTS_FILTER_FIB) == 0) 261 return (0); 262 263 /* Check if it is a rts and the fib matches the one of the socket. */ 264 fibnum = M_GETFIB(m); 265 if (proto->sp_family != PF_ROUTE || 266 rp->rcb_socket == NULL || 267 rp->rcb_socket->so_fibnum == fibnum) 268 return (0); 269 270 /* Filtering requested and no match, the socket shall be skipped. */ 271 return (1); 272 } 273 274 static void 275 rts_input(struct mbuf *m) 276 { 277 struct sockproto route_proto; 278 unsigned short *family; 279 struct m_tag *tag; 280 281 route_proto.sp_family = PF_ROUTE; 282 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 283 if (tag != NULL) { 284 family = (unsigned short *)(tag + 1); 285 route_proto.sp_protocol = *family; 286 m_tag_delete(m, tag); 287 } else 288 route_proto.sp_protocol = 0; 289 290 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 291 } 292 293 /* 294 * It really doesn't make any sense at all for this code to share much 295 * with raw_usrreq.c, since its functionality is so restricted. XXX 296 */ 297 static void 298 rts_abort(struct socket *so) 299 { 300 301 raw_usrreqs.pru_abort(so); 302 } 303 304 static void 305 rts_close(struct socket *so) 306 { 307 308 raw_usrreqs.pru_close(so); 309 } 310 311 /* pru_accept is EOPNOTSUPP */ 312 313 static int 314 rts_attach(struct socket *so, int proto, struct thread *td) 315 { 316 struct rawcb *rp; 317 int error; 318 319 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 320 321 /* XXX */ 322 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 323 324 so->so_pcb = (caddr_t)rp; 325 so->so_fibnum = td->td_proc->p_fibnum; 326 error = raw_attach(so, proto); 327 rp = sotorawcb(so); 328 if (error) { 329 so->so_pcb = NULL; 330 free(rp, M_PCB); 331 return error; 332 } 333 RTSOCK_LOCK(); 334 switch(rp->rcb_proto.sp_protocol) { 335 case AF_INET: 336 V_route_cb.ip_count++; 337 break; 338 case AF_INET6: 339 V_route_cb.ip6_count++; 340 break; 341 } 342 V_route_cb.any_count++; 343 RTSOCK_UNLOCK(); 344 soisconnected(so); 345 so->so_options |= SO_USELOOPBACK; 346 return 0; 347 } 348 349 static int 350 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 351 { 352 353 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 354 } 355 356 static int 357 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 358 { 359 360 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 361 } 362 363 /* pru_connect2 is EOPNOTSUPP */ 364 /* pru_control is EOPNOTSUPP */ 365 366 static void 367 rts_detach(struct socket *so) 368 { 369 struct rawcb *rp = sotorawcb(so); 370 371 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 372 373 RTSOCK_LOCK(); 374 switch(rp->rcb_proto.sp_protocol) { 375 case AF_INET: 376 V_route_cb.ip_count--; 377 break; 378 case AF_INET6: 379 V_route_cb.ip6_count--; 380 break; 381 } 382 V_route_cb.any_count--; 383 RTSOCK_UNLOCK(); 384 raw_usrreqs.pru_detach(so); 385 } 386 387 static int 388 rts_disconnect(struct socket *so) 389 { 390 391 return (raw_usrreqs.pru_disconnect(so)); 392 } 393 394 /* pru_listen is EOPNOTSUPP */ 395 396 static int 397 rts_peeraddr(struct socket *so, struct sockaddr **nam) 398 { 399 400 return (raw_usrreqs.pru_peeraddr(so, nam)); 401 } 402 403 /* pru_rcvd is EOPNOTSUPP */ 404 /* pru_rcvoob is EOPNOTSUPP */ 405 406 static int 407 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 408 struct mbuf *control, struct thread *td) 409 { 410 411 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 412 } 413 414 /* pru_sense is null */ 415 416 static int 417 rts_shutdown(struct socket *so) 418 { 419 420 return (raw_usrreqs.pru_shutdown(so)); 421 } 422 423 static int 424 rts_sockaddr(struct socket *so, struct sockaddr **nam) 425 { 426 427 return (raw_usrreqs.pru_sockaddr(so, nam)); 428 } 429 430 static struct pr_usrreqs route_usrreqs = { 431 .pru_abort = rts_abort, 432 .pru_attach = rts_attach, 433 .pru_bind = rts_bind, 434 .pru_connect = rts_connect, 435 .pru_detach = rts_detach, 436 .pru_disconnect = rts_disconnect, 437 .pru_peeraddr = rts_peeraddr, 438 .pru_send = rts_send, 439 .pru_shutdown = rts_shutdown, 440 .pru_sockaddr = rts_sockaddr, 441 .pru_close = rts_close, 442 }; 443 444 #ifndef _SOCKADDR_UNION_DEFINED 445 #define _SOCKADDR_UNION_DEFINED 446 /* 447 * The union of all possible address formats we handle. 448 */ 449 union sockaddr_union { 450 struct sockaddr sa; 451 struct sockaddr_in sin; 452 struct sockaddr_in6 sin6; 453 }; 454 #endif /* _SOCKADDR_UNION_DEFINED */ 455 456 static int 457 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 458 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 459 { 460 #if defined(INET) || defined(INET6) 461 struct epoch_tracker et; 462 #endif 463 464 /* First, see if the returned address is part of the jail. */ 465 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 466 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 467 return (0); 468 } 469 470 switch (info->rti_info[RTAX_DST]->sa_family) { 471 #ifdef INET 472 case AF_INET: 473 { 474 struct in_addr ia; 475 struct ifaddr *ifa; 476 int found; 477 478 found = 0; 479 /* 480 * Try to find an address on the given outgoing interface 481 * that belongs to the jail. 482 */ 483 NET_EPOCH_ENTER(et); 484 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 485 struct sockaddr *sa; 486 sa = ifa->ifa_addr; 487 if (sa->sa_family != AF_INET) 488 continue; 489 ia = ((struct sockaddr_in *)sa)->sin_addr; 490 if (prison_check_ip4(cred, &ia) == 0) { 491 found = 1; 492 break; 493 } 494 } 495 NET_EPOCH_EXIT(et); 496 if (!found) { 497 /* 498 * As a last resort return the 'default' jail address. 499 */ 500 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 501 sin_addr; 502 if (prison_get_ip4(cred, &ia) != 0) 503 return (ESRCH); 504 } 505 bzero(&saun->sin, sizeof(struct sockaddr_in)); 506 saun->sin.sin_len = sizeof(struct sockaddr_in); 507 saun->sin.sin_family = AF_INET; 508 saun->sin.sin_addr.s_addr = ia.s_addr; 509 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 510 break; 511 } 512 #endif 513 #ifdef INET6 514 case AF_INET6: 515 { 516 struct in6_addr ia6; 517 struct ifaddr *ifa; 518 int found; 519 520 found = 0; 521 /* 522 * Try to find an address on the given outgoing interface 523 * that belongs to the jail. 524 */ 525 NET_EPOCH_ENTER(et); 526 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 527 struct sockaddr *sa; 528 sa = ifa->ifa_addr; 529 if (sa->sa_family != AF_INET6) 530 continue; 531 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 532 &ia6, sizeof(struct in6_addr)); 533 if (prison_check_ip6(cred, &ia6) == 0) { 534 found = 1; 535 break; 536 } 537 } 538 NET_EPOCH_EXIT(et); 539 if (!found) { 540 /* 541 * As a last resort return the 'default' jail address. 542 */ 543 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 544 sin6_addr; 545 if (prison_get_ip6(cred, &ia6) != 0) 546 return (ESRCH); 547 } 548 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 549 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 550 saun->sin6.sin6_family = AF_INET6; 551 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 552 if (sa6_recoverscope(&saun->sin6) != 0) 553 return (ESRCH); 554 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 555 break; 556 } 557 #endif 558 default: 559 return (ESRCH); 560 } 561 return (0); 562 } 563 564 /* 565 * Fills in @info based on userland-provided @rtm message. 566 * 567 * Returns 0 on success. 568 */ 569 static int 570 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info) 571 { 572 int error; 573 sa_family_t saf; 574 575 rtm->rtm_pid = curproc->p_pid; 576 info->rti_addrs = rtm->rtm_addrs; 577 578 info->rti_mflags = rtm->rtm_inits; 579 info->rti_rmx = &rtm->rtm_rmx; 580 581 /* 582 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 583 * link-local address because rtrequest requires addresses with 584 * embedded scope id. 585 */ 586 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 587 return (EINVAL); 588 589 if (rtm->rtm_flags & RTF_RNH_LOCKED) 590 return (EINVAL); 591 info->rti_flags = rtm->rtm_flags; 592 if (info->rti_info[RTAX_DST] == NULL || 593 info->rti_info[RTAX_DST]->sa_family >= AF_MAX || 594 (info->rti_info[RTAX_GATEWAY] != NULL && 595 info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 596 return (EINVAL); 597 saf = info->rti_info[RTAX_DST]->sa_family; 598 /* 599 * Verify that the caller has the appropriate privilege; RTM_GET 600 * is the only operation the non-superuser is allowed. 601 */ 602 if (rtm->rtm_type != RTM_GET) { 603 error = priv_check(curthread, PRIV_NET_ROUTE); 604 if (error != 0) 605 return (error); 606 } 607 608 /* 609 * The given gateway address may be an interface address. 610 * For example, issuing a "route change" command on a route 611 * entry that was created from a tunnel, and the gateway 612 * address given is the local end point. In this case the 613 * RTF_GATEWAY flag must be cleared or the destination will 614 * not be reachable even though there is no error message. 615 */ 616 if (info->rti_info[RTAX_GATEWAY] != NULL && 617 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 618 struct rt_addrinfo ginfo; 619 struct sockaddr *gdst; 620 struct sockaddr_storage ss; 621 622 bzero(&ginfo, sizeof(ginfo)); 623 bzero(&ss, sizeof(ss)); 624 ss.ss_len = sizeof(ss); 625 626 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 627 gdst = info->rti_info[RTAX_GATEWAY]; 628 629 /* 630 * A host route through the loopback interface is 631 * installed for each interface adddress. In pre 8.0 632 * releases the interface address of a PPP link type 633 * is not reachable locally. This behavior is fixed as 634 * part of the new L2/L3 redesign and rewrite work. The 635 * signature of this interface address route is the 636 * AF_LINK sa_family type of the gateway, and the 637 * rt_ifp has the IFF_LOOPBACK flag set. 638 */ 639 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 640 if (ss.ss_family == AF_LINK && 641 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 642 info->rti_flags &= ~RTF_GATEWAY; 643 info->rti_flags |= RTF_GWFLAG_COMPAT; 644 } 645 rib_free_info(&ginfo); 646 } 647 } 648 649 return (0); 650 } 651 652 /* 653 * Handles RTM_GET message from routing socket, returning matching rt. 654 * 655 * Returns: 656 * 0 on success, with locked and referenced matching rt in @rt_nrt 657 * errno of failure 658 */ 659 static int 660 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 661 struct rt_msghdr *rtm, struct rib_cmd_info *rc) 662 { 663 RIB_RLOCK_TRACKER; 664 struct rib_head *rnh; 665 sa_family_t saf; 666 667 saf = info->rti_info[RTAX_DST]->sa_family; 668 669 rnh = rt_tables_get_rnh(fibnum, saf); 670 if (rnh == NULL) 671 return (EAFNOSUPPORT); 672 673 RIB_RLOCK(rnh); 674 675 if (info->rti_info[RTAX_NETMASK] == NULL) { 676 /* 677 * Provide longest prefix match for 678 * address lookup (no mask). 679 * 'route -n get addr' 680 */ 681 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( 682 info->rti_info[RTAX_DST], &rnh->head); 683 } else 684 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( 685 info->rti_info[RTAX_DST], 686 info->rti_info[RTAX_NETMASK], &rnh->head); 687 688 if (rc->rc_rt == NULL) { 689 RIB_RUNLOCK(rnh); 690 return (ESRCH); 691 } 692 #ifdef RADIX_MPATH 693 /* 694 * for RTM_GET, gate is optional even with multipath. 695 * if gate == NULL the first match is returned. 696 * (no need to call rt_mpath_matchgate if gate == NULL) 697 */ 698 if (rt_mpath_capable(rnh) && info->rti_info[RTAX_GATEWAY]) { 699 rc->rc_rt = rt_mpath_matchgate(rc->rc_rt, 700 info->rti_info[RTAX_GATEWAY]); 701 if (rc->rc_rt == NULL) { 702 RIB_RUNLOCK(rnh); 703 return (ESRCH); 704 } 705 } 706 #endif 707 /* 708 * If performing proxied L2 entry insertion, and 709 * the actual PPP host entry is found, perform 710 * another search to retrieve the prefix route of 711 * the local end point of the PPP link. 712 * TODO: move this logic to userland. 713 */ 714 if (rtm->rtm_flags & RTF_ANNOUNCE) { 715 struct sockaddr laddr; 716 struct nhop_object *nh; 717 718 nh = rc->rc_rt->rt_nhop; 719 if (nh->nh_ifp != NULL && 720 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 721 struct ifaddr *ifa; 722 723 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 724 RT_ALL_FIBS); 725 if (ifa != NULL) 726 rt_maskedcopy(ifa->ifa_addr, 727 &laddr, 728 ifa->ifa_netmask); 729 } else 730 rt_maskedcopy(nh->nh_ifa->ifa_addr, 731 &laddr, 732 nh->nh_ifa->ifa_netmask); 733 /* 734 * refactor rt and no lock operation necessary 735 */ 736 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 737 &rnh->head); 738 if (rc->rc_rt == NULL) { 739 RIB_RUNLOCK(rnh); 740 return (ESRCH); 741 } 742 } 743 rc->rc_nh_new = rc->rc_rt->rt_nhop; 744 RIB_RUNLOCK(rnh); 745 746 return (0); 747 } 748 749 /* 750 * Update sockaddrs, flags, etc in @prtm based on @rc data. 751 * rtm can be reallocated. 752 * 753 * Returns 0 on success, along with pointer to (potentially reallocated) 754 * rtm. 755 * 756 */ 757 static int 758 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, 759 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) 760 { 761 struct sockaddr_storage netmask_ss; 762 struct walkarg w; 763 union sockaddr_union saun; 764 struct rt_msghdr *rtm, *orig_rtm = NULL; 765 struct ifnet *ifp; 766 int error, len; 767 768 rtm = *prtm; 769 770 info->rti_info[RTAX_DST] = rt_key(rc->rc_rt); 771 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 772 info->rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rc->rc_rt), 773 rt_mask(rc->rc_rt), &netmask_ss); 774 info->rti_info[RTAX_GENMASK] = 0; 775 ifp = nh->nh_ifp; 776 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 777 if (ifp) { 778 info->rti_info[RTAX_IFP] = 779 ifp->if_addr->ifa_addr; 780 error = rtm_get_jailed(info, ifp, nh, 781 &saun, curthread->td_ucred); 782 if (error != 0) 783 return (error); 784 if (ifp->if_flags & IFF_POINTOPOINT) 785 info->rti_info[RTAX_BRD] = 786 nh->nh_ifa->ifa_dstaddr; 787 rtm->rtm_index = ifp->if_index; 788 } else { 789 info->rti_info[RTAX_IFP] = NULL; 790 info->rti_info[RTAX_IFA] = NULL; 791 } 792 } else if (ifp != NULL) 793 rtm->rtm_index = ifp->if_index; 794 795 /* Check if we need to realloc storage */ 796 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 797 if (len > alloc_len) { 798 struct rt_msghdr *tmp_rtm; 799 800 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 801 if (tmp_rtm == NULL) 802 return (ENOBUFS); 803 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 804 orig_rtm = rtm; 805 rtm = tmp_rtm; 806 alloc_len = len; 807 808 /* 809 * Delay freeing original rtm as info contains 810 * data referencing it. 811 */ 812 } 813 814 w.w_tmem = (caddr_t)rtm; 815 w.w_tmemsize = alloc_len; 816 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 817 818 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); 819 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 820 rtm->rtm_flags = RTF_GATEWAY | 821 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 822 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); 823 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; 824 rtm->rtm_addrs = info->rti_addrs; 825 826 if (orig_rtm != NULL) 827 free(orig_rtm, M_TEMP); 828 *prtm = rtm; 829 830 return (0); 831 } 832 833 /*ARGSUSED*/ 834 static int 835 route_output(struct mbuf *m, struct socket *so, ...) 836 { 837 struct rt_msghdr *rtm = NULL; 838 struct rtentry *rt = NULL; 839 struct rt_addrinfo info; 840 struct epoch_tracker et; 841 #ifdef INET6 842 struct sockaddr_storage ss; 843 struct sockaddr_in6 *sin6; 844 int i, rti_need_deembed = 0; 845 #endif 846 int alloc_len = 0, len, error = 0, fibnum; 847 sa_family_t saf = AF_UNSPEC; 848 struct walkarg w; 849 struct rib_cmd_info rc; 850 struct nhop_object *nh; 851 852 fibnum = so->so_fibnum; 853 854 #define senderr(e) { error = e; goto flush;} 855 if (m == NULL || ((m->m_len < sizeof(long)) && 856 (m = m_pullup(m, sizeof(long))) == NULL)) 857 return (ENOBUFS); 858 if ((m->m_flags & M_PKTHDR) == 0) 859 panic("route_output"); 860 NET_EPOCH_ENTER(et); 861 len = m->m_pkthdr.len; 862 if (len < sizeof(*rtm) || 863 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 864 senderr(EINVAL); 865 866 /* 867 * Most of current messages are in range 200-240 bytes, 868 * minimize possible re-allocation on reply using larger size 869 * buffer aligned on 1k boundaty. 870 */ 871 alloc_len = roundup2(len, 1024); 872 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 873 senderr(ENOBUFS); 874 875 m_copydata(m, 0, len, (caddr_t)rtm); 876 bzero(&info, sizeof(info)); 877 bzero(&w, sizeof(w)); 878 nh = NULL; 879 880 if (rtm->rtm_version != RTM_VERSION) { 881 /* Do not touch message since format is unknown */ 882 free(rtm, M_TEMP); 883 rtm = NULL; 884 senderr(EPROTONOSUPPORT); 885 } 886 887 /* 888 * Starting from here, it is possible 889 * to alter original message and insert 890 * caller PID and error value. 891 */ 892 893 if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) { 894 senderr(error); 895 } 896 897 saf = info.rti_info[RTAX_DST]->sa_family; 898 899 /* support for new ARP code */ 900 if (rtm->rtm_flags & RTF_LLDATA) { 901 error = lla_rt_output(rtm, &info); 902 #ifdef INET6 903 if (error == 0) 904 rti_need_deembed = 1; 905 #endif 906 goto flush; 907 } 908 909 switch (rtm->rtm_type) { 910 case RTM_ADD: 911 case RTM_CHANGE: 912 if (rtm->rtm_type == RTM_ADD) { 913 if (info.rti_info[RTAX_GATEWAY] == NULL) 914 senderr(EINVAL); 915 } 916 error = rib_action(fibnum, rtm->rtm_type, &info, &rc); 917 if (error == 0) { 918 #ifdef INET6 919 rti_need_deembed = 1; 920 #endif 921 nh = rc.rc_nh_new; 922 rtm->rtm_index = nh->nh_ifp->if_index; 923 } 924 break; 925 926 case RTM_DELETE: 927 error = rib_action(fibnum, RTM_DELETE, &info, &rc); 928 if (error == 0) { 929 nh = rc.rc_nh_old; 930 goto report; 931 } 932 #ifdef INET6 933 /* rt_msg2() will not be used when RTM_DELETE fails. */ 934 rti_need_deembed = 1; 935 #endif 936 break; 937 938 case RTM_GET: 939 error = handle_rtm_get(&info, fibnum, rtm, &rc); 940 if (error != 0) 941 senderr(error); 942 nh = rc.rc_nh_new; 943 944 report: 945 if (!can_export_rte(curthread->td_ucred, rc.rc_rt)) { 946 senderr(ESRCH); 947 } 948 949 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); 950 /* 951 * Note that some sockaddr pointers may have changed to 952 * point to memory outsize @rtm. Some may be pointing 953 * to the on-stack variables. 954 * Given that, any pointer in @info CANNOT BE USED. 955 */ 956 957 /* 958 * scopeid deembedding has been performed while 959 * writing updated rtm in rtsock_msg_buffer(). 960 * With that in mind, skip deembedding procedure below. 961 */ 962 #ifdef INET6 963 rti_need_deembed = 0; 964 #endif 965 if (error != 0) 966 senderr(error); 967 break; 968 969 default: 970 senderr(EOPNOTSUPP); 971 } 972 973 flush: 974 NET_EPOCH_EXIT(et); 975 rt = NULL; 976 977 #ifdef INET6 978 if (rtm != NULL) { 979 if (rti_need_deembed) { 980 /* sin6_scope_id is recovered before sending rtm. */ 981 sin6 = (struct sockaddr_in6 *)&ss; 982 for (i = 0; i < RTAX_MAX; i++) { 983 if (info.rti_info[i] == NULL) 984 continue; 985 if (info.rti_info[i]->sa_family != AF_INET6) 986 continue; 987 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 988 if (sa6_recoverscope(sin6) == 0) 989 bcopy(sin6, info.rti_info[i], 990 sizeof(*sin6)); 991 } 992 } 993 } 994 #endif 995 send_rtm_reply(so, rtm, m, saf, fibnum, error); 996 997 return (error); 998 } 999 1000 /* 1001 * Sends the prepared reply message in @rtm to all rtsock clients. 1002 * Frees @m and @rtm. 1003 * 1004 */ 1005 static void 1006 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1007 sa_family_t saf, u_int fibnum, int rtm_errno) 1008 { 1009 struct rawcb *rp = NULL; 1010 1011 /* 1012 * Check to see if we don't want our own messages. 1013 */ 1014 if ((so->so_options & SO_USELOOPBACK) == 0) { 1015 if (V_route_cb.any_count <= 1) { 1016 if (rtm != NULL) 1017 free(rtm, M_TEMP); 1018 m_freem(m); 1019 return; 1020 } 1021 /* There is another listener, so construct message */ 1022 rp = sotorawcb(so); 1023 } 1024 1025 if (rtm != NULL) { 1026 if (rtm_errno!= 0) 1027 rtm->rtm_errno = rtm_errno; 1028 else 1029 rtm->rtm_flags |= RTF_DONE; 1030 1031 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1032 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1033 m_freem(m); 1034 m = NULL; 1035 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1036 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1037 1038 free(rtm, M_TEMP); 1039 } 1040 if (m != NULL) { 1041 M_SETFIB(m, fibnum); 1042 m->m_flags |= RTS_FILTER_FIB; 1043 if (rp) { 1044 /* 1045 * XXX insure we don't get a copy by 1046 * invalidating our protocol 1047 */ 1048 unsigned short family = rp->rcb_proto.sp_family; 1049 rp->rcb_proto.sp_family = 0; 1050 rt_dispatch(m, saf); 1051 rp->rcb_proto.sp_family = family; 1052 } else 1053 rt_dispatch(m, saf); 1054 } 1055 } 1056 1057 1058 static void 1059 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, 1060 struct rt_metrics *out) 1061 { 1062 1063 bzero(out, sizeof(*out)); 1064 out->rmx_mtu = nh->nh_mtu; 1065 out->rmx_weight = rt->rt_weight; 1066 out->rmx_nhidx = nhop_get_idx(nh); 1067 /* Kernel -> userland timebase conversion. */ 1068 out->rmx_expire = rt->rt_expire ? 1069 rt->rt_expire - time_uptime + time_second : 0; 1070 } 1071 1072 /* 1073 * Extract the addresses of the passed sockaddrs. 1074 * Do a little sanity checking so as to avoid bad memory references. 1075 * This data is derived straight from userland. 1076 */ 1077 static int 1078 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1079 { 1080 struct sockaddr *sa; 1081 int i; 1082 1083 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1084 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1085 continue; 1086 sa = (struct sockaddr *)cp; 1087 /* 1088 * It won't fit. 1089 */ 1090 if (cp + sa->sa_len > cplim) 1091 return (EINVAL); 1092 /* 1093 * there are no more.. quit now 1094 * If there are more bits, they are in error. 1095 * I've seen this. route(1) can evidently generate these. 1096 * This causes kernel to core dump. 1097 * for compatibility, If we see this, point to a safe address. 1098 */ 1099 if (sa->sa_len == 0) { 1100 rtinfo->rti_info[i] = &sa_zero; 1101 return (0); /* should be EINVAL but for compat */ 1102 } 1103 /* accept it */ 1104 #ifdef INET6 1105 if (sa->sa_family == AF_INET6) 1106 sa6_embedscope((struct sockaddr_in6 *)sa, 1107 V_ip6_use_defzone); 1108 #endif 1109 rtinfo->rti_info[i] = sa; 1110 cp += SA_SIZE(sa); 1111 } 1112 return (0); 1113 } 1114 1115 /* 1116 * Fill in @dmask with valid netmask leaving original @smask 1117 * intact. Mostly used with radix netmasks. 1118 */ 1119 struct sockaddr * 1120 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1121 struct sockaddr_storage *dmask) 1122 { 1123 if (dst == NULL || smask == NULL) 1124 return (NULL); 1125 1126 memset(dmask, 0, dst->sa_len); 1127 memcpy(dmask, smask, smask->sa_len); 1128 dmask->ss_len = dst->sa_len; 1129 dmask->ss_family = dst->sa_family; 1130 1131 return ((struct sockaddr *)dmask); 1132 } 1133 1134 /* 1135 * Writes information related to @rtinfo object to newly-allocated mbuf. 1136 * Assumes MCLBYTES is enough to construct any message. 1137 * Used for OS notifications of vaious events (if/ifa announces,etc) 1138 * 1139 * Returns allocated mbuf or NULL on failure. 1140 */ 1141 static struct mbuf * 1142 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1143 { 1144 struct rt_msghdr *rtm; 1145 struct mbuf *m; 1146 int i; 1147 struct sockaddr *sa; 1148 #ifdef INET6 1149 struct sockaddr_storage ss; 1150 struct sockaddr_in6 *sin6; 1151 #endif 1152 int len, dlen; 1153 1154 switch (type) { 1155 1156 case RTM_DELADDR: 1157 case RTM_NEWADDR: 1158 len = sizeof(struct ifa_msghdr); 1159 break; 1160 1161 case RTM_DELMADDR: 1162 case RTM_NEWMADDR: 1163 len = sizeof(struct ifma_msghdr); 1164 break; 1165 1166 case RTM_IFINFO: 1167 len = sizeof(struct if_msghdr); 1168 break; 1169 1170 case RTM_IFANNOUNCE: 1171 case RTM_IEEE80211: 1172 len = sizeof(struct if_announcemsghdr); 1173 break; 1174 1175 default: 1176 len = sizeof(struct rt_msghdr); 1177 } 1178 1179 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1180 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1181 if (len > MHLEN) 1182 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1183 else 1184 m = m_gethdr(M_NOWAIT, MT_DATA); 1185 if (m == NULL) 1186 return (m); 1187 1188 m->m_pkthdr.len = m->m_len = len; 1189 rtm = mtod(m, struct rt_msghdr *); 1190 bzero((caddr_t)rtm, len); 1191 for (i = 0; i < RTAX_MAX; i++) { 1192 if ((sa = rtinfo->rti_info[i]) == NULL) 1193 continue; 1194 rtinfo->rti_addrs |= (1 << i); 1195 dlen = SA_SIZE(sa); 1196 #ifdef INET6 1197 if (sa->sa_family == AF_INET6) { 1198 sin6 = (struct sockaddr_in6 *)&ss; 1199 bcopy(sa, sin6, sizeof(*sin6)); 1200 if (sa6_recoverscope(sin6) == 0) 1201 sa = (struct sockaddr *)sin6; 1202 } 1203 #endif 1204 m_copyback(m, len, dlen, (caddr_t)sa); 1205 len += dlen; 1206 } 1207 if (m->m_pkthdr.len != len) { 1208 m_freem(m); 1209 return (NULL); 1210 } 1211 rtm->rtm_msglen = len; 1212 rtm->rtm_version = RTM_VERSION; 1213 rtm->rtm_type = type; 1214 return (m); 1215 } 1216 1217 /* 1218 * Writes information related to @rtinfo object to preallocated buffer. 1219 * Stores needed size in @plen. If @w is NULL, calculates size without 1220 * writing. 1221 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1222 * 1223 * Returns 0 on success. 1224 * 1225 */ 1226 static int 1227 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1228 { 1229 int i; 1230 int len, buflen = 0, dlen; 1231 caddr_t cp = NULL; 1232 struct rt_msghdr *rtm = NULL; 1233 #ifdef INET6 1234 struct sockaddr_storage ss; 1235 struct sockaddr_in6 *sin6; 1236 #endif 1237 #ifdef COMPAT_FREEBSD32 1238 bool compat32 = false; 1239 #endif 1240 1241 switch (type) { 1242 1243 case RTM_DELADDR: 1244 case RTM_NEWADDR: 1245 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1246 #ifdef COMPAT_FREEBSD32 1247 if (w->w_req->flags & SCTL_MASK32) { 1248 len = sizeof(struct ifa_msghdrl32); 1249 compat32 = true; 1250 } else 1251 #endif 1252 len = sizeof(struct ifa_msghdrl); 1253 } else 1254 len = sizeof(struct ifa_msghdr); 1255 break; 1256 1257 case RTM_IFINFO: 1258 #ifdef COMPAT_FREEBSD32 1259 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1260 if (w->w_op == NET_RT_IFLISTL) 1261 len = sizeof(struct if_msghdrl32); 1262 else 1263 len = sizeof(struct if_msghdr32); 1264 compat32 = true; 1265 break; 1266 } 1267 #endif 1268 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1269 len = sizeof(struct if_msghdrl); 1270 else 1271 len = sizeof(struct if_msghdr); 1272 break; 1273 1274 case RTM_NEWMADDR: 1275 len = sizeof(struct ifma_msghdr); 1276 break; 1277 1278 default: 1279 len = sizeof(struct rt_msghdr); 1280 } 1281 1282 if (w != NULL) { 1283 rtm = (struct rt_msghdr *)w->w_tmem; 1284 buflen = w->w_tmemsize - len; 1285 cp = (caddr_t)w->w_tmem + len; 1286 } 1287 1288 rtinfo->rti_addrs = 0; 1289 for (i = 0; i < RTAX_MAX; i++) { 1290 struct sockaddr *sa; 1291 1292 if ((sa = rtinfo->rti_info[i]) == NULL) 1293 continue; 1294 rtinfo->rti_addrs |= (1 << i); 1295 #ifdef COMPAT_FREEBSD32 1296 if (compat32) 1297 dlen = SA_SIZE32(sa); 1298 else 1299 #endif 1300 dlen = SA_SIZE(sa); 1301 if (cp != NULL && buflen >= dlen) { 1302 #ifdef INET6 1303 if (sa->sa_family == AF_INET6) { 1304 sin6 = (struct sockaddr_in6 *)&ss; 1305 bcopy(sa, sin6, sizeof(*sin6)); 1306 if (sa6_recoverscope(sin6) == 0) 1307 sa = (struct sockaddr *)sin6; 1308 } 1309 #endif 1310 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1311 cp += dlen; 1312 buflen -= dlen; 1313 } else if (cp != NULL) { 1314 /* 1315 * Buffer too small. Count needed size 1316 * and return with error. 1317 */ 1318 cp = NULL; 1319 } 1320 1321 len += dlen; 1322 } 1323 1324 if (cp != NULL) { 1325 dlen = ALIGN(len) - len; 1326 if (buflen < dlen) 1327 cp = NULL; 1328 else { 1329 bzero(cp, dlen); 1330 cp += dlen; 1331 buflen -= dlen; 1332 } 1333 } 1334 len = ALIGN(len); 1335 1336 if (cp != NULL) { 1337 /* fill header iff buffer is large enough */ 1338 rtm->rtm_version = RTM_VERSION; 1339 rtm->rtm_type = type; 1340 rtm->rtm_msglen = len; 1341 } 1342 1343 *plen = len; 1344 1345 if (w != NULL && cp == NULL) 1346 return (ENOBUFS); 1347 1348 return (0); 1349 } 1350 1351 /* 1352 * This routine is called to generate a message from the routing 1353 * socket indicating that a redirect has occurred, a routing lookup 1354 * has failed, or that a protocol has detected timeouts to a particular 1355 * destination. 1356 */ 1357 void 1358 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1359 int fibnum) 1360 { 1361 struct rt_msghdr *rtm; 1362 struct mbuf *m; 1363 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1364 1365 if (V_route_cb.any_count == 0) 1366 return; 1367 m = rtsock_msg_mbuf(type, rtinfo); 1368 if (m == NULL) 1369 return; 1370 1371 if (fibnum != RT_ALL_FIBS) { 1372 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1373 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1374 M_SETFIB(m, fibnum); 1375 m->m_flags |= RTS_FILTER_FIB; 1376 } 1377 1378 rtm = mtod(m, struct rt_msghdr *); 1379 rtm->rtm_flags = RTF_DONE | flags; 1380 rtm->rtm_errno = error; 1381 rtm->rtm_addrs = rtinfo->rti_addrs; 1382 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1383 } 1384 1385 void 1386 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1387 { 1388 1389 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1390 } 1391 1392 /* 1393 * This routine is called to generate a message from the routing 1394 * socket indicating that the status of a network interface has changed. 1395 */ 1396 void 1397 rt_ifmsg(struct ifnet *ifp) 1398 { 1399 struct if_msghdr *ifm; 1400 struct mbuf *m; 1401 struct rt_addrinfo info; 1402 1403 if (V_route_cb.any_count == 0) 1404 return; 1405 bzero((caddr_t)&info, sizeof(info)); 1406 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1407 if (m == NULL) 1408 return; 1409 ifm = mtod(m, struct if_msghdr *); 1410 ifm->ifm_index = ifp->if_index; 1411 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1412 if_data_copy(ifp, &ifm->ifm_data); 1413 ifm->ifm_addrs = 0; 1414 rt_dispatch(m, AF_UNSPEC); 1415 } 1416 1417 /* 1418 * Announce interface address arrival/withdraw. 1419 * Please do not call directly, use rt_addrmsg(). 1420 * Assume input data to be valid. 1421 * Returns 0 on success. 1422 */ 1423 int 1424 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1425 { 1426 struct rt_addrinfo info; 1427 struct sockaddr *sa; 1428 int ncmd; 1429 struct mbuf *m; 1430 struct ifa_msghdr *ifam; 1431 struct ifnet *ifp = ifa->ifa_ifp; 1432 struct sockaddr_storage ss; 1433 1434 if (V_route_cb.any_count == 0) 1435 return (0); 1436 1437 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1438 1439 bzero((caddr_t)&info, sizeof(info)); 1440 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1441 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1442 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1443 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 1444 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1445 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1446 return (ENOBUFS); 1447 ifam = mtod(m, struct ifa_msghdr *); 1448 ifam->ifam_index = ifp->if_index; 1449 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1450 ifam->ifam_flags = ifa->ifa_flags; 1451 ifam->ifam_addrs = info.rti_addrs; 1452 1453 if (fibnum != RT_ALL_FIBS) { 1454 M_SETFIB(m, fibnum); 1455 m->m_flags |= RTS_FILTER_FIB; 1456 } 1457 1458 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1459 1460 return (0); 1461 } 1462 1463 /* 1464 * Announce route addition/removal to rtsock based on @rt data. 1465 * Callers are advives to use rt_routemsg() instead of using this 1466 * function directly. 1467 * Assume @rt data is consistent. 1468 * 1469 * Returns 0 on success. 1470 */ 1471 int 1472 rtsock_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs, 1473 int fibnum) 1474 { 1475 struct sockaddr_storage ss; 1476 struct rt_addrinfo info; 1477 struct nhop_object *nh; 1478 1479 if (V_route_cb.any_count == 0) 1480 return (0); 1481 1482 nh = rt->rt_nhop; 1483 bzero((caddr_t)&info, sizeof(info)); 1484 info.rti_info[RTAX_DST] = rt_key(rt); 1485 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), rt_mask(rt), &ss); 1486 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 1487 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); 1488 info.rti_ifp = ifp; 1489 1490 return (rtsock_routemsg_info(cmd, &info, fibnum)); 1491 } 1492 1493 int 1494 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 1495 { 1496 struct rt_msghdr *rtm; 1497 struct sockaddr *sa; 1498 struct mbuf *m; 1499 1500 if (V_route_cb.any_count == 0) 1501 return (0); 1502 1503 if (info->rti_flags & RTF_HOST) 1504 info->rti_info[RTAX_NETMASK] = NULL; 1505 1506 m = rtsock_msg_mbuf(cmd, info); 1507 if (m == NULL) 1508 return (ENOBUFS); 1509 1510 if (fibnum != RT_ALL_FIBS) { 1511 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1512 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1513 M_SETFIB(m, fibnum); 1514 m->m_flags |= RTS_FILTER_FIB; 1515 } 1516 1517 rtm = mtod(m, struct rt_msghdr *); 1518 rtm->rtm_addrs = info->rti_addrs; 1519 if (info->rti_ifp != NULL) 1520 rtm->rtm_index = info->rti_ifp->if_index; 1521 /* Add RTF_DONE to indicate command 'completion' required by API */ 1522 info->rti_flags |= RTF_DONE; 1523 /* Reported routes has to be up */ 1524 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 1525 info->rti_flags |= RTF_UP; 1526 rtm->rtm_flags = info->rti_flags; 1527 1528 sa = info->rti_info[RTAX_DST]; 1529 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1530 1531 return (0); 1532 } 1533 1534 /* 1535 * This is the analogue to the rt_newaddrmsg which performs the same 1536 * function but for multicast group memberhips. This is easier since 1537 * there is no route state to worry about. 1538 */ 1539 void 1540 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1541 { 1542 struct rt_addrinfo info; 1543 struct mbuf *m = NULL; 1544 struct ifnet *ifp = ifma->ifma_ifp; 1545 struct ifma_msghdr *ifmam; 1546 1547 if (V_route_cb.any_count == 0) 1548 return; 1549 1550 bzero((caddr_t)&info, sizeof(info)); 1551 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1552 if (ifp && ifp->if_addr) 1553 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1554 else 1555 info.rti_info[RTAX_IFP] = NULL; 1556 /* 1557 * If a link-layer address is present, present it as a ``gateway'' 1558 * (similarly to how ARP entries, e.g., are presented). 1559 */ 1560 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1561 m = rtsock_msg_mbuf(cmd, &info); 1562 if (m == NULL) 1563 return; 1564 ifmam = mtod(m, struct ifma_msghdr *); 1565 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1566 __func__)); 1567 ifmam->ifmam_index = ifp->if_index; 1568 ifmam->ifmam_addrs = info.rti_addrs; 1569 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1570 } 1571 1572 static struct mbuf * 1573 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1574 struct rt_addrinfo *info) 1575 { 1576 struct if_announcemsghdr *ifan; 1577 struct mbuf *m; 1578 1579 if (V_route_cb.any_count == 0) 1580 return NULL; 1581 bzero((caddr_t)info, sizeof(*info)); 1582 m = rtsock_msg_mbuf(type, info); 1583 if (m != NULL) { 1584 ifan = mtod(m, struct if_announcemsghdr *); 1585 ifan->ifan_index = ifp->if_index; 1586 strlcpy(ifan->ifan_name, ifp->if_xname, 1587 sizeof(ifan->ifan_name)); 1588 ifan->ifan_what = what; 1589 } 1590 return m; 1591 } 1592 1593 /* 1594 * This is called to generate routing socket messages indicating 1595 * IEEE80211 wireless events. 1596 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1597 */ 1598 void 1599 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1600 { 1601 struct mbuf *m; 1602 struct rt_addrinfo info; 1603 1604 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1605 if (m != NULL) { 1606 /* 1607 * Append the ieee80211 data. Try to stick it in the 1608 * mbuf containing the ifannounce msg; otherwise allocate 1609 * a new mbuf and append. 1610 * 1611 * NB: we assume m is a single mbuf. 1612 */ 1613 if (data_len > M_TRAILINGSPACE(m)) { 1614 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1615 if (n == NULL) { 1616 m_freem(m); 1617 return; 1618 } 1619 bcopy(data, mtod(n, void *), data_len); 1620 n->m_len = data_len; 1621 m->m_next = n; 1622 } else if (data_len > 0) { 1623 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1624 m->m_len += data_len; 1625 } 1626 if (m->m_flags & M_PKTHDR) 1627 m->m_pkthdr.len += data_len; 1628 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1629 rt_dispatch(m, AF_UNSPEC); 1630 } 1631 } 1632 1633 /* 1634 * This is called to generate routing socket messages indicating 1635 * network interface arrival and departure. 1636 */ 1637 void 1638 rt_ifannouncemsg(struct ifnet *ifp, int what) 1639 { 1640 struct mbuf *m; 1641 struct rt_addrinfo info; 1642 1643 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1644 if (m != NULL) 1645 rt_dispatch(m, AF_UNSPEC); 1646 } 1647 1648 static void 1649 rt_dispatch(struct mbuf *m, sa_family_t saf) 1650 { 1651 struct m_tag *tag; 1652 1653 /* 1654 * Preserve the family from the sockaddr, if any, in an m_tag for 1655 * use when injecting the mbuf into the routing socket buffer from 1656 * the netisr. 1657 */ 1658 if (saf != AF_UNSPEC) { 1659 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1660 M_NOWAIT); 1661 if (tag == NULL) { 1662 m_freem(m); 1663 return; 1664 } 1665 *(unsigned short *)(tag + 1) = saf; 1666 m_tag_prepend(m, tag); 1667 } 1668 #ifdef VIMAGE 1669 if (V_loif) 1670 m->m_pkthdr.rcvif = V_loif; 1671 else { 1672 m_freem(m); 1673 return; 1674 } 1675 #endif 1676 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1677 } 1678 1679 /* 1680 * Checks if rte can be exported v.r.t jails/vnets. 1681 * 1682 * Returns 1 if it can, 0 otherwise. 1683 */ 1684 static int 1685 can_export_rte(struct ucred *td_ucred, const struct rtentry *rt) 1686 { 1687 1688 if ((rt->rte_flags & RTF_HOST) == 0 1689 ? jailed_without_vnet(td_ucred) 1690 : prison_if(td_ucred, rt_key_const(rt)) != 0) 1691 return (0); 1692 return (1); 1693 } 1694 1695 /* 1696 * This is used in dumping the kernel table via sysctl(). 1697 */ 1698 static int 1699 sysctl_dumpentry(struct radix_node *rn, void *vw) 1700 { 1701 struct walkarg *w = vw; 1702 struct rtentry *rt = (struct rtentry *)rn; 1703 struct nhop_object *nh; 1704 int error = 0, size; 1705 struct rt_addrinfo info; 1706 struct sockaddr_storage ss; 1707 1708 NET_EPOCH_ASSERT(); 1709 1710 if (w->w_op == NET_RT_FLAGS && !(rt->rte_flags & w->w_arg)) 1711 return 0; 1712 if (!can_export_rte(w->w_req->td->td_ucred, rt)) 1713 return (0); 1714 nh = rt->rt_nhop; 1715 bzero((caddr_t)&info, sizeof(info)); 1716 info.rti_info[RTAX_DST] = rt_key(rt); 1717 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 1718 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1719 rt_mask(rt), &ss); 1720 info.rti_info[RTAX_GENMASK] = 0; 1721 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 1722 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 1723 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 1724 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 1725 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 1726 } 1727 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1728 return (error); 1729 if (w->w_req && w->w_tmem) { 1730 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1731 1732 bzero(&rtm->rtm_index, 1733 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 1734 if (rt->rte_flags & RTF_GWFLAG_COMPAT) 1735 rtm->rtm_flags = RTF_GATEWAY | 1736 (rt->rte_flags & ~RTF_GWFLAG_COMPAT); 1737 else 1738 rtm->rtm_flags = rt->rte_flags; 1739 rtm->rtm_flags |= nhop_get_rtflags(nh); 1740 rt_getmetrics(rt, nh, &rtm->rtm_rmx); 1741 rtm->rtm_index = nh->nh_ifp->if_index; 1742 rtm->rtm_addrs = info.rti_addrs; 1743 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1744 return (error); 1745 } 1746 return (error); 1747 } 1748 1749 static int 1750 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1751 struct rt_addrinfo *info, struct walkarg *w, int len) 1752 { 1753 struct if_msghdrl *ifm; 1754 struct if_data *ifd; 1755 1756 ifm = (struct if_msghdrl *)w->w_tmem; 1757 1758 #ifdef COMPAT_FREEBSD32 1759 if (w->w_req->flags & SCTL_MASK32) { 1760 struct if_msghdrl32 *ifm32; 1761 1762 ifm32 = (struct if_msghdrl32 *)ifm; 1763 ifm32->ifm_addrs = info->rti_addrs; 1764 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1765 ifm32->ifm_index = ifp->if_index; 1766 ifm32->_ifm_spare1 = 0; 1767 ifm32->ifm_len = sizeof(*ifm32); 1768 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1769 ifm32->_ifm_spare2 = 0; 1770 ifd = &ifm32->ifm_data; 1771 } else 1772 #endif 1773 { 1774 ifm->ifm_addrs = info->rti_addrs; 1775 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1776 ifm->ifm_index = ifp->if_index; 1777 ifm->_ifm_spare1 = 0; 1778 ifm->ifm_len = sizeof(*ifm); 1779 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1780 ifm->_ifm_spare2 = 0; 1781 ifd = &ifm->ifm_data; 1782 } 1783 1784 memcpy(ifd, src_ifd, sizeof(*ifd)); 1785 1786 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1787 } 1788 1789 static int 1790 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 1791 struct rt_addrinfo *info, struct walkarg *w, int len) 1792 { 1793 struct if_msghdr *ifm; 1794 struct if_data *ifd; 1795 1796 ifm = (struct if_msghdr *)w->w_tmem; 1797 1798 #ifdef COMPAT_FREEBSD32 1799 if (w->w_req->flags & SCTL_MASK32) { 1800 struct if_msghdr32 *ifm32; 1801 1802 ifm32 = (struct if_msghdr32 *)ifm; 1803 ifm32->ifm_addrs = info->rti_addrs; 1804 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1805 ifm32->ifm_index = ifp->if_index; 1806 ifm32->_ifm_spare1 = 0; 1807 ifd = &ifm32->ifm_data; 1808 } else 1809 #endif 1810 { 1811 ifm->ifm_addrs = info->rti_addrs; 1812 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1813 ifm->ifm_index = ifp->if_index; 1814 ifm->_ifm_spare1 = 0; 1815 ifd = &ifm->ifm_data; 1816 } 1817 1818 memcpy(ifd, src_ifd, sizeof(*ifd)); 1819 1820 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1821 } 1822 1823 static int 1824 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1825 struct walkarg *w, int len) 1826 { 1827 struct ifa_msghdrl *ifam; 1828 struct if_data *ifd; 1829 1830 ifam = (struct ifa_msghdrl *)w->w_tmem; 1831 1832 #ifdef COMPAT_FREEBSD32 1833 if (w->w_req->flags & SCTL_MASK32) { 1834 struct ifa_msghdrl32 *ifam32; 1835 1836 ifam32 = (struct ifa_msghdrl32 *)ifam; 1837 ifam32->ifam_addrs = info->rti_addrs; 1838 ifam32->ifam_flags = ifa->ifa_flags; 1839 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1840 ifam32->_ifam_spare1 = 0; 1841 ifam32->ifam_len = sizeof(*ifam32); 1842 ifam32->ifam_data_off = 1843 offsetof(struct ifa_msghdrl32, ifam_data); 1844 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1845 ifd = &ifam32->ifam_data; 1846 } else 1847 #endif 1848 { 1849 ifam->ifam_addrs = info->rti_addrs; 1850 ifam->ifam_flags = ifa->ifa_flags; 1851 ifam->ifam_index = ifa->ifa_ifp->if_index; 1852 ifam->_ifam_spare1 = 0; 1853 ifam->ifam_len = sizeof(*ifam); 1854 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1855 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1856 ifd = &ifam->ifam_data; 1857 } 1858 1859 bzero(ifd, sizeof(*ifd)); 1860 ifd->ifi_datalen = sizeof(struct if_data); 1861 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1862 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1863 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1864 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1865 1866 /* Fixup if_data carp(4) vhid. */ 1867 if (carp_get_vhid_p != NULL) 1868 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1869 1870 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1871 } 1872 1873 static int 1874 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1875 struct walkarg *w, int len) 1876 { 1877 struct ifa_msghdr *ifam; 1878 1879 ifam = (struct ifa_msghdr *)w->w_tmem; 1880 ifam->ifam_addrs = info->rti_addrs; 1881 ifam->ifam_flags = ifa->ifa_flags; 1882 ifam->ifam_index = ifa->ifa_ifp->if_index; 1883 ifam->_ifam_spare1 = 0; 1884 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1885 1886 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1887 } 1888 1889 static int 1890 sysctl_iflist(int af, struct walkarg *w) 1891 { 1892 struct ifnet *ifp; 1893 struct ifaddr *ifa; 1894 struct if_data ifd; 1895 struct rt_addrinfo info; 1896 int len, error = 0; 1897 struct sockaddr_storage ss; 1898 1899 bzero((caddr_t)&info, sizeof(info)); 1900 bzero(&ifd, sizeof(ifd)); 1901 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1902 if (w->w_arg && w->w_arg != ifp->if_index) 1903 continue; 1904 if_data_copy(ifp, &ifd); 1905 ifa = ifp->if_addr; 1906 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1907 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1908 if (error != 0) 1909 goto done; 1910 info.rti_info[RTAX_IFP] = NULL; 1911 if (w->w_req && w->w_tmem) { 1912 if (w->w_op == NET_RT_IFLISTL) 1913 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 1914 len); 1915 else 1916 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 1917 len); 1918 if (error) 1919 goto done; 1920 } 1921 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 1922 if (af && af != ifa->ifa_addr->sa_family) 1923 continue; 1924 if (prison_if(w->w_req->td->td_ucred, 1925 ifa->ifa_addr) != 0) 1926 continue; 1927 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1928 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1929 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1930 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1931 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1932 if (error != 0) 1933 goto done; 1934 if (w->w_req && w->w_tmem) { 1935 if (w->w_op == NET_RT_IFLISTL) 1936 error = sysctl_iflist_ifaml(ifa, &info, 1937 w, len); 1938 else 1939 error = sysctl_iflist_ifam(ifa, &info, 1940 w, len); 1941 if (error) 1942 goto done; 1943 } 1944 } 1945 info.rti_info[RTAX_IFA] = NULL; 1946 info.rti_info[RTAX_NETMASK] = NULL; 1947 info.rti_info[RTAX_BRD] = NULL; 1948 } 1949 done: 1950 return (error); 1951 } 1952 1953 static int 1954 sysctl_ifmalist(int af, struct walkarg *w) 1955 { 1956 struct rt_addrinfo info; 1957 struct ifaddr *ifa; 1958 struct ifmultiaddr *ifma; 1959 struct ifnet *ifp; 1960 int error, len; 1961 1962 NET_EPOCH_ASSERT(); 1963 1964 error = 0; 1965 bzero((caddr_t)&info, sizeof(info)); 1966 1967 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1968 if (w->w_arg && w->w_arg != ifp->if_index) 1969 continue; 1970 ifa = ifp->if_addr; 1971 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1972 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1973 if (af && af != ifma->ifma_addr->sa_family) 1974 continue; 1975 if (prison_if(w->w_req->td->td_ucred, 1976 ifma->ifma_addr) != 0) 1977 continue; 1978 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1979 info.rti_info[RTAX_GATEWAY] = 1980 (ifma->ifma_addr->sa_family != AF_LINK) ? 1981 ifma->ifma_lladdr : NULL; 1982 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1983 if (error != 0) 1984 break; 1985 if (w->w_req && w->w_tmem) { 1986 struct ifma_msghdr *ifmam; 1987 1988 ifmam = (struct ifma_msghdr *)w->w_tmem; 1989 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1990 ifmam->ifmam_flags = 0; 1991 ifmam->ifmam_addrs = info.rti_addrs; 1992 ifmam->_ifmam_spare1 = 0; 1993 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1994 if (error != 0) 1995 break; 1996 } 1997 } 1998 if (error != 0) 1999 break; 2000 } 2001 return (error); 2002 } 2003 2004 static int 2005 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2006 { 2007 RIB_RLOCK_TRACKER; 2008 struct epoch_tracker et; 2009 int *name = (int *)arg1; 2010 u_int namelen = arg2; 2011 struct rib_head *rnh = NULL; /* silence compiler. */ 2012 int i, lim, error = EINVAL; 2013 int fib = 0; 2014 u_char af; 2015 struct walkarg w; 2016 2017 name ++; 2018 namelen--; 2019 if (req->newptr) 2020 return (EPERM); 2021 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP) { 2022 if (namelen == 3) 2023 fib = req->td->td_proc->p_fibnum; 2024 else if (namelen == 4) 2025 fib = (name[3] == RT_ALL_FIBS) ? 2026 req->td->td_proc->p_fibnum : name[3]; 2027 else 2028 return ((namelen < 3) ? EISDIR : ENOTDIR); 2029 if (fib < 0 || fib >= rt_numfibs) 2030 return (EINVAL); 2031 } else if (namelen != 3) 2032 return ((namelen < 3) ? EISDIR : ENOTDIR); 2033 af = name[0]; 2034 if (af > AF_MAX) 2035 return (EINVAL); 2036 bzero(&w, sizeof(w)); 2037 w.w_op = name[1]; 2038 w.w_arg = name[2]; 2039 w.w_req = req; 2040 2041 error = sysctl_wire_old_buffer(req, 0); 2042 if (error) 2043 return (error); 2044 2045 /* 2046 * Allocate reply buffer in advance. 2047 * All rtsock messages has maximum length of u_short. 2048 */ 2049 w.w_tmemsize = 65536; 2050 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2051 2052 NET_EPOCH_ENTER(et); 2053 switch (w.w_op) { 2054 case NET_RT_DUMP: 2055 case NET_RT_FLAGS: 2056 if (af == 0) { /* dump all tables */ 2057 i = 1; 2058 lim = AF_MAX; 2059 } else /* dump only one table */ 2060 i = lim = af; 2061 2062 /* 2063 * take care of llinfo entries, the caller must 2064 * specify an AF 2065 */ 2066 if (w.w_op == NET_RT_FLAGS && 2067 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2068 if (af != 0) 2069 error = lltable_sysctl_dumparp(af, w.w_req); 2070 else 2071 error = EINVAL; 2072 break; 2073 } 2074 /* 2075 * take care of routing entries 2076 */ 2077 for (error = 0; error == 0 && i <= lim; i++) { 2078 rnh = rt_tables_get_rnh(fib, i); 2079 if (rnh != NULL) { 2080 RIB_RLOCK(rnh); 2081 error = rnh->rnh_walktree(&rnh->head, 2082 sysctl_dumpentry, &w); 2083 RIB_RUNLOCK(rnh); 2084 } else if (af != 0) 2085 error = EAFNOSUPPORT; 2086 } 2087 break; 2088 case NET_RT_NHOP: 2089 /* Allow dumping one specific af/fib at a time */ 2090 if (namelen < 4) { 2091 error = EINVAL; 2092 break; 2093 } 2094 fib = name[3]; 2095 if (fib < 0 || fib > rt_numfibs) { 2096 error = EINVAL; 2097 break; 2098 } 2099 rnh = rt_tables_get_rnh(fib, af); 2100 if (rnh == NULL) { 2101 error = EAFNOSUPPORT; 2102 break; 2103 } 2104 if (w.w_op == NET_RT_NHOP) 2105 error = nhops_dump_sysctl(rnh, w.w_req); 2106 break; 2107 case NET_RT_IFLIST: 2108 case NET_RT_IFLISTL: 2109 error = sysctl_iflist(af, &w); 2110 break; 2111 2112 case NET_RT_IFMALIST: 2113 error = sysctl_ifmalist(af, &w); 2114 break; 2115 } 2116 NET_EPOCH_EXIT(et); 2117 2118 free(w.w_tmem, M_TEMP); 2119 return (error); 2120 } 2121 2122 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2123 sysctl_rtsock, "Return route tables and interface/address lists"); 2124 2125 /* 2126 * Definitions of protocols supported in the ROUTE domain. 2127 */ 2128 2129 static struct domain routedomain; /* or at least forward */ 2130 2131 static struct protosw routesw[] = { 2132 { 2133 .pr_type = SOCK_RAW, 2134 .pr_domain = &routedomain, 2135 .pr_flags = PR_ATOMIC|PR_ADDR, 2136 .pr_output = route_output, 2137 .pr_ctlinput = raw_ctlinput, 2138 .pr_init = raw_init, 2139 .pr_usrreqs = &route_usrreqs 2140 } 2141 }; 2142 2143 static struct domain routedomain = { 2144 .dom_family = PF_ROUTE, 2145 .dom_name = "route", 2146 .dom_protosw = routesw, 2147 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 2148 }; 2149 2150 VNET_DOMAIN_SET(route); 2151 2152