1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_ddb.h" 35 #include "opt_route.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/domain.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/rmlock.h> 50 #include <sys/rwlock.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_dl.h> 60 #include <net/if_llatbl.h> 61 #include <net/if_types.h> 62 #include <net/netisr.h> 63 #include <net/raw_cb.h> 64 #include <net/route.h> 65 #include <net/route/route_ctl.h> 66 #include <net/route/route_var.h> 67 #include <net/vnet.h> 68 69 #include <netinet/in.h> 70 #include <netinet/if_ether.h> 71 #include <netinet/ip_carp.h> 72 #ifdef INET6 73 #include <netinet6/in6_var.h> 74 #include <netinet6/ip6_var.h> 75 #include <netinet6/scope6_var.h> 76 #endif 77 #include <net/route/nhop.h> 78 79 #ifdef COMPAT_FREEBSD32 80 #include <sys/mount.h> 81 #include <compat/freebsd32/freebsd32.h> 82 83 struct if_msghdr32 { 84 uint16_t ifm_msglen; 85 uint8_t ifm_version; 86 uint8_t ifm_type; 87 int32_t ifm_addrs; 88 int32_t ifm_flags; 89 uint16_t ifm_index; 90 uint16_t _ifm_spare1; 91 struct if_data ifm_data; 92 }; 93 94 struct if_msghdrl32 { 95 uint16_t ifm_msglen; 96 uint8_t ifm_version; 97 uint8_t ifm_type; 98 int32_t ifm_addrs; 99 int32_t ifm_flags; 100 uint16_t ifm_index; 101 uint16_t _ifm_spare1; 102 uint16_t ifm_len; 103 uint16_t ifm_data_off; 104 uint32_t _ifm_spare2; 105 struct if_data ifm_data; 106 }; 107 108 struct ifa_msghdrl32 { 109 uint16_t ifam_msglen; 110 uint8_t ifam_version; 111 uint8_t ifam_type; 112 int32_t ifam_addrs; 113 int32_t ifam_flags; 114 uint16_t ifam_index; 115 uint16_t _ifam_spare1; 116 uint16_t ifam_len; 117 uint16_t ifam_data_off; 118 int32_t ifam_metric; 119 struct if_data ifam_data; 120 }; 121 122 #define SA_SIZE32(sa) \ 123 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 124 sizeof(int) : \ 125 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 126 127 #endif /* COMPAT_FREEBSD32 */ 128 129 struct linear_buffer { 130 char *base; /* Base allocated memory pointer */ 131 uint32_t offset; /* Currently used offset */ 132 uint32_t size; /* Total buffer size */ 133 }; 134 #define SCRATCH_BUFFER_SIZE 1024 135 136 #define RTS_PID_PRINTF(_fmt, ...) \ 137 printf("rtsock:%s(): PID %d: " _fmt "\n", __func__, curproc->p_pid, ## __VA_ARGS__) 138 139 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 140 141 /* NB: these are not modified */ 142 static struct sockaddr route_src = { 2, PF_ROUTE, }; 143 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 144 145 /* These are external hooks for CARP. */ 146 int (*carp_get_vhid_p)(struct ifaddr *); 147 148 /* 149 * Used by rtsock/raw_input callback code to decide whether to filter the update 150 * notification to a socket bound to a particular FIB. 151 */ 152 #define RTS_FILTER_FIB M_PROTO8 153 154 typedef struct { 155 int ip_count; /* attached w/ AF_INET */ 156 int ip6_count; /* attached w/ AF_INET6 */ 157 int any_count; /* total attached */ 158 } route_cb_t; 159 VNET_DEFINE_STATIC(route_cb_t, route_cb); 160 #define V_route_cb VNET(route_cb) 161 162 struct mtx rtsock_mtx; 163 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 164 165 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 166 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 167 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 168 169 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 170 171 struct walkarg { 172 int family; 173 int w_tmemsize; 174 int w_op, w_arg; 175 caddr_t w_tmem; 176 struct sysctl_req *w_req; 177 struct sockaddr *dst; 178 struct sockaddr *mask; 179 }; 180 181 static void rts_input(struct mbuf *m); 182 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 183 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 184 struct walkarg *w, int *plen); 185 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 186 struct rt_addrinfo *rtinfo); 187 static int cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb); 188 static int sysctl_dumpentry(struct rtentry *rt, void *vw); 189 static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, 190 uint32_t weight, struct walkarg *w); 191 static int sysctl_iflist(int af, struct walkarg *w); 192 static int sysctl_ifmalist(int af, struct walkarg *w); 193 static int route_output(struct mbuf *m, struct socket *so, ...); 194 static void rt_getmetrics(const struct rtentry *rt, 195 const struct nhop_object *nh, struct rt_metrics *out); 196 static void rt_dispatch(struct mbuf *, sa_family_t); 197 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 198 struct rt_msghdr *rtm, struct rib_cmd_info *rc); 199 static int update_rtm_from_rc(struct rt_addrinfo *info, 200 struct rt_msghdr **prtm, int alloc_len, 201 struct rib_cmd_info *rc, struct nhop_object *nh); 202 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 203 struct mbuf *m, sa_family_t saf, u_int fibnum, 204 int rtm_errno); 205 static bool can_export_rte(struct ucred *td_ucred, bool rt_is_host, 206 const struct sockaddr *rt_dst); 207 208 static struct netisr_handler rtsock_nh = { 209 .nh_name = "rtsock", 210 .nh_handler = rts_input, 211 .nh_proto = NETISR_ROUTE, 212 .nh_policy = NETISR_POLICY_SOURCE, 213 }; 214 215 static int 216 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 217 { 218 int error, qlimit; 219 220 netisr_getqlimit(&rtsock_nh, &qlimit); 221 error = sysctl_handle_int(oidp, &qlimit, 0, req); 222 if (error || !req->newptr) 223 return (error); 224 if (qlimit < 1) 225 return (EINVAL); 226 return (netisr_setqlimit(&rtsock_nh, qlimit)); 227 } 228 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 229 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 230 0, 0, sysctl_route_netisr_maxqlen, "I", 231 "maximum routing socket dispatch queue length"); 232 233 static void 234 vnet_rts_init(void) 235 { 236 int tmp; 237 238 if (IS_DEFAULT_VNET(curvnet)) { 239 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 240 rtsock_nh.nh_qlimit = tmp; 241 netisr_register(&rtsock_nh); 242 } 243 #ifdef VIMAGE 244 else 245 netisr_register_vnet(&rtsock_nh); 246 #endif 247 } 248 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 249 vnet_rts_init, 0); 250 251 #ifdef VIMAGE 252 static void 253 vnet_rts_uninit(void) 254 { 255 256 netisr_unregister_vnet(&rtsock_nh); 257 } 258 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 259 vnet_rts_uninit, 0); 260 #endif 261 262 static int 263 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 264 struct rawcb *rp) 265 { 266 int fibnum; 267 268 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 269 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 270 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 271 272 /* No filtering requested. */ 273 if ((m->m_flags & RTS_FILTER_FIB) == 0) 274 return (0); 275 276 /* Check if it is a rts and the fib matches the one of the socket. */ 277 fibnum = M_GETFIB(m); 278 if (proto->sp_family != PF_ROUTE || 279 rp->rcb_socket == NULL || 280 rp->rcb_socket->so_fibnum == fibnum) 281 return (0); 282 283 /* Filtering requested and no match, the socket shall be skipped. */ 284 return (1); 285 } 286 287 static void 288 rts_input(struct mbuf *m) 289 { 290 struct sockproto route_proto; 291 unsigned short *family; 292 struct m_tag *tag; 293 294 route_proto.sp_family = PF_ROUTE; 295 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 296 if (tag != NULL) { 297 family = (unsigned short *)(tag + 1); 298 route_proto.sp_protocol = *family; 299 m_tag_delete(m, tag); 300 } else 301 route_proto.sp_protocol = 0; 302 303 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 304 } 305 306 /* 307 * It really doesn't make any sense at all for this code to share much 308 * with raw_usrreq.c, since its functionality is so restricted. XXX 309 */ 310 static void 311 rts_abort(struct socket *so) 312 { 313 314 raw_usrreqs.pru_abort(so); 315 } 316 317 static void 318 rts_close(struct socket *so) 319 { 320 321 raw_usrreqs.pru_close(so); 322 } 323 324 /* pru_accept is EOPNOTSUPP */ 325 326 static int 327 rts_attach(struct socket *so, int proto, struct thread *td) 328 { 329 struct rawcb *rp; 330 int error; 331 332 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 333 334 /* XXX */ 335 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 336 337 so->so_pcb = (caddr_t)rp; 338 so->so_fibnum = td->td_proc->p_fibnum; 339 error = raw_attach(so, proto); 340 rp = sotorawcb(so); 341 if (error) { 342 so->so_pcb = NULL; 343 free(rp, M_PCB); 344 return error; 345 } 346 RTSOCK_LOCK(); 347 switch(rp->rcb_proto.sp_protocol) { 348 case AF_INET: 349 V_route_cb.ip_count++; 350 break; 351 case AF_INET6: 352 V_route_cb.ip6_count++; 353 break; 354 } 355 V_route_cb.any_count++; 356 RTSOCK_UNLOCK(); 357 soisconnected(so); 358 so->so_options |= SO_USELOOPBACK; 359 return 0; 360 } 361 362 static int 363 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 364 { 365 366 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 367 } 368 369 static int 370 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 371 { 372 373 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 374 } 375 376 /* pru_connect2 is EOPNOTSUPP */ 377 /* pru_control is EOPNOTSUPP */ 378 379 static void 380 rts_detach(struct socket *so) 381 { 382 struct rawcb *rp = sotorawcb(so); 383 384 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 385 386 RTSOCK_LOCK(); 387 switch(rp->rcb_proto.sp_protocol) { 388 case AF_INET: 389 V_route_cb.ip_count--; 390 break; 391 case AF_INET6: 392 V_route_cb.ip6_count--; 393 break; 394 } 395 V_route_cb.any_count--; 396 RTSOCK_UNLOCK(); 397 raw_usrreqs.pru_detach(so); 398 } 399 400 static int 401 rts_disconnect(struct socket *so) 402 { 403 404 return (raw_usrreqs.pru_disconnect(so)); 405 } 406 407 /* pru_listen is EOPNOTSUPP */ 408 409 static int 410 rts_peeraddr(struct socket *so, struct sockaddr **nam) 411 { 412 413 return (raw_usrreqs.pru_peeraddr(so, nam)); 414 } 415 416 /* pru_rcvd is EOPNOTSUPP */ 417 /* pru_rcvoob is EOPNOTSUPP */ 418 419 static int 420 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 421 struct mbuf *control, struct thread *td) 422 { 423 424 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 425 } 426 427 /* pru_sense is null */ 428 429 static int 430 rts_shutdown(struct socket *so) 431 { 432 433 return (raw_usrreqs.pru_shutdown(so)); 434 } 435 436 static int 437 rts_sockaddr(struct socket *so, struct sockaddr **nam) 438 { 439 440 return (raw_usrreqs.pru_sockaddr(so, nam)); 441 } 442 443 static struct pr_usrreqs route_usrreqs = { 444 .pru_abort = rts_abort, 445 .pru_attach = rts_attach, 446 .pru_bind = rts_bind, 447 .pru_connect = rts_connect, 448 .pru_detach = rts_detach, 449 .pru_disconnect = rts_disconnect, 450 .pru_peeraddr = rts_peeraddr, 451 .pru_send = rts_send, 452 .pru_shutdown = rts_shutdown, 453 .pru_sockaddr = rts_sockaddr, 454 .pru_close = rts_close, 455 }; 456 457 #ifndef _SOCKADDR_UNION_DEFINED 458 #define _SOCKADDR_UNION_DEFINED 459 /* 460 * The union of all possible address formats we handle. 461 */ 462 union sockaddr_union { 463 struct sockaddr sa; 464 struct sockaddr_in sin; 465 struct sockaddr_in6 sin6; 466 }; 467 #endif /* _SOCKADDR_UNION_DEFINED */ 468 469 static int 470 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 471 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 472 { 473 #if defined(INET) || defined(INET6) 474 struct epoch_tracker et; 475 #endif 476 477 /* First, see if the returned address is part of the jail. */ 478 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 479 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 480 return (0); 481 } 482 483 switch (info->rti_info[RTAX_DST]->sa_family) { 484 #ifdef INET 485 case AF_INET: 486 { 487 struct in_addr ia; 488 struct ifaddr *ifa; 489 int found; 490 491 found = 0; 492 /* 493 * Try to find an address on the given outgoing interface 494 * that belongs to the jail. 495 */ 496 NET_EPOCH_ENTER(et); 497 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 498 struct sockaddr *sa; 499 sa = ifa->ifa_addr; 500 if (sa->sa_family != AF_INET) 501 continue; 502 ia = ((struct sockaddr_in *)sa)->sin_addr; 503 if (prison_check_ip4(cred, &ia) == 0) { 504 found = 1; 505 break; 506 } 507 } 508 NET_EPOCH_EXIT(et); 509 if (!found) { 510 /* 511 * As a last resort return the 'default' jail address. 512 */ 513 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 514 sin_addr; 515 if (prison_get_ip4(cred, &ia) != 0) 516 return (ESRCH); 517 } 518 bzero(&saun->sin, sizeof(struct sockaddr_in)); 519 saun->sin.sin_len = sizeof(struct sockaddr_in); 520 saun->sin.sin_family = AF_INET; 521 saun->sin.sin_addr.s_addr = ia.s_addr; 522 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 523 break; 524 } 525 #endif 526 #ifdef INET6 527 case AF_INET6: 528 { 529 struct in6_addr ia6; 530 struct ifaddr *ifa; 531 int found; 532 533 found = 0; 534 /* 535 * Try to find an address on the given outgoing interface 536 * that belongs to the jail. 537 */ 538 NET_EPOCH_ENTER(et); 539 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 540 struct sockaddr *sa; 541 sa = ifa->ifa_addr; 542 if (sa->sa_family != AF_INET6) 543 continue; 544 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 545 &ia6, sizeof(struct in6_addr)); 546 if (prison_check_ip6(cred, &ia6) == 0) { 547 found = 1; 548 break; 549 } 550 } 551 NET_EPOCH_EXIT(et); 552 if (!found) { 553 /* 554 * As a last resort return the 'default' jail address. 555 */ 556 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 557 sin6_addr; 558 if (prison_get_ip6(cred, &ia6) != 0) 559 return (ESRCH); 560 } 561 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 562 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 563 saun->sin6.sin6_family = AF_INET6; 564 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 565 if (sa6_recoverscope(&saun->sin6) != 0) 566 return (ESRCH); 567 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 568 break; 569 } 570 #endif 571 default: 572 return (ESRCH); 573 } 574 return (0); 575 } 576 577 static int 578 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun) 579 { 580 struct ifaddr *ifa; 581 sa_family_t saf; 582 583 if (V_loif == NULL) { 584 RTS_PID_PRINTF("Unable to add blackhole/reject nhop without loopback"); 585 return (ENOTSUP); 586 } 587 info->rti_ifp = V_loif; 588 589 saf = info->rti_info[RTAX_DST]->sa_family; 590 591 CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) { 592 if (ifa->ifa_addr->sa_family == saf) { 593 info->rti_ifa = ifa; 594 break; 595 } 596 } 597 if (info->rti_ifa == NULL) 598 return (ENOTSUP); 599 600 bzero(saun, sizeof(union sockaddr_union)); 601 switch (saf) { 602 #ifdef INET 603 case AF_INET: 604 saun->sin.sin_family = AF_INET; 605 saun->sin.sin_len = sizeof(struct sockaddr_in); 606 saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); 607 break; 608 #endif 609 #ifdef INET6 610 case AF_INET6: 611 saun->sin6.sin6_family = AF_INET6; 612 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 613 saun->sin6.sin6_addr = in6addr_loopback; 614 break; 615 #endif 616 default: 617 return (ENOTSUP); 618 } 619 info->rti_info[RTAX_GATEWAY] = &saun->sa; 620 info->rti_flags |= RTF_GATEWAY; 621 622 return (0); 623 } 624 625 /* 626 * Fills in @info based on userland-provided @rtm message. 627 * 628 * Returns 0 on success. 629 */ 630 static int 631 fill_addrinfo(struct rt_msghdr *rtm, int len, struct linear_buffer *lb, u_int fibnum, 632 struct rt_addrinfo *info) 633 { 634 int error; 635 636 rtm->rtm_pid = curproc->p_pid; 637 info->rti_addrs = rtm->rtm_addrs; 638 639 info->rti_mflags = rtm->rtm_inits; 640 info->rti_rmx = &rtm->rtm_rmx; 641 642 /* 643 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 644 * link-local address because rtrequest requires addresses with 645 * embedded scope id. 646 */ 647 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 648 return (EINVAL); 649 650 info->rti_flags = rtm->rtm_flags; 651 error = cleanup_xaddrs(info, lb); 652 if (error != 0) 653 return (error); 654 /* 655 * Verify that the caller has the appropriate privilege; RTM_GET 656 * is the only operation the non-superuser is allowed. 657 */ 658 if (rtm->rtm_type != RTM_GET) { 659 error = priv_check(curthread, PRIV_NET_ROUTE); 660 if (error != 0) 661 return (error); 662 } 663 664 /* 665 * The given gateway address may be an interface address. 666 * For example, issuing a "route change" command on a route 667 * entry that was created from a tunnel, and the gateway 668 * address given is the local end point. In this case the 669 * RTF_GATEWAY flag must be cleared or the destination will 670 * not be reachable even though there is no error message. 671 */ 672 if (info->rti_info[RTAX_GATEWAY] != NULL && 673 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 674 struct rt_addrinfo ginfo; 675 struct sockaddr *gdst; 676 struct sockaddr_storage ss; 677 678 bzero(&ginfo, sizeof(ginfo)); 679 bzero(&ss, sizeof(ss)); 680 ss.ss_len = sizeof(ss); 681 682 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 683 gdst = info->rti_info[RTAX_GATEWAY]; 684 685 /* 686 * A host route through the loopback interface is 687 * installed for each interface adddress. In pre 8.0 688 * releases the interface address of a PPP link type 689 * is not reachable locally. This behavior is fixed as 690 * part of the new L2/L3 redesign and rewrite work. The 691 * signature of this interface address route is the 692 * AF_LINK sa_family type of the gateway, and the 693 * rt_ifp has the IFF_LOOPBACK flag set. 694 */ 695 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 696 if (ss.ss_family == AF_LINK && 697 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 698 info->rti_flags &= ~RTF_GATEWAY; 699 info->rti_flags |= RTF_GWFLAG_COMPAT; 700 } 701 rib_free_info(&ginfo); 702 } 703 } 704 705 return (0); 706 } 707 708 static struct nhop_object * 709 select_nhop(struct nhop_object *nh, const struct sockaddr *gw) 710 { 711 if (!NH_IS_NHGRP(nh)) 712 return (nh); 713 #ifdef ROUTE_MPATH 714 struct weightened_nhop *wn; 715 uint32_t num_nhops; 716 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 717 if (gw == NULL) 718 return (wn[0].nh); 719 for (int i = 0; i < num_nhops; i++) { 720 if (match_nhop_gw(wn[i].nh, gw)) 721 return (wn[i].nh); 722 } 723 #endif 724 return (NULL); 725 } 726 727 /* 728 * Handles RTM_GET message from routing socket, returning matching rt. 729 * 730 * Returns: 731 * 0 on success, with locked and referenced matching rt in @rt_nrt 732 * errno of failure 733 */ 734 static int 735 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 736 struct rt_msghdr *rtm, struct rib_cmd_info *rc) 737 { 738 RIB_RLOCK_TRACKER; 739 struct rib_head *rnh; 740 struct nhop_object *nh; 741 sa_family_t saf; 742 743 saf = info->rti_info[RTAX_DST]->sa_family; 744 745 rnh = rt_tables_get_rnh(fibnum, saf); 746 if (rnh == NULL) 747 return (EAFNOSUPPORT); 748 749 RIB_RLOCK(rnh); 750 751 /* 752 * By (implicit) convention host route (one without netmask) 753 * means longest-prefix-match request and the route with netmask 754 * means exact-match lookup. 755 * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128 756 * prefixes, use original data to check for the netmask presence. 757 */ 758 if ((rtm->rtm_addrs & RTA_NETMASK) == 0) { 759 /* 760 * Provide longest prefix match for 761 * address lookup (no mask). 762 * 'route -n get addr' 763 */ 764 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( 765 info->rti_info[RTAX_DST], &rnh->head); 766 } else 767 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( 768 info->rti_info[RTAX_DST], 769 info->rti_info[RTAX_NETMASK], &rnh->head); 770 771 if (rc->rc_rt == NULL) { 772 RIB_RUNLOCK(rnh); 773 return (ESRCH); 774 } 775 776 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 777 if (nh == NULL) { 778 RIB_RUNLOCK(rnh); 779 return (ESRCH); 780 } 781 /* 782 * If performing proxied L2 entry insertion, and 783 * the actual PPP host entry is found, perform 784 * another search to retrieve the prefix route of 785 * the local end point of the PPP link. 786 * TODO: move this logic to userland. 787 */ 788 if (rtm->rtm_flags & RTF_ANNOUNCE) { 789 struct sockaddr laddr; 790 791 if (nh->nh_ifp != NULL && 792 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 793 struct ifaddr *ifa; 794 795 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 796 RT_ALL_FIBS); 797 if (ifa != NULL) 798 rt_maskedcopy(ifa->ifa_addr, 799 &laddr, 800 ifa->ifa_netmask); 801 } else 802 rt_maskedcopy(nh->nh_ifa->ifa_addr, 803 &laddr, 804 nh->nh_ifa->ifa_netmask); 805 /* 806 * refactor rt and no lock operation necessary 807 */ 808 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 809 &rnh->head); 810 if (rc->rc_rt == NULL) { 811 RIB_RUNLOCK(rnh); 812 return (ESRCH); 813 } 814 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 815 if (nh == NULL) { 816 RIB_RUNLOCK(rnh); 817 return (ESRCH); 818 } 819 } 820 rc->rc_nh_new = nh; 821 rc->rc_nh_weight = rc->rc_rt->rt_weight; 822 RIB_RUNLOCK(rnh); 823 824 return (0); 825 } 826 827 static void 828 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask) 829 { 830 #ifdef INET 831 if (family == AF_INET) { 832 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 833 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 834 835 bzero(dst4, sizeof(struct sockaddr_in)); 836 bzero(mask4, sizeof(struct sockaddr_in)); 837 838 dst4->sin_family = AF_INET; 839 dst4->sin_len = sizeof(struct sockaddr_in); 840 mask4->sin_family = AF_INET; 841 mask4->sin_len = sizeof(struct sockaddr_in); 842 } 843 #endif 844 #ifdef INET6 845 if (family == AF_INET6) { 846 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 847 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 848 849 bzero(dst6, sizeof(struct sockaddr_in6)); 850 bzero(mask6, sizeof(struct sockaddr_in6)); 851 852 dst6->sin6_family = AF_INET6; 853 dst6->sin6_len = sizeof(struct sockaddr_in6); 854 mask6->sin6_family = AF_INET6; 855 mask6->sin6_len = sizeof(struct sockaddr_in6); 856 } 857 #endif 858 } 859 860 static void 861 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst, 862 struct sockaddr *mask) 863 { 864 #ifdef INET 865 if (dst->sa_family == AF_INET) { 866 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 867 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 868 uint32_t scopeid = 0; 869 rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr, 870 &scopeid); 871 return; 872 } 873 #endif 874 #ifdef INET6 875 if (dst->sa_family == AF_INET6) { 876 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 877 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 878 uint32_t scopeid = 0; 879 rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr, 880 &mask6->sin6_addr, &scopeid); 881 dst6->sin6_scope_id = scopeid; 882 return; 883 } 884 #endif 885 } 886 887 static int 888 update_rtm_from_info(struct rt_addrinfo *info, struct rt_msghdr **prtm, 889 int alloc_len) 890 { 891 struct rt_msghdr *rtm, *orig_rtm = NULL; 892 struct walkarg w; 893 int len; 894 895 rtm = *prtm; 896 /* Check if we need to realloc storage */ 897 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 898 if (len > alloc_len) { 899 struct rt_msghdr *tmp_rtm; 900 901 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 902 if (tmp_rtm == NULL) 903 return (ENOBUFS); 904 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 905 orig_rtm = rtm; 906 rtm = tmp_rtm; 907 alloc_len = len; 908 909 /* 910 * Delay freeing original rtm as info contains 911 * data referencing it. 912 */ 913 } 914 915 w.w_tmem = (caddr_t)rtm; 916 w.w_tmemsize = alloc_len; 917 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 918 rtm->rtm_addrs = info->rti_addrs; 919 920 if (orig_rtm != NULL) 921 free(orig_rtm, M_TEMP); 922 *prtm = rtm; 923 return (0); 924 } 925 926 927 /* 928 * Update sockaddrs, flags, etc in @prtm based on @rc data. 929 * rtm can be reallocated. 930 * 931 * Returns 0 on success, along with pointer to (potentially reallocated) 932 * rtm. 933 * 934 */ 935 static int 936 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, 937 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) 938 { 939 union sockaddr_union saun; 940 struct rt_msghdr *rtm; 941 struct ifnet *ifp; 942 int error; 943 944 rtm = *prtm; 945 union sockaddr_union sa_dst, sa_mask; 946 int family = info->rti_info[RTAX_DST]->sa_family; 947 init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa); 948 export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa); 949 950 info->rti_info[RTAX_DST] = &sa_dst.sa; 951 info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa; 952 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 953 info->rti_info[RTAX_GENMASK] = 0; 954 ifp = nh->nh_ifp; 955 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 956 if (ifp) { 957 info->rti_info[RTAX_IFP] = 958 ifp->if_addr->ifa_addr; 959 error = rtm_get_jailed(info, ifp, nh, 960 &saun, curthread->td_ucred); 961 if (error != 0) 962 return (error); 963 if (ifp->if_flags & IFF_POINTOPOINT) 964 info->rti_info[RTAX_BRD] = 965 nh->nh_ifa->ifa_dstaddr; 966 rtm->rtm_index = ifp->if_index; 967 } else { 968 info->rti_info[RTAX_IFP] = NULL; 969 info->rti_info[RTAX_IFA] = NULL; 970 } 971 } else if (ifp != NULL) 972 rtm->rtm_index = ifp->if_index; 973 974 if ((error = update_rtm_from_info(info, prtm, alloc_len)) != 0) 975 return (error); 976 977 rtm = *prtm; 978 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); 979 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 980 rtm->rtm_flags = RTF_GATEWAY | 981 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 982 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); 983 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; 984 985 return (0); 986 } 987 988 #ifdef ROUTE_MPATH 989 static void 990 save_del_notification(struct rib_cmd_info *rc, void *_cbdata) 991 { 992 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 993 994 if (rc->rc_cmd == RTM_DELETE) 995 *rc_new = *rc; 996 } 997 998 static void 999 save_add_notification(struct rib_cmd_info *rc, void *_cbdata) 1000 { 1001 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 1002 1003 if (rc->rc_cmd == RTM_ADD) 1004 *rc_new = *rc; 1005 } 1006 #endif 1007 1008 #if defined(INET6) || defined(INET) 1009 static struct sockaddr * 1010 alloc_sockaddr_aligned(struct linear_buffer *lb, int len) 1011 { 1012 len = roundup2(len, sizeof(uint64_t)); 1013 if (lb->offset + len > lb->size) 1014 return (NULL); 1015 struct sockaddr *sa = (struct sockaddr *)(lb->base + lb->offset); 1016 lb->offset += len; 1017 return (sa); 1018 } 1019 #endif 1020 1021 /*ARGSUSED*/ 1022 static int 1023 route_output(struct mbuf *m, struct socket *so, ...) 1024 { 1025 struct rt_msghdr *rtm = NULL; 1026 struct rt_addrinfo info; 1027 struct epoch_tracker et; 1028 #ifdef INET6 1029 struct sockaddr_storage ss; 1030 struct sockaddr_in6 *sin6; 1031 int i, rti_need_deembed = 0; 1032 #endif 1033 int alloc_len = 0, len, error = 0, fibnum; 1034 sa_family_t saf = AF_UNSPEC; 1035 struct rib_cmd_info rc; 1036 struct nhop_object *nh; 1037 1038 fibnum = so->so_fibnum; 1039 #define senderr(e) { error = e; goto flush;} 1040 if (m == NULL || ((m->m_len < sizeof(long)) && 1041 (m = m_pullup(m, sizeof(long))) == NULL)) 1042 return (ENOBUFS); 1043 if ((m->m_flags & M_PKTHDR) == 0) 1044 panic("route_output"); 1045 NET_EPOCH_ENTER(et); 1046 len = m->m_pkthdr.len; 1047 if (len < sizeof(*rtm) || 1048 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 1049 senderr(EINVAL); 1050 1051 /* 1052 * Most of current messages are in range 200-240 bytes, 1053 * minimize possible re-allocation on reply using larger size 1054 * buffer aligned on 1k boundaty. 1055 */ 1056 alloc_len = roundup2(len, 1024); 1057 int total_len = alloc_len + SCRATCH_BUFFER_SIZE; 1058 if ((rtm = malloc(total_len, M_TEMP, M_NOWAIT)) == NULL) 1059 senderr(ENOBUFS); 1060 1061 m_copydata(m, 0, len, (caddr_t)rtm); 1062 bzero(&info, sizeof(info)); 1063 nh = NULL; 1064 struct linear_buffer lb = { 1065 .base = (char *)rtm + alloc_len, 1066 .size = SCRATCH_BUFFER_SIZE, 1067 }; 1068 1069 if (rtm->rtm_version != RTM_VERSION) { 1070 /* Do not touch message since format is unknown */ 1071 free(rtm, M_TEMP); 1072 rtm = NULL; 1073 senderr(EPROTONOSUPPORT); 1074 } 1075 1076 /* 1077 * Starting from here, it is possible 1078 * to alter original message and insert 1079 * caller PID and error value. 1080 */ 1081 1082 if ((error = fill_addrinfo(rtm, len, &lb, fibnum, &info)) != 0) { 1083 senderr(error); 1084 } 1085 /* fill_addringo() embeds scope into IPv6 addresses */ 1086 #ifdef INET6 1087 rti_need_deembed = 1; 1088 #endif 1089 1090 saf = info.rti_info[RTAX_DST]->sa_family; 1091 1092 /* support for new ARP code */ 1093 if (rtm->rtm_flags & RTF_LLDATA) { 1094 error = lla_rt_output(rtm, &info); 1095 goto flush; 1096 } 1097 1098 union sockaddr_union gw_saun; 1099 int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT); 1100 if (blackhole_flags != 0) { 1101 if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT)) 1102 error = fill_blackholeinfo(&info, &gw_saun); 1103 else 1104 error = EINVAL; 1105 if (error != 0) 1106 senderr(error); 1107 } 1108 1109 switch (rtm->rtm_type) { 1110 case RTM_ADD: 1111 case RTM_CHANGE: 1112 if (rtm->rtm_type == RTM_ADD) { 1113 if (info.rti_info[RTAX_GATEWAY] == NULL) 1114 senderr(EINVAL); 1115 } 1116 error = rib_action(fibnum, rtm->rtm_type, &info, &rc); 1117 if (error == 0) { 1118 #ifdef ROUTE_MPATH 1119 if (NH_IS_NHGRP(rc.rc_nh_new) || 1120 (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) { 1121 struct rib_cmd_info rc_simple = {}; 1122 rib_decompose_notification(&rc, 1123 save_add_notification, (void *)&rc_simple); 1124 rc = rc_simple; 1125 } 1126 #endif 1127 nh = rc.rc_nh_new; 1128 rtm->rtm_index = nh->nh_ifp->if_index; 1129 rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh); 1130 } 1131 break; 1132 1133 case RTM_DELETE: 1134 error = rib_action(fibnum, RTM_DELETE, &info, &rc); 1135 if (error == 0) { 1136 #ifdef ROUTE_MPATH 1137 if (NH_IS_NHGRP(rc.rc_nh_old) || 1138 (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) { 1139 struct rib_cmd_info rc_simple = {}; 1140 rib_decompose_notification(&rc, 1141 save_del_notification, (void *)&rc_simple); 1142 rc = rc_simple; 1143 } 1144 #endif 1145 nh = rc.rc_nh_old; 1146 } 1147 break; 1148 1149 case RTM_GET: 1150 error = handle_rtm_get(&info, fibnum, rtm, &rc); 1151 if (error != 0) 1152 senderr(error); 1153 nh = rc.rc_nh_new; 1154 1155 if (!can_export_rte(curthread->td_ucred, 1156 info.rti_info[RTAX_NETMASK] == NULL, 1157 info.rti_info[RTAX_DST])) { 1158 senderr(ESRCH); 1159 } 1160 break; 1161 1162 default: 1163 senderr(EOPNOTSUPP); 1164 } 1165 1166 if (error == 0) { 1167 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); 1168 /* 1169 * Note that some sockaddr pointers may have changed to 1170 * point to memory outsize @rtm. Some may be pointing 1171 * to the on-stack variables. 1172 * Given that, any pointer in @info CANNOT BE USED. 1173 */ 1174 1175 /* 1176 * scopeid deembedding has been performed while 1177 * writing updated rtm in rtsock_msg_buffer(). 1178 * With that in mind, skip deembedding procedure below. 1179 */ 1180 #ifdef INET6 1181 rti_need_deembed = 0; 1182 #endif 1183 } 1184 1185 flush: 1186 NET_EPOCH_EXIT(et); 1187 1188 #ifdef INET6 1189 if (rtm != NULL) { 1190 if (rti_need_deembed) { 1191 /* sin6_scope_id is recovered before sending rtm. */ 1192 sin6 = (struct sockaddr_in6 *)&ss; 1193 for (i = 0; i < RTAX_MAX; i++) { 1194 if (info.rti_info[i] == NULL) 1195 continue; 1196 if (info.rti_info[i]->sa_family != AF_INET6) 1197 continue; 1198 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 1199 if (sa6_recoverscope(sin6) == 0) 1200 bcopy(sin6, info.rti_info[i], 1201 sizeof(*sin6)); 1202 } 1203 if (update_rtm_from_info(&info, &rtm, alloc_len) != 0) { 1204 if (error != 0) 1205 error = ENOBUFS; 1206 } 1207 } 1208 } 1209 #endif 1210 send_rtm_reply(so, rtm, m, saf, fibnum, error); 1211 1212 return (error); 1213 } 1214 1215 /* 1216 * Sends the prepared reply message in @rtm to all rtsock clients. 1217 * Frees @m and @rtm. 1218 * 1219 */ 1220 static void 1221 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1222 sa_family_t saf, u_int fibnum, int rtm_errno) 1223 { 1224 struct rawcb *rp = NULL; 1225 1226 /* 1227 * Check to see if we don't want our own messages. 1228 */ 1229 if ((so->so_options & SO_USELOOPBACK) == 0) { 1230 if (V_route_cb.any_count <= 1) { 1231 if (rtm != NULL) 1232 free(rtm, M_TEMP); 1233 m_freem(m); 1234 return; 1235 } 1236 /* There is another listener, so construct message */ 1237 rp = sotorawcb(so); 1238 } 1239 1240 if (rtm != NULL) { 1241 if (rtm_errno!= 0) 1242 rtm->rtm_errno = rtm_errno; 1243 else 1244 rtm->rtm_flags |= RTF_DONE; 1245 1246 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1247 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1248 m_freem(m); 1249 m = NULL; 1250 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1251 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1252 1253 free(rtm, M_TEMP); 1254 } 1255 if (m != NULL) { 1256 M_SETFIB(m, fibnum); 1257 m->m_flags |= RTS_FILTER_FIB; 1258 if (rp) { 1259 /* 1260 * XXX insure we don't get a copy by 1261 * invalidating our protocol 1262 */ 1263 unsigned short family = rp->rcb_proto.sp_family; 1264 rp->rcb_proto.sp_family = 0; 1265 rt_dispatch(m, saf); 1266 rp->rcb_proto.sp_family = family; 1267 } else 1268 rt_dispatch(m, saf); 1269 } 1270 } 1271 1272 static void 1273 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, 1274 struct rt_metrics *out) 1275 { 1276 1277 bzero(out, sizeof(*out)); 1278 out->rmx_mtu = nh->nh_mtu; 1279 out->rmx_weight = rt->rt_weight; 1280 out->rmx_nhidx = nhop_get_idx(nh); 1281 /* Kernel -> userland timebase conversion. */ 1282 out->rmx_expire = rt->rt_expire ? 1283 rt->rt_expire - time_uptime + time_second : 0; 1284 } 1285 1286 /* 1287 * Extract the addresses of the passed sockaddrs. 1288 * Do a little sanity checking so as to avoid bad memory references. 1289 * This data is derived straight from userland. 1290 */ 1291 static int 1292 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1293 { 1294 struct sockaddr *sa; 1295 int i; 1296 1297 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1298 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1299 continue; 1300 sa = (struct sockaddr *)cp; 1301 /* 1302 * It won't fit. 1303 */ 1304 if (cp + sa->sa_len > cplim) 1305 return (EINVAL); 1306 /* 1307 * there are no more.. quit now 1308 * If there are more bits, they are in error. 1309 * I've seen this. route(1) can evidently generate these. 1310 * This causes kernel to core dump. 1311 * for compatibility, If we see this, point to a safe address. 1312 */ 1313 if (sa->sa_len == 0) { 1314 rtinfo->rti_info[i] = &sa_zero; 1315 return (0); /* should be EINVAL but for compat */ 1316 } 1317 /* accept it */ 1318 #ifdef INET6 1319 if (sa->sa_family == AF_INET6) 1320 sa6_embedscope((struct sockaddr_in6 *)sa, 1321 V_ip6_use_defzone); 1322 #endif 1323 rtinfo->rti_info[i] = sa; 1324 cp += SA_SIZE(sa); 1325 } 1326 return (0); 1327 } 1328 1329 #ifdef INET 1330 static inline void 1331 fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr) 1332 { 1333 1334 const struct sockaddr_in nsin = { 1335 .sin_family = AF_INET, 1336 .sin_len = sizeof(struct sockaddr_in), 1337 .sin_addr = addr, 1338 }; 1339 *sin = nsin; 1340 } 1341 #endif 1342 1343 #ifdef INET6 1344 static inline void 1345 fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6, 1346 uint32_t scopeid) 1347 { 1348 1349 const struct sockaddr_in6 nsin6 = { 1350 .sin6_family = AF_INET6, 1351 .sin6_len = sizeof(struct sockaddr_in6), 1352 .sin6_addr = *addr6, 1353 .sin6_scope_id = scopeid, 1354 }; 1355 *sin6 = nsin6; 1356 } 1357 #endif 1358 1359 #if defined(INET6) || defined(INET) 1360 /* 1361 * Checks if gateway is suitable for lltable operations. 1362 * Lltable code requires AF_LINK gateway with ifindex 1363 * and mac address specified. 1364 * Returns 0 on success. 1365 */ 1366 static int 1367 cleanup_xaddrs_lladdr(struct rt_addrinfo *info) 1368 { 1369 struct sockaddr_dl *sdl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY]; 1370 1371 if (sdl->sdl_family != AF_LINK) 1372 return (EINVAL); 1373 1374 if (sdl->sdl_index == 0) 1375 return (EINVAL); 1376 1377 if (offsetof(struct sockaddr_dl, sdl_data) + sdl->sdl_nlen + sdl->sdl_alen > sdl->sdl_len) 1378 return (EINVAL); 1379 1380 return (0); 1381 } 1382 1383 static int 1384 cleanup_xaddrs_gateway(struct rt_addrinfo *info, struct linear_buffer *lb) 1385 { 1386 struct sockaddr *gw = info->rti_info[RTAX_GATEWAY]; 1387 struct sockaddr *sa; 1388 1389 if (info->rti_flags & RTF_LLDATA) 1390 return (cleanup_xaddrs_lladdr(info)); 1391 1392 switch (gw->sa_family) { 1393 #ifdef INET 1394 case AF_INET: 1395 { 1396 struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw; 1397 1398 /* Ensure reads do not go beyoud SA boundary */ 1399 if (SA_SIZE(gw) < offsetof(struct sockaddr_in, sin_zero)) { 1400 RTS_PID_PRINTF("gateway sin_len too small: %d", gw->sa_len); 1401 return (EINVAL); 1402 } 1403 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_in)); 1404 if (sa == NULL) 1405 return (ENOBUFS); 1406 fill_sockaddr_inet((struct sockaddr_in *)sa, gw_sin->sin_addr); 1407 info->rti_info[RTAX_GATEWAY] = sa; 1408 } 1409 break; 1410 #endif 1411 #ifdef INET6 1412 case AF_INET6: 1413 { 1414 struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw; 1415 if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) { 1416 RTS_PID_PRINTF("gateway sin6_len too small: %d", gw->sa_len); 1417 return (EINVAL); 1418 } 1419 fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0); 1420 break; 1421 } 1422 #endif 1423 case AF_LINK: 1424 { 1425 struct sockaddr_dl *gw_sdl; 1426 1427 size_t sdl_min_len = offsetof(struct sockaddr_dl, sdl_data); 1428 gw_sdl = (struct sockaddr_dl *)gw; 1429 if (gw_sdl->sdl_len < sdl_min_len) { 1430 RTS_PID_PRINTF("gateway sdl_len too small: %d", gw_sdl->sdl_len); 1431 return (EINVAL); 1432 } 1433 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_dl_short)); 1434 if (sa == NULL) 1435 return (ENOBUFS); 1436 1437 const struct sockaddr_dl_short sdl = { 1438 .sdl_family = AF_LINK, 1439 .sdl_len = sizeof(struct sockaddr_dl_short), 1440 .sdl_index = gw_sdl->sdl_index, 1441 }; 1442 *((struct sockaddr_dl_short *)sa) = sdl; 1443 info->rti_info[RTAX_GATEWAY] = sa; 1444 break; 1445 } 1446 } 1447 1448 return (0); 1449 } 1450 #endif 1451 1452 static void 1453 remove_netmask(struct rt_addrinfo *info) 1454 { 1455 info->rti_info[RTAX_NETMASK] = NULL; 1456 info->rti_flags |= RTF_HOST; 1457 info->rti_addrs &= ~RTA_NETMASK; 1458 } 1459 1460 #ifdef INET 1461 static int 1462 cleanup_xaddrs_inet(struct rt_addrinfo *info, struct linear_buffer *lb) 1463 { 1464 struct sockaddr_in *dst_sa, *mask_sa; 1465 const int sa_len = sizeof(struct sockaddr_in); 1466 struct in_addr dst, mask; 1467 1468 /* Check & fixup dst/netmask combination first */ 1469 dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST]; 1470 mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK]; 1471 1472 /* Ensure reads do not go beyound the buffer size */ 1473 if (SA_SIZE(dst_sa) < offsetof(struct sockaddr_in, sin_zero)) 1474 return (EINVAL); 1475 1476 if ((mask_sa != NULL) && mask_sa->sin_len < sizeof(struct sockaddr_in)) { 1477 /* 1478 * Some older routing software encode mask length into the 1479 * sin_len, thus resulting in "truncated" sockaddr. 1480 */ 1481 int len = mask_sa->sin_len - offsetof(struct sockaddr_in, sin_addr); 1482 if (len >= 0) { 1483 mask.s_addr = 0; 1484 if (len > sizeof(struct in_addr)) 1485 len = sizeof(struct in_addr); 1486 memcpy(&mask, &mask_sa->sin_addr, len); 1487 } else { 1488 RTS_PID_PRINTF("prefix mask sin_len too small: %d", mask_sa->sin_len); 1489 return (EINVAL); 1490 } 1491 } else 1492 mask.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST; 1493 1494 dst.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr)); 1495 1496 /* Construct new "clean" dst/mask sockaddresses */ 1497 if ((dst_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1498 return (ENOBUFS); 1499 fill_sockaddr_inet(dst_sa, dst); 1500 info->rti_info[RTAX_DST] = (struct sockaddr *)dst_sa; 1501 1502 if (mask.s_addr != INADDR_BROADCAST) { 1503 if ((mask_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1504 return (ENOBUFS); 1505 fill_sockaddr_inet(mask_sa, mask); 1506 info->rti_info[RTAX_NETMASK] = (struct sockaddr *)mask_sa; 1507 info->rti_flags &= ~RTF_HOST; 1508 } else 1509 remove_netmask(info); 1510 1511 /* Check gateway */ 1512 if (info->rti_info[RTAX_GATEWAY] != NULL) 1513 return (cleanup_xaddrs_gateway(info, lb)); 1514 1515 return (0); 1516 } 1517 #endif 1518 1519 #ifdef INET6 1520 static int 1521 cleanup_xaddrs_inet6(struct rt_addrinfo *info, struct linear_buffer *lb) 1522 { 1523 struct sockaddr *sa; 1524 struct sockaddr_in6 *dst_sa, *mask_sa; 1525 struct in6_addr mask, *dst; 1526 const int sa_len = sizeof(struct sockaddr_in6); 1527 1528 /* Check & fixup dst/netmask combination first */ 1529 dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST]; 1530 mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK]; 1531 1532 if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1533 RTS_PID_PRINTF("prefix dst sin6_len too small: %d", dst_sa->sin6_len); 1534 return (EINVAL); 1535 } 1536 1537 if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1538 /* 1539 * Some older routing software encode mask length into the 1540 * sin6_len, thus resulting in "truncated" sockaddr. 1541 */ 1542 int len = mask_sa->sin6_len - offsetof(struct sockaddr_in6, sin6_addr); 1543 if (len >= 0) { 1544 bzero(&mask, sizeof(mask)); 1545 if (len > sizeof(struct in6_addr)) 1546 len = sizeof(struct in6_addr); 1547 memcpy(&mask, &mask_sa->sin6_addr, len); 1548 } else { 1549 RTS_PID_PRINTF("rtsock: prefix mask sin6_len too small: %d", mask_sa->sin6_len); 1550 return (EINVAL); 1551 } 1552 } else 1553 mask = mask_sa ? mask_sa->sin6_addr : in6mask128; 1554 1555 dst = &dst_sa->sin6_addr; 1556 IN6_MASK_ADDR(dst, &mask); 1557 1558 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1559 return (ENOBUFS); 1560 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, dst, 0); 1561 info->rti_info[RTAX_DST] = sa; 1562 1563 if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) { 1564 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1565 return (ENOBUFS); 1566 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, &mask, 0); 1567 info->rti_info[RTAX_NETMASK] = sa; 1568 info->rti_flags &= ~RTF_HOST; 1569 } else 1570 remove_netmask(info); 1571 1572 /* Check gateway */ 1573 if (info->rti_info[RTAX_GATEWAY] != NULL) 1574 return (cleanup_xaddrs_gateway(info, lb)); 1575 1576 return (0); 1577 } 1578 #endif 1579 1580 static int 1581 cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb) 1582 { 1583 int error = EAFNOSUPPORT; 1584 1585 if (info->rti_info[RTAX_DST] == NULL) 1586 return (EINVAL); 1587 1588 if (info->rti_flags & RTF_LLDATA) { 1589 /* 1590 * arp(8)/ndp(8) sends RTA_NETMASK for the associated 1591 * prefix along with the actual address in RTA_DST. 1592 * Remove netmask to avoid unnecessary address masking. 1593 */ 1594 remove_netmask(info); 1595 } 1596 1597 switch (info->rti_info[RTAX_DST]->sa_family) { 1598 #ifdef INET 1599 case AF_INET: 1600 error = cleanup_xaddrs_inet(info, lb); 1601 break; 1602 #endif 1603 #ifdef INET6 1604 case AF_INET6: 1605 error = cleanup_xaddrs_inet6(info, lb); 1606 break; 1607 #endif 1608 } 1609 1610 return (error); 1611 } 1612 1613 /* 1614 * Fill in @dmask with valid netmask leaving original @smask 1615 * intact. Mostly used with radix netmasks. 1616 */ 1617 struct sockaddr * 1618 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1619 struct sockaddr_storage *dmask) 1620 { 1621 if (dst == NULL || smask == NULL) 1622 return (NULL); 1623 1624 memset(dmask, 0, dst->sa_len); 1625 memcpy(dmask, smask, smask->sa_len); 1626 dmask->ss_len = dst->sa_len; 1627 dmask->ss_family = dst->sa_family; 1628 1629 return ((struct sockaddr *)dmask); 1630 } 1631 1632 /* 1633 * Writes information related to @rtinfo object to newly-allocated mbuf. 1634 * Assumes MCLBYTES is enough to construct any message. 1635 * Used for OS notifications of vaious events (if/ifa announces,etc) 1636 * 1637 * Returns allocated mbuf or NULL on failure. 1638 */ 1639 static struct mbuf * 1640 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1641 { 1642 struct sockaddr_storage ss; 1643 struct rt_msghdr *rtm; 1644 struct mbuf *m; 1645 int i; 1646 struct sockaddr *sa; 1647 #ifdef INET6 1648 struct sockaddr_in6 *sin6; 1649 #endif 1650 int len, dlen; 1651 1652 switch (type) { 1653 case RTM_DELADDR: 1654 case RTM_NEWADDR: 1655 len = sizeof(struct ifa_msghdr); 1656 break; 1657 1658 case RTM_DELMADDR: 1659 case RTM_NEWMADDR: 1660 len = sizeof(struct ifma_msghdr); 1661 break; 1662 1663 case RTM_IFINFO: 1664 len = sizeof(struct if_msghdr); 1665 break; 1666 1667 case RTM_IFANNOUNCE: 1668 case RTM_IEEE80211: 1669 len = sizeof(struct if_announcemsghdr); 1670 break; 1671 1672 default: 1673 len = sizeof(struct rt_msghdr); 1674 } 1675 1676 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1677 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1678 if (len > MHLEN) 1679 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1680 else 1681 m = m_gethdr(M_NOWAIT, MT_DATA); 1682 if (m == NULL) 1683 return (m); 1684 1685 m->m_pkthdr.len = m->m_len = len; 1686 rtm = mtod(m, struct rt_msghdr *); 1687 bzero((caddr_t)rtm, len); 1688 for (i = 0; i < RTAX_MAX; i++) { 1689 if ((sa = rtinfo->rti_info[i]) == NULL) 1690 continue; 1691 rtinfo->rti_addrs |= (1 << i); 1692 1693 dlen = SA_SIZE(sa); 1694 KASSERT(dlen <= sizeof(ss), 1695 ("%s: sockaddr size overflow", __func__)); 1696 bzero(&ss, sizeof(ss)); 1697 bcopy(sa, &ss, sa->sa_len); 1698 sa = (struct sockaddr *)&ss; 1699 #ifdef INET6 1700 if (sa->sa_family == AF_INET6) { 1701 sin6 = (struct sockaddr_in6 *)sa; 1702 (void)sa6_recoverscope(sin6); 1703 } 1704 #endif 1705 m_copyback(m, len, dlen, (caddr_t)sa); 1706 len += dlen; 1707 } 1708 if (m->m_pkthdr.len != len) { 1709 m_freem(m); 1710 return (NULL); 1711 } 1712 rtm->rtm_msglen = len; 1713 rtm->rtm_version = RTM_VERSION; 1714 rtm->rtm_type = type; 1715 return (m); 1716 } 1717 1718 /* 1719 * Writes information related to @rtinfo object to preallocated buffer. 1720 * Stores needed size in @plen. If @w is NULL, calculates size without 1721 * writing. 1722 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1723 * 1724 * Returns 0 on success. 1725 * 1726 */ 1727 static int 1728 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1729 { 1730 struct sockaddr_storage ss; 1731 int len, buflen = 0, dlen, i; 1732 caddr_t cp = NULL; 1733 struct rt_msghdr *rtm = NULL; 1734 #ifdef INET6 1735 struct sockaddr_in6 *sin6; 1736 #endif 1737 #ifdef COMPAT_FREEBSD32 1738 bool compat32 = false; 1739 #endif 1740 1741 switch (type) { 1742 case RTM_DELADDR: 1743 case RTM_NEWADDR: 1744 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1745 #ifdef COMPAT_FREEBSD32 1746 if (w->w_req->flags & SCTL_MASK32) { 1747 len = sizeof(struct ifa_msghdrl32); 1748 compat32 = true; 1749 } else 1750 #endif 1751 len = sizeof(struct ifa_msghdrl); 1752 } else 1753 len = sizeof(struct ifa_msghdr); 1754 break; 1755 1756 case RTM_IFINFO: 1757 #ifdef COMPAT_FREEBSD32 1758 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1759 if (w->w_op == NET_RT_IFLISTL) 1760 len = sizeof(struct if_msghdrl32); 1761 else 1762 len = sizeof(struct if_msghdr32); 1763 compat32 = true; 1764 break; 1765 } 1766 #endif 1767 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1768 len = sizeof(struct if_msghdrl); 1769 else 1770 len = sizeof(struct if_msghdr); 1771 break; 1772 1773 case RTM_NEWMADDR: 1774 len = sizeof(struct ifma_msghdr); 1775 break; 1776 1777 default: 1778 len = sizeof(struct rt_msghdr); 1779 } 1780 1781 if (w != NULL) { 1782 rtm = (struct rt_msghdr *)w->w_tmem; 1783 buflen = w->w_tmemsize - len; 1784 cp = (caddr_t)w->w_tmem + len; 1785 } 1786 1787 rtinfo->rti_addrs = 0; 1788 for (i = 0; i < RTAX_MAX; i++) { 1789 struct sockaddr *sa; 1790 1791 if ((sa = rtinfo->rti_info[i]) == NULL) 1792 continue; 1793 rtinfo->rti_addrs |= (1 << i); 1794 #ifdef COMPAT_FREEBSD32 1795 if (compat32) 1796 dlen = SA_SIZE32(sa); 1797 else 1798 #endif 1799 dlen = SA_SIZE(sa); 1800 if (cp != NULL && buflen >= dlen) { 1801 KASSERT(dlen <= sizeof(ss), 1802 ("%s: sockaddr size overflow", __func__)); 1803 bzero(&ss, sizeof(ss)); 1804 bcopy(sa, &ss, sa->sa_len); 1805 sa = (struct sockaddr *)&ss; 1806 #ifdef INET6 1807 if (sa->sa_family == AF_INET6) { 1808 sin6 = (struct sockaddr_in6 *)sa; 1809 (void)sa6_recoverscope(sin6); 1810 } 1811 #endif 1812 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1813 cp += dlen; 1814 buflen -= dlen; 1815 } else if (cp != NULL) { 1816 /* 1817 * Buffer too small. Count needed size 1818 * and return with error. 1819 */ 1820 cp = NULL; 1821 } 1822 1823 len += dlen; 1824 } 1825 1826 if (cp != NULL) { 1827 dlen = ALIGN(len) - len; 1828 if (buflen < dlen) 1829 cp = NULL; 1830 else { 1831 bzero(cp, dlen); 1832 cp += dlen; 1833 buflen -= dlen; 1834 } 1835 } 1836 len = ALIGN(len); 1837 1838 if (cp != NULL) { 1839 /* fill header iff buffer is large enough */ 1840 rtm->rtm_version = RTM_VERSION; 1841 rtm->rtm_type = type; 1842 rtm->rtm_msglen = len; 1843 } 1844 1845 *plen = len; 1846 1847 if (w != NULL && cp == NULL) 1848 return (ENOBUFS); 1849 1850 return (0); 1851 } 1852 1853 /* 1854 * This routine is called to generate a message from the routing 1855 * socket indicating that a redirect has occurred, a routing lookup 1856 * has failed, or that a protocol has detected timeouts to a particular 1857 * destination. 1858 */ 1859 void 1860 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1861 int fibnum) 1862 { 1863 struct rt_msghdr *rtm; 1864 struct mbuf *m; 1865 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1866 1867 if (V_route_cb.any_count == 0) 1868 return; 1869 m = rtsock_msg_mbuf(type, rtinfo); 1870 if (m == NULL) 1871 return; 1872 1873 if (fibnum != RT_ALL_FIBS) { 1874 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1875 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1876 M_SETFIB(m, fibnum); 1877 m->m_flags |= RTS_FILTER_FIB; 1878 } 1879 1880 rtm = mtod(m, struct rt_msghdr *); 1881 rtm->rtm_flags = RTF_DONE | flags; 1882 rtm->rtm_errno = error; 1883 rtm->rtm_addrs = rtinfo->rti_addrs; 1884 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1885 } 1886 1887 void 1888 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1889 { 1890 1891 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1892 } 1893 1894 /* 1895 * This routine is called to generate a message from the routing 1896 * socket indicating that the status of a network interface has changed. 1897 */ 1898 void 1899 rt_ifmsg(struct ifnet *ifp) 1900 { 1901 struct if_msghdr *ifm; 1902 struct mbuf *m; 1903 struct rt_addrinfo info; 1904 1905 if (V_route_cb.any_count == 0) 1906 return; 1907 bzero((caddr_t)&info, sizeof(info)); 1908 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1909 if (m == NULL) 1910 return; 1911 ifm = mtod(m, struct if_msghdr *); 1912 ifm->ifm_index = ifp->if_index; 1913 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1914 if_data_copy(ifp, &ifm->ifm_data); 1915 ifm->ifm_addrs = 0; 1916 rt_dispatch(m, AF_UNSPEC); 1917 } 1918 1919 /* 1920 * Announce interface address arrival/withdraw. 1921 * Please do not call directly, use rt_addrmsg(). 1922 * Assume input data to be valid. 1923 * Returns 0 on success. 1924 */ 1925 int 1926 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1927 { 1928 struct rt_addrinfo info; 1929 struct sockaddr *sa; 1930 int ncmd; 1931 struct mbuf *m; 1932 struct ifa_msghdr *ifam; 1933 struct ifnet *ifp = ifa->ifa_ifp; 1934 struct sockaddr_storage ss; 1935 1936 if (V_route_cb.any_count == 0) 1937 return (0); 1938 1939 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1940 1941 bzero((caddr_t)&info, sizeof(info)); 1942 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1943 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1944 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1945 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 1946 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1947 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1948 return (ENOBUFS); 1949 ifam = mtod(m, struct ifa_msghdr *); 1950 ifam->ifam_index = ifp->if_index; 1951 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1952 ifam->ifam_flags = ifa->ifa_flags; 1953 ifam->ifam_addrs = info.rti_addrs; 1954 1955 if (fibnum != RT_ALL_FIBS) { 1956 M_SETFIB(m, fibnum); 1957 m->m_flags |= RTS_FILTER_FIB; 1958 } 1959 1960 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1961 1962 return (0); 1963 } 1964 1965 /* 1966 * Announce route addition/removal to rtsock based on @rt data. 1967 * Callers are advives to use rt_routemsg() instead of using this 1968 * function directly. 1969 * Assume @rt data is consistent. 1970 * 1971 * Returns 0 on success. 1972 */ 1973 int 1974 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh, 1975 int fibnum) 1976 { 1977 union sockaddr_union dst, mask; 1978 struct rt_addrinfo info; 1979 1980 if (V_route_cb.any_count == 0) 1981 return (0); 1982 1983 int family = rt_get_family(rt); 1984 init_sockaddrs_family(family, &dst.sa, &mask.sa); 1985 export_rtaddrs(rt, &dst.sa, &mask.sa); 1986 1987 bzero((caddr_t)&info, sizeof(info)); 1988 info.rti_info[RTAX_DST] = &dst.sa; 1989 info.rti_info[RTAX_NETMASK] = &mask.sa; 1990 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 1991 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); 1992 info.rti_ifp = nh->nh_ifp; 1993 1994 return (rtsock_routemsg_info(cmd, &info, fibnum)); 1995 } 1996 1997 int 1998 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 1999 { 2000 struct rt_msghdr *rtm; 2001 struct sockaddr *sa; 2002 struct mbuf *m; 2003 2004 if (V_route_cb.any_count == 0) 2005 return (0); 2006 2007 if (info->rti_flags & RTF_HOST) 2008 info->rti_info[RTAX_NETMASK] = NULL; 2009 2010 m = rtsock_msg_mbuf(cmd, info); 2011 if (m == NULL) 2012 return (ENOBUFS); 2013 2014 if (fibnum != RT_ALL_FIBS) { 2015 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 2016 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 2017 M_SETFIB(m, fibnum); 2018 m->m_flags |= RTS_FILTER_FIB; 2019 } 2020 2021 rtm = mtod(m, struct rt_msghdr *); 2022 rtm->rtm_addrs = info->rti_addrs; 2023 if (info->rti_ifp != NULL) 2024 rtm->rtm_index = info->rti_ifp->if_index; 2025 /* Add RTF_DONE to indicate command 'completion' required by API */ 2026 info->rti_flags |= RTF_DONE; 2027 /* Reported routes has to be up */ 2028 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 2029 info->rti_flags |= RTF_UP; 2030 rtm->rtm_flags = info->rti_flags; 2031 2032 sa = info->rti_info[RTAX_DST]; 2033 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 2034 2035 return (0); 2036 } 2037 2038 /* 2039 * This is the analogue to the rt_newaddrmsg which performs the same 2040 * function but for multicast group memberhips. This is easier since 2041 * there is no route state to worry about. 2042 */ 2043 void 2044 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 2045 { 2046 struct rt_addrinfo info; 2047 struct mbuf *m = NULL; 2048 struct ifnet *ifp = ifma->ifma_ifp; 2049 struct ifma_msghdr *ifmam; 2050 2051 if (V_route_cb.any_count == 0) 2052 return; 2053 2054 bzero((caddr_t)&info, sizeof(info)); 2055 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2056 if (ifp && ifp->if_addr) 2057 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 2058 else 2059 info.rti_info[RTAX_IFP] = NULL; 2060 /* 2061 * If a link-layer address is present, present it as a ``gateway'' 2062 * (similarly to how ARP entries, e.g., are presented). 2063 */ 2064 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 2065 m = rtsock_msg_mbuf(cmd, &info); 2066 if (m == NULL) 2067 return; 2068 ifmam = mtod(m, struct ifma_msghdr *); 2069 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 2070 __func__)); 2071 ifmam->ifmam_index = ifp->if_index; 2072 ifmam->ifmam_addrs = info.rti_addrs; 2073 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 2074 } 2075 2076 static struct mbuf * 2077 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 2078 struct rt_addrinfo *info) 2079 { 2080 struct if_announcemsghdr *ifan; 2081 struct mbuf *m; 2082 2083 if (V_route_cb.any_count == 0) 2084 return NULL; 2085 bzero((caddr_t)info, sizeof(*info)); 2086 m = rtsock_msg_mbuf(type, info); 2087 if (m != NULL) { 2088 ifan = mtod(m, struct if_announcemsghdr *); 2089 ifan->ifan_index = ifp->if_index; 2090 strlcpy(ifan->ifan_name, ifp->if_xname, 2091 sizeof(ifan->ifan_name)); 2092 ifan->ifan_what = what; 2093 } 2094 return m; 2095 } 2096 2097 /* 2098 * This is called to generate routing socket messages indicating 2099 * IEEE80211 wireless events. 2100 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 2101 */ 2102 void 2103 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 2104 { 2105 struct mbuf *m; 2106 struct rt_addrinfo info; 2107 2108 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 2109 if (m != NULL) { 2110 /* 2111 * Append the ieee80211 data. Try to stick it in the 2112 * mbuf containing the ifannounce msg; otherwise allocate 2113 * a new mbuf and append. 2114 * 2115 * NB: we assume m is a single mbuf. 2116 */ 2117 if (data_len > M_TRAILINGSPACE(m)) { 2118 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 2119 if (n == NULL) { 2120 m_freem(m); 2121 return; 2122 } 2123 bcopy(data, mtod(n, void *), data_len); 2124 n->m_len = data_len; 2125 m->m_next = n; 2126 } else if (data_len > 0) { 2127 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 2128 m->m_len += data_len; 2129 } 2130 if (m->m_flags & M_PKTHDR) 2131 m->m_pkthdr.len += data_len; 2132 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 2133 rt_dispatch(m, AF_UNSPEC); 2134 } 2135 } 2136 2137 /* 2138 * This is called to generate routing socket messages indicating 2139 * network interface arrival and departure. 2140 */ 2141 void 2142 rt_ifannouncemsg(struct ifnet *ifp, int what) 2143 { 2144 struct mbuf *m; 2145 struct rt_addrinfo info; 2146 2147 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 2148 if (m != NULL) 2149 rt_dispatch(m, AF_UNSPEC); 2150 } 2151 2152 static void 2153 rt_dispatch(struct mbuf *m, sa_family_t saf) 2154 { 2155 struct m_tag *tag; 2156 2157 /* 2158 * Preserve the family from the sockaddr, if any, in an m_tag for 2159 * use when injecting the mbuf into the routing socket buffer from 2160 * the netisr. 2161 */ 2162 if (saf != AF_UNSPEC) { 2163 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 2164 M_NOWAIT); 2165 if (tag == NULL) { 2166 m_freem(m); 2167 return; 2168 } 2169 *(unsigned short *)(tag + 1) = saf; 2170 m_tag_prepend(m, tag); 2171 } 2172 if (V_loif) 2173 m->m_pkthdr.rcvif = V_loif; 2174 else { 2175 m_freem(m); 2176 return; 2177 } 2178 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 2179 } 2180 2181 /* 2182 * Checks if rte can be exported w.r.t jails/vnets. 2183 * 2184 * Returns true if it can, false otherwise. 2185 */ 2186 static bool 2187 can_export_rte(struct ucred *td_ucred, bool rt_is_host, 2188 const struct sockaddr *rt_dst) 2189 { 2190 2191 if ((!rt_is_host) ? jailed_without_vnet(td_ucred) 2192 : prison_if(td_ucred, rt_dst) != 0) 2193 return (false); 2194 return (true); 2195 } 2196 2197 2198 /* 2199 * This is used in dumping the kernel table via sysctl(). 2200 */ 2201 static int 2202 sysctl_dumpentry(struct rtentry *rt, void *vw) 2203 { 2204 struct walkarg *w = vw; 2205 struct nhop_object *nh; 2206 int error = 0; 2207 2208 NET_EPOCH_ASSERT(); 2209 2210 export_rtaddrs(rt, w->dst, w->mask); 2211 if (!can_export_rte(w->w_req->td->td_ucred, rt_is_host(rt), w->dst)) 2212 return (0); 2213 nh = rt_get_raw_nhop(rt); 2214 #ifdef ROUTE_MPATH 2215 if (NH_IS_NHGRP(nh)) { 2216 struct weightened_nhop *wn; 2217 uint32_t num_nhops; 2218 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 2219 for (int i = 0; i < num_nhops; i++) { 2220 error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w); 2221 if (error != 0) 2222 return (error); 2223 } 2224 } else 2225 #endif 2226 error = sysctl_dumpnhop(rt, nh, rt->rt_weight, w); 2227 2228 return (0); 2229 } 2230 2231 2232 static int 2233 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, 2234 struct walkarg *w) 2235 { 2236 struct rt_addrinfo info; 2237 int error = 0, size; 2238 uint32_t rtflags; 2239 2240 rtflags = nhop_get_rtflags(nh); 2241 2242 if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg)) 2243 return (0); 2244 2245 bzero((caddr_t)&info, sizeof(info)); 2246 info.rti_info[RTAX_DST] = w->dst; 2247 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2248 info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask; 2249 info.rti_info[RTAX_GENMASK] = 0; 2250 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 2251 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 2252 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 2253 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 2254 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 2255 } 2256 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 2257 return (error); 2258 if (w->w_req && w->w_tmem) { 2259 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 2260 2261 bzero(&rtm->rtm_index, 2262 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 2263 2264 /* 2265 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags) 2266 * and RTF_UP (if entry is linked, which is always true here). 2267 * Given that, use nhop rtflags & add RTF_UP. 2268 */ 2269 rtm->rtm_flags = rtflags | RTF_UP; 2270 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 2271 rtm->rtm_flags = RTF_GATEWAY | 2272 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 2273 rt_getmetrics(rt, nh, &rtm->rtm_rmx); 2274 rtm->rtm_rmx.rmx_weight = weight; 2275 rtm->rtm_index = nh->nh_ifp->if_index; 2276 rtm->rtm_addrs = info.rti_addrs; 2277 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 2278 return (error); 2279 } 2280 return (error); 2281 } 2282 2283 static int 2284 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 2285 struct rt_addrinfo *info, struct walkarg *w, int len) 2286 { 2287 struct if_msghdrl *ifm; 2288 struct if_data *ifd; 2289 2290 ifm = (struct if_msghdrl *)w->w_tmem; 2291 2292 #ifdef COMPAT_FREEBSD32 2293 if (w->w_req->flags & SCTL_MASK32) { 2294 struct if_msghdrl32 *ifm32; 2295 2296 ifm32 = (struct if_msghdrl32 *)ifm; 2297 ifm32->ifm_addrs = info->rti_addrs; 2298 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2299 ifm32->ifm_index = ifp->if_index; 2300 ifm32->_ifm_spare1 = 0; 2301 ifm32->ifm_len = sizeof(*ifm32); 2302 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 2303 ifm32->_ifm_spare2 = 0; 2304 ifd = &ifm32->ifm_data; 2305 } else 2306 #endif 2307 { 2308 ifm->ifm_addrs = info->rti_addrs; 2309 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2310 ifm->ifm_index = ifp->if_index; 2311 ifm->_ifm_spare1 = 0; 2312 ifm->ifm_len = sizeof(*ifm); 2313 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 2314 ifm->_ifm_spare2 = 0; 2315 ifd = &ifm->ifm_data; 2316 } 2317 2318 memcpy(ifd, src_ifd, sizeof(*ifd)); 2319 2320 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2321 } 2322 2323 static int 2324 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 2325 struct rt_addrinfo *info, struct walkarg *w, int len) 2326 { 2327 struct if_msghdr *ifm; 2328 struct if_data *ifd; 2329 2330 ifm = (struct if_msghdr *)w->w_tmem; 2331 2332 #ifdef COMPAT_FREEBSD32 2333 if (w->w_req->flags & SCTL_MASK32) { 2334 struct if_msghdr32 *ifm32; 2335 2336 ifm32 = (struct if_msghdr32 *)ifm; 2337 ifm32->ifm_addrs = info->rti_addrs; 2338 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2339 ifm32->ifm_index = ifp->if_index; 2340 ifm32->_ifm_spare1 = 0; 2341 ifd = &ifm32->ifm_data; 2342 } else 2343 #endif 2344 { 2345 ifm->ifm_addrs = info->rti_addrs; 2346 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2347 ifm->ifm_index = ifp->if_index; 2348 ifm->_ifm_spare1 = 0; 2349 ifd = &ifm->ifm_data; 2350 } 2351 2352 memcpy(ifd, src_ifd, sizeof(*ifd)); 2353 2354 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2355 } 2356 2357 static int 2358 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 2359 struct walkarg *w, int len) 2360 { 2361 struct ifa_msghdrl *ifam; 2362 struct if_data *ifd; 2363 2364 ifam = (struct ifa_msghdrl *)w->w_tmem; 2365 2366 #ifdef COMPAT_FREEBSD32 2367 if (w->w_req->flags & SCTL_MASK32) { 2368 struct ifa_msghdrl32 *ifam32; 2369 2370 ifam32 = (struct ifa_msghdrl32 *)ifam; 2371 ifam32->ifam_addrs = info->rti_addrs; 2372 ifam32->ifam_flags = ifa->ifa_flags; 2373 ifam32->ifam_index = ifa->ifa_ifp->if_index; 2374 ifam32->_ifam_spare1 = 0; 2375 ifam32->ifam_len = sizeof(*ifam32); 2376 ifam32->ifam_data_off = 2377 offsetof(struct ifa_msghdrl32, ifam_data); 2378 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 2379 ifd = &ifam32->ifam_data; 2380 } else 2381 #endif 2382 { 2383 ifam->ifam_addrs = info->rti_addrs; 2384 ifam->ifam_flags = ifa->ifa_flags; 2385 ifam->ifam_index = ifa->ifa_ifp->if_index; 2386 ifam->_ifam_spare1 = 0; 2387 ifam->ifam_len = sizeof(*ifam); 2388 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 2389 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2390 ifd = &ifam->ifam_data; 2391 } 2392 2393 bzero(ifd, sizeof(*ifd)); 2394 ifd->ifi_datalen = sizeof(struct if_data); 2395 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 2396 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 2397 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 2398 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 2399 2400 /* Fixup if_data carp(4) vhid. */ 2401 if (carp_get_vhid_p != NULL) 2402 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 2403 2404 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2405 } 2406 2407 static int 2408 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 2409 struct walkarg *w, int len) 2410 { 2411 struct ifa_msghdr *ifam; 2412 2413 ifam = (struct ifa_msghdr *)w->w_tmem; 2414 ifam->ifam_addrs = info->rti_addrs; 2415 ifam->ifam_flags = ifa->ifa_flags; 2416 ifam->ifam_index = ifa->ifa_ifp->if_index; 2417 ifam->_ifam_spare1 = 0; 2418 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2419 2420 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2421 } 2422 2423 static int 2424 sysctl_iflist(int af, struct walkarg *w) 2425 { 2426 struct ifnet *ifp; 2427 struct ifaddr *ifa; 2428 struct if_data ifd; 2429 struct rt_addrinfo info; 2430 int len, error = 0; 2431 struct sockaddr_storage ss; 2432 2433 bzero((caddr_t)&info, sizeof(info)); 2434 bzero(&ifd, sizeof(ifd)); 2435 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2436 if (w->w_arg && w->w_arg != ifp->if_index) 2437 continue; 2438 if_data_copy(ifp, &ifd); 2439 ifa = ifp->if_addr; 2440 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 2441 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 2442 if (error != 0) 2443 goto done; 2444 info.rti_info[RTAX_IFP] = NULL; 2445 if (w->w_req && w->w_tmem) { 2446 if (w->w_op == NET_RT_IFLISTL) 2447 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 2448 len); 2449 else 2450 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 2451 len); 2452 if (error) 2453 goto done; 2454 } 2455 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 2456 if (af && af != ifa->ifa_addr->sa_family) 2457 continue; 2458 if (prison_if(w->w_req->td->td_ucred, 2459 ifa->ifa_addr) != 0) 2460 continue; 2461 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 2462 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 2463 ifa->ifa_addr, ifa->ifa_netmask, &ss); 2464 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 2465 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 2466 if (error != 0) 2467 goto done; 2468 if (w->w_req && w->w_tmem) { 2469 if (w->w_op == NET_RT_IFLISTL) 2470 error = sysctl_iflist_ifaml(ifa, &info, 2471 w, len); 2472 else 2473 error = sysctl_iflist_ifam(ifa, &info, 2474 w, len); 2475 if (error) 2476 goto done; 2477 } 2478 } 2479 info.rti_info[RTAX_IFA] = NULL; 2480 info.rti_info[RTAX_NETMASK] = NULL; 2481 info.rti_info[RTAX_BRD] = NULL; 2482 } 2483 done: 2484 return (error); 2485 } 2486 2487 static int 2488 sysctl_ifmalist(int af, struct walkarg *w) 2489 { 2490 struct rt_addrinfo info; 2491 struct ifaddr *ifa; 2492 struct ifmultiaddr *ifma; 2493 struct ifnet *ifp; 2494 int error, len; 2495 2496 NET_EPOCH_ASSERT(); 2497 2498 error = 0; 2499 bzero((caddr_t)&info, sizeof(info)); 2500 2501 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2502 if (w->w_arg && w->w_arg != ifp->if_index) 2503 continue; 2504 ifa = ifp->if_addr; 2505 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 2506 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2507 if (af && af != ifma->ifma_addr->sa_family) 2508 continue; 2509 if (prison_if(w->w_req->td->td_ucred, 2510 ifma->ifma_addr) != 0) 2511 continue; 2512 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2513 info.rti_info[RTAX_GATEWAY] = 2514 (ifma->ifma_addr->sa_family != AF_LINK) ? 2515 ifma->ifma_lladdr : NULL; 2516 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 2517 if (error != 0) 2518 break; 2519 if (w->w_req && w->w_tmem) { 2520 struct ifma_msghdr *ifmam; 2521 2522 ifmam = (struct ifma_msghdr *)w->w_tmem; 2523 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 2524 ifmam->ifmam_flags = 0; 2525 ifmam->ifmam_addrs = info.rti_addrs; 2526 ifmam->_ifmam_spare1 = 0; 2527 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 2528 if (error != 0) 2529 break; 2530 } 2531 } 2532 if (error != 0) 2533 break; 2534 } 2535 return (error); 2536 } 2537 2538 static void 2539 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w) 2540 { 2541 union sockaddr_union sa_dst, sa_mask; 2542 2543 w->family = family; 2544 w->dst = (struct sockaddr *)&sa_dst; 2545 w->mask = (struct sockaddr *)&sa_mask; 2546 2547 init_sockaddrs_family(family, w->dst, w->mask); 2548 2549 rib_walk(fibnum, family, false, sysctl_dumpentry, w); 2550 } 2551 2552 static int 2553 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2554 { 2555 struct epoch_tracker et; 2556 int *name = (int *)arg1; 2557 u_int namelen = arg2; 2558 struct rib_head *rnh = NULL; /* silence compiler. */ 2559 int i, lim, error = EINVAL; 2560 int fib = 0; 2561 u_char af; 2562 struct walkarg w; 2563 2564 if (namelen < 3) 2565 return (EINVAL); 2566 2567 name++; 2568 namelen--; 2569 if (req->newptr) 2570 return (EPERM); 2571 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) { 2572 if (namelen == 3) 2573 fib = req->td->td_proc->p_fibnum; 2574 else if (namelen == 4) 2575 fib = (name[3] == RT_ALL_FIBS) ? 2576 req->td->td_proc->p_fibnum : name[3]; 2577 else 2578 return ((namelen < 3) ? EISDIR : ENOTDIR); 2579 if (fib < 0 || fib >= rt_numfibs) 2580 return (EINVAL); 2581 } else if (namelen != 3) 2582 return ((namelen < 3) ? EISDIR : ENOTDIR); 2583 af = name[0]; 2584 if (af > AF_MAX) 2585 return (EINVAL); 2586 bzero(&w, sizeof(w)); 2587 w.w_op = name[1]; 2588 w.w_arg = name[2]; 2589 w.w_req = req; 2590 2591 error = sysctl_wire_old_buffer(req, 0); 2592 if (error) 2593 return (error); 2594 2595 /* 2596 * Allocate reply buffer in advance. 2597 * All rtsock messages has maximum length of u_short. 2598 */ 2599 w.w_tmemsize = 65536; 2600 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2601 2602 NET_EPOCH_ENTER(et); 2603 switch (w.w_op) { 2604 case NET_RT_DUMP: 2605 case NET_RT_FLAGS: 2606 if (af == 0) { /* dump all tables */ 2607 i = 1; 2608 lim = AF_MAX; 2609 } else /* dump only one table */ 2610 i = lim = af; 2611 2612 /* 2613 * take care of llinfo entries, the caller must 2614 * specify an AF 2615 */ 2616 if (w.w_op == NET_RT_FLAGS && 2617 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2618 if (af != 0) 2619 error = lltable_sysctl_dumparp(af, w.w_req); 2620 else 2621 error = EINVAL; 2622 break; 2623 } 2624 /* 2625 * take care of routing entries 2626 */ 2627 for (error = 0; error == 0 && i <= lim; i++) { 2628 rnh = rt_tables_get_rnh(fib, i); 2629 if (rnh != NULL) { 2630 rtable_sysctl_dump(fib, i, &w); 2631 } else if (af != 0) 2632 error = EAFNOSUPPORT; 2633 } 2634 break; 2635 case NET_RT_NHOP: 2636 case NET_RT_NHGRP: 2637 /* Allow dumping one specific af/fib at a time */ 2638 if (namelen < 4) { 2639 error = EINVAL; 2640 break; 2641 } 2642 fib = name[3]; 2643 if (fib < 0 || fib > rt_numfibs) { 2644 error = EINVAL; 2645 break; 2646 } 2647 rnh = rt_tables_get_rnh(fib, af); 2648 if (rnh == NULL) { 2649 error = EAFNOSUPPORT; 2650 break; 2651 } 2652 if (w.w_op == NET_RT_NHOP) 2653 error = nhops_dump_sysctl(rnh, w.w_req); 2654 else 2655 #ifdef ROUTE_MPATH 2656 error = nhgrp_dump_sysctl(rnh, w.w_req); 2657 #else 2658 error = ENOTSUP; 2659 #endif 2660 break; 2661 case NET_RT_IFLIST: 2662 case NET_RT_IFLISTL: 2663 error = sysctl_iflist(af, &w); 2664 break; 2665 2666 case NET_RT_IFMALIST: 2667 error = sysctl_ifmalist(af, &w); 2668 break; 2669 } 2670 NET_EPOCH_EXIT(et); 2671 2672 free(w.w_tmem, M_TEMP); 2673 return (error); 2674 } 2675 2676 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2677 sysctl_rtsock, "Return route tables and interface/address lists"); 2678 2679 /* 2680 * Definitions of protocols supported in the ROUTE domain. 2681 */ 2682 2683 static struct domain routedomain; /* or at least forward */ 2684 2685 static struct protosw routesw[] = { 2686 { 2687 .pr_type = SOCK_RAW, 2688 .pr_domain = &routedomain, 2689 .pr_flags = PR_ATOMIC|PR_ADDR, 2690 .pr_output = route_output, 2691 .pr_ctlinput = raw_ctlinput, 2692 .pr_usrreqs = &route_usrreqs 2693 } 2694 }; 2695 2696 static struct domain routedomain = { 2697 .dom_family = PF_ROUTE, 2698 .dom_name = "route", 2699 .dom_protosw = routesw, 2700 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 2701 }; 2702 2703 DOMAIN_SET(route); 2704