1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_compat.h" 33 #include "opt_mpath.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 37 #include <sys/param.h> 38 #include <sys/jail.h> 39 #include <sys/kernel.h> 40 #include <sys/domain.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/rwlock.h> 48 #include <sys/signalvar.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/systm.h> 53 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_dl.h> 57 #include <net/if_llatbl.h> 58 #include <net/if_types.h> 59 #include <net/netisr.h> 60 #include <net/raw_cb.h> 61 #include <net/route.h> 62 #include <net/vnet.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 #include <netinet/ip_carp.h> 67 #ifdef INET6 68 #include <netinet6/ip6_var.h> 69 #include <netinet6/scope6_var.h> 70 #endif 71 72 #ifdef COMPAT_FREEBSD32 73 #include <sys/mount.h> 74 #include <compat/freebsd32/freebsd32.h> 75 76 struct if_msghdr32 { 77 uint16_t ifm_msglen; 78 uint8_t ifm_version; 79 uint8_t ifm_type; 80 int32_t ifm_addrs; 81 int32_t ifm_flags; 82 uint16_t ifm_index; 83 struct if_data ifm_data; 84 }; 85 86 struct if_msghdrl32 { 87 uint16_t ifm_msglen; 88 uint8_t ifm_version; 89 uint8_t ifm_type; 90 int32_t ifm_addrs; 91 int32_t ifm_flags; 92 uint16_t ifm_index; 93 uint16_t _ifm_spare1; 94 uint16_t ifm_len; 95 uint16_t ifm_data_off; 96 struct if_data ifm_data; 97 }; 98 99 struct ifa_msghdrl32 { 100 uint16_t ifam_msglen; 101 uint8_t ifam_version; 102 uint8_t ifam_type; 103 int32_t ifam_addrs; 104 int32_t ifam_flags; 105 uint16_t ifam_index; 106 uint16_t _ifam_spare1; 107 uint16_t ifam_len; 108 uint16_t ifam_data_off; 109 int32_t ifam_metric; 110 struct if_data ifam_data; 111 }; 112 #endif /* COMPAT_FREEBSD32 */ 113 114 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 115 116 /* NB: these are not modified */ 117 static struct sockaddr route_src = { 2, PF_ROUTE, }; 118 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 119 120 /* These are external hooks for CARP. */ 121 int (*carp_get_vhid_p)(struct ifaddr *); 122 123 /* 124 * Used by rtsock/raw_input callback code to decide whether to filter the update 125 * notification to a socket bound to a particular FIB. 126 */ 127 #define RTS_FILTER_FIB M_PROTO8 128 129 typedef struct { 130 int ip_count; /* attached w/ AF_INET */ 131 int ip6_count; /* attached w/ AF_INET6 */ 132 int any_count; /* total attached */ 133 } route_cb_t; 134 static VNET_DEFINE(route_cb_t, route_cb); 135 #define V_route_cb VNET(route_cb) 136 137 struct mtx rtsock_mtx; 138 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 139 140 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 141 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 142 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 143 144 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 145 146 struct walkarg { 147 int w_tmemsize; 148 int w_op, w_arg; 149 caddr_t w_tmem; 150 struct sysctl_req *w_req; 151 }; 152 153 static void rts_input(struct mbuf *m); 154 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 155 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 156 caddr_t cp, struct walkarg *w); 157 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 158 struct rt_addrinfo *rtinfo); 159 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 160 static int sysctl_iflist(int af, struct walkarg *w); 161 static int sysctl_ifmalist(int af, struct walkarg *w); 162 static int route_output(struct mbuf *m, struct socket *so); 163 static void rt_setmetrics(const struct rt_msghdr *rtm, struct rtentry *rt); 164 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 165 static void rt_dispatch(struct mbuf *, sa_family_t); 166 167 static struct netisr_handler rtsock_nh = { 168 .nh_name = "rtsock", 169 .nh_handler = rts_input, 170 .nh_proto = NETISR_ROUTE, 171 .nh_policy = NETISR_POLICY_SOURCE, 172 }; 173 174 static int 175 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 176 { 177 int error, qlimit; 178 179 netisr_getqlimit(&rtsock_nh, &qlimit); 180 error = sysctl_handle_int(oidp, &qlimit, 0, req); 181 if (error || !req->newptr) 182 return (error); 183 if (qlimit < 1) 184 return (EINVAL); 185 return (netisr_setqlimit(&rtsock_nh, qlimit)); 186 } 187 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 188 0, 0, sysctl_route_netisr_maxqlen, "I", 189 "maximum routing socket dispatch queue length"); 190 191 static void 192 rts_init(void) 193 { 194 int tmp; 195 196 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 197 rtsock_nh.nh_qlimit = tmp; 198 netisr_register(&rtsock_nh); 199 } 200 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 201 202 static int 203 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 204 struct rawcb *rp) 205 { 206 int fibnum; 207 208 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 209 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 210 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 211 212 /* No filtering requested. */ 213 if ((m->m_flags & RTS_FILTER_FIB) == 0) 214 return (0); 215 216 /* Check if it is a rts and the fib matches the one of the socket. */ 217 fibnum = M_GETFIB(m); 218 if (proto->sp_family != PF_ROUTE || 219 rp->rcb_socket == NULL || 220 rp->rcb_socket->so_fibnum == fibnum) 221 return (0); 222 223 /* Filtering requested and no match, the socket shall be skipped. */ 224 return (1); 225 } 226 227 static void 228 rts_input(struct mbuf *m) 229 { 230 struct sockproto route_proto; 231 unsigned short *family; 232 struct m_tag *tag; 233 234 route_proto.sp_family = PF_ROUTE; 235 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 236 if (tag != NULL) { 237 family = (unsigned short *)(tag + 1); 238 route_proto.sp_protocol = *family; 239 m_tag_delete(m, tag); 240 } else 241 route_proto.sp_protocol = 0; 242 243 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 244 } 245 246 /* 247 * It really doesn't make any sense at all for this code to share much 248 * with raw_usrreq.c, since its functionality is so restricted. XXX 249 */ 250 static void 251 rts_abort(struct socket *so) 252 { 253 254 raw_usrreqs.pru_abort(so); 255 } 256 257 static void 258 rts_close(struct socket *so) 259 { 260 261 raw_usrreqs.pru_close(so); 262 } 263 264 /* pru_accept is EOPNOTSUPP */ 265 266 static int 267 rts_attach(struct socket *so, int proto, struct thread *td) 268 { 269 struct rawcb *rp; 270 int error; 271 272 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 273 274 /* XXX */ 275 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 276 if (rp == NULL) 277 return ENOBUFS; 278 279 so->so_pcb = (caddr_t)rp; 280 so->so_fibnum = td->td_proc->p_fibnum; 281 error = raw_attach(so, proto); 282 rp = sotorawcb(so); 283 if (error) { 284 so->so_pcb = NULL; 285 free(rp, M_PCB); 286 return error; 287 } 288 RTSOCK_LOCK(); 289 switch(rp->rcb_proto.sp_protocol) { 290 case AF_INET: 291 V_route_cb.ip_count++; 292 break; 293 case AF_INET6: 294 V_route_cb.ip6_count++; 295 break; 296 } 297 V_route_cb.any_count++; 298 RTSOCK_UNLOCK(); 299 soisconnected(so); 300 so->so_options |= SO_USELOOPBACK; 301 return 0; 302 } 303 304 static int 305 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 306 { 307 308 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 309 } 310 311 static int 312 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 313 { 314 315 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 316 } 317 318 /* pru_connect2 is EOPNOTSUPP */ 319 /* pru_control is EOPNOTSUPP */ 320 321 static void 322 rts_detach(struct socket *so) 323 { 324 struct rawcb *rp = sotorawcb(so); 325 326 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 327 328 RTSOCK_LOCK(); 329 switch(rp->rcb_proto.sp_protocol) { 330 case AF_INET: 331 V_route_cb.ip_count--; 332 break; 333 case AF_INET6: 334 V_route_cb.ip6_count--; 335 break; 336 } 337 V_route_cb.any_count--; 338 RTSOCK_UNLOCK(); 339 raw_usrreqs.pru_detach(so); 340 } 341 342 static int 343 rts_disconnect(struct socket *so) 344 { 345 346 return (raw_usrreqs.pru_disconnect(so)); 347 } 348 349 /* pru_listen is EOPNOTSUPP */ 350 351 static int 352 rts_peeraddr(struct socket *so, struct sockaddr **nam) 353 { 354 355 return (raw_usrreqs.pru_peeraddr(so, nam)); 356 } 357 358 /* pru_rcvd is EOPNOTSUPP */ 359 /* pru_rcvoob is EOPNOTSUPP */ 360 361 static int 362 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 363 struct mbuf *control, struct thread *td) 364 { 365 366 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 367 } 368 369 /* pru_sense is null */ 370 371 static int 372 rts_shutdown(struct socket *so) 373 { 374 375 return (raw_usrreqs.pru_shutdown(so)); 376 } 377 378 static int 379 rts_sockaddr(struct socket *so, struct sockaddr **nam) 380 { 381 382 return (raw_usrreqs.pru_sockaddr(so, nam)); 383 } 384 385 static struct pr_usrreqs route_usrreqs = { 386 .pru_abort = rts_abort, 387 .pru_attach = rts_attach, 388 .pru_bind = rts_bind, 389 .pru_connect = rts_connect, 390 .pru_detach = rts_detach, 391 .pru_disconnect = rts_disconnect, 392 .pru_peeraddr = rts_peeraddr, 393 .pru_send = rts_send, 394 .pru_shutdown = rts_shutdown, 395 .pru_sockaddr = rts_sockaddr, 396 .pru_close = rts_close, 397 }; 398 399 #ifndef _SOCKADDR_UNION_DEFINED 400 #define _SOCKADDR_UNION_DEFINED 401 /* 402 * The union of all possible address formats we handle. 403 */ 404 union sockaddr_union { 405 struct sockaddr sa; 406 struct sockaddr_in sin; 407 struct sockaddr_in6 sin6; 408 }; 409 #endif /* _SOCKADDR_UNION_DEFINED */ 410 411 static int 412 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 413 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 414 { 415 416 /* First, see if the returned address is part of the jail. */ 417 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 418 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 419 return (0); 420 } 421 422 switch (info->rti_info[RTAX_DST]->sa_family) { 423 #ifdef INET 424 case AF_INET: 425 { 426 struct in_addr ia; 427 struct ifaddr *ifa; 428 int found; 429 430 found = 0; 431 /* 432 * Try to find an address on the given outgoing interface 433 * that belongs to the jail. 434 */ 435 IF_ADDR_RLOCK(ifp); 436 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 437 struct sockaddr *sa; 438 sa = ifa->ifa_addr; 439 if (sa->sa_family != AF_INET) 440 continue; 441 ia = ((struct sockaddr_in *)sa)->sin_addr; 442 if (prison_check_ip4(cred, &ia) == 0) { 443 found = 1; 444 break; 445 } 446 } 447 IF_ADDR_RUNLOCK(ifp); 448 if (!found) { 449 /* 450 * As a last resort return the 'default' jail address. 451 */ 452 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 453 sin_addr; 454 if (prison_get_ip4(cred, &ia) != 0) 455 return (ESRCH); 456 } 457 bzero(&saun->sin, sizeof(struct sockaddr_in)); 458 saun->sin.sin_len = sizeof(struct sockaddr_in); 459 saun->sin.sin_family = AF_INET; 460 saun->sin.sin_addr.s_addr = ia.s_addr; 461 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 462 break; 463 } 464 #endif 465 #ifdef INET6 466 case AF_INET6: 467 { 468 struct in6_addr ia6; 469 struct ifaddr *ifa; 470 int found; 471 472 found = 0; 473 /* 474 * Try to find an address on the given outgoing interface 475 * that belongs to the jail. 476 */ 477 IF_ADDR_RLOCK(ifp); 478 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 479 struct sockaddr *sa; 480 sa = ifa->ifa_addr; 481 if (sa->sa_family != AF_INET6) 482 continue; 483 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 484 &ia6, sizeof(struct in6_addr)); 485 if (prison_check_ip6(cred, &ia6) == 0) { 486 found = 1; 487 break; 488 } 489 } 490 IF_ADDR_RUNLOCK(ifp); 491 if (!found) { 492 /* 493 * As a last resort return the 'default' jail address. 494 */ 495 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 496 sin6_addr; 497 if (prison_get_ip6(cred, &ia6) != 0) 498 return (ESRCH); 499 } 500 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 501 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 502 saun->sin6.sin6_family = AF_INET6; 503 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 504 if (sa6_recoverscope(&saun->sin6) != 0) 505 return (ESRCH); 506 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 507 break; 508 } 509 #endif 510 default: 511 return (ESRCH); 512 } 513 return (0); 514 } 515 516 /*ARGSUSED*/ 517 static int 518 route_output(struct mbuf *m, struct socket *so) 519 { 520 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 521 struct rt_msghdr *rtm = NULL; 522 struct rtentry *rt = NULL; 523 struct radix_node_head *rnh; 524 struct rt_addrinfo info; 525 #ifdef INET6 526 struct sockaddr_storage ss; 527 struct sockaddr_in6 *sin6; 528 int i, rti_need_deembed = 0; 529 #endif 530 int len, error = 0; 531 struct ifnet *ifp = NULL; 532 union sockaddr_union saun; 533 sa_family_t saf = AF_UNSPEC; 534 535 #define senderr(e) { error = e; goto flush;} 536 if (m == NULL || ((m->m_len < sizeof(long)) && 537 (m = m_pullup(m, sizeof(long))) == NULL)) 538 return (ENOBUFS); 539 if ((m->m_flags & M_PKTHDR) == 0) 540 panic("route_output"); 541 len = m->m_pkthdr.len; 542 if (len < sizeof(*rtm) || 543 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 544 info.rti_info[RTAX_DST] = NULL; 545 senderr(EINVAL); 546 } 547 R_Malloc(rtm, struct rt_msghdr *, len); 548 if (rtm == NULL) { 549 info.rti_info[RTAX_DST] = NULL; 550 senderr(ENOBUFS); 551 } 552 m_copydata(m, 0, len, (caddr_t)rtm); 553 if (rtm->rtm_version != RTM_VERSION) { 554 info.rti_info[RTAX_DST] = NULL; 555 senderr(EPROTONOSUPPORT); 556 } 557 rtm->rtm_pid = curproc->p_pid; 558 bzero(&info, sizeof(info)); 559 info.rti_addrs = rtm->rtm_addrs; 560 /* 561 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 562 * link-local address because rtrequest requires addresses with 563 * embedded scope id. 564 */ 565 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 566 info.rti_info[RTAX_DST] = NULL; 567 senderr(EINVAL); 568 } 569 info.rti_flags = rtm->rtm_flags; 570 if (info.rti_info[RTAX_DST] == NULL || 571 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 572 (info.rti_info[RTAX_GATEWAY] != NULL && 573 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 574 senderr(EINVAL); 575 saf = info.rti_info[RTAX_DST]->sa_family; 576 /* 577 * Verify that the caller has the appropriate privilege; RTM_GET 578 * is the only operation the non-superuser is allowed. 579 */ 580 if (rtm->rtm_type != RTM_GET) { 581 error = priv_check(curthread, PRIV_NET_ROUTE); 582 if (error) 583 senderr(error); 584 } 585 586 /* 587 * The given gateway address may be an interface address. 588 * For example, issuing a "route change" command on a route 589 * entry that was created from a tunnel, and the gateway 590 * address given is the local end point. In this case the 591 * RTF_GATEWAY flag must be cleared or the destination will 592 * not be reachable even though there is no error message. 593 */ 594 if (info.rti_info[RTAX_GATEWAY] != NULL && 595 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 596 struct route gw_ro; 597 598 bzero(&gw_ro, sizeof(gw_ro)); 599 gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY]; 600 rtalloc_ign_fib(&gw_ro, 0, so->so_fibnum); 601 /* 602 * A host route through the loopback interface is 603 * installed for each interface adddress. In pre 8.0 604 * releases the interface address of a PPP link type 605 * is not reachable locally. This behavior is fixed as 606 * part of the new L2/L3 redesign and rewrite work. The 607 * signature of this interface address route is the 608 * AF_LINK sa_family type of the rt_gateway, and the 609 * rt_ifp has the IFF_LOOPBACK flag set. 610 */ 611 if (gw_ro.ro_rt != NULL && 612 gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK && 613 gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) { 614 info.rti_flags &= ~RTF_GATEWAY; 615 info.rti_flags |= RTF_GWFLAG_COMPAT; 616 } 617 if (gw_ro.ro_rt != NULL) 618 RTFREE(gw_ro.ro_rt); 619 } 620 621 switch (rtm->rtm_type) { 622 struct rtentry *saved_nrt; 623 624 case RTM_ADD: 625 if (info.rti_info[RTAX_GATEWAY] == NULL) 626 senderr(EINVAL); 627 saved_nrt = NULL; 628 629 /* support for new ARP code */ 630 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 631 (rtm->rtm_flags & RTF_LLDATA) != 0) { 632 error = lla_rt_output(rtm, &info); 633 #ifdef INET6 634 if (error == 0) 635 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 636 #endif 637 break; 638 } 639 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 640 so->so_fibnum); 641 if (error == 0 && saved_nrt) { 642 #ifdef INET6 643 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 644 #endif 645 RT_LOCK(saved_nrt); 646 rt_setmetrics(rtm, saved_nrt); 647 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 648 RT_REMREF(saved_nrt); 649 RT_UNLOCK(saved_nrt); 650 } 651 break; 652 653 case RTM_DELETE: 654 saved_nrt = NULL; 655 /* support for new ARP code */ 656 if (info.rti_info[RTAX_GATEWAY] && 657 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 658 (rtm->rtm_flags & RTF_LLDATA) != 0) { 659 error = lla_rt_output(rtm, &info); 660 #ifdef INET6 661 if (error == 0) 662 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 663 #endif 664 break; 665 } 666 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 667 so->so_fibnum); 668 if (error == 0) { 669 RT_LOCK(saved_nrt); 670 rt = saved_nrt; 671 goto report; 672 } 673 #ifdef INET6 674 /* rt_msg2() will not be used when RTM_DELETE fails. */ 675 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 676 #endif 677 break; 678 679 case RTM_GET: 680 case RTM_CHANGE: 681 case RTM_LOCK: 682 rnh = rt_tables_get_rnh(so->so_fibnum, 683 info.rti_info[RTAX_DST]->sa_family); 684 if (rnh == NULL) 685 senderr(EAFNOSUPPORT); 686 687 RADIX_NODE_HEAD_RLOCK(rnh); 688 689 if (info.rti_info[RTAX_NETMASK] == NULL && 690 rtm->rtm_type == RTM_GET) { 691 /* 692 * Provide logest prefix match for 693 * address lookup (no mask). 694 * 'route -n get addr' 695 */ 696 rt = (struct rtentry *) rnh->rnh_matchaddr( 697 info.rti_info[RTAX_DST], rnh); 698 } else 699 rt = (struct rtentry *) rnh->rnh_lookup( 700 info.rti_info[RTAX_DST], 701 info.rti_info[RTAX_NETMASK], rnh); 702 703 if (rt == NULL) { 704 RADIX_NODE_HEAD_RUNLOCK(rnh); 705 senderr(ESRCH); 706 } 707 #ifdef RADIX_MPATH 708 /* 709 * for RTM_CHANGE/LOCK, if we got multipath routes, 710 * we require users to specify a matching RTAX_GATEWAY. 711 * 712 * for RTM_GET, gate is optional even with multipath. 713 * if gate == NULL the first match is returned. 714 * (no need to call rt_mpath_matchgate if gate == NULL) 715 */ 716 if (rn_mpath_capable(rnh) && 717 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 718 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 719 if (!rt) { 720 RADIX_NODE_HEAD_RUNLOCK(rnh); 721 senderr(ESRCH); 722 } 723 } 724 #endif 725 /* 726 * If performing proxied L2 entry insertion, and 727 * the actual PPP host entry is found, perform 728 * another search to retrieve the prefix route of 729 * the local end point of the PPP link. 730 */ 731 if (rtm->rtm_flags & RTF_ANNOUNCE) { 732 struct sockaddr laddr; 733 734 if (rt->rt_ifp != NULL && 735 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 736 struct ifaddr *ifa; 737 738 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1); 739 if (ifa != NULL) 740 rt_maskedcopy(ifa->ifa_addr, 741 &laddr, 742 ifa->ifa_netmask); 743 } else 744 rt_maskedcopy(rt->rt_ifa->ifa_addr, 745 &laddr, 746 rt->rt_ifa->ifa_netmask); 747 /* 748 * refactor rt and no lock operation necessary 749 */ 750 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh); 751 if (rt == NULL) { 752 RADIX_NODE_HEAD_RUNLOCK(rnh); 753 senderr(ESRCH); 754 } 755 } 756 RT_LOCK(rt); 757 RT_ADDREF(rt); 758 RADIX_NODE_HEAD_RUNLOCK(rnh); 759 760 switch(rtm->rtm_type) { 761 762 case RTM_GET: 763 report: 764 RT_LOCK_ASSERT(rt); 765 if ((rt->rt_flags & RTF_HOST) == 0 766 ? jailed_without_vnet(curthread->td_ucred) 767 : prison_if(curthread->td_ucred, 768 rt_key(rt)) != 0) { 769 RT_UNLOCK(rt); 770 senderr(ESRCH); 771 } 772 info.rti_info[RTAX_DST] = rt_key(rt); 773 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 774 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 775 info.rti_info[RTAX_GENMASK] = 0; 776 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 777 ifp = rt->rt_ifp; 778 if (ifp) { 779 info.rti_info[RTAX_IFP] = 780 ifp->if_addr->ifa_addr; 781 error = rtm_get_jailed(&info, ifp, rt, 782 &saun, curthread->td_ucred); 783 if (error != 0) { 784 RT_UNLOCK(rt); 785 senderr(error); 786 } 787 if (ifp->if_flags & IFF_POINTOPOINT) 788 info.rti_info[RTAX_BRD] = 789 rt->rt_ifa->ifa_dstaddr; 790 rtm->rtm_index = ifp->if_index; 791 } else { 792 info.rti_info[RTAX_IFP] = NULL; 793 info.rti_info[RTAX_IFA] = NULL; 794 } 795 } else if ((ifp = rt->rt_ifp) != NULL) { 796 rtm->rtm_index = ifp->if_index; 797 } 798 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 799 if (len > rtm->rtm_msglen) { 800 struct rt_msghdr *new_rtm; 801 R_Malloc(new_rtm, struct rt_msghdr *, len); 802 if (new_rtm == NULL) { 803 RT_UNLOCK(rt); 804 senderr(ENOBUFS); 805 } 806 bcopy(rtm, new_rtm, rtm->rtm_msglen); 807 Free(rtm); rtm = new_rtm; 808 } 809 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 810 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 811 rtm->rtm_flags = RTF_GATEWAY | 812 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 813 else 814 rtm->rtm_flags = rt->rt_flags; 815 rt_getmetrics(rt, &rtm->rtm_rmx); 816 rtm->rtm_addrs = info.rti_addrs; 817 break; 818 819 case RTM_CHANGE: 820 /* 821 * New gateway could require new ifaddr, ifp; 822 * flags may also be different; ifp may be specified 823 * by ll sockaddr when protocol address is ambiguous 824 */ 825 if (((rt->rt_flags & RTF_GATEWAY) && 826 info.rti_info[RTAX_GATEWAY] != NULL) || 827 info.rti_info[RTAX_IFP] != NULL || 828 (info.rti_info[RTAX_IFA] != NULL && 829 !sa_equal(info.rti_info[RTAX_IFA], 830 rt->rt_ifa->ifa_addr))) { 831 RT_UNLOCK(rt); 832 RADIX_NODE_HEAD_LOCK(rnh); 833 error = rt_getifa_fib(&info, rt->rt_fibnum); 834 /* 835 * XXXRW: Really we should release this 836 * reference later, but this maintains 837 * historical behavior. 838 */ 839 if (info.rti_ifa != NULL) 840 ifa_free(info.rti_ifa); 841 RADIX_NODE_HEAD_UNLOCK(rnh); 842 if (error != 0) 843 senderr(error); 844 RT_LOCK(rt); 845 } 846 if (info.rti_ifa != NULL && 847 info.rti_ifa != rt->rt_ifa && 848 rt->rt_ifa != NULL && 849 rt->rt_ifa->ifa_rtrequest != NULL) { 850 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 851 &info); 852 ifa_free(rt->rt_ifa); 853 } 854 if (info.rti_info[RTAX_GATEWAY] != NULL) { 855 RT_UNLOCK(rt); 856 RADIX_NODE_HEAD_LOCK(rnh); 857 RT_LOCK(rt); 858 859 error = rt_setgate(rt, rt_key(rt), 860 info.rti_info[RTAX_GATEWAY]); 861 RADIX_NODE_HEAD_UNLOCK(rnh); 862 if (error != 0) { 863 RT_UNLOCK(rt); 864 senderr(error); 865 } 866 rt->rt_flags &= ~RTF_GATEWAY; 867 rt->rt_flags |= (RTF_GATEWAY & info.rti_flags); 868 } 869 if (info.rti_ifa != NULL && 870 info.rti_ifa != rt->rt_ifa) { 871 ifa_ref(info.rti_ifa); 872 rt->rt_ifa = info.rti_ifa; 873 rt->rt_ifp = info.rti_ifp; 874 } 875 /* Allow some flags to be toggled on change. */ 876 rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) | 877 (rtm->rtm_flags & RTF_FMASK); 878 rt_setmetrics(rtm, rt); 879 rtm->rtm_index = rt->rt_ifp->if_index; 880 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 881 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 882 /* FALLTHROUGH */ 883 case RTM_LOCK: 884 /* We don't support locks anymore */ 885 break; 886 } 887 RT_UNLOCK(rt); 888 break; 889 890 default: 891 senderr(EOPNOTSUPP); 892 } 893 894 flush: 895 if (rtm) { 896 if (error) 897 rtm->rtm_errno = error; 898 else 899 rtm->rtm_flags |= RTF_DONE; 900 } 901 if (rt) /* XXX can this be true? */ 902 RTFREE(rt); 903 { 904 struct rawcb *rp = NULL; 905 /* 906 * Check to see if we don't want our own messages. 907 */ 908 if ((so->so_options & SO_USELOOPBACK) == 0) { 909 if (V_route_cb.any_count <= 1) { 910 if (rtm) 911 Free(rtm); 912 m_freem(m); 913 return (error); 914 } 915 /* There is another listener, so construct message */ 916 rp = sotorawcb(so); 917 } 918 if (rtm) { 919 #ifdef INET6 920 if (rti_need_deembed) { 921 /* sin6_scope_id is recovered before sending rtm. */ 922 sin6 = (struct sockaddr_in6 *)&ss; 923 for (i = 0; i < RTAX_MAX; i++) { 924 if (info.rti_info[i] == NULL) 925 continue; 926 if (info.rti_info[i]->sa_family != AF_INET6) 927 continue; 928 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 929 if (sa6_recoverscope(sin6) == 0) 930 bcopy(sin6, info.rti_info[i], 931 sizeof(*sin6)); 932 } 933 } 934 #endif 935 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 936 if (m->m_pkthdr.len < rtm->rtm_msglen) { 937 m_freem(m); 938 m = NULL; 939 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 940 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 941 } 942 if (m) { 943 M_SETFIB(m, so->so_fibnum); 944 m->m_flags |= RTS_FILTER_FIB; 945 if (rp) { 946 /* 947 * XXX insure we don't get a copy by 948 * invalidating our protocol 949 */ 950 unsigned short family = rp->rcb_proto.sp_family; 951 rp->rcb_proto.sp_family = 0; 952 rt_dispatch(m, saf); 953 rp->rcb_proto.sp_family = family; 954 } else 955 rt_dispatch(m, saf); 956 } 957 /* info.rti_info[RTAX_DST] (used above) can point inside of rtm */ 958 if (rtm) 959 Free(rtm); 960 } 961 return (error); 962 #undef sa_equal 963 } 964 965 static void 966 rt_setmetrics(const struct rt_msghdr *rtm, struct rtentry *rt) 967 { 968 969 if (rtm->rtm_inits & RTV_MTU) 970 rt->rt_mtu = rtm->rtm_rmx.rmx_mtu; 971 if (rtm->rtm_inits & RTV_WEIGHT) 972 rt->rt_weight = rtm->rtm_rmx.rmx_weight; 973 /* Kernel -> userland timebase conversion. */ 974 if (rtm->rtm_inits & RTV_EXPIRE) 975 rt->rt_expire = rtm->rtm_rmx.rmx_expire ? 976 rtm->rtm_rmx.rmx_expire - time_second + time_uptime : 0; 977 } 978 979 static void 980 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 981 { 982 983 bzero(out, sizeof(*out)); 984 out->rmx_mtu = rt->rt_mtu; 985 out->rmx_weight = rt->rt_weight; 986 out->rmx_pksent = counter_u64_fetch(rt->rt_pksent); 987 /* Kernel -> userland timebase conversion. */ 988 out->rmx_expire = rt->rt_expire ? 989 rt->rt_expire - time_uptime + time_second : 0; 990 } 991 992 /* 993 * Extract the addresses of the passed sockaddrs. 994 * Do a little sanity checking so as to avoid bad memory references. 995 * This data is derived straight from userland. 996 */ 997 static int 998 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 999 { 1000 struct sockaddr *sa; 1001 int i; 1002 1003 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1004 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1005 continue; 1006 sa = (struct sockaddr *)cp; 1007 /* 1008 * It won't fit. 1009 */ 1010 if (cp + sa->sa_len > cplim) 1011 return (EINVAL); 1012 /* 1013 * there are no more.. quit now 1014 * If there are more bits, they are in error. 1015 * I've seen this. route(1) can evidently generate these. 1016 * This causes kernel to core dump. 1017 * for compatibility, If we see this, point to a safe address. 1018 */ 1019 if (sa->sa_len == 0) { 1020 rtinfo->rti_info[i] = &sa_zero; 1021 return (0); /* should be EINVAL but for compat */ 1022 } 1023 /* accept it */ 1024 #ifdef INET6 1025 if (sa->sa_family == AF_INET6) 1026 sa6_embedscope((struct sockaddr_in6 *)sa, 1027 V_ip6_use_defzone); 1028 #endif 1029 rtinfo->rti_info[i] = sa; 1030 cp += SA_SIZE(sa); 1031 } 1032 return (0); 1033 } 1034 1035 /* 1036 * Used by the routing socket. 1037 */ 1038 static struct mbuf * 1039 rt_msg1(int type, struct rt_addrinfo *rtinfo) 1040 { 1041 struct rt_msghdr *rtm; 1042 struct mbuf *m; 1043 int i; 1044 struct sockaddr *sa; 1045 #ifdef INET6 1046 struct sockaddr_storage ss; 1047 struct sockaddr_in6 *sin6; 1048 #endif 1049 int len, dlen; 1050 1051 switch (type) { 1052 1053 case RTM_DELADDR: 1054 case RTM_NEWADDR: 1055 len = sizeof(struct ifa_msghdr); 1056 break; 1057 1058 case RTM_DELMADDR: 1059 case RTM_NEWMADDR: 1060 len = sizeof(struct ifma_msghdr); 1061 break; 1062 1063 case RTM_IFINFO: 1064 len = sizeof(struct if_msghdr); 1065 break; 1066 1067 case RTM_IFANNOUNCE: 1068 case RTM_IEEE80211: 1069 len = sizeof(struct if_announcemsghdr); 1070 break; 1071 1072 default: 1073 len = sizeof(struct rt_msghdr); 1074 } 1075 1076 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1077 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1078 if (len > MHLEN) 1079 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1080 else 1081 m = m_gethdr(M_NOWAIT, MT_DATA); 1082 if (m == NULL) 1083 return (m); 1084 1085 m->m_pkthdr.len = m->m_len = len; 1086 rtm = mtod(m, struct rt_msghdr *); 1087 bzero((caddr_t)rtm, len); 1088 for (i = 0; i < RTAX_MAX; i++) { 1089 if ((sa = rtinfo->rti_info[i]) == NULL) 1090 continue; 1091 rtinfo->rti_addrs |= (1 << i); 1092 dlen = SA_SIZE(sa); 1093 #ifdef INET6 1094 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1095 sin6 = (struct sockaddr_in6 *)&ss; 1096 bcopy(sa, sin6, sizeof(*sin6)); 1097 if (sa6_recoverscope(sin6) == 0) 1098 sa = (struct sockaddr *)sin6; 1099 } 1100 #endif 1101 m_copyback(m, len, dlen, (caddr_t)sa); 1102 len += dlen; 1103 } 1104 if (m->m_pkthdr.len != len) { 1105 m_freem(m); 1106 return (NULL); 1107 } 1108 rtm->rtm_msglen = len; 1109 rtm->rtm_version = RTM_VERSION; 1110 rtm->rtm_type = type; 1111 return (m); 1112 } 1113 1114 /* 1115 * Used by the sysctl code and routing socket. 1116 */ 1117 static int 1118 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 1119 { 1120 int i; 1121 int len, dlen, second_time = 0; 1122 caddr_t cp0; 1123 #ifdef INET6 1124 struct sockaddr_storage ss; 1125 struct sockaddr_in6 *sin6; 1126 #endif 1127 1128 rtinfo->rti_addrs = 0; 1129 again: 1130 switch (type) { 1131 1132 case RTM_DELADDR: 1133 case RTM_NEWADDR: 1134 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1135 #ifdef COMPAT_FREEBSD32 1136 if (w->w_req->flags & SCTL_MASK32) 1137 len = sizeof(struct ifa_msghdrl32); 1138 else 1139 #endif 1140 len = sizeof(struct ifa_msghdrl); 1141 } else 1142 len = sizeof(struct ifa_msghdr); 1143 break; 1144 1145 case RTM_IFINFO: 1146 #ifdef COMPAT_FREEBSD32 1147 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1148 if (w->w_op == NET_RT_IFLISTL) 1149 len = sizeof(struct if_msghdrl32); 1150 else 1151 len = sizeof(struct if_msghdr32); 1152 break; 1153 } 1154 #endif 1155 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1156 len = sizeof(struct if_msghdrl); 1157 else 1158 len = sizeof(struct if_msghdr); 1159 break; 1160 1161 case RTM_NEWMADDR: 1162 len = sizeof(struct ifma_msghdr); 1163 break; 1164 1165 default: 1166 len = sizeof(struct rt_msghdr); 1167 } 1168 cp0 = cp; 1169 if (cp0) 1170 cp += len; 1171 for (i = 0; i < RTAX_MAX; i++) { 1172 struct sockaddr *sa; 1173 1174 if ((sa = rtinfo->rti_info[i]) == NULL) 1175 continue; 1176 rtinfo->rti_addrs |= (1 << i); 1177 dlen = SA_SIZE(sa); 1178 if (cp) { 1179 #ifdef INET6 1180 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1181 sin6 = (struct sockaddr_in6 *)&ss; 1182 bcopy(sa, sin6, sizeof(*sin6)); 1183 if (sa6_recoverscope(sin6) == 0) 1184 sa = (struct sockaddr *)sin6; 1185 } 1186 #endif 1187 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1188 cp += dlen; 1189 } 1190 len += dlen; 1191 } 1192 len = ALIGN(len); 1193 if (cp == NULL && w != NULL && !second_time) { 1194 struct walkarg *rw = w; 1195 1196 if (rw->w_req) { 1197 if (rw->w_tmemsize < len) { 1198 if (rw->w_tmem) 1199 free(rw->w_tmem, M_RTABLE); 1200 rw->w_tmem = (caddr_t) 1201 malloc(len, M_RTABLE, M_NOWAIT); 1202 if (rw->w_tmem) 1203 rw->w_tmemsize = len; 1204 } 1205 if (rw->w_tmem) { 1206 cp = rw->w_tmem; 1207 second_time = 1; 1208 goto again; 1209 } 1210 } 1211 } 1212 if (cp) { 1213 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 1214 1215 rtm->rtm_version = RTM_VERSION; 1216 rtm->rtm_type = type; 1217 rtm->rtm_msglen = len; 1218 } 1219 return (len); 1220 } 1221 1222 /* 1223 * This routine is called to generate a message from the routing 1224 * socket indicating that a redirect has occured, a routing lookup 1225 * has failed, or that a protocol has detected timeouts to a particular 1226 * destination. 1227 */ 1228 void 1229 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1230 int fibnum) 1231 { 1232 struct rt_msghdr *rtm; 1233 struct mbuf *m; 1234 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1235 1236 if (V_route_cb.any_count == 0) 1237 return; 1238 m = rt_msg1(type, rtinfo); 1239 if (m == NULL) 1240 return; 1241 1242 if (fibnum != RT_ALL_FIBS) { 1243 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1244 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1245 M_SETFIB(m, fibnum); 1246 m->m_flags |= RTS_FILTER_FIB; 1247 } 1248 1249 rtm = mtod(m, struct rt_msghdr *); 1250 rtm->rtm_flags = RTF_DONE | flags; 1251 rtm->rtm_errno = error; 1252 rtm->rtm_addrs = rtinfo->rti_addrs; 1253 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1254 } 1255 1256 void 1257 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1258 { 1259 1260 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1261 } 1262 1263 /* 1264 * This routine is called to generate a message from the routing 1265 * socket indicating that the status of a network interface has changed. 1266 */ 1267 void 1268 rt_ifmsg(struct ifnet *ifp) 1269 { 1270 struct if_msghdr *ifm; 1271 struct mbuf *m; 1272 struct rt_addrinfo info; 1273 1274 if (V_route_cb.any_count == 0) 1275 return; 1276 bzero((caddr_t)&info, sizeof(info)); 1277 m = rt_msg1(RTM_IFINFO, &info); 1278 if (m == NULL) 1279 return; 1280 ifm = mtod(m, struct if_msghdr *); 1281 ifm->ifm_index = ifp->if_index; 1282 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1283 ifm->ifm_data = ifp->if_data; 1284 ifm->ifm_addrs = 0; 1285 rt_dispatch(m, AF_UNSPEC); 1286 } 1287 1288 /* 1289 * Announce interface address arrival/withdraw. 1290 * Please do not call directly, use rt_addrmsg(). 1291 * Assume input data to be valid. 1292 * Returns 0 on success. 1293 */ 1294 int 1295 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1296 { 1297 struct rt_addrinfo info; 1298 struct sockaddr *sa; 1299 int ncmd; 1300 struct mbuf *m; 1301 struct ifa_msghdr *ifam; 1302 struct ifnet *ifp = ifa->ifa_ifp; 1303 1304 if (V_route_cb.any_count == 0) 1305 return (0); 1306 1307 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1308 1309 bzero((caddr_t)&info, sizeof(info)); 1310 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1311 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1312 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1313 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1314 if ((m = rt_msg1(ncmd, &info)) == NULL) 1315 return (ENOBUFS); 1316 ifam = mtod(m, struct ifa_msghdr *); 1317 ifam->ifam_index = ifp->if_index; 1318 ifam->ifam_metric = ifa->ifa_metric; 1319 ifam->ifam_flags = ifa->ifa_flags; 1320 ifam->ifam_addrs = info.rti_addrs; 1321 1322 if (fibnum != RT_ALL_FIBS) { 1323 M_SETFIB(m, fibnum); 1324 m->m_flags |= RTS_FILTER_FIB; 1325 } 1326 1327 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1328 1329 return (0); 1330 } 1331 1332 /* 1333 * Announce route addition/removal. 1334 * Please do not call directly, use rt_routemsg(). 1335 * Note that @rt data MAY be inconsistent/invalid: 1336 * if some userland app sends us "invalid" route message (invalid mask, 1337 * no dst, wrong address families, etc...) we need to pass it back 1338 * to app (and any other rtsock consumers) with rtm_errno field set to 1339 * non-zero value. 1340 * 1341 * Returns 0 on success. 1342 */ 1343 int 1344 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1345 int fibnum) 1346 { 1347 struct rt_addrinfo info; 1348 struct sockaddr *sa; 1349 struct mbuf *m; 1350 struct rt_msghdr *rtm; 1351 1352 if (V_route_cb.any_count == 0) 1353 return (0); 1354 1355 bzero((caddr_t)&info, sizeof(info)); 1356 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1357 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1358 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1359 if ((m = rt_msg1(cmd, &info)) == NULL) 1360 return (ENOBUFS); 1361 rtm = mtod(m, struct rt_msghdr *); 1362 rtm->rtm_index = ifp->if_index; 1363 rtm->rtm_flags |= rt->rt_flags; 1364 rtm->rtm_errno = error; 1365 rtm->rtm_addrs = info.rti_addrs; 1366 1367 if (fibnum != RT_ALL_FIBS) { 1368 M_SETFIB(m, fibnum); 1369 m->m_flags |= RTS_FILTER_FIB; 1370 } 1371 1372 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1373 1374 return (0); 1375 } 1376 1377 /* 1378 * This is the analogue to the rt_newaddrmsg which performs the same 1379 * function but for multicast group memberhips. This is easier since 1380 * there is no route state to worry about. 1381 */ 1382 void 1383 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1384 { 1385 struct rt_addrinfo info; 1386 struct mbuf *m = NULL; 1387 struct ifnet *ifp = ifma->ifma_ifp; 1388 struct ifma_msghdr *ifmam; 1389 1390 if (V_route_cb.any_count == 0) 1391 return; 1392 1393 bzero((caddr_t)&info, sizeof(info)); 1394 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1395 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1396 /* 1397 * If a link-layer address is present, present it as a ``gateway'' 1398 * (similarly to how ARP entries, e.g., are presented). 1399 */ 1400 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1401 m = rt_msg1(cmd, &info); 1402 if (m == NULL) 1403 return; 1404 ifmam = mtod(m, struct ifma_msghdr *); 1405 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1406 __func__)); 1407 ifmam->ifmam_index = ifp->if_index; 1408 ifmam->ifmam_addrs = info.rti_addrs; 1409 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1410 } 1411 1412 static struct mbuf * 1413 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1414 struct rt_addrinfo *info) 1415 { 1416 struct if_announcemsghdr *ifan; 1417 struct mbuf *m; 1418 1419 if (V_route_cb.any_count == 0) 1420 return NULL; 1421 bzero((caddr_t)info, sizeof(*info)); 1422 m = rt_msg1(type, info); 1423 if (m != NULL) { 1424 ifan = mtod(m, struct if_announcemsghdr *); 1425 ifan->ifan_index = ifp->if_index; 1426 strlcpy(ifan->ifan_name, ifp->if_xname, 1427 sizeof(ifan->ifan_name)); 1428 ifan->ifan_what = what; 1429 } 1430 return m; 1431 } 1432 1433 /* 1434 * This is called to generate routing socket messages indicating 1435 * IEEE80211 wireless events. 1436 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1437 */ 1438 void 1439 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1440 { 1441 struct mbuf *m; 1442 struct rt_addrinfo info; 1443 1444 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1445 if (m != NULL) { 1446 /* 1447 * Append the ieee80211 data. Try to stick it in the 1448 * mbuf containing the ifannounce msg; otherwise allocate 1449 * a new mbuf and append. 1450 * 1451 * NB: we assume m is a single mbuf. 1452 */ 1453 if (data_len > M_TRAILINGSPACE(m)) { 1454 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1455 if (n == NULL) { 1456 m_freem(m); 1457 return; 1458 } 1459 bcopy(data, mtod(n, void *), data_len); 1460 n->m_len = data_len; 1461 m->m_next = n; 1462 } else if (data_len > 0) { 1463 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1464 m->m_len += data_len; 1465 } 1466 if (m->m_flags & M_PKTHDR) 1467 m->m_pkthdr.len += data_len; 1468 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1469 rt_dispatch(m, AF_UNSPEC); 1470 } 1471 } 1472 1473 /* 1474 * This is called to generate routing socket messages indicating 1475 * network interface arrival and departure. 1476 */ 1477 void 1478 rt_ifannouncemsg(struct ifnet *ifp, int what) 1479 { 1480 struct mbuf *m; 1481 struct rt_addrinfo info; 1482 1483 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1484 if (m != NULL) 1485 rt_dispatch(m, AF_UNSPEC); 1486 } 1487 1488 static void 1489 rt_dispatch(struct mbuf *m, sa_family_t saf) 1490 { 1491 struct m_tag *tag; 1492 1493 /* 1494 * Preserve the family from the sockaddr, if any, in an m_tag for 1495 * use when injecting the mbuf into the routing socket buffer from 1496 * the netisr. 1497 */ 1498 if (saf != AF_UNSPEC) { 1499 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1500 M_NOWAIT); 1501 if (tag == NULL) { 1502 m_freem(m); 1503 return; 1504 } 1505 *(unsigned short *)(tag + 1) = saf; 1506 m_tag_prepend(m, tag); 1507 } 1508 #ifdef VIMAGE 1509 if (V_loif) 1510 m->m_pkthdr.rcvif = V_loif; 1511 else { 1512 m_freem(m); 1513 return; 1514 } 1515 #endif 1516 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1517 } 1518 1519 /* 1520 * This is used in dumping the kernel table via sysctl(). 1521 */ 1522 static int 1523 sysctl_dumpentry(struct radix_node *rn, void *vw) 1524 { 1525 struct walkarg *w = vw; 1526 struct rtentry *rt = (struct rtentry *)rn; 1527 int error = 0, size; 1528 struct rt_addrinfo info; 1529 1530 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1531 return 0; 1532 if ((rt->rt_flags & RTF_HOST) == 0 1533 ? jailed_without_vnet(w->w_req->td->td_ucred) 1534 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1535 return (0); 1536 bzero((caddr_t)&info, sizeof(info)); 1537 info.rti_info[RTAX_DST] = rt_key(rt); 1538 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1539 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1540 info.rti_info[RTAX_GENMASK] = 0; 1541 if (rt->rt_ifp) { 1542 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1543 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1544 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1545 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1546 } 1547 size = rt_msg2(RTM_GET, &info, NULL, w); 1548 if (w->w_req && w->w_tmem) { 1549 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1550 1551 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1552 rtm->rtm_flags = RTF_GATEWAY | 1553 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1554 else 1555 rtm->rtm_flags = rt->rt_flags; 1556 rt_getmetrics(rt, &rtm->rtm_rmx); 1557 rtm->rtm_index = rt->rt_ifp->if_index; 1558 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1559 rtm->rtm_addrs = info.rti_addrs; 1560 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1561 return (error); 1562 } 1563 return (error); 1564 } 1565 1566 static int 1567 sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info, 1568 struct walkarg *w, int len) 1569 { 1570 struct if_msghdrl *ifm; 1571 struct if_data *ifd; 1572 1573 ifm = (struct if_msghdrl *)w->w_tmem; 1574 1575 #ifdef COMPAT_FREEBSD32 1576 if (w->w_req->flags & SCTL_MASK32) { 1577 struct if_msghdrl32 *ifm32; 1578 1579 ifm32 = (struct if_msghdrl32 *)ifm; 1580 ifm32->ifm_addrs = info->rti_addrs; 1581 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1582 ifm32->ifm_index = ifp->if_index; 1583 ifm32->_ifm_spare1 = 0; 1584 ifm32->ifm_len = sizeof(*ifm32); 1585 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1586 ifd = &ifm32->ifm_data; 1587 } else 1588 #endif 1589 { 1590 ifm->ifm_addrs = info->rti_addrs; 1591 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1592 ifm->ifm_index = ifp->if_index; 1593 ifm->_ifm_spare1 = 0; 1594 ifm->ifm_len = sizeof(*ifm); 1595 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1596 ifd = &ifm->ifm_data; 1597 } 1598 1599 *ifd = ifp->if_data; 1600 1601 /* Some drivers still use ifqueue(9), add its stats. */ 1602 ifd->ifi_oqdrops += ifp->if_snd.ifq_drops; 1603 1604 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1605 } 1606 1607 static int 1608 sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info, 1609 struct walkarg *w, int len) 1610 { 1611 struct if_msghdr *ifm; 1612 struct if_data *ifd; 1613 1614 ifm = (struct if_msghdr *)w->w_tmem; 1615 1616 #ifdef COMPAT_FREEBSD32 1617 if (w->w_req->flags & SCTL_MASK32) { 1618 struct if_msghdr32 *ifm32; 1619 1620 ifm32 = (struct if_msghdr32 *)ifm; 1621 ifm32->ifm_addrs = info->rti_addrs; 1622 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1623 ifm32->ifm_index = ifp->if_index; 1624 ifd = &ifm32->ifm_data; 1625 } else 1626 #endif 1627 { 1628 ifm->ifm_addrs = info->rti_addrs; 1629 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1630 ifm->ifm_index = ifp->if_index; 1631 ifd = &ifm->ifm_data; 1632 } 1633 1634 *ifd = ifp->if_data; 1635 1636 /* Some drivers still use ifqueue(9), add its stats. */ 1637 ifd->ifi_oqdrops += ifp->if_snd.ifq_drops; 1638 1639 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1640 } 1641 1642 static int 1643 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1644 struct walkarg *w, int len) 1645 { 1646 struct ifa_msghdrl *ifam; 1647 struct if_data *ifd; 1648 1649 ifam = (struct ifa_msghdrl *)w->w_tmem; 1650 1651 #ifdef COMPAT_FREEBSD32 1652 if (w->w_req->flags & SCTL_MASK32) { 1653 struct ifa_msghdrl32 *ifam32; 1654 1655 ifam32 = (struct ifa_msghdrl32 *)ifam; 1656 ifam32->ifam_addrs = info->rti_addrs; 1657 ifam32->ifam_flags = ifa->ifa_flags; 1658 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1659 ifam32->_ifam_spare1 = 0; 1660 ifam32->ifam_len = sizeof(*ifam32); 1661 ifam32->ifam_data_off = 1662 offsetof(struct ifa_msghdrl32, ifam_data); 1663 ifam32->ifam_metric = ifa->ifa_metric; 1664 ifd = &ifam32->ifam_data; 1665 } else 1666 #endif 1667 { 1668 ifam->ifam_addrs = info->rti_addrs; 1669 ifam->ifam_flags = ifa->ifa_flags; 1670 ifam->ifam_index = ifa->ifa_ifp->if_index; 1671 ifam->_ifam_spare1 = 0; 1672 ifam->ifam_len = sizeof(*ifam); 1673 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1674 ifam->ifam_metric = ifa->ifa_metric; 1675 ifd = &ifam->ifam_data; 1676 } 1677 1678 bzero(ifd, sizeof(*ifd)); 1679 ifd->ifi_datalen = sizeof(struct if_data); 1680 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1681 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1682 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1683 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1684 1685 /* Fixup if_data carp(4) vhid. */ 1686 if (carp_get_vhid_p != NULL) 1687 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1688 1689 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1690 } 1691 1692 static int 1693 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1694 struct walkarg *w, int len) 1695 { 1696 struct ifa_msghdr *ifam; 1697 1698 ifam = (struct ifa_msghdr *)w->w_tmem; 1699 ifam->ifam_addrs = info->rti_addrs; 1700 ifam->ifam_flags = ifa->ifa_flags; 1701 ifam->ifam_index = ifa->ifa_ifp->if_index; 1702 ifam->ifam_metric = ifa->ifa_metric; 1703 1704 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1705 } 1706 1707 static int 1708 sysctl_iflist(int af, struct walkarg *w) 1709 { 1710 struct ifnet *ifp; 1711 struct ifaddr *ifa; 1712 struct rt_addrinfo info; 1713 int len, error = 0; 1714 1715 bzero((caddr_t)&info, sizeof(info)); 1716 IFNET_RLOCK_NOSLEEP(); 1717 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1718 if (w->w_arg && w->w_arg != ifp->if_index) 1719 continue; 1720 IF_ADDR_RLOCK(ifp); 1721 ifa = ifp->if_addr; 1722 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1723 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1724 info.rti_info[RTAX_IFP] = NULL; 1725 if (w->w_req && w->w_tmem) { 1726 if (w->w_op == NET_RT_IFLISTL) 1727 error = sysctl_iflist_ifml(ifp, &info, w, len); 1728 else 1729 error = sysctl_iflist_ifm(ifp, &info, w, len); 1730 if (error) 1731 goto done; 1732 } 1733 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1734 if (af && af != ifa->ifa_addr->sa_family) 1735 continue; 1736 if (prison_if(w->w_req->td->td_ucred, 1737 ifa->ifa_addr) != 0) 1738 continue; 1739 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1740 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1741 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1742 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1743 if (w->w_req && w->w_tmem) { 1744 if (w->w_op == NET_RT_IFLISTL) 1745 error = sysctl_iflist_ifaml(ifa, &info, 1746 w, len); 1747 else 1748 error = sysctl_iflist_ifam(ifa, &info, 1749 w, len); 1750 if (error) 1751 goto done; 1752 } 1753 } 1754 IF_ADDR_RUNLOCK(ifp); 1755 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1756 info.rti_info[RTAX_BRD] = NULL; 1757 } 1758 done: 1759 if (ifp != NULL) 1760 IF_ADDR_RUNLOCK(ifp); 1761 IFNET_RUNLOCK_NOSLEEP(); 1762 return (error); 1763 } 1764 1765 static int 1766 sysctl_ifmalist(int af, struct walkarg *w) 1767 { 1768 struct ifnet *ifp; 1769 struct ifmultiaddr *ifma; 1770 struct rt_addrinfo info; 1771 int len, error = 0; 1772 struct ifaddr *ifa; 1773 1774 bzero((caddr_t)&info, sizeof(info)); 1775 IFNET_RLOCK_NOSLEEP(); 1776 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1777 if (w->w_arg && w->w_arg != ifp->if_index) 1778 continue; 1779 ifa = ifp->if_addr; 1780 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1781 IF_ADDR_RLOCK(ifp); 1782 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1783 if (af && af != ifma->ifma_addr->sa_family) 1784 continue; 1785 if (prison_if(w->w_req->td->td_ucred, 1786 ifma->ifma_addr) != 0) 1787 continue; 1788 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1789 info.rti_info[RTAX_GATEWAY] = 1790 (ifma->ifma_addr->sa_family != AF_LINK) ? 1791 ifma->ifma_lladdr : NULL; 1792 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1793 if (w->w_req && w->w_tmem) { 1794 struct ifma_msghdr *ifmam; 1795 1796 ifmam = (struct ifma_msghdr *)w->w_tmem; 1797 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1798 ifmam->ifmam_flags = 0; 1799 ifmam->ifmam_addrs = info.rti_addrs; 1800 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1801 if (error) { 1802 IF_ADDR_RUNLOCK(ifp); 1803 goto done; 1804 } 1805 } 1806 } 1807 IF_ADDR_RUNLOCK(ifp); 1808 } 1809 done: 1810 IFNET_RUNLOCK_NOSLEEP(); 1811 return (error); 1812 } 1813 1814 static int 1815 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1816 { 1817 int *name = (int *)arg1; 1818 u_int namelen = arg2; 1819 struct radix_node_head *rnh = NULL; /* silence compiler. */ 1820 int i, lim, error = EINVAL; 1821 int fib = 0; 1822 u_char af; 1823 struct walkarg w; 1824 1825 name ++; 1826 namelen--; 1827 if (req->newptr) 1828 return (EPERM); 1829 if (name[1] == NET_RT_DUMP) { 1830 if (namelen == 3) 1831 fib = req->td->td_proc->p_fibnum; 1832 else if (namelen == 4) 1833 fib = (name[3] == RT_ALL_FIBS) ? 1834 req->td->td_proc->p_fibnum : name[3]; 1835 else 1836 return ((namelen < 3) ? EISDIR : ENOTDIR); 1837 if (fib < 0 || fib >= rt_numfibs) 1838 return (EINVAL); 1839 } else if (namelen != 3) 1840 return ((namelen < 3) ? EISDIR : ENOTDIR); 1841 af = name[0]; 1842 if (af > AF_MAX) 1843 return (EINVAL); 1844 bzero(&w, sizeof(w)); 1845 w.w_op = name[1]; 1846 w.w_arg = name[2]; 1847 w.w_req = req; 1848 1849 error = sysctl_wire_old_buffer(req, 0); 1850 if (error) 1851 return (error); 1852 switch (w.w_op) { 1853 1854 case NET_RT_DUMP: 1855 case NET_RT_FLAGS: 1856 if (af == 0) { /* dump all tables */ 1857 i = 1; 1858 lim = AF_MAX; 1859 } else /* dump only one table */ 1860 i = lim = af; 1861 1862 /* 1863 * take care of llinfo entries, the caller must 1864 * specify an AF 1865 */ 1866 if (w.w_op == NET_RT_FLAGS && 1867 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1868 if (af != 0) 1869 error = lltable_sysctl_dumparp(af, w.w_req); 1870 else 1871 error = EINVAL; 1872 break; 1873 } 1874 /* 1875 * take care of routing entries 1876 */ 1877 for (error = 0; error == 0 && i <= lim; i++) { 1878 rnh = rt_tables_get_rnh(fib, i); 1879 if (rnh != NULL) { 1880 RADIX_NODE_HEAD_RLOCK(rnh); 1881 error = rnh->rnh_walktree(rnh, 1882 sysctl_dumpentry, &w); 1883 RADIX_NODE_HEAD_RUNLOCK(rnh); 1884 } else if (af != 0) 1885 error = EAFNOSUPPORT; 1886 } 1887 break; 1888 1889 case NET_RT_IFLIST: 1890 case NET_RT_IFLISTL: 1891 error = sysctl_iflist(af, &w); 1892 break; 1893 1894 case NET_RT_IFMALIST: 1895 error = sysctl_ifmalist(af, &w); 1896 break; 1897 } 1898 if (w.w_tmem) 1899 free(w.w_tmem, M_RTABLE); 1900 return (error); 1901 } 1902 1903 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1904 1905 /* 1906 * Definitions of protocols supported in the ROUTE domain. 1907 */ 1908 1909 static struct domain routedomain; /* or at least forward */ 1910 1911 static struct protosw routesw[] = { 1912 { 1913 .pr_type = SOCK_RAW, 1914 .pr_domain = &routedomain, 1915 .pr_flags = PR_ATOMIC|PR_ADDR, 1916 .pr_output = route_output, 1917 .pr_ctlinput = raw_ctlinput, 1918 .pr_init = raw_init, 1919 .pr_usrreqs = &route_usrreqs 1920 } 1921 }; 1922 1923 static struct domain routedomain = { 1924 .dom_family = PF_ROUTE, 1925 .dom_name = "route", 1926 .dom_protosw = routesw, 1927 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1928 }; 1929 1930 VNET_DOMAIN_SET(route); 1931