xref: /freebsd/sys/net/rtsock.c (revision 96474d2a3fa895fb9636183403fc8ca7ccf60216)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
32  * $FreeBSD$
33  */
34 #include "opt_ddb.h"
35 #include "opt_mpath.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 
39 #include <sys/param.h>
40 #include <sys/jail.h>
41 #include <sys/kernel.h>
42 #include <sys/domain.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/rmlock.h>
50 #include <sys/rwlock.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_llatbl.h>
61 #include <net/if_types.h>
62 #include <net/netisr.h>
63 #include <net/raw_cb.h>
64 #include <net/route.h>
65 #include <net/route/route_ctl.h>
66 #include <net/route/route_var.h>
67 #ifdef RADIX_MPATH
68 #include <net/radix_mpath.h>
69 #endif
70 #include <net/vnet.h>
71 
72 #include <netinet/in.h>
73 #include <netinet/if_ether.h>
74 #include <netinet/ip_carp.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/scope6_var.h>
78 #endif
79 #include <net/route/nhop.h>
80 
81 #ifdef COMPAT_FREEBSD32
82 #include <sys/mount.h>
83 #include <compat/freebsd32/freebsd32.h>
84 
85 struct if_msghdr32 {
86 	uint16_t ifm_msglen;
87 	uint8_t	ifm_version;
88 	uint8_t	ifm_type;
89 	int32_t	ifm_addrs;
90 	int32_t	ifm_flags;
91 	uint16_t ifm_index;
92 	uint16_t _ifm_spare1;
93 	struct	if_data ifm_data;
94 };
95 
96 struct if_msghdrl32 {
97 	uint16_t ifm_msglen;
98 	uint8_t	ifm_version;
99 	uint8_t	ifm_type;
100 	int32_t	ifm_addrs;
101 	int32_t	ifm_flags;
102 	uint16_t ifm_index;
103 	uint16_t _ifm_spare1;
104 	uint16_t ifm_len;
105 	uint16_t ifm_data_off;
106 	uint32_t _ifm_spare2;
107 	struct	if_data ifm_data;
108 };
109 
110 struct ifa_msghdrl32 {
111 	uint16_t ifam_msglen;
112 	uint8_t	ifam_version;
113 	uint8_t	ifam_type;
114 	int32_t	ifam_addrs;
115 	int32_t	ifam_flags;
116 	uint16_t ifam_index;
117 	uint16_t _ifam_spare1;
118 	uint16_t ifam_len;
119 	uint16_t ifam_data_off;
120 	int32_t	ifam_metric;
121 	struct	if_data ifam_data;
122 };
123 
124 #define SA_SIZE32(sa)						\
125     (  (((struct sockaddr *)(sa))->sa_len == 0) ?		\
126 	sizeof(int)		:				\
127 	1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
128 
129 #endif /* COMPAT_FREEBSD32 */
130 
131 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
132 
133 /* NB: these are not modified */
134 static struct	sockaddr route_src = { 2, PF_ROUTE, };
135 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
136 
137 /* These are external hooks for CARP. */
138 int	(*carp_get_vhid_p)(struct ifaddr *);
139 
140 /*
141  * Used by rtsock/raw_input callback code to decide whether to filter the update
142  * notification to a socket bound to a particular FIB.
143  */
144 #define	RTS_FILTER_FIB	M_PROTO8
145 
146 typedef struct {
147 	int	ip_count;	/* attached w/ AF_INET */
148 	int	ip6_count;	/* attached w/ AF_INET6 */
149 	int	any_count;	/* total attached */
150 } route_cb_t;
151 VNET_DEFINE_STATIC(route_cb_t, route_cb);
152 #define	V_route_cb VNET(route_cb)
153 
154 struct mtx rtsock_mtx;
155 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
156 
157 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
158 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
159 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
160 
161 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
162     "");
163 
164 struct walkarg {
165 	int	w_tmemsize;
166 	int	w_op, w_arg;
167 	caddr_t	w_tmem;
168 	struct sysctl_req *w_req;
169 };
170 
171 static void	rts_input(struct mbuf *m);
172 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
173 static int	rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
174 			struct walkarg *w, int *plen);
175 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
176 			struct rt_addrinfo *rtinfo);
177 static int	sysctl_dumpentry(struct radix_node *rn, void *vw);
178 static int	sysctl_iflist(int af, struct walkarg *w);
179 static int	sysctl_ifmalist(int af, struct walkarg *w);
180 static int	route_output(struct mbuf *m, struct socket *so, ...);
181 static void	rt_getmetrics(const struct rtentry *rt,
182 			const struct nhop_object *nh, struct rt_metrics *out);
183 static void	rt_dispatch(struct mbuf *, sa_family_t);
184 static int	handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
185 			struct rt_msghdr *rtm, struct rib_cmd_info *rc);
186 static int	update_rtm_from_rc(struct rt_addrinfo *info,
187 			struct rt_msghdr **prtm, int alloc_len,
188 			struct rib_cmd_info *rc, struct nhop_object *nh);
189 static void	send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
190 			struct mbuf *m, sa_family_t saf, u_int fibnum,
191 			int rtm_errno);
192 static int	can_export_rte(struct ucred *td_ucred, const struct rtentry *rt);
193 
194 static struct netisr_handler rtsock_nh = {
195 	.nh_name = "rtsock",
196 	.nh_handler = rts_input,
197 	.nh_proto = NETISR_ROUTE,
198 	.nh_policy = NETISR_POLICY_SOURCE,
199 };
200 
201 static int
202 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
203 {
204 	int error, qlimit;
205 
206 	netisr_getqlimit(&rtsock_nh, &qlimit);
207 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
208         if (error || !req->newptr)
209                 return (error);
210 	if (qlimit < 1)
211 		return (EINVAL);
212 	return (netisr_setqlimit(&rtsock_nh, qlimit));
213 }
214 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen,
215     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
216     0, 0, sysctl_route_netisr_maxqlen, "I",
217     "maximum routing socket dispatch queue length");
218 
219 static void
220 vnet_rts_init(void)
221 {
222 	int tmp;
223 
224 	if (IS_DEFAULT_VNET(curvnet)) {
225 		if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
226 			rtsock_nh.nh_qlimit = tmp;
227 		netisr_register(&rtsock_nh);
228 	}
229 #ifdef VIMAGE
230 	 else
231 		netisr_register_vnet(&rtsock_nh);
232 #endif
233 }
234 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
235     vnet_rts_init, 0);
236 
237 #ifdef VIMAGE
238 static void
239 vnet_rts_uninit(void)
240 {
241 
242 	netisr_unregister_vnet(&rtsock_nh);
243 }
244 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
245     vnet_rts_uninit, 0);
246 #endif
247 
248 static int
249 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
250     struct rawcb *rp)
251 {
252 	int fibnum;
253 
254 	KASSERT(m != NULL, ("%s: m is NULL", __func__));
255 	KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
256 	KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
257 
258 	/* No filtering requested. */
259 	if ((m->m_flags & RTS_FILTER_FIB) == 0)
260 		return (0);
261 
262 	/* Check if it is a rts and the fib matches the one of the socket. */
263 	fibnum = M_GETFIB(m);
264 	if (proto->sp_family != PF_ROUTE ||
265 	    rp->rcb_socket == NULL ||
266 	    rp->rcb_socket->so_fibnum == fibnum)
267 		return (0);
268 
269 	/* Filtering requested and no match, the socket shall be skipped. */
270 	return (1);
271 }
272 
273 static void
274 rts_input(struct mbuf *m)
275 {
276 	struct sockproto route_proto;
277 	unsigned short *family;
278 	struct m_tag *tag;
279 
280 	route_proto.sp_family = PF_ROUTE;
281 	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
282 	if (tag != NULL) {
283 		family = (unsigned short *)(tag + 1);
284 		route_proto.sp_protocol = *family;
285 		m_tag_delete(m, tag);
286 	} else
287 		route_proto.sp_protocol = 0;
288 
289 	raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
290 }
291 
292 /*
293  * It really doesn't make any sense at all for this code to share much
294  * with raw_usrreq.c, since its functionality is so restricted.  XXX
295  */
296 static void
297 rts_abort(struct socket *so)
298 {
299 
300 	raw_usrreqs.pru_abort(so);
301 }
302 
303 static void
304 rts_close(struct socket *so)
305 {
306 
307 	raw_usrreqs.pru_close(so);
308 }
309 
310 /* pru_accept is EOPNOTSUPP */
311 
312 static int
313 rts_attach(struct socket *so, int proto, struct thread *td)
314 {
315 	struct rawcb *rp;
316 	int error;
317 
318 	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
319 
320 	/* XXX */
321 	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
322 
323 	so->so_pcb = (caddr_t)rp;
324 	so->so_fibnum = td->td_proc->p_fibnum;
325 	error = raw_attach(so, proto);
326 	rp = sotorawcb(so);
327 	if (error) {
328 		so->so_pcb = NULL;
329 		free(rp, M_PCB);
330 		return error;
331 	}
332 	RTSOCK_LOCK();
333 	switch(rp->rcb_proto.sp_protocol) {
334 	case AF_INET:
335 		V_route_cb.ip_count++;
336 		break;
337 	case AF_INET6:
338 		V_route_cb.ip6_count++;
339 		break;
340 	}
341 	V_route_cb.any_count++;
342 	RTSOCK_UNLOCK();
343 	soisconnected(so);
344 	so->so_options |= SO_USELOOPBACK;
345 	return 0;
346 }
347 
348 static int
349 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
350 {
351 
352 	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
353 }
354 
355 static int
356 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
357 {
358 
359 	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
360 }
361 
362 /* pru_connect2 is EOPNOTSUPP */
363 /* pru_control is EOPNOTSUPP */
364 
365 static void
366 rts_detach(struct socket *so)
367 {
368 	struct rawcb *rp = sotorawcb(so);
369 
370 	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
371 
372 	RTSOCK_LOCK();
373 	switch(rp->rcb_proto.sp_protocol) {
374 	case AF_INET:
375 		V_route_cb.ip_count--;
376 		break;
377 	case AF_INET6:
378 		V_route_cb.ip6_count--;
379 		break;
380 	}
381 	V_route_cb.any_count--;
382 	RTSOCK_UNLOCK();
383 	raw_usrreqs.pru_detach(so);
384 }
385 
386 static int
387 rts_disconnect(struct socket *so)
388 {
389 
390 	return (raw_usrreqs.pru_disconnect(so));
391 }
392 
393 /* pru_listen is EOPNOTSUPP */
394 
395 static int
396 rts_peeraddr(struct socket *so, struct sockaddr **nam)
397 {
398 
399 	return (raw_usrreqs.pru_peeraddr(so, nam));
400 }
401 
402 /* pru_rcvd is EOPNOTSUPP */
403 /* pru_rcvoob is EOPNOTSUPP */
404 
405 static int
406 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
407 	 struct mbuf *control, struct thread *td)
408 {
409 
410 	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
411 }
412 
413 /* pru_sense is null */
414 
415 static int
416 rts_shutdown(struct socket *so)
417 {
418 
419 	return (raw_usrreqs.pru_shutdown(so));
420 }
421 
422 static int
423 rts_sockaddr(struct socket *so, struct sockaddr **nam)
424 {
425 
426 	return (raw_usrreqs.pru_sockaddr(so, nam));
427 }
428 
429 static struct pr_usrreqs route_usrreqs = {
430 	.pru_abort =		rts_abort,
431 	.pru_attach =		rts_attach,
432 	.pru_bind =		rts_bind,
433 	.pru_connect =		rts_connect,
434 	.pru_detach =		rts_detach,
435 	.pru_disconnect =	rts_disconnect,
436 	.pru_peeraddr =		rts_peeraddr,
437 	.pru_send =		rts_send,
438 	.pru_shutdown =		rts_shutdown,
439 	.pru_sockaddr =		rts_sockaddr,
440 	.pru_close =		rts_close,
441 };
442 
443 #ifndef _SOCKADDR_UNION_DEFINED
444 #define	_SOCKADDR_UNION_DEFINED
445 /*
446  * The union of all possible address formats we handle.
447  */
448 union sockaddr_union {
449 	struct sockaddr		sa;
450 	struct sockaddr_in	sin;
451 	struct sockaddr_in6	sin6;
452 };
453 #endif /* _SOCKADDR_UNION_DEFINED */
454 
455 static int
456 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
457     struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred)
458 {
459 #if defined(INET) || defined(INET6)
460 	struct epoch_tracker et;
461 #endif
462 
463 	/* First, see if the returned address is part of the jail. */
464 	if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) {
465 		info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
466 		return (0);
467 	}
468 
469 	switch (info->rti_info[RTAX_DST]->sa_family) {
470 #ifdef INET
471 	case AF_INET:
472 	{
473 		struct in_addr ia;
474 		struct ifaddr *ifa;
475 		int found;
476 
477 		found = 0;
478 		/*
479 		 * Try to find an address on the given outgoing interface
480 		 * that belongs to the jail.
481 		 */
482 		NET_EPOCH_ENTER(et);
483 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
484 			struct sockaddr *sa;
485 			sa = ifa->ifa_addr;
486 			if (sa->sa_family != AF_INET)
487 				continue;
488 			ia = ((struct sockaddr_in *)sa)->sin_addr;
489 			if (prison_check_ip4(cred, &ia) == 0) {
490 				found = 1;
491 				break;
492 			}
493 		}
494 		NET_EPOCH_EXIT(et);
495 		if (!found) {
496 			/*
497 			 * As a last resort return the 'default' jail address.
498 			 */
499 			ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)->
500 			    sin_addr;
501 			if (prison_get_ip4(cred, &ia) != 0)
502 				return (ESRCH);
503 		}
504 		bzero(&saun->sin, sizeof(struct sockaddr_in));
505 		saun->sin.sin_len = sizeof(struct sockaddr_in);
506 		saun->sin.sin_family = AF_INET;
507 		saun->sin.sin_addr.s_addr = ia.s_addr;
508 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
509 		break;
510 	}
511 #endif
512 #ifdef INET6
513 	case AF_INET6:
514 	{
515 		struct in6_addr ia6;
516 		struct ifaddr *ifa;
517 		int found;
518 
519 		found = 0;
520 		/*
521 		 * Try to find an address on the given outgoing interface
522 		 * that belongs to the jail.
523 		 */
524 		NET_EPOCH_ENTER(et);
525 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
526 			struct sockaddr *sa;
527 			sa = ifa->ifa_addr;
528 			if (sa->sa_family != AF_INET6)
529 				continue;
530 			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
531 			    &ia6, sizeof(struct in6_addr));
532 			if (prison_check_ip6(cred, &ia6) == 0) {
533 				found = 1;
534 				break;
535 			}
536 		}
537 		NET_EPOCH_EXIT(et);
538 		if (!found) {
539 			/*
540 			 * As a last resort return the 'default' jail address.
541 			 */
542 			ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)->
543 			    sin6_addr;
544 			if (prison_get_ip6(cred, &ia6) != 0)
545 				return (ESRCH);
546 		}
547 		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
548 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
549 		saun->sin6.sin6_family = AF_INET6;
550 		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
551 		if (sa6_recoverscope(&saun->sin6) != 0)
552 			return (ESRCH);
553 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
554 		break;
555 	}
556 #endif
557 	default:
558 		return (ESRCH);
559 	}
560 	return (0);
561 }
562 
563 /*
564  * Fills in @info based on userland-provided @rtm message.
565  *
566  * Returns 0 on success.
567  */
568 static int
569 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info)
570 {
571 	int error;
572 	sa_family_t saf;
573 
574 	rtm->rtm_pid = curproc->p_pid;
575 	info->rti_addrs = rtm->rtm_addrs;
576 
577 	info->rti_mflags = rtm->rtm_inits;
578 	info->rti_rmx = &rtm->rtm_rmx;
579 
580 	/*
581 	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
582 	 * link-local address because rtrequest requires addresses with
583 	 * embedded scope id.
584 	 */
585 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
586 		return (EINVAL);
587 
588 	if (rtm->rtm_flags & RTF_RNH_LOCKED)
589 		return (EINVAL);
590 	info->rti_flags = rtm->rtm_flags;
591 	if (info->rti_info[RTAX_DST] == NULL ||
592 	    info->rti_info[RTAX_DST]->sa_family >= AF_MAX ||
593 	    (info->rti_info[RTAX_GATEWAY] != NULL &&
594 	     info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
595 		return (EINVAL);
596 	saf = info->rti_info[RTAX_DST]->sa_family;
597 	/*
598 	 * Verify that the caller has the appropriate privilege; RTM_GET
599 	 * is the only operation the non-superuser is allowed.
600 	 */
601 	if (rtm->rtm_type != RTM_GET) {
602 		error = priv_check(curthread, PRIV_NET_ROUTE);
603 		if (error != 0)
604 			return (error);
605 	}
606 
607 	/*
608 	 * The given gateway address may be an interface address.
609 	 * For example, issuing a "route change" command on a route
610 	 * entry that was created from a tunnel, and the gateway
611 	 * address given is the local end point. In this case the
612 	 * RTF_GATEWAY flag must be cleared or the destination will
613 	 * not be reachable even though there is no error message.
614 	 */
615 	if (info->rti_info[RTAX_GATEWAY] != NULL &&
616 	    info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
617 		struct rt_addrinfo ginfo;
618 		struct sockaddr *gdst;
619 		struct sockaddr_storage ss;
620 
621 		bzero(&ginfo, sizeof(ginfo));
622 		bzero(&ss, sizeof(ss));
623 		ss.ss_len = sizeof(ss);
624 
625 		ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
626 		gdst = info->rti_info[RTAX_GATEWAY];
627 
628 		/*
629 		 * A host route through the loopback interface is
630 		 * installed for each interface adddress. In pre 8.0
631 		 * releases the interface address of a PPP link type
632 		 * is not reachable locally. This behavior is fixed as
633 		 * part of the new L2/L3 redesign and rewrite work. The
634 		 * signature of this interface address route is the
635 		 * AF_LINK sa_family type of the gateway, and the
636 		 * rt_ifp has the IFF_LOOPBACK flag set.
637 		 */
638 		if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
639 			if (ss.ss_family == AF_LINK &&
640 			    ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
641 				info->rti_flags &= ~RTF_GATEWAY;
642 				info->rti_flags |= RTF_GWFLAG_COMPAT;
643 			}
644 			rib_free_info(&ginfo);
645 		}
646 	}
647 
648 	return (0);
649 }
650 
651 /*
652  * Handles RTM_GET message from routing socket, returning matching rt.
653  *
654  * Returns:
655  * 0 on success, with locked and referenced matching rt in @rt_nrt
656  * errno of failure
657  */
658 static int
659 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
660     struct rt_msghdr *rtm, struct rib_cmd_info *rc)
661 {
662 	RIB_RLOCK_TRACKER;
663 	struct rib_head *rnh;
664 	sa_family_t saf;
665 
666 	saf = info->rti_info[RTAX_DST]->sa_family;
667 
668 	rnh = rt_tables_get_rnh(fibnum, saf);
669 	if (rnh == NULL)
670 		return (EAFNOSUPPORT);
671 
672 	RIB_RLOCK(rnh);
673 
674 	if (info->rti_info[RTAX_NETMASK] == NULL) {
675 		/*
676 		 * Provide longest prefix match for
677 		 * address lookup (no mask).
678 		 * 'route -n get addr'
679 		 */
680 		rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr(
681 		    info->rti_info[RTAX_DST], &rnh->head);
682 	} else
683 		rc->rc_rt = (struct rtentry *) rnh->rnh_lookup(
684 		    info->rti_info[RTAX_DST],
685 		    info->rti_info[RTAX_NETMASK], &rnh->head);
686 
687 	if (rc->rc_rt == NULL) {
688 		RIB_RUNLOCK(rnh);
689 		return (ESRCH);
690 	}
691 #ifdef RADIX_MPATH
692 	/*
693 	 * for RTM_GET, gate is optional even with multipath.
694 	 * if gate == NULL the first match is returned.
695 	 * (no need to call rt_mpath_matchgate if gate == NULL)
696 	 */
697 	if (rt_mpath_capable(rnh) && info->rti_info[RTAX_GATEWAY]) {
698 		rc->rc_rt = rt_mpath_matchgate(rc->rc_rt,
699 		    info->rti_info[RTAX_GATEWAY]);
700 		if (rc->rc_rt == NULL) {
701 			RIB_RUNLOCK(rnh);
702 			return (ESRCH);
703 		}
704 	}
705 #endif
706 	/*
707 	 * If performing proxied L2 entry insertion, and
708 	 * the actual PPP host entry is found, perform
709 	 * another search to retrieve the prefix route of
710 	 * the local end point of the PPP link.
711 	 * TODO: move this logic to userland.
712 	 */
713 	if (rtm->rtm_flags & RTF_ANNOUNCE) {
714 		struct sockaddr laddr;
715 		struct nhop_object *nh;
716 
717 		nh = rc->rc_rt->rt_nhop;
718 		if (nh->nh_ifp != NULL &&
719 		    nh->nh_ifp->if_type == IFT_PROPVIRTUAL) {
720 			struct ifaddr *ifa;
721 
722 			ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
723 					RT_ALL_FIBS);
724 			if (ifa != NULL)
725 				rt_maskedcopy(ifa->ifa_addr,
726 					      &laddr,
727 					      ifa->ifa_netmask);
728 		} else
729 			rt_maskedcopy(nh->nh_ifa->ifa_addr,
730 				      &laddr,
731 				      nh->nh_ifa->ifa_netmask);
732 		/*
733 		 * refactor rt and no lock operation necessary
734 		 */
735 		rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
736 		    &rnh->head);
737 		if (rc->rc_rt == NULL) {
738 			RIB_RUNLOCK(rnh);
739 			return (ESRCH);
740 		}
741 	}
742 	rc->rc_nh_new = rc->rc_rt->rt_nhop;
743 	RIB_RUNLOCK(rnh);
744 
745 	return (0);
746 }
747 
748 /*
749  * Update sockaddrs, flags, etc in @prtm based on @rc data.
750  * rtm can be reallocated.
751  *
752  * Returns 0 on success, along with pointer to (potentially reallocated)
753  *  rtm.
754  *
755  */
756 static int
757 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm,
758     int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh)
759 {
760 	struct sockaddr_storage netmask_ss;
761 	struct walkarg w;
762 	union sockaddr_union saun;
763 	struct rt_msghdr *rtm, *orig_rtm = NULL;
764 	struct ifnet *ifp;
765 	int error, len;
766 
767 	rtm = *prtm;
768 
769 	info->rti_info[RTAX_DST] = rt_key(rc->rc_rt);
770 	info->rti_info[RTAX_GATEWAY] = &nh->gw_sa;
771 	info->rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rc->rc_rt),
772 	    rt_mask(rc->rc_rt), &netmask_ss);
773 	info->rti_info[RTAX_GENMASK] = 0;
774 	ifp = nh->nh_ifp;
775 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
776 		if (ifp) {
777 			info->rti_info[RTAX_IFP] =
778 			    ifp->if_addr->ifa_addr;
779 			error = rtm_get_jailed(info, ifp, nh,
780 			    &saun, curthread->td_ucred);
781 			if (error != 0)
782 				return (error);
783 			if (ifp->if_flags & IFF_POINTOPOINT)
784 				info->rti_info[RTAX_BRD] =
785 				    nh->nh_ifa->ifa_dstaddr;
786 			rtm->rtm_index = ifp->if_index;
787 		} else {
788 			info->rti_info[RTAX_IFP] = NULL;
789 			info->rti_info[RTAX_IFA] = NULL;
790 		}
791 	} else if (ifp != NULL)
792 		rtm->rtm_index = ifp->if_index;
793 
794 	/* Check if we need to realloc storage */
795 	rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
796 	if (len > alloc_len) {
797 		struct rt_msghdr *tmp_rtm;
798 
799 		tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
800 		if (tmp_rtm == NULL)
801 			return (ENOBUFS);
802 		bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
803 		orig_rtm = rtm;
804 		rtm = tmp_rtm;
805 		alloc_len = len;
806 
807 		/*
808 		 * Delay freeing original rtm as info contains
809 		 * data referencing it.
810 		 */
811 	}
812 
813 	w.w_tmem = (caddr_t)rtm;
814 	w.w_tmemsize = alloc_len;
815 	rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
816 
817 	rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh);
818 	if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
819 		rtm->rtm_flags = RTF_GATEWAY |
820 			(rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
821 	rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx);
822 	rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight;
823 	rtm->rtm_addrs = info->rti_addrs;
824 
825 	if (orig_rtm != NULL)
826 		free(orig_rtm, M_TEMP);
827 	*prtm = rtm;
828 
829 	return (0);
830 }
831 
832 /*ARGSUSED*/
833 static int
834 route_output(struct mbuf *m, struct socket *so, ...)
835 {
836 	struct rt_msghdr *rtm = NULL;
837 	struct rtentry *rt = NULL;
838 	struct rt_addrinfo info;
839 	struct epoch_tracker et;
840 #ifdef INET6
841 	struct sockaddr_storage ss;
842 	struct sockaddr_in6 *sin6;
843 	int i, rti_need_deembed = 0;
844 #endif
845 	int alloc_len = 0, len, error = 0, fibnum;
846 	sa_family_t saf = AF_UNSPEC;
847 	struct walkarg w;
848 	struct rib_cmd_info rc;
849 	struct nhop_object *nh;
850 
851 	fibnum = so->so_fibnum;
852 #define senderr(e) { error = e; goto flush;}
853 	if (m == NULL || ((m->m_len < sizeof(long)) &&
854 		       (m = m_pullup(m, sizeof(long))) == NULL))
855 		return (ENOBUFS);
856 	if ((m->m_flags & M_PKTHDR) == 0)
857 		panic("route_output");
858 	NET_EPOCH_ENTER(et);
859 	len = m->m_pkthdr.len;
860 	if (len < sizeof(*rtm) ||
861 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
862 		senderr(EINVAL);
863 
864 	/*
865 	 * Most of current messages are in range 200-240 bytes,
866 	 * minimize possible re-allocation on reply using larger size
867 	 * buffer aligned on 1k boundaty.
868 	 */
869 	alloc_len = roundup2(len, 1024);
870 	if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL)
871 		senderr(ENOBUFS);
872 
873 	m_copydata(m, 0, len, (caddr_t)rtm);
874 	bzero(&info, sizeof(info));
875 	bzero(&w, sizeof(w));
876 	nh = NULL;
877 
878 	if (rtm->rtm_version != RTM_VERSION) {
879 		/* Do not touch message since format is unknown */
880 		free(rtm, M_TEMP);
881 		rtm = NULL;
882 		senderr(EPROTONOSUPPORT);
883 	}
884 
885 	/*
886 	 * Starting from here, it is possible
887 	 * to alter original message and insert
888 	 * caller PID and error value.
889 	 */
890 
891 	if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) {
892 		senderr(error);
893 	}
894 
895 	saf = info.rti_info[RTAX_DST]->sa_family;
896 
897 	/* support for new ARP code */
898 	if (rtm->rtm_flags & RTF_LLDATA) {
899 		error = lla_rt_output(rtm, &info);
900 #ifdef INET6
901 		if (error == 0)
902 			rti_need_deembed = 1;
903 #endif
904 		goto flush;
905 	}
906 
907 	switch (rtm->rtm_type) {
908 	case RTM_ADD:
909 	case RTM_CHANGE:
910 		if (rtm->rtm_type == RTM_ADD) {
911 			if (info.rti_info[RTAX_GATEWAY] == NULL)
912 				senderr(EINVAL);
913 		}
914 		error = rib_action(fibnum, rtm->rtm_type, &info, &rc);
915 		if (error == 0) {
916 #ifdef INET6
917 			rti_need_deembed = 1;
918 #endif
919 			nh = rc.rc_nh_new;
920 			rtm->rtm_index = nh->nh_ifp->if_index;
921 		}
922 		break;
923 
924 	case RTM_DELETE:
925 		error = rib_action(fibnum, RTM_DELETE, &info, &rc);
926 		if (error == 0) {
927 			nh = rc.rc_nh_old;
928 			goto report;
929 		}
930 #ifdef INET6
931 		/* rt_msg2() will not be used when RTM_DELETE fails. */
932 		rti_need_deembed = 1;
933 #endif
934 		break;
935 
936 	case RTM_GET:
937 		error = handle_rtm_get(&info, fibnum, rtm, &rc);
938 		if (error != 0)
939 			senderr(error);
940 		nh = rc.rc_nh_new;
941 
942 report:
943 		if (!can_export_rte(curthread->td_ucred, rc.rc_rt)) {
944 			senderr(ESRCH);
945 		}
946 
947 		error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh);
948 		/*
949 		 * Note that some sockaddr pointers may have changed to
950 		 * point to memory outsize @rtm. Some may be pointing
951 		 * to the on-stack variables.
952 		 * Given that, any pointer in @info CANNOT BE USED.
953 		 */
954 
955 		/*
956 		 * scopeid deembedding has been performed while
957 		 * writing updated rtm in rtsock_msg_buffer().
958 		 * With that in mind, skip deembedding procedure below.
959 		 */
960 #ifdef INET6
961 		rti_need_deembed = 0;
962 #endif
963 		if (error != 0)
964 			senderr(error);
965 		break;
966 
967 	default:
968 		senderr(EOPNOTSUPP);
969 	}
970 
971 flush:
972 	NET_EPOCH_EXIT(et);
973 	rt = NULL;
974 
975 #ifdef INET6
976 	if (rtm != NULL) {
977 		if (rti_need_deembed) {
978 			/* sin6_scope_id is recovered before sending rtm. */
979 			sin6 = (struct sockaddr_in6 *)&ss;
980 			for (i = 0; i < RTAX_MAX; i++) {
981 				if (info.rti_info[i] == NULL)
982 					continue;
983 				if (info.rti_info[i]->sa_family != AF_INET6)
984 					continue;
985 				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
986 				if (sa6_recoverscope(sin6) == 0)
987 					bcopy(sin6, info.rti_info[i],
988 						    sizeof(*sin6));
989 			}
990 		}
991 	}
992 #endif
993 	send_rtm_reply(so, rtm, m, saf, fibnum, error);
994 
995 	return (error);
996 }
997 
998 /*
999  * Sends the prepared reply message in @rtm to all rtsock clients.
1000  * Frees @m and @rtm.
1001  *
1002  */
1003 static void
1004 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
1005     sa_family_t saf, u_int fibnum, int rtm_errno)
1006 {
1007 	struct rawcb *rp = NULL;
1008 
1009 	/*
1010 	 * Check to see if we don't want our own messages.
1011 	 */
1012 	if ((so->so_options & SO_USELOOPBACK) == 0) {
1013 		if (V_route_cb.any_count <= 1) {
1014 			if (rtm != NULL)
1015 				free(rtm, M_TEMP);
1016 			m_freem(m);
1017 			return;
1018 		}
1019 		/* There is another listener, so construct message */
1020 		rp = sotorawcb(so);
1021 	}
1022 
1023 	if (rtm != NULL) {
1024 		if (rtm_errno!= 0)
1025 			rtm->rtm_errno = rtm_errno;
1026 		else
1027 			rtm->rtm_flags |= RTF_DONE;
1028 
1029 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
1030 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
1031 			m_freem(m);
1032 			m = NULL;
1033 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
1034 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1035 
1036 		free(rtm, M_TEMP);
1037 	}
1038 	if (m != NULL) {
1039 		M_SETFIB(m, fibnum);
1040 		m->m_flags |= RTS_FILTER_FIB;
1041 		if (rp) {
1042 			/*
1043 			 * XXX insure we don't get a copy by
1044 			 * invalidating our protocol
1045 			 */
1046 			unsigned short family = rp->rcb_proto.sp_family;
1047 			rp->rcb_proto.sp_family = 0;
1048 			rt_dispatch(m, saf);
1049 			rp->rcb_proto.sp_family = family;
1050 		} else
1051 			rt_dispatch(m, saf);
1052 	}
1053 }
1054 
1055 static void
1056 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh,
1057     struct rt_metrics *out)
1058 {
1059 
1060 	bzero(out, sizeof(*out));
1061 	out->rmx_mtu = nh->nh_mtu;
1062 	out->rmx_weight = rt->rt_weight;
1063 	out->rmx_nhidx = nhop_get_idx(nh);
1064 	/* Kernel -> userland timebase conversion. */
1065 	out->rmx_expire = rt->rt_expire ?
1066 	    rt->rt_expire - time_uptime + time_second : 0;
1067 }
1068 
1069 /*
1070  * Extract the addresses of the passed sockaddrs.
1071  * Do a little sanity checking so as to avoid bad memory references.
1072  * This data is derived straight from userland.
1073  */
1074 static int
1075 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1076 {
1077 	struct sockaddr *sa;
1078 	int i;
1079 
1080 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1081 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
1082 			continue;
1083 		sa = (struct sockaddr *)cp;
1084 		/*
1085 		 * It won't fit.
1086 		 */
1087 		if (cp + sa->sa_len > cplim)
1088 			return (EINVAL);
1089 		/*
1090 		 * there are no more.. quit now
1091 		 * If there are more bits, they are in error.
1092 		 * I've seen this. route(1) can evidently generate these.
1093 		 * This causes kernel to core dump.
1094 		 * for compatibility, If we see this, point to a safe address.
1095 		 */
1096 		if (sa->sa_len == 0) {
1097 			rtinfo->rti_info[i] = &sa_zero;
1098 			return (0); /* should be EINVAL but for compat */
1099 		}
1100 		/* accept it */
1101 #ifdef INET6
1102 		if (sa->sa_family == AF_INET6)
1103 			sa6_embedscope((struct sockaddr_in6 *)sa,
1104 			    V_ip6_use_defzone);
1105 #endif
1106 		rtinfo->rti_info[i] = sa;
1107 		cp += SA_SIZE(sa);
1108 	}
1109 	return (0);
1110 }
1111 
1112 /*
1113  * Fill in @dmask with valid netmask leaving original @smask
1114  * intact. Mostly used with radix netmasks.
1115  */
1116 struct sockaddr *
1117 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask,
1118     struct sockaddr_storage *dmask)
1119 {
1120 	if (dst == NULL || smask == NULL)
1121 		return (NULL);
1122 
1123 	memset(dmask, 0, dst->sa_len);
1124 	memcpy(dmask, smask, smask->sa_len);
1125 	dmask->ss_len = dst->sa_len;
1126 	dmask->ss_family = dst->sa_family;
1127 
1128 	return ((struct sockaddr *)dmask);
1129 }
1130 
1131 /*
1132  * Writes information related to @rtinfo object to newly-allocated mbuf.
1133  * Assumes MCLBYTES is enough to construct any message.
1134  * Used for OS notifications of vaious events (if/ifa announces,etc)
1135  *
1136  * Returns allocated mbuf or NULL on failure.
1137  */
1138 static struct mbuf *
1139 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1140 {
1141 	struct rt_msghdr *rtm;
1142 	struct mbuf *m;
1143 	int i;
1144 	struct sockaddr *sa;
1145 #ifdef INET6
1146 	struct sockaddr_storage ss;
1147 	struct sockaddr_in6 *sin6;
1148 #endif
1149 	int len, dlen;
1150 
1151 	switch (type) {
1152 	case RTM_DELADDR:
1153 	case RTM_NEWADDR:
1154 		len = sizeof(struct ifa_msghdr);
1155 		break;
1156 
1157 	case RTM_DELMADDR:
1158 	case RTM_NEWMADDR:
1159 		len = sizeof(struct ifma_msghdr);
1160 		break;
1161 
1162 	case RTM_IFINFO:
1163 		len = sizeof(struct if_msghdr);
1164 		break;
1165 
1166 	case RTM_IFANNOUNCE:
1167 	case RTM_IEEE80211:
1168 		len = sizeof(struct if_announcemsghdr);
1169 		break;
1170 
1171 	default:
1172 		len = sizeof(struct rt_msghdr);
1173 	}
1174 
1175 	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
1176 	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1177 	if (len > MHLEN)
1178 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1179 	else
1180 		m = m_gethdr(M_NOWAIT, MT_DATA);
1181 	if (m == NULL)
1182 		return (m);
1183 
1184 	m->m_pkthdr.len = m->m_len = len;
1185 	rtm = mtod(m, struct rt_msghdr *);
1186 	bzero((caddr_t)rtm, len);
1187 	for (i = 0; i < RTAX_MAX; i++) {
1188 		if ((sa = rtinfo->rti_info[i]) == NULL)
1189 			continue;
1190 		rtinfo->rti_addrs |= (1 << i);
1191 		dlen = SA_SIZE(sa);
1192 #ifdef INET6
1193 		if (sa->sa_family == AF_INET6) {
1194 			sin6 = (struct sockaddr_in6 *)&ss;
1195 			bcopy(sa, sin6, sizeof(*sin6));
1196 			if (sa6_recoverscope(sin6) == 0)
1197 				sa = (struct sockaddr *)sin6;
1198 		}
1199 #endif
1200 		m_copyback(m, len, dlen, (caddr_t)sa);
1201 		len += dlen;
1202 	}
1203 	if (m->m_pkthdr.len != len) {
1204 		m_freem(m);
1205 		return (NULL);
1206 	}
1207 	rtm->rtm_msglen = len;
1208 	rtm->rtm_version = RTM_VERSION;
1209 	rtm->rtm_type = type;
1210 	return (m);
1211 }
1212 
1213 /*
1214  * Writes information related to @rtinfo object to preallocated buffer.
1215  * Stores needed size in @plen. If @w is NULL, calculates size without
1216  * writing.
1217  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1218  *
1219  * Returns 0 on success.
1220  *
1221  */
1222 static int
1223 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1224 {
1225 	int i;
1226 	int len, buflen = 0, dlen;
1227 	caddr_t cp = NULL;
1228 	struct rt_msghdr *rtm = NULL;
1229 #ifdef INET6
1230 	struct sockaddr_storage ss;
1231 	struct sockaddr_in6 *sin6;
1232 #endif
1233 #ifdef COMPAT_FREEBSD32
1234 	bool compat32 = false;
1235 #endif
1236 
1237 	switch (type) {
1238 	case RTM_DELADDR:
1239 	case RTM_NEWADDR:
1240 		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1241 #ifdef COMPAT_FREEBSD32
1242 			if (w->w_req->flags & SCTL_MASK32) {
1243 				len = sizeof(struct ifa_msghdrl32);
1244 				compat32 = true;
1245 			} else
1246 #endif
1247 				len = sizeof(struct ifa_msghdrl);
1248 		} else
1249 			len = sizeof(struct ifa_msghdr);
1250 		break;
1251 
1252 	case RTM_IFINFO:
1253 #ifdef COMPAT_FREEBSD32
1254 		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1255 			if (w->w_op == NET_RT_IFLISTL)
1256 				len = sizeof(struct if_msghdrl32);
1257 			else
1258 				len = sizeof(struct if_msghdr32);
1259 			compat32 = true;
1260 			break;
1261 		}
1262 #endif
1263 		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1264 			len = sizeof(struct if_msghdrl);
1265 		else
1266 			len = sizeof(struct if_msghdr);
1267 		break;
1268 
1269 	case RTM_NEWMADDR:
1270 		len = sizeof(struct ifma_msghdr);
1271 		break;
1272 
1273 	default:
1274 		len = sizeof(struct rt_msghdr);
1275 	}
1276 
1277 	if (w != NULL) {
1278 		rtm = (struct rt_msghdr *)w->w_tmem;
1279 		buflen = w->w_tmemsize - len;
1280 		cp = (caddr_t)w->w_tmem + len;
1281 	}
1282 
1283 	rtinfo->rti_addrs = 0;
1284 	for (i = 0; i < RTAX_MAX; i++) {
1285 		struct sockaddr *sa;
1286 
1287 		if ((sa = rtinfo->rti_info[i]) == NULL)
1288 			continue;
1289 		rtinfo->rti_addrs |= (1 << i);
1290 #ifdef COMPAT_FREEBSD32
1291 		if (compat32)
1292 			dlen = SA_SIZE32(sa);
1293 		else
1294 #endif
1295 			dlen = SA_SIZE(sa);
1296 		if (cp != NULL && buflen >= dlen) {
1297 #ifdef INET6
1298 			if (sa->sa_family == AF_INET6) {
1299 				sin6 = (struct sockaddr_in6 *)&ss;
1300 				bcopy(sa, sin6, sizeof(*sin6));
1301 				if (sa6_recoverscope(sin6) == 0)
1302 					sa = (struct sockaddr *)sin6;
1303 			}
1304 #endif
1305 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1306 			cp += dlen;
1307 			buflen -= dlen;
1308 		} else if (cp != NULL) {
1309 			/*
1310 			 * Buffer too small. Count needed size
1311 			 * and return with error.
1312 			 */
1313 			cp = NULL;
1314 		}
1315 
1316 		len += dlen;
1317 	}
1318 
1319 	if (cp != NULL) {
1320 		dlen = ALIGN(len) - len;
1321 		if (buflen < dlen)
1322 			cp = NULL;
1323 		else {
1324 			bzero(cp, dlen);
1325 			cp += dlen;
1326 			buflen -= dlen;
1327 		}
1328 	}
1329 	len = ALIGN(len);
1330 
1331 	if (cp != NULL) {
1332 		/* fill header iff buffer is large enough */
1333 		rtm->rtm_version = RTM_VERSION;
1334 		rtm->rtm_type = type;
1335 		rtm->rtm_msglen = len;
1336 	}
1337 
1338 	*plen = len;
1339 
1340 	if (w != NULL && cp == NULL)
1341 		return (ENOBUFS);
1342 
1343 	return (0);
1344 }
1345 
1346 /*
1347  * This routine is called to generate a message from the routing
1348  * socket indicating that a redirect has occurred, a routing lookup
1349  * has failed, or that a protocol has detected timeouts to a particular
1350  * destination.
1351  */
1352 void
1353 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1354     int fibnum)
1355 {
1356 	struct rt_msghdr *rtm;
1357 	struct mbuf *m;
1358 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1359 
1360 	if (V_route_cb.any_count == 0)
1361 		return;
1362 	m = rtsock_msg_mbuf(type, rtinfo);
1363 	if (m == NULL)
1364 		return;
1365 
1366 	if (fibnum != RT_ALL_FIBS) {
1367 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1368 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1369 		M_SETFIB(m, fibnum);
1370 		m->m_flags |= RTS_FILTER_FIB;
1371 	}
1372 
1373 	rtm = mtod(m, struct rt_msghdr *);
1374 	rtm->rtm_flags = RTF_DONE | flags;
1375 	rtm->rtm_errno = error;
1376 	rtm->rtm_addrs = rtinfo->rti_addrs;
1377 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1378 }
1379 
1380 void
1381 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1382 {
1383 
1384 	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1385 }
1386 
1387 /*
1388  * This routine is called to generate a message from the routing
1389  * socket indicating that the status of a network interface has changed.
1390  */
1391 void
1392 rt_ifmsg(struct ifnet *ifp)
1393 {
1394 	struct if_msghdr *ifm;
1395 	struct mbuf *m;
1396 	struct rt_addrinfo info;
1397 
1398 	if (V_route_cb.any_count == 0)
1399 		return;
1400 	bzero((caddr_t)&info, sizeof(info));
1401 	m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1402 	if (m == NULL)
1403 		return;
1404 	ifm = mtod(m, struct if_msghdr *);
1405 	ifm->ifm_index = ifp->if_index;
1406 	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1407 	if_data_copy(ifp, &ifm->ifm_data);
1408 	ifm->ifm_addrs = 0;
1409 	rt_dispatch(m, AF_UNSPEC);
1410 }
1411 
1412 /*
1413  * Announce interface address arrival/withdraw.
1414  * Please do not call directly, use rt_addrmsg().
1415  * Assume input data to be valid.
1416  * Returns 0 on success.
1417  */
1418 int
1419 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1420 {
1421 	struct rt_addrinfo info;
1422 	struct sockaddr *sa;
1423 	int ncmd;
1424 	struct mbuf *m;
1425 	struct ifa_msghdr *ifam;
1426 	struct ifnet *ifp = ifa->ifa_ifp;
1427 	struct sockaddr_storage ss;
1428 
1429 	if (V_route_cb.any_count == 0)
1430 		return (0);
1431 
1432 	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1433 
1434 	bzero((caddr_t)&info, sizeof(info));
1435 	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1436 	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1437 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1438 	    info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
1439 	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1440 	if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1441 		return (ENOBUFS);
1442 	ifam = mtod(m, struct ifa_msghdr *);
1443 	ifam->ifam_index = ifp->if_index;
1444 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1445 	ifam->ifam_flags = ifa->ifa_flags;
1446 	ifam->ifam_addrs = info.rti_addrs;
1447 
1448 	if (fibnum != RT_ALL_FIBS) {
1449 		M_SETFIB(m, fibnum);
1450 		m->m_flags |= RTS_FILTER_FIB;
1451 	}
1452 
1453 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1454 
1455 	return (0);
1456 }
1457 
1458 /*
1459  * Announce route addition/removal to rtsock based on @rt data.
1460  * Callers are advives to use rt_routemsg() instead of using this
1461  *  function directly.
1462  * Assume @rt data is consistent.
1463  *
1464  * Returns 0 on success.
1465  */
1466 int
1467 rtsock_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs,
1468     int fibnum)
1469 {
1470 	struct sockaddr_storage ss;
1471 	struct rt_addrinfo info;
1472 	struct nhop_object *nh;
1473 
1474 	if (V_route_cb.any_count == 0)
1475 		return (0);
1476 
1477 	nh = rt->rt_nhop;
1478 	bzero((caddr_t)&info, sizeof(info));
1479 	info.rti_info[RTAX_DST] = rt_key(rt);
1480 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), rt_mask(rt), &ss);
1481 	info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
1482 	info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh);
1483 	info.rti_ifp = ifp;
1484 
1485 	return (rtsock_routemsg_info(cmd, &info, fibnum));
1486 }
1487 
1488 int
1489 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
1490 {
1491 	struct rt_msghdr *rtm;
1492 	struct sockaddr *sa;
1493 	struct mbuf *m;
1494 
1495 	if (V_route_cb.any_count == 0)
1496 		return (0);
1497 
1498 	if (info->rti_flags & RTF_HOST)
1499 		info->rti_info[RTAX_NETMASK] = NULL;
1500 
1501 	m = rtsock_msg_mbuf(cmd, info);
1502 	if (m == NULL)
1503 		return (ENOBUFS);
1504 
1505 	if (fibnum != RT_ALL_FIBS) {
1506 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1507 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1508 		M_SETFIB(m, fibnum);
1509 		m->m_flags |= RTS_FILTER_FIB;
1510 	}
1511 
1512 	rtm = mtod(m, struct rt_msghdr *);
1513 	rtm->rtm_addrs = info->rti_addrs;
1514 	if (info->rti_ifp != NULL)
1515 		rtm->rtm_index = info->rti_ifp->if_index;
1516 	/* Add RTF_DONE to indicate command 'completion' required by API */
1517 	info->rti_flags |= RTF_DONE;
1518 	/* Reported routes has to be up */
1519 	if (cmd == RTM_ADD || cmd == RTM_CHANGE)
1520 		info->rti_flags |= RTF_UP;
1521 	rtm->rtm_flags = info->rti_flags;
1522 
1523 	sa = info->rti_info[RTAX_DST];
1524 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1525 
1526 	return (0);
1527 }
1528 
1529 /*
1530  * This is the analogue to the rt_newaddrmsg which performs the same
1531  * function but for multicast group memberhips.  This is easier since
1532  * there is no route state to worry about.
1533  */
1534 void
1535 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1536 {
1537 	struct rt_addrinfo info;
1538 	struct mbuf *m = NULL;
1539 	struct ifnet *ifp = ifma->ifma_ifp;
1540 	struct ifma_msghdr *ifmam;
1541 
1542 	if (V_route_cb.any_count == 0)
1543 		return;
1544 
1545 	bzero((caddr_t)&info, sizeof(info));
1546 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1547 	if (ifp && ifp->if_addr)
1548 		info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1549 	else
1550 		info.rti_info[RTAX_IFP] = NULL;
1551 	/*
1552 	 * If a link-layer address is present, present it as a ``gateway''
1553 	 * (similarly to how ARP entries, e.g., are presented).
1554 	 */
1555 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1556 	m = rtsock_msg_mbuf(cmd, &info);
1557 	if (m == NULL)
1558 		return;
1559 	ifmam = mtod(m, struct ifma_msghdr *);
1560 	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1561 	    __func__));
1562 	ifmam->ifmam_index = ifp->if_index;
1563 	ifmam->ifmam_addrs = info.rti_addrs;
1564 	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1565 }
1566 
1567 static struct mbuf *
1568 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1569 	struct rt_addrinfo *info)
1570 {
1571 	struct if_announcemsghdr *ifan;
1572 	struct mbuf *m;
1573 
1574 	if (V_route_cb.any_count == 0)
1575 		return NULL;
1576 	bzero((caddr_t)info, sizeof(*info));
1577 	m = rtsock_msg_mbuf(type, info);
1578 	if (m != NULL) {
1579 		ifan = mtod(m, struct if_announcemsghdr *);
1580 		ifan->ifan_index = ifp->if_index;
1581 		strlcpy(ifan->ifan_name, ifp->if_xname,
1582 			sizeof(ifan->ifan_name));
1583 		ifan->ifan_what = what;
1584 	}
1585 	return m;
1586 }
1587 
1588 /*
1589  * This is called to generate routing socket messages indicating
1590  * IEEE80211 wireless events.
1591  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1592  */
1593 void
1594 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1595 {
1596 	struct mbuf *m;
1597 	struct rt_addrinfo info;
1598 
1599 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1600 	if (m != NULL) {
1601 		/*
1602 		 * Append the ieee80211 data.  Try to stick it in the
1603 		 * mbuf containing the ifannounce msg; otherwise allocate
1604 		 * a new mbuf and append.
1605 		 *
1606 		 * NB: we assume m is a single mbuf.
1607 		 */
1608 		if (data_len > M_TRAILINGSPACE(m)) {
1609 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1610 			if (n == NULL) {
1611 				m_freem(m);
1612 				return;
1613 			}
1614 			bcopy(data, mtod(n, void *), data_len);
1615 			n->m_len = data_len;
1616 			m->m_next = n;
1617 		} else if (data_len > 0) {
1618 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1619 			m->m_len += data_len;
1620 		}
1621 		if (m->m_flags & M_PKTHDR)
1622 			m->m_pkthdr.len += data_len;
1623 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1624 		rt_dispatch(m, AF_UNSPEC);
1625 	}
1626 }
1627 
1628 /*
1629  * This is called to generate routing socket messages indicating
1630  * network interface arrival and departure.
1631  */
1632 void
1633 rt_ifannouncemsg(struct ifnet *ifp, int what)
1634 {
1635 	struct mbuf *m;
1636 	struct rt_addrinfo info;
1637 
1638 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1639 	if (m != NULL)
1640 		rt_dispatch(m, AF_UNSPEC);
1641 }
1642 
1643 static void
1644 rt_dispatch(struct mbuf *m, sa_family_t saf)
1645 {
1646 	struct m_tag *tag;
1647 
1648 	/*
1649 	 * Preserve the family from the sockaddr, if any, in an m_tag for
1650 	 * use when injecting the mbuf into the routing socket buffer from
1651 	 * the netisr.
1652 	 */
1653 	if (saf != AF_UNSPEC) {
1654 		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1655 		    M_NOWAIT);
1656 		if (tag == NULL) {
1657 			m_freem(m);
1658 			return;
1659 		}
1660 		*(unsigned short *)(tag + 1) = saf;
1661 		m_tag_prepend(m, tag);
1662 	}
1663 #ifdef VIMAGE
1664 	if (V_loif)
1665 		m->m_pkthdr.rcvif = V_loif;
1666 	else {
1667 		m_freem(m);
1668 		return;
1669 	}
1670 #endif
1671 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
1672 }
1673 
1674 /*
1675  * Checks if rte can be exported v.r.t jails/vnets.
1676  *
1677  * Returns 1 if it can, 0 otherwise.
1678  */
1679 static int
1680 can_export_rte(struct ucred *td_ucred, const struct rtentry *rt)
1681 {
1682 
1683 	if ((rt->rte_flags & RTF_HOST) == 0
1684 	    ? jailed_without_vnet(td_ucred)
1685 	    : prison_if(td_ucred, rt_key_const(rt)) != 0)
1686 		return (0);
1687 	return (1);
1688 }
1689 
1690 /*
1691  * This is used in dumping the kernel table via sysctl().
1692  */
1693 static int
1694 sysctl_dumpentry(struct radix_node *rn, void *vw)
1695 {
1696 	struct walkarg *w = vw;
1697 	struct rtentry *rt = (struct rtentry *)rn;
1698 	struct nhop_object *nh;
1699 	int error = 0, size;
1700 	struct rt_addrinfo info;
1701 	struct sockaddr_storage ss;
1702 
1703 	NET_EPOCH_ASSERT();
1704 
1705 	if (w->w_op == NET_RT_FLAGS && !(rt->rte_flags & w->w_arg))
1706 		return 0;
1707 	if (!can_export_rte(w->w_req->td->td_ucred, rt))
1708 		return (0);
1709 	nh = rt->rt_nhop;
1710 	bzero((caddr_t)&info, sizeof(info));
1711 	info.rti_info[RTAX_DST] = rt_key(rt);
1712 	info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
1713 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
1714 	    rt_mask(rt), &ss);
1715 	info.rti_info[RTAX_GENMASK] = 0;
1716 	if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) {
1717 		info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr;
1718 		info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
1719 		if (nh->nh_ifp->if_flags & IFF_POINTOPOINT)
1720 			info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr;
1721 	}
1722 	if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
1723 		return (error);
1724 	if (w->w_req && w->w_tmem) {
1725 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1726 
1727 		bzero(&rtm->rtm_index,
1728 		    sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
1729 		if (rt->rte_flags & RTF_GWFLAG_COMPAT)
1730 			rtm->rtm_flags = RTF_GATEWAY |
1731 				(rt->rte_flags & ~RTF_GWFLAG_COMPAT);
1732 		else
1733 			rtm->rtm_flags = rt->rte_flags;
1734 		rtm->rtm_flags |= nhop_get_rtflags(nh);
1735 		rt_getmetrics(rt, nh, &rtm->rtm_rmx);
1736 		rtm->rtm_index = nh->nh_ifp->if_index;
1737 		rtm->rtm_addrs = info.rti_addrs;
1738 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1739 		return (error);
1740 	}
1741 	return (error);
1742 }
1743 
1744 static int
1745 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
1746     struct rt_addrinfo *info, struct walkarg *w, int len)
1747 {
1748 	struct if_msghdrl *ifm;
1749 	struct if_data *ifd;
1750 
1751 	ifm = (struct if_msghdrl *)w->w_tmem;
1752 
1753 #ifdef COMPAT_FREEBSD32
1754 	if (w->w_req->flags & SCTL_MASK32) {
1755 		struct if_msghdrl32 *ifm32;
1756 
1757 		ifm32 = (struct if_msghdrl32 *)ifm;
1758 		ifm32->ifm_addrs = info->rti_addrs;
1759 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1760 		ifm32->ifm_index = ifp->if_index;
1761 		ifm32->_ifm_spare1 = 0;
1762 		ifm32->ifm_len = sizeof(*ifm32);
1763 		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1764 		ifm32->_ifm_spare2 = 0;
1765 		ifd = &ifm32->ifm_data;
1766 	} else
1767 #endif
1768 	{
1769 		ifm->ifm_addrs = info->rti_addrs;
1770 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1771 		ifm->ifm_index = ifp->if_index;
1772 		ifm->_ifm_spare1 = 0;
1773 		ifm->ifm_len = sizeof(*ifm);
1774 		ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1775 		ifm->_ifm_spare2 = 0;
1776 		ifd = &ifm->ifm_data;
1777 	}
1778 
1779 	memcpy(ifd, src_ifd, sizeof(*ifd));
1780 
1781 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1782 }
1783 
1784 static int
1785 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
1786     struct rt_addrinfo *info, struct walkarg *w, int len)
1787 {
1788 	struct if_msghdr *ifm;
1789 	struct if_data *ifd;
1790 
1791 	ifm = (struct if_msghdr *)w->w_tmem;
1792 
1793 #ifdef COMPAT_FREEBSD32
1794 	if (w->w_req->flags & SCTL_MASK32) {
1795 		struct if_msghdr32 *ifm32;
1796 
1797 		ifm32 = (struct if_msghdr32 *)ifm;
1798 		ifm32->ifm_addrs = info->rti_addrs;
1799 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1800 		ifm32->ifm_index = ifp->if_index;
1801 		ifm32->_ifm_spare1 = 0;
1802 		ifd = &ifm32->ifm_data;
1803 	} else
1804 #endif
1805 	{
1806 		ifm->ifm_addrs = info->rti_addrs;
1807 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1808 		ifm->ifm_index = ifp->if_index;
1809 		ifm->_ifm_spare1 = 0;
1810 		ifd = &ifm->ifm_data;
1811 	}
1812 
1813 	memcpy(ifd, src_ifd, sizeof(*ifd));
1814 
1815 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1816 }
1817 
1818 static int
1819 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1820     struct walkarg *w, int len)
1821 {
1822 	struct ifa_msghdrl *ifam;
1823 	struct if_data *ifd;
1824 
1825 	ifam = (struct ifa_msghdrl *)w->w_tmem;
1826 
1827 #ifdef COMPAT_FREEBSD32
1828 	if (w->w_req->flags & SCTL_MASK32) {
1829 		struct ifa_msghdrl32 *ifam32;
1830 
1831 		ifam32 = (struct ifa_msghdrl32 *)ifam;
1832 		ifam32->ifam_addrs = info->rti_addrs;
1833 		ifam32->ifam_flags = ifa->ifa_flags;
1834 		ifam32->ifam_index = ifa->ifa_ifp->if_index;
1835 		ifam32->_ifam_spare1 = 0;
1836 		ifam32->ifam_len = sizeof(*ifam32);
1837 		ifam32->ifam_data_off =
1838 		    offsetof(struct ifa_msghdrl32, ifam_data);
1839 		ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
1840 		ifd = &ifam32->ifam_data;
1841 	} else
1842 #endif
1843 	{
1844 		ifam->ifam_addrs = info->rti_addrs;
1845 		ifam->ifam_flags = ifa->ifa_flags;
1846 		ifam->ifam_index = ifa->ifa_ifp->if_index;
1847 		ifam->_ifam_spare1 = 0;
1848 		ifam->ifam_len = sizeof(*ifam);
1849 		ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
1850 		ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1851 		ifd = &ifam->ifam_data;
1852 	}
1853 
1854 	bzero(ifd, sizeof(*ifd));
1855 	ifd->ifi_datalen = sizeof(struct if_data);
1856 	ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
1857 	ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
1858 	ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
1859 	ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
1860 
1861 	/* Fixup if_data carp(4) vhid. */
1862 	if (carp_get_vhid_p != NULL)
1863 		ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
1864 
1865 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1866 }
1867 
1868 static int
1869 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
1870     struct walkarg *w, int len)
1871 {
1872 	struct ifa_msghdr *ifam;
1873 
1874 	ifam = (struct ifa_msghdr *)w->w_tmem;
1875 	ifam->ifam_addrs = info->rti_addrs;
1876 	ifam->ifam_flags = ifa->ifa_flags;
1877 	ifam->ifam_index = ifa->ifa_ifp->if_index;
1878 	ifam->_ifam_spare1 = 0;
1879 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1880 
1881 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1882 }
1883 
1884 static int
1885 sysctl_iflist(int af, struct walkarg *w)
1886 {
1887 	struct ifnet *ifp;
1888 	struct ifaddr *ifa;
1889 	struct if_data ifd;
1890 	struct rt_addrinfo info;
1891 	int len, error = 0;
1892 	struct sockaddr_storage ss;
1893 
1894 	bzero((caddr_t)&info, sizeof(info));
1895 	bzero(&ifd, sizeof(ifd));
1896 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1897 		if (w->w_arg && w->w_arg != ifp->if_index)
1898 			continue;
1899 		if_data_copy(ifp, &ifd);
1900 		ifa = ifp->if_addr;
1901 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1902 		error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
1903 		if (error != 0)
1904 			goto done;
1905 		info.rti_info[RTAX_IFP] = NULL;
1906 		if (w->w_req && w->w_tmem) {
1907 			if (w->w_op == NET_RT_IFLISTL)
1908 				error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
1909 				    len);
1910 			else
1911 				error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
1912 				    len);
1913 			if (error)
1914 				goto done;
1915 		}
1916 		while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
1917 			if (af && af != ifa->ifa_addr->sa_family)
1918 				continue;
1919 			if (prison_if(w->w_req->td->td_ucred,
1920 			    ifa->ifa_addr) != 0)
1921 				continue;
1922 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1923 			info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1924 			    ifa->ifa_addr, ifa->ifa_netmask, &ss);
1925 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1926 			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
1927 			if (error != 0)
1928 				goto done;
1929 			if (w->w_req && w->w_tmem) {
1930 				if (w->w_op == NET_RT_IFLISTL)
1931 					error = sysctl_iflist_ifaml(ifa, &info,
1932 					    w, len);
1933 				else
1934 					error = sysctl_iflist_ifam(ifa, &info,
1935 					    w, len);
1936 				if (error)
1937 					goto done;
1938 			}
1939 		}
1940 		info.rti_info[RTAX_IFA] = NULL;
1941 		info.rti_info[RTAX_NETMASK] = NULL;
1942 		info.rti_info[RTAX_BRD] = NULL;
1943 	}
1944 done:
1945 	return (error);
1946 }
1947 
1948 static int
1949 sysctl_ifmalist(int af, struct walkarg *w)
1950 {
1951 	struct rt_addrinfo info;
1952 	struct ifaddr *ifa;
1953 	struct ifmultiaddr *ifma;
1954 	struct ifnet *ifp;
1955 	int error, len;
1956 
1957 	NET_EPOCH_ASSERT();
1958 
1959 	error = 0;
1960 	bzero((caddr_t)&info, sizeof(info));
1961 
1962 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1963 		if (w->w_arg && w->w_arg != ifp->if_index)
1964 			continue;
1965 		ifa = ifp->if_addr;
1966 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1967 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1968 			if (af && af != ifma->ifma_addr->sa_family)
1969 				continue;
1970 			if (prison_if(w->w_req->td->td_ucred,
1971 			    ifma->ifma_addr) != 0)
1972 				continue;
1973 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1974 			info.rti_info[RTAX_GATEWAY] =
1975 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
1976 			    ifma->ifma_lladdr : NULL;
1977 			error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
1978 			if (error != 0)
1979 				break;
1980 			if (w->w_req && w->w_tmem) {
1981 				struct ifma_msghdr *ifmam;
1982 
1983 				ifmam = (struct ifma_msghdr *)w->w_tmem;
1984 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1985 				ifmam->ifmam_flags = 0;
1986 				ifmam->ifmam_addrs = info.rti_addrs;
1987 				ifmam->_ifmam_spare1 = 0;
1988 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1989 				if (error != 0)
1990 					break;
1991 			}
1992 		}
1993 		if (error != 0)
1994 			break;
1995 	}
1996 	return (error);
1997 }
1998 
1999 static int
2000 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
2001 {
2002 	RIB_RLOCK_TRACKER;
2003 	struct epoch_tracker et;
2004 	int	*name = (int *)arg1;
2005 	u_int	namelen = arg2;
2006 	struct rib_head *rnh = NULL; /* silence compiler. */
2007 	int	i, lim, error = EINVAL;
2008 	int	fib = 0;
2009 	u_char	af;
2010 	struct	walkarg w;
2011 
2012 	name ++;
2013 	namelen--;
2014 	if (req->newptr)
2015 		return (EPERM);
2016 	if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP) {
2017 		if (namelen == 3)
2018 			fib = req->td->td_proc->p_fibnum;
2019 		else if (namelen == 4)
2020 			fib = (name[3] == RT_ALL_FIBS) ?
2021 			    req->td->td_proc->p_fibnum : name[3];
2022 		else
2023 			return ((namelen < 3) ? EISDIR : ENOTDIR);
2024 		if (fib < 0 || fib >= rt_numfibs)
2025 			return (EINVAL);
2026 	} else if (namelen != 3)
2027 		return ((namelen < 3) ? EISDIR : ENOTDIR);
2028 	af = name[0];
2029 	if (af > AF_MAX)
2030 		return (EINVAL);
2031 	bzero(&w, sizeof(w));
2032 	w.w_op = name[1];
2033 	w.w_arg = name[2];
2034 	w.w_req = req;
2035 
2036 	error = sysctl_wire_old_buffer(req, 0);
2037 	if (error)
2038 		return (error);
2039 
2040 	/*
2041 	 * Allocate reply buffer in advance.
2042 	 * All rtsock messages has maximum length of u_short.
2043 	 */
2044 	w.w_tmemsize = 65536;
2045 	w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
2046 
2047 	NET_EPOCH_ENTER(et);
2048 	switch (w.w_op) {
2049 	case NET_RT_DUMP:
2050 	case NET_RT_FLAGS:
2051 		if (af == 0) {			/* dump all tables */
2052 			i = 1;
2053 			lim = AF_MAX;
2054 		} else				/* dump only one table */
2055 			i = lim = af;
2056 
2057 		/*
2058 		 * take care of llinfo entries, the caller must
2059 		 * specify an AF
2060 		 */
2061 		if (w.w_op == NET_RT_FLAGS &&
2062 		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
2063 			if (af != 0)
2064 				error = lltable_sysctl_dumparp(af, w.w_req);
2065 			else
2066 				error = EINVAL;
2067 			break;
2068 		}
2069 		/*
2070 		 * take care of routing entries
2071 		 */
2072 		for (error = 0; error == 0 && i <= lim; i++) {
2073 			rnh = rt_tables_get_rnh(fib, i);
2074 			if (rnh != NULL) {
2075 				RIB_RLOCK(rnh);
2076 			    	error = rnh->rnh_walktree(&rnh->head,
2077 				    sysctl_dumpentry, &w);
2078 				RIB_RUNLOCK(rnh);
2079 			} else if (af != 0)
2080 				error = EAFNOSUPPORT;
2081 		}
2082 		break;
2083 	case NET_RT_NHOP:
2084 		/* Allow dumping one specific af/fib at a time */
2085 		if (namelen < 4) {
2086 			error = EINVAL;
2087 			break;
2088 		}
2089 		fib = name[3];
2090 		if (fib < 0 || fib > rt_numfibs) {
2091 			error = EINVAL;
2092 			break;
2093 		}
2094 		rnh = rt_tables_get_rnh(fib, af);
2095 		if (rnh == NULL) {
2096 			error = EAFNOSUPPORT;
2097 			break;
2098 		}
2099 		if (w.w_op == NET_RT_NHOP)
2100 			error = nhops_dump_sysctl(rnh, w.w_req);
2101 		break;
2102 	case NET_RT_IFLIST:
2103 	case NET_RT_IFLISTL:
2104 		error = sysctl_iflist(af, &w);
2105 		break;
2106 
2107 	case NET_RT_IFMALIST:
2108 		error = sysctl_ifmalist(af, &w);
2109 		break;
2110 	}
2111 	NET_EPOCH_EXIT(et);
2112 
2113 	free(w.w_tmem, M_TEMP);
2114 	return (error);
2115 }
2116 
2117 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
2118     sysctl_rtsock, "Return route tables and interface/address lists");
2119 
2120 /*
2121  * Definitions of protocols supported in the ROUTE domain.
2122  */
2123 
2124 static struct domain routedomain;		/* or at least forward */
2125 
2126 static struct protosw routesw[] = {
2127 {
2128 	.pr_type =		SOCK_RAW,
2129 	.pr_domain =		&routedomain,
2130 	.pr_flags =		PR_ATOMIC|PR_ADDR,
2131 	.pr_output =		route_output,
2132 	.pr_ctlinput =		raw_ctlinput,
2133 	.pr_init =		raw_init,
2134 	.pr_usrreqs =		&route_usrreqs
2135 }
2136 };
2137 
2138 static struct domain routedomain = {
2139 	.dom_family =		PF_ROUTE,
2140 	.dom_name =		"route",
2141 	.dom_protosw =		routesw,
2142 	.dom_protoswNPROTOSW =	&routesw[nitems(routesw)]
2143 };
2144 
2145 VNET_DOMAIN_SET(route);
2146