xref: /freebsd/sys/net/rtsock.c (revision 941e286383714ef25f1ffe9ba6ae5040afdd7060)
1 /*-
2  * Copyright (c) 1988, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
30  * $FreeBSD$
31  */
32 #include "opt_sctp.h"
33 #include "opt_mpath.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 
37 #include <sys/param.h>
38 #include <sys/jail.h>
39 #include <sys/kernel.h>
40 #include <sys/domain.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/priv.h>
45 #include <sys/proc.h>
46 #include <sys/protosw.h>
47 #include <sys/rwlock.h>
48 #include <sys/signalvar.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/sysctl.h>
52 #include <sys/systm.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_llatbl.h>
57 #include <net/netisr.h>
58 #include <net/raw_cb.h>
59 #include <net/route.h>
60 #include <net/vnet.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/if_ether.h>
64 #ifdef INET6
65 #include <netinet6/scope6_var.h>
66 #endif
67 
68 #if defined(INET) || defined(INET6)
69 #ifdef SCTP
70 extern void sctp_addr_change(struct ifaddr *ifa, int cmd);
71 #endif /* SCTP */
72 #endif
73 
74 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
75 
76 /* NB: these are not modified */
77 static struct	sockaddr route_src = { 2, PF_ROUTE, };
78 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
79 
80 static struct {
81 	int	ip_count;	/* attached w/ AF_INET */
82 	int	ip6_count;	/* attached w/ AF_INET6 */
83 	int	ipx_count;	/* attached w/ AF_IPX */
84 	int	any_count;	/* total attached */
85 } route_cb;
86 
87 struct mtx rtsock_mtx;
88 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
89 
90 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
91 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
92 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
93 
94 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
95 
96 struct walkarg {
97 	int	w_tmemsize;
98 	int	w_op, w_arg;
99 	caddr_t	w_tmem;
100 	struct sysctl_req *w_req;
101 };
102 
103 static void	rts_input(struct mbuf *m);
104 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo);
105 static int	rt_msg2(int type, struct rt_addrinfo *rtinfo,
106 			caddr_t cp, struct walkarg *w);
107 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
108 			struct rt_addrinfo *rtinfo);
109 static int	sysctl_dumpentry(struct radix_node *rn, void *vw);
110 static int	sysctl_iflist(int af, struct walkarg *w);
111 static int	sysctl_ifmalist(int af, struct walkarg *w);
112 static int	route_output(struct mbuf *m, struct socket *so);
113 static void	rt_setmetrics(u_long which, const struct rt_metrics *in,
114 			struct rt_metrics_lite *out);
115 static void	rt_getmetrics(const struct rt_metrics_lite *in,
116 			struct rt_metrics *out);
117 static void	rt_dispatch(struct mbuf *, const struct sockaddr *);
118 
119 static struct netisr_handler rtsock_nh = {
120 	.nh_name = "rtsock",
121 	.nh_handler = rts_input,
122 	.nh_proto = NETISR_ROUTE,
123 	.nh_policy = NETISR_POLICY_SOURCE,
124 };
125 
126 static int
127 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
128 {
129 	int error, qlimit;
130 
131 	netisr_getqlimit(&rtsock_nh, &qlimit);
132 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
133         if (error || !req->newptr)
134                 return (error);
135 	if (qlimit < 1)
136 		return (EINVAL);
137 	return (netisr_setqlimit(&rtsock_nh, qlimit));
138 }
139 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW,
140     0, 0, sysctl_route_netisr_maxqlen, "I",
141     "maximum routing socket dispatch queue length");
142 
143 static void
144 rts_init(void)
145 {
146 	int tmp;
147 
148 	if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
149 		rtsock_nh.nh_qlimit = tmp;
150 	netisr_register(&rtsock_nh);
151 }
152 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0);
153 
154 static void
155 rts_input(struct mbuf *m)
156 {
157 	struct sockproto route_proto;
158 	unsigned short *family;
159 	struct m_tag *tag;
160 
161 	route_proto.sp_family = PF_ROUTE;
162 	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
163 	if (tag != NULL) {
164 		family = (unsigned short *)(tag + 1);
165 		route_proto.sp_protocol = *family;
166 		m_tag_delete(m, tag);
167 	} else
168 		route_proto.sp_protocol = 0;
169 
170 	raw_input(m, &route_proto, &route_src);
171 }
172 
173 /*
174  * It really doesn't make any sense at all for this code to share much
175  * with raw_usrreq.c, since its functionality is so restricted.  XXX
176  */
177 static void
178 rts_abort(struct socket *so)
179 {
180 
181 	raw_usrreqs.pru_abort(so);
182 }
183 
184 static void
185 rts_close(struct socket *so)
186 {
187 
188 	raw_usrreqs.pru_close(so);
189 }
190 
191 /* pru_accept is EOPNOTSUPP */
192 
193 static int
194 rts_attach(struct socket *so, int proto, struct thread *td)
195 {
196 	struct rawcb *rp;
197 	int s, error;
198 
199 	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
200 
201 	/* XXX */
202 	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
203 	if (rp == NULL)
204 		return ENOBUFS;
205 
206 	/*
207 	 * The splnet() is necessary to block protocols from sending
208 	 * error notifications (like RTM_REDIRECT or RTM_LOSING) while
209 	 * this PCB is extant but incompletely initialized.
210 	 * Probably we should try to do more of this work beforehand and
211 	 * eliminate the spl.
212 	 */
213 	s = splnet();
214 	so->so_pcb = (caddr_t)rp;
215 	so->so_fibnum = td->td_proc->p_fibnum;
216 	error = raw_attach(so, proto);
217 	rp = sotorawcb(so);
218 	if (error) {
219 		splx(s);
220 		so->so_pcb = NULL;
221 		free(rp, M_PCB);
222 		return error;
223 	}
224 	RTSOCK_LOCK();
225 	switch(rp->rcb_proto.sp_protocol) {
226 	case AF_INET:
227 		route_cb.ip_count++;
228 		break;
229 	case AF_INET6:
230 		route_cb.ip6_count++;
231 		break;
232 	case AF_IPX:
233 		route_cb.ipx_count++;
234 		break;
235 	}
236 	route_cb.any_count++;
237 	RTSOCK_UNLOCK();
238 	soisconnected(so);
239 	so->so_options |= SO_USELOOPBACK;
240 	splx(s);
241 	return 0;
242 }
243 
244 static int
245 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
246 {
247 
248 	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
249 }
250 
251 static int
252 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
253 {
254 
255 	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
256 }
257 
258 /* pru_connect2 is EOPNOTSUPP */
259 /* pru_control is EOPNOTSUPP */
260 
261 static void
262 rts_detach(struct socket *so)
263 {
264 	struct rawcb *rp = sotorawcb(so);
265 
266 	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
267 
268 	RTSOCK_LOCK();
269 	switch(rp->rcb_proto.sp_protocol) {
270 	case AF_INET:
271 		route_cb.ip_count--;
272 		break;
273 	case AF_INET6:
274 		route_cb.ip6_count--;
275 		break;
276 	case AF_IPX:
277 		route_cb.ipx_count--;
278 		break;
279 	}
280 	route_cb.any_count--;
281 	RTSOCK_UNLOCK();
282 	raw_usrreqs.pru_detach(so);
283 }
284 
285 static int
286 rts_disconnect(struct socket *so)
287 {
288 
289 	return (raw_usrreqs.pru_disconnect(so));
290 }
291 
292 /* pru_listen is EOPNOTSUPP */
293 
294 static int
295 rts_peeraddr(struct socket *so, struct sockaddr **nam)
296 {
297 
298 	return (raw_usrreqs.pru_peeraddr(so, nam));
299 }
300 
301 /* pru_rcvd is EOPNOTSUPP */
302 /* pru_rcvoob is EOPNOTSUPP */
303 
304 static int
305 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
306 	 struct mbuf *control, struct thread *td)
307 {
308 
309 	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
310 }
311 
312 /* pru_sense is null */
313 
314 static int
315 rts_shutdown(struct socket *so)
316 {
317 
318 	return (raw_usrreqs.pru_shutdown(so));
319 }
320 
321 static int
322 rts_sockaddr(struct socket *so, struct sockaddr **nam)
323 {
324 
325 	return (raw_usrreqs.pru_sockaddr(so, nam));
326 }
327 
328 static struct pr_usrreqs route_usrreqs = {
329 	.pru_abort =		rts_abort,
330 	.pru_attach =		rts_attach,
331 	.pru_bind =		rts_bind,
332 	.pru_connect =		rts_connect,
333 	.pru_detach =		rts_detach,
334 	.pru_disconnect =	rts_disconnect,
335 	.pru_peeraddr =		rts_peeraddr,
336 	.pru_send =		rts_send,
337 	.pru_shutdown =		rts_shutdown,
338 	.pru_sockaddr =		rts_sockaddr,
339 	.pru_close =		rts_close,
340 };
341 
342 #ifndef _SOCKADDR_UNION_DEFINED
343 #define	_SOCKADDR_UNION_DEFINED
344 /*
345  * The union of all possible address formats we handle.
346  */
347 union sockaddr_union {
348 	struct sockaddr		sa;
349 	struct sockaddr_in	sin;
350 	struct sockaddr_in6	sin6;
351 };
352 #endif /* _SOCKADDR_UNION_DEFINED */
353 
354 static int
355 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
356     struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
357 {
358 
359 	/* First, see if the returned address is part of the jail. */
360 	if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
361 		info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
362 		return (0);
363 	}
364 
365 	switch (info->rti_info[RTAX_DST]->sa_family) {
366 #ifdef INET
367 	case AF_INET:
368 	{
369 		struct in_addr ia;
370 		struct ifaddr *ifa;
371 		int found;
372 
373 		found = 0;
374 		/*
375 		 * Try to find an address on the given outgoing interface
376 		 * that belongs to the jail.
377 		 */
378 		IF_ADDR_LOCK(ifp);
379 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
380 			struct sockaddr *sa;
381 			sa = ifa->ifa_addr;
382 			if (sa->sa_family != AF_INET)
383 				continue;
384 			ia = ((struct sockaddr_in *)sa)->sin_addr;
385 			if (prison_check_ip4(cred, &ia) == 0) {
386 				found = 1;
387 				break;
388 			}
389 		}
390 		IF_ADDR_UNLOCK(ifp);
391 		if (!found) {
392 			/*
393 			 * As a last resort return the 'default' jail address.
394 			 */
395 			ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->
396 			    sin_addr;
397 			if (prison_get_ip4(cred, &ia) != 0)
398 				return (ESRCH);
399 		}
400 		bzero(&saun->sin, sizeof(struct sockaddr_in));
401 		saun->sin.sin_len = sizeof(struct sockaddr_in);
402 		saun->sin.sin_family = AF_INET;
403 		saun->sin.sin_addr.s_addr = ia.s_addr;
404 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
405 		break;
406 	}
407 #endif
408 #ifdef INET6
409 	case AF_INET6:
410 	{
411 		struct in6_addr ia6;
412 		struct ifaddr *ifa;
413 		int found;
414 
415 		found = 0;
416 		/*
417 		 * Try to find an address on the given outgoing interface
418 		 * that belongs to the jail.
419 		 */
420 		IF_ADDR_LOCK(ifp);
421 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
422 			struct sockaddr *sa;
423 			sa = ifa->ifa_addr;
424 			if (sa->sa_family != AF_INET6)
425 				continue;
426 			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
427 			    &ia6, sizeof(struct in6_addr));
428 			if (prison_check_ip6(cred, &ia6) == 0) {
429 				found = 1;
430 				break;
431 			}
432 		}
433 		IF_ADDR_UNLOCK(ifp);
434 		if (!found) {
435 			/*
436 			 * As a last resort return the 'default' jail address.
437 			 */
438 			ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->
439 			    sin6_addr;
440 			if (prison_get_ip6(cred, &ia6) != 0)
441 				return (ESRCH);
442 		}
443 		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
444 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
445 		saun->sin6.sin6_family = AF_INET6;
446 		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
447 		if (sa6_recoverscope(&saun->sin6) != 0)
448 			return (ESRCH);
449 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
450 		break;
451 	}
452 #endif
453 	default:
454 		return (ESRCH);
455 	}
456 	return (0);
457 }
458 
459 /*ARGSUSED*/
460 static int
461 route_output(struct mbuf *m, struct socket *so)
462 {
463 #define	sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0)
464 	struct rt_msghdr *rtm = NULL;
465 	struct rtentry *rt = NULL;
466 	struct radix_node_head *rnh;
467 	struct rt_addrinfo info;
468 	int len, error = 0;
469 	struct ifnet *ifp = NULL;
470 	union sockaddr_union saun;
471 
472 #define senderr(e) { error = e; goto flush;}
473 	if (m == NULL || ((m->m_len < sizeof(long)) &&
474 		       (m = m_pullup(m, sizeof(long))) == NULL))
475 		return (ENOBUFS);
476 	if ((m->m_flags & M_PKTHDR) == 0)
477 		panic("route_output");
478 	len = m->m_pkthdr.len;
479 	if (len < sizeof(*rtm) ||
480 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
481 		info.rti_info[RTAX_DST] = NULL;
482 		senderr(EINVAL);
483 	}
484 	R_Malloc(rtm, struct rt_msghdr *, len);
485 	if (rtm == NULL) {
486 		info.rti_info[RTAX_DST] = NULL;
487 		senderr(ENOBUFS);
488 	}
489 	m_copydata(m, 0, len, (caddr_t)rtm);
490 	if (rtm->rtm_version != RTM_VERSION) {
491 		info.rti_info[RTAX_DST] = NULL;
492 		senderr(EPROTONOSUPPORT);
493 	}
494 	rtm->rtm_pid = curproc->p_pid;
495 	bzero(&info, sizeof(info));
496 	info.rti_addrs = rtm->rtm_addrs;
497 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
498 		info.rti_info[RTAX_DST] = NULL;
499 		senderr(EINVAL);
500 	}
501 	info.rti_flags = rtm->rtm_flags;
502 	if (info.rti_info[RTAX_DST] == NULL ||
503 	    info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
504 	    (info.rti_info[RTAX_GATEWAY] != NULL &&
505 	     info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
506 		senderr(EINVAL);
507 	/*
508 	 * Verify that the caller has the appropriate privilege; RTM_GET
509 	 * is the only operation the non-superuser is allowed.
510 	 */
511 	if (rtm->rtm_type != RTM_GET) {
512 		error = priv_check(curthread, PRIV_NET_ROUTE);
513 		if (error)
514 			senderr(error);
515 	}
516 
517 	/*
518 	 * The given gateway address may be an interface address.
519 	 * For example, issuing a "route change" command on a route
520 	 * entry that was created from a tunnel, and the gateway
521 	 * address given is the local end point. In this case the
522 	 * RTF_GATEWAY flag must be cleared or the destination will
523 	 * not be reachable even though there is no error message.
524 	 */
525 	if (info.rti_info[RTAX_GATEWAY] != NULL &&
526 	    info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
527 		struct route gw_ro;
528 
529 		bzero(&gw_ro, sizeof(gw_ro));
530 		gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY];
531 		rtalloc_ign_fib(&gw_ro, 0, so->so_fibnum);
532 		/*
533 		 * A host route through the loopback interface is
534 		 * installed for each interface adddress. In pre 8.0
535 		 * releases the interface address of a PPP link type
536 		 * is not reachable locally. This behavior is fixed as
537 		 * part of the new L2/L3 redesign and rewrite work. The
538 		 * signature of this interface address route is the
539 		 * AF_LINK sa_family type of the rt_gateway, and the
540 		 * rt_ifp has the IFF_LOOPBACK flag set.
541 		 */
542 		if (gw_ro.ro_rt != NULL &&
543 		    gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK &&
544 		    gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK)
545 			info.rti_flags &= ~RTF_GATEWAY;
546 		if (gw_ro.ro_rt != NULL)
547 			RTFREE(gw_ro.ro_rt);
548 	}
549 
550 	switch (rtm->rtm_type) {
551 		struct rtentry *saved_nrt;
552 
553 	case RTM_ADD:
554 		if (info.rti_info[RTAX_GATEWAY] == NULL)
555 			senderr(EINVAL);
556 		saved_nrt = NULL;
557 
558 		/* support for new ARP code */
559 		if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK &&
560 		    (rtm->rtm_flags & RTF_LLDATA) != 0) {
561 			error = lla_rt_output(rtm, &info);
562 			break;
563 		}
564 		error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt,
565 		    so->so_fibnum);
566 		if (error == 0 && saved_nrt) {
567 			RT_LOCK(saved_nrt);
568 			rt_setmetrics(rtm->rtm_inits,
569 				&rtm->rtm_rmx, &saved_nrt->rt_rmx);
570 			rtm->rtm_index = saved_nrt->rt_ifp->if_index;
571 			RT_REMREF(saved_nrt);
572 			RT_UNLOCK(saved_nrt);
573 		}
574 		break;
575 
576 	case RTM_DELETE:
577 		saved_nrt = NULL;
578 		/* support for new ARP code */
579 		if (info.rti_info[RTAX_GATEWAY] &&
580 		    (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) &&
581 		    (rtm->rtm_flags & RTF_LLDATA) != 0) {
582 			error = lla_rt_output(rtm, &info);
583 			break;
584 		}
585 		error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt,
586 		    so->so_fibnum);
587 		if (error == 0) {
588 			RT_LOCK(saved_nrt);
589 			rt = saved_nrt;
590 			goto report;
591 		}
592 		break;
593 
594 	case RTM_GET:
595 	case RTM_CHANGE:
596 	case RTM_LOCK:
597 		rnh = rt_tables_get_rnh(so->so_fibnum,
598 		    info.rti_info[RTAX_DST]->sa_family);
599 		if (rnh == NULL)
600 			senderr(EAFNOSUPPORT);
601 		RADIX_NODE_HEAD_RLOCK(rnh);
602 		rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST],
603 			info.rti_info[RTAX_NETMASK], rnh);
604 		if (rt == NULL) {	/* XXX looks bogus */
605 			RADIX_NODE_HEAD_RUNLOCK(rnh);
606 			senderr(ESRCH);
607 		}
608 #ifdef RADIX_MPATH
609 		/*
610 		 * for RTM_CHANGE/LOCK, if we got multipath routes,
611 		 * we require users to specify a matching RTAX_GATEWAY.
612 		 *
613 		 * for RTM_GET, gate is optional even with multipath.
614 		 * if gate == NULL the first match is returned.
615 		 * (no need to call rt_mpath_matchgate if gate == NULL)
616 		 */
617 		if (rn_mpath_capable(rnh) &&
618 		    (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) {
619 			rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]);
620 			if (!rt) {
621 				RADIX_NODE_HEAD_RUNLOCK(rnh);
622 				senderr(ESRCH);
623 			}
624 		}
625 #endif
626 		/*
627 		 * If performing proxied L2 entry insertion, and
628 		 * the actual PPP host entry is found, perform
629 		 * another search to retrieve the prefix route of
630 		 * the local end point of the PPP link.
631 		 */
632 		if ((rtm->rtm_flags & RTF_ANNOUNCE) &&
633 		    (rt->rt_ifp->if_flags & IFF_POINTOPOINT)) {
634 			struct sockaddr laddr;
635 			rt_maskedcopy(rt->rt_ifa->ifa_addr,
636 				      &laddr,
637 				      rt->rt_ifa->ifa_netmask);
638 			/*
639 			 * refactor rt and no lock operation necessary
640 			 */
641 			rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh);
642 			if (rt == NULL) {
643 				RADIX_NODE_HEAD_RUNLOCK(rnh);
644 				senderr(ESRCH);
645 			}
646 		}
647 		RT_LOCK(rt);
648 		RT_ADDREF(rt);
649 		RADIX_NODE_HEAD_RUNLOCK(rnh);
650 
651 		/*
652 		 * Fix for PR: 82974
653 		 *
654 		 * RTM_CHANGE/LOCK need a perfect match, rn_lookup()
655 		 * returns a perfect match in case a netmask is
656 		 * specified.  For host routes only a longest prefix
657 		 * match is returned so it is necessary to compare the
658 		 * existence of the netmask.  If both have a netmask
659 		 * rnh_lookup() did a perfect match and if none of them
660 		 * have a netmask both are host routes which is also a
661 		 * perfect match.
662 		 */
663 
664 		if (rtm->rtm_type != RTM_GET &&
665 		    (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) {
666 			RT_UNLOCK(rt);
667 			senderr(ESRCH);
668 		}
669 
670 		switch(rtm->rtm_type) {
671 
672 		case RTM_GET:
673 		report:
674 			RT_LOCK_ASSERT(rt);
675 			if ((rt->rt_flags & RTF_HOST) == 0
676 			    ? jailed_without_vnet(curthread->td_ucred)
677 			    : prison_if(curthread->td_ucred,
678 			    rt_key(rt)) != 0) {
679 				RT_UNLOCK(rt);
680 				senderr(ESRCH);
681 			}
682 			info.rti_info[RTAX_DST] = rt_key(rt);
683 			info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
684 			info.rti_info[RTAX_NETMASK] = rt_mask(rt);
685 			info.rti_info[RTAX_GENMASK] = 0;
686 			if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
687 				ifp = rt->rt_ifp;
688 				if (ifp) {
689 					info.rti_info[RTAX_IFP] =
690 					    ifp->if_addr->ifa_addr;
691 					error = rtm_get_jailed(&info, ifp, rt,
692 					    &saun, curthread->td_ucred);
693 					if (error != 0) {
694 						RT_UNLOCK(rt);
695 						senderr(error);
696 					}
697 					if (ifp->if_flags & IFF_POINTOPOINT)
698 						info.rti_info[RTAX_BRD] =
699 						    rt->rt_ifa->ifa_dstaddr;
700 					rtm->rtm_index = ifp->if_index;
701 				} else {
702 					info.rti_info[RTAX_IFP] = NULL;
703 					info.rti_info[RTAX_IFA] = NULL;
704 				}
705 			} else if ((ifp = rt->rt_ifp) != NULL) {
706 				rtm->rtm_index = ifp->if_index;
707 			}
708 			len = rt_msg2(rtm->rtm_type, &info, NULL, NULL);
709 			if (len > rtm->rtm_msglen) {
710 				struct rt_msghdr *new_rtm;
711 				R_Malloc(new_rtm, struct rt_msghdr *, len);
712 				if (new_rtm == NULL) {
713 					RT_UNLOCK(rt);
714 					senderr(ENOBUFS);
715 				}
716 				bcopy(rtm, new_rtm, rtm->rtm_msglen);
717 				Free(rtm); rtm = new_rtm;
718 			}
719 			(void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL);
720 			rtm->rtm_flags = rt->rt_flags;
721 			rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
722 			rtm->rtm_addrs = info.rti_addrs;
723 			break;
724 
725 		case RTM_CHANGE:
726 			/*
727 			 * New gateway could require new ifaddr, ifp;
728 			 * flags may also be different; ifp may be specified
729 			 * by ll sockaddr when protocol address is ambiguous
730 			 */
731 			if (((rt->rt_flags & RTF_GATEWAY) &&
732 			     info.rti_info[RTAX_GATEWAY] != NULL) ||
733 			    info.rti_info[RTAX_IFP] != NULL ||
734 			    (info.rti_info[RTAX_IFA] != NULL &&
735 			     !sa_equal(info.rti_info[RTAX_IFA],
736 				       rt->rt_ifa->ifa_addr))) {
737 				RT_UNLOCK(rt);
738 				RADIX_NODE_HEAD_LOCK(rnh);
739 				error = rt_getifa_fib(&info, rt->rt_fibnum);
740 				/*
741 				 * XXXRW: Really we should release this
742 				 * reference later, but this maintains
743 				 * historical behavior.
744 				 */
745 				if (info.rti_ifa != NULL)
746 					ifa_free(info.rti_ifa);
747 				RADIX_NODE_HEAD_UNLOCK(rnh);
748 				if (error != 0)
749 					senderr(error);
750 				RT_LOCK(rt);
751 			}
752 			if (info.rti_ifa != NULL &&
753 			    info.rti_ifa != rt->rt_ifa &&
754 			    rt->rt_ifa != NULL &&
755 			    rt->rt_ifa->ifa_rtrequest != NULL) {
756 				rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt,
757 				    &info);
758 				ifa_free(rt->rt_ifa);
759 			}
760 			if (info.rti_info[RTAX_GATEWAY] != NULL) {
761 				RT_UNLOCK(rt);
762 				RADIX_NODE_HEAD_LOCK(rnh);
763 				RT_LOCK(rt);
764 
765 				error = rt_setgate(rt, rt_key(rt),
766 				    info.rti_info[RTAX_GATEWAY]);
767 				RADIX_NODE_HEAD_UNLOCK(rnh);
768 				if (error != 0) {
769 					RT_UNLOCK(rt);
770 					senderr(error);
771 				}
772 				rt->rt_flags |= (RTF_GATEWAY & info.rti_flags);
773 			}
774 			if (info.rti_ifa != NULL &&
775 			    info.rti_ifa != rt->rt_ifa) {
776 				ifa_ref(info.rti_ifa);
777 				rt->rt_ifa = info.rti_ifa;
778 				rt->rt_ifp = info.rti_ifp;
779 			}
780 			/* Allow some flags to be toggled on change. */
781 			rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) |
782 				    (rtm->rtm_flags & RTF_FMASK);
783 			rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
784 					&rt->rt_rmx);
785 			rtm->rtm_index = rt->rt_ifp->if_index;
786 			if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
787 			       rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
788 			/* FALLTHROUGH */
789 		case RTM_LOCK:
790 			/* We don't support locks anymore */
791 			break;
792 		}
793 		RT_UNLOCK(rt);
794 		break;
795 
796 	default:
797 		senderr(EOPNOTSUPP);
798 	}
799 
800 flush:
801 	if (rtm) {
802 		if (error)
803 			rtm->rtm_errno = error;
804 		else
805 			rtm->rtm_flags |= RTF_DONE;
806 	}
807 	if (rt)		/* XXX can this be true? */
808 		RTFREE(rt);
809     {
810 	struct rawcb *rp = NULL;
811 	/*
812 	 * Check to see if we don't want our own messages.
813 	 */
814 	if ((so->so_options & SO_USELOOPBACK) == 0) {
815 		if (route_cb.any_count <= 1) {
816 			if (rtm)
817 				Free(rtm);
818 			m_freem(m);
819 			return (error);
820 		}
821 		/* There is another listener, so construct message */
822 		rp = sotorawcb(so);
823 	}
824 	if (rtm) {
825 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
826 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
827 			m_freem(m);
828 			m = NULL;
829 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
830 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
831 		Free(rtm);
832 	}
833 	if (m) {
834 		if (rp) {
835 			/*
836 			 * XXX insure we don't get a copy by
837 			 * invalidating our protocol
838 			 */
839 			unsigned short family = rp->rcb_proto.sp_family;
840 			rp->rcb_proto.sp_family = 0;
841 			rt_dispatch(m, info.rti_info[RTAX_DST]);
842 			rp->rcb_proto.sp_family = family;
843 		} else
844 			rt_dispatch(m, info.rti_info[RTAX_DST]);
845 	}
846     }
847 	return (error);
848 #undef	sa_equal
849 }
850 
851 static void
852 rt_setmetrics(u_long which, const struct rt_metrics *in,
853 	struct rt_metrics_lite *out)
854 {
855 #define metric(f, e) if (which & (f)) out->e = in->e;
856 	/*
857 	 * Only these are stored in the routing entry since introduction
858 	 * of tcp hostcache. The rest is ignored.
859 	 */
860 	metric(RTV_MTU, rmx_mtu);
861 	metric(RTV_WEIGHT, rmx_weight);
862 	/* Userland -> kernel timebase conversion. */
863 	if (which & RTV_EXPIRE)
864 		out->rmx_expire = in->rmx_expire ?
865 		    in->rmx_expire - time_second + time_uptime : 0;
866 #undef metric
867 }
868 
869 static void
870 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out)
871 {
872 #define metric(e) out->e = in->e;
873 	bzero(out, sizeof(*out));
874 	metric(rmx_mtu);
875 	metric(rmx_weight);
876 	/* Kernel -> userland timebase conversion. */
877 	out->rmx_expire = in->rmx_expire ?
878 	    in->rmx_expire - time_uptime + time_second : 0;
879 #undef metric
880 }
881 
882 /*
883  * Extract the addresses of the passed sockaddrs.
884  * Do a little sanity checking so as to avoid bad memory references.
885  * This data is derived straight from userland.
886  */
887 static int
888 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
889 {
890 	struct sockaddr *sa;
891 	int i;
892 
893 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
894 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
895 			continue;
896 		sa = (struct sockaddr *)cp;
897 		/*
898 		 * It won't fit.
899 		 */
900 		if (cp + sa->sa_len > cplim)
901 			return (EINVAL);
902 		/*
903 		 * there are no more.. quit now
904 		 * If there are more bits, they are in error.
905 		 * I've seen this. route(1) can evidently generate these.
906 		 * This causes kernel to core dump.
907 		 * for compatibility, If we see this, point to a safe address.
908 		 */
909 		if (sa->sa_len == 0) {
910 			rtinfo->rti_info[i] = &sa_zero;
911 			return (0); /* should be EINVAL but for compat */
912 		}
913 		/* accept it */
914 		rtinfo->rti_info[i] = sa;
915 		cp += SA_SIZE(sa);
916 	}
917 	return (0);
918 }
919 
920 static struct mbuf *
921 rt_msg1(int type, struct rt_addrinfo *rtinfo)
922 {
923 	struct rt_msghdr *rtm;
924 	struct mbuf *m;
925 	int i;
926 	struct sockaddr *sa;
927 	int len, dlen;
928 
929 	switch (type) {
930 
931 	case RTM_DELADDR:
932 	case RTM_NEWADDR:
933 		len = sizeof(struct ifa_msghdr);
934 		break;
935 
936 	case RTM_DELMADDR:
937 	case RTM_NEWMADDR:
938 		len = sizeof(struct ifma_msghdr);
939 		break;
940 
941 	case RTM_IFINFO:
942 		len = sizeof(struct if_msghdr);
943 		break;
944 
945 	case RTM_IFANNOUNCE:
946 	case RTM_IEEE80211:
947 		len = sizeof(struct if_announcemsghdr);
948 		break;
949 
950 	default:
951 		len = sizeof(struct rt_msghdr);
952 	}
953 	if (len > MCLBYTES)
954 		panic("rt_msg1");
955 	m = m_gethdr(M_DONTWAIT, MT_DATA);
956 	if (m && len > MHLEN) {
957 		MCLGET(m, M_DONTWAIT);
958 		if ((m->m_flags & M_EXT) == 0) {
959 			m_free(m);
960 			m = NULL;
961 		}
962 	}
963 	if (m == NULL)
964 		return (m);
965 	m->m_pkthdr.len = m->m_len = len;
966 	m->m_pkthdr.rcvif = NULL;
967 	rtm = mtod(m, struct rt_msghdr *);
968 	bzero((caddr_t)rtm, len);
969 	for (i = 0; i < RTAX_MAX; i++) {
970 		if ((sa = rtinfo->rti_info[i]) == NULL)
971 			continue;
972 		rtinfo->rti_addrs |= (1 << i);
973 		dlen = SA_SIZE(sa);
974 		m_copyback(m, len, dlen, (caddr_t)sa);
975 		len += dlen;
976 	}
977 	if (m->m_pkthdr.len != len) {
978 		m_freem(m);
979 		return (NULL);
980 	}
981 	rtm->rtm_msglen = len;
982 	rtm->rtm_version = RTM_VERSION;
983 	rtm->rtm_type = type;
984 	return (m);
985 }
986 
987 static int
988 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w)
989 {
990 	int i;
991 	int len, dlen, second_time = 0;
992 	caddr_t cp0;
993 
994 	rtinfo->rti_addrs = 0;
995 again:
996 	switch (type) {
997 
998 	case RTM_DELADDR:
999 	case RTM_NEWADDR:
1000 		len = sizeof(struct ifa_msghdr);
1001 		break;
1002 
1003 	case RTM_IFINFO:
1004 		len = sizeof(struct if_msghdr);
1005 		break;
1006 
1007 	case RTM_NEWMADDR:
1008 		len = sizeof(struct ifma_msghdr);
1009 		break;
1010 
1011 	default:
1012 		len = sizeof(struct rt_msghdr);
1013 	}
1014 	cp0 = cp;
1015 	if (cp0)
1016 		cp += len;
1017 	for (i = 0; i < RTAX_MAX; i++) {
1018 		struct sockaddr *sa;
1019 
1020 		if ((sa = rtinfo->rti_info[i]) == NULL)
1021 			continue;
1022 		rtinfo->rti_addrs |= (1 << i);
1023 		dlen = SA_SIZE(sa);
1024 		if (cp) {
1025 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1026 			cp += dlen;
1027 		}
1028 		len += dlen;
1029 	}
1030 	len = ALIGN(len);
1031 	if (cp == NULL && w != NULL && !second_time) {
1032 		struct walkarg *rw = w;
1033 
1034 		if (rw->w_req) {
1035 			if (rw->w_tmemsize < len) {
1036 				if (rw->w_tmem)
1037 					free(rw->w_tmem, M_RTABLE);
1038 				rw->w_tmem = (caddr_t)
1039 					malloc(len, M_RTABLE, M_NOWAIT);
1040 				if (rw->w_tmem)
1041 					rw->w_tmemsize = len;
1042 			}
1043 			if (rw->w_tmem) {
1044 				cp = rw->w_tmem;
1045 				second_time = 1;
1046 				goto again;
1047 			}
1048 		}
1049 	}
1050 	if (cp) {
1051 		struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
1052 
1053 		rtm->rtm_version = RTM_VERSION;
1054 		rtm->rtm_type = type;
1055 		rtm->rtm_msglen = len;
1056 	}
1057 	return (len);
1058 }
1059 
1060 /*
1061  * This routine is called to generate a message from the routing
1062  * socket indicating that a redirect has occured, a routing lookup
1063  * has failed, or that a protocol has detected timeouts to a particular
1064  * destination.
1065  */
1066 void
1067 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1068 {
1069 	struct rt_msghdr *rtm;
1070 	struct mbuf *m;
1071 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1072 
1073 	if (route_cb.any_count == 0)
1074 		return;
1075 	m = rt_msg1(type, rtinfo);
1076 	if (m == NULL)
1077 		return;
1078 	rtm = mtod(m, struct rt_msghdr *);
1079 	rtm->rtm_flags = RTF_DONE | flags;
1080 	rtm->rtm_errno = error;
1081 	rtm->rtm_addrs = rtinfo->rti_addrs;
1082 	rt_dispatch(m, sa);
1083 }
1084 
1085 /*
1086  * This routine is called to generate a message from the routing
1087  * socket indicating that the status of a network interface has changed.
1088  */
1089 void
1090 rt_ifmsg(struct ifnet *ifp)
1091 {
1092 	struct if_msghdr *ifm;
1093 	struct mbuf *m;
1094 	struct rt_addrinfo info;
1095 
1096 	if (route_cb.any_count == 0)
1097 		return;
1098 	bzero((caddr_t)&info, sizeof(info));
1099 	m = rt_msg1(RTM_IFINFO, &info);
1100 	if (m == NULL)
1101 		return;
1102 	ifm = mtod(m, struct if_msghdr *);
1103 	ifm->ifm_index = ifp->if_index;
1104 	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1105 	ifm->ifm_data = ifp->if_data;
1106 	ifm->ifm_addrs = 0;
1107 	rt_dispatch(m, NULL);
1108 }
1109 
1110 /*
1111  * This is called to generate messages from the routing socket
1112  * indicating a network interface has had addresses associated with it.
1113  * if we ever reverse the logic and replace messages TO the routing
1114  * socket indicate a request to configure interfaces, then it will
1115  * be unnecessary as the routing socket will automatically generate
1116  * copies of it.
1117  */
1118 void
1119 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
1120 {
1121 	struct rt_addrinfo info;
1122 	struct sockaddr *sa = NULL;
1123 	int pass;
1124 	struct mbuf *m = NULL;
1125 	struct ifnet *ifp = ifa->ifa_ifp;
1126 
1127 	KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE,
1128 		("unexpected cmd %u", cmd));
1129 #if defined(INET) || defined(INET6)
1130 #ifdef SCTP
1131 	/*
1132 	 * notify the SCTP stack
1133 	 * this will only get called when an address is added/deleted
1134 	 * XXX pass the ifaddr struct instead if ifa->ifa_addr...
1135 	 */
1136 	sctp_addr_change(ifa, cmd);
1137 #endif /* SCTP */
1138 #endif
1139 	if (route_cb.any_count == 0)
1140 		return;
1141 	for (pass = 1; pass < 3; pass++) {
1142 		bzero((caddr_t)&info, sizeof(info));
1143 		if ((cmd == RTM_ADD && pass == 1) ||
1144 		    (cmd == RTM_DELETE && pass == 2)) {
1145 			struct ifa_msghdr *ifam;
1146 			int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1147 
1148 			info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1149 			info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1150 			info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1151 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1152 			if ((m = rt_msg1(ncmd, &info)) == NULL)
1153 				continue;
1154 			ifam = mtod(m, struct ifa_msghdr *);
1155 			ifam->ifam_index = ifp->if_index;
1156 			ifam->ifam_metric = ifa->ifa_metric;
1157 			ifam->ifam_flags = ifa->ifa_flags;
1158 			ifam->ifam_addrs = info.rti_addrs;
1159 		}
1160 		if ((cmd == RTM_ADD && pass == 2) ||
1161 		    (cmd == RTM_DELETE && pass == 1)) {
1162 			struct rt_msghdr *rtm;
1163 
1164 			if (rt == NULL)
1165 				continue;
1166 			info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1167 			info.rti_info[RTAX_DST] = sa = rt_key(rt);
1168 			info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1169 			if ((m = rt_msg1(cmd, &info)) == NULL)
1170 				continue;
1171 			rtm = mtod(m, struct rt_msghdr *);
1172 			rtm->rtm_index = ifp->if_index;
1173 			rtm->rtm_flags |= rt->rt_flags;
1174 			rtm->rtm_errno = error;
1175 			rtm->rtm_addrs = info.rti_addrs;
1176 		}
1177 		rt_dispatch(m, sa);
1178 	}
1179 }
1180 
1181 /*
1182  * This is the analogue to the rt_newaddrmsg which performs the same
1183  * function but for multicast group memberhips.  This is easier since
1184  * there is no route state to worry about.
1185  */
1186 void
1187 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1188 {
1189 	struct rt_addrinfo info;
1190 	struct mbuf *m = NULL;
1191 	struct ifnet *ifp = ifma->ifma_ifp;
1192 	struct ifma_msghdr *ifmam;
1193 
1194 	if (route_cb.any_count == 0)
1195 		return;
1196 
1197 	bzero((caddr_t)&info, sizeof(info));
1198 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1199 	info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL;
1200 	/*
1201 	 * If a link-layer address is present, present it as a ``gateway''
1202 	 * (similarly to how ARP entries, e.g., are presented).
1203 	 */
1204 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1205 	m = rt_msg1(cmd, &info);
1206 	if (m == NULL)
1207 		return;
1208 	ifmam = mtod(m, struct ifma_msghdr *);
1209 	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1210 	    __func__));
1211 	ifmam->ifmam_index = ifp->if_index;
1212 	ifmam->ifmam_addrs = info.rti_addrs;
1213 	rt_dispatch(m, ifma->ifma_addr);
1214 }
1215 
1216 static struct mbuf *
1217 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1218 	struct rt_addrinfo *info)
1219 {
1220 	struct if_announcemsghdr *ifan;
1221 	struct mbuf *m;
1222 
1223 	if (route_cb.any_count == 0)
1224 		return NULL;
1225 	bzero((caddr_t)info, sizeof(*info));
1226 	m = rt_msg1(type, info);
1227 	if (m != NULL) {
1228 		ifan = mtod(m, struct if_announcemsghdr *);
1229 		ifan->ifan_index = ifp->if_index;
1230 		strlcpy(ifan->ifan_name, ifp->if_xname,
1231 			sizeof(ifan->ifan_name));
1232 		ifan->ifan_what = what;
1233 	}
1234 	return m;
1235 }
1236 
1237 /*
1238  * This is called to generate routing socket messages indicating
1239  * IEEE80211 wireless events.
1240  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1241  */
1242 void
1243 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1244 {
1245 	struct mbuf *m;
1246 	struct rt_addrinfo info;
1247 
1248 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1249 	if (m != NULL) {
1250 		/*
1251 		 * Append the ieee80211 data.  Try to stick it in the
1252 		 * mbuf containing the ifannounce msg; otherwise allocate
1253 		 * a new mbuf and append.
1254 		 *
1255 		 * NB: we assume m is a single mbuf.
1256 		 */
1257 		if (data_len > M_TRAILINGSPACE(m)) {
1258 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1259 			if (n == NULL) {
1260 				m_freem(m);
1261 				return;
1262 			}
1263 			bcopy(data, mtod(n, void *), data_len);
1264 			n->m_len = data_len;
1265 			m->m_next = n;
1266 		} else if (data_len > 0) {
1267 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1268 			m->m_len += data_len;
1269 		}
1270 		if (m->m_flags & M_PKTHDR)
1271 			m->m_pkthdr.len += data_len;
1272 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1273 		rt_dispatch(m, NULL);
1274 	}
1275 }
1276 
1277 /*
1278  * This is called to generate routing socket messages indicating
1279  * network interface arrival and departure.
1280  */
1281 void
1282 rt_ifannouncemsg(struct ifnet *ifp, int what)
1283 {
1284 	struct mbuf *m;
1285 	struct rt_addrinfo info;
1286 
1287 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1288 	if (m != NULL)
1289 		rt_dispatch(m, NULL);
1290 }
1291 
1292 static void
1293 rt_dispatch(struct mbuf *m, const struct sockaddr *sa)
1294 {
1295 	struct m_tag *tag;
1296 
1297 	/*
1298 	 * Preserve the family from the sockaddr, if any, in an m_tag for
1299 	 * use when injecting the mbuf into the routing socket buffer from
1300 	 * the netisr.
1301 	 */
1302 	if (sa != NULL) {
1303 		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1304 		    M_NOWAIT);
1305 		if (tag == NULL) {
1306 			m_freem(m);
1307 			return;
1308 		}
1309 		*(unsigned short *)(tag + 1) = sa->sa_family;
1310 		m_tag_prepend(m, tag);
1311 	}
1312 #ifdef VIMAGE
1313 	if (V_loif)
1314 		m->m_pkthdr.rcvif = V_loif;
1315 	else {
1316 		m_freem(m);
1317 		return;
1318 	}
1319 #endif
1320 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
1321 }
1322 
1323 /*
1324  * This is used in dumping the kernel table via sysctl().
1325  */
1326 static int
1327 sysctl_dumpentry(struct radix_node *rn, void *vw)
1328 {
1329 	struct walkarg *w = vw;
1330 	struct rtentry *rt = (struct rtentry *)rn;
1331 	int error = 0, size;
1332 	struct rt_addrinfo info;
1333 
1334 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1335 		return 0;
1336 	if ((rt->rt_flags & RTF_HOST) == 0
1337 	    ? jailed_without_vnet(w->w_req->td->td_ucred)
1338 	    : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0)
1339 		return (0);
1340 	bzero((caddr_t)&info, sizeof(info));
1341 	info.rti_info[RTAX_DST] = rt_key(rt);
1342 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1343 	info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1344 	info.rti_info[RTAX_GENMASK] = 0;
1345 	if (rt->rt_ifp) {
1346 		info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1347 		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1348 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1349 			info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1350 	}
1351 	size = rt_msg2(RTM_GET, &info, NULL, w);
1352 	if (w->w_req && w->w_tmem) {
1353 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1354 
1355 		rtm->rtm_flags = rt->rt_flags;
1356 		/*
1357 		 * let's be honest about this being a retarded hack
1358 		 */
1359 		rtm->rtm_fmask = rt->rt_rmx.rmx_pksent;
1360 		rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
1361 		rtm->rtm_index = rt->rt_ifp->if_index;
1362 		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1363 		rtm->rtm_addrs = info.rti_addrs;
1364 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1365 		return (error);
1366 	}
1367 	return (error);
1368 }
1369 
1370 static int
1371 sysctl_iflist(int af, struct walkarg *w)
1372 {
1373 	struct ifnet *ifp;
1374 	struct ifaddr *ifa;
1375 	struct rt_addrinfo info;
1376 	int len, error = 0;
1377 
1378 	bzero((caddr_t)&info, sizeof(info));
1379 	IFNET_RLOCK();
1380 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1381 		if (w->w_arg && w->w_arg != ifp->if_index)
1382 			continue;
1383 		ifa = ifp->if_addr;
1384 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1385 		len = rt_msg2(RTM_IFINFO, &info, NULL, w);
1386 		info.rti_info[RTAX_IFP] = NULL;
1387 		if (w->w_req && w->w_tmem) {
1388 			struct if_msghdr *ifm;
1389 
1390 			ifm = (struct if_msghdr *)w->w_tmem;
1391 			ifm->ifm_index = ifp->if_index;
1392 			ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1393 			ifm->ifm_data = ifp->if_data;
1394 			ifm->ifm_addrs = info.rti_addrs;
1395 			error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len);
1396 			if (error)
1397 				goto done;
1398 		}
1399 		while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
1400 			if (af && af != ifa->ifa_addr->sa_family)
1401 				continue;
1402 			if (prison_if(w->w_req->td->td_ucred,
1403 			    ifa->ifa_addr) != 0)
1404 				continue;
1405 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1406 			info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1407 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1408 			len = rt_msg2(RTM_NEWADDR, &info, NULL, w);
1409 			if (w->w_req && w->w_tmem) {
1410 				struct ifa_msghdr *ifam;
1411 
1412 				ifam = (struct ifa_msghdr *)w->w_tmem;
1413 				ifam->ifam_index = ifa->ifa_ifp->if_index;
1414 				ifam->ifam_flags = ifa->ifa_flags;
1415 				ifam->ifam_metric = ifa->ifa_metric;
1416 				ifam->ifam_addrs = info.rti_addrs;
1417 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1418 				if (error)
1419 					goto done;
1420 			}
1421 		}
1422 		info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1423 			info.rti_info[RTAX_BRD] = NULL;
1424 	}
1425 done:
1426 	IFNET_RUNLOCK();
1427 	return (error);
1428 }
1429 
1430 static int
1431 sysctl_ifmalist(int af, struct walkarg *w)
1432 {
1433 	struct ifnet *ifp;
1434 	struct ifmultiaddr *ifma;
1435 	struct	rt_addrinfo info;
1436 	int	len, error = 0;
1437 	struct ifaddr *ifa;
1438 
1439 	bzero((caddr_t)&info, sizeof(info));
1440 	IFNET_RLOCK();
1441 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1442 		if (w->w_arg && w->w_arg != ifp->if_index)
1443 			continue;
1444 		ifa = ifp->if_addr;
1445 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1446 		IF_ADDR_LOCK(ifp);
1447 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1448 			if (af && af != ifma->ifma_addr->sa_family)
1449 				continue;
1450 			if (prison_if(w->w_req->td->td_ucred,
1451 			    ifma->ifma_addr) != 0)
1452 				continue;
1453 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1454 			info.rti_info[RTAX_GATEWAY] =
1455 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
1456 			    ifma->ifma_lladdr : NULL;
1457 			len = rt_msg2(RTM_NEWMADDR, &info, NULL, w);
1458 			if (w->w_req && w->w_tmem) {
1459 				struct ifma_msghdr *ifmam;
1460 
1461 				ifmam = (struct ifma_msghdr *)w->w_tmem;
1462 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1463 				ifmam->ifmam_flags = 0;
1464 				ifmam->ifmam_addrs = info.rti_addrs;
1465 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1466 				if (error) {
1467 					IF_ADDR_UNLOCK(ifp);
1468 					goto done;
1469 				}
1470 			}
1471 		}
1472 		IF_ADDR_UNLOCK(ifp);
1473 	}
1474 done:
1475 	IFNET_RUNLOCK();
1476 	return (error);
1477 }
1478 
1479 static int
1480 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1481 {
1482 	int	*name = (int *)arg1;
1483 	u_int	namelen = arg2;
1484 	struct radix_node_head *rnh = NULL; /* silence compiler. */
1485 	int	i, lim, error = EINVAL;
1486 	u_char	af;
1487 	struct	walkarg w;
1488 
1489 	name ++;
1490 	namelen--;
1491 	if (req->newptr)
1492 		return (EPERM);
1493 	if (namelen != 3)
1494 		return ((namelen < 3) ? EISDIR : ENOTDIR);
1495 	af = name[0];
1496 	if (af > AF_MAX)
1497 		return (EINVAL);
1498 	bzero(&w, sizeof(w));
1499 	w.w_op = name[1];
1500 	w.w_arg = name[2];
1501 	w.w_req = req;
1502 
1503 	error = sysctl_wire_old_buffer(req, 0);
1504 	if (error)
1505 		return (error);
1506 	switch (w.w_op) {
1507 
1508 	case NET_RT_DUMP:
1509 	case NET_RT_FLAGS:
1510 		if (af == 0) {			/* dump all tables */
1511 			i = 1;
1512 			lim = AF_MAX;
1513 		} else				/* dump only one table */
1514 			i = lim = af;
1515 
1516 		/*
1517 		 * take care of llinfo entries, the caller must
1518 		 * specify an AF
1519 		 */
1520 		if (w.w_op == NET_RT_FLAGS &&
1521 		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
1522 			if (af != 0)
1523 				error = lltable_sysctl_dumparp(af, w.w_req);
1524 			else
1525 				error = EINVAL;
1526 			break;
1527 		}
1528 		/*
1529 		 * take care of routing entries
1530 		 */
1531 		for (error = 0; error == 0 && i <= lim; i++) {
1532 			rnh = rt_tables_get_rnh(req->td->td_proc->p_fibnum, i);
1533 			if (rnh != NULL) {
1534 				RADIX_NODE_HEAD_LOCK(rnh);
1535 			    	error = rnh->rnh_walktree(rnh,
1536 				    sysctl_dumpentry, &w);
1537 				RADIX_NODE_HEAD_UNLOCK(rnh);
1538 			} else if (af != 0)
1539 				error = EAFNOSUPPORT;
1540 		}
1541 		break;
1542 
1543 	case NET_RT_IFLIST:
1544 		error = sysctl_iflist(af, &w);
1545 		break;
1546 
1547 	case NET_RT_IFMALIST:
1548 		error = sysctl_ifmalist(af, &w);
1549 		break;
1550 	}
1551 	if (w.w_tmem)
1552 		free(w.w_tmem, M_RTABLE);
1553 	return (error);
1554 }
1555 
1556 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1557 
1558 /*
1559  * Definitions of protocols supported in the ROUTE domain.
1560  */
1561 
1562 static struct domain routedomain;		/* or at least forward */
1563 
1564 static struct protosw routesw[] = {
1565 {
1566 	.pr_type =		SOCK_RAW,
1567 	.pr_domain =		&routedomain,
1568 	.pr_flags =		PR_ATOMIC|PR_ADDR,
1569 	.pr_output =		route_output,
1570 	.pr_ctlinput =		raw_ctlinput,
1571 	.pr_init =		raw_init,
1572 	.pr_usrreqs =		&route_usrreqs
1573 }
1574 };
1575 
1576 static struct domain routedomain = {
1577 	.dom_family =		PF_ROUTE,
1578 	.dom_name =		 "route",
1579 	.dom_protosw =		routesw,
1580 	.dom_protoswNPROTOSW =	&routesw[sizeof(routesw)/sizeof(routesw[0])]
1581 };
1582 
1583 VNET_DOMAIN_SET(route);
1584