1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_sctp.h" 33 #include "opt_mpath.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 37 #include <sys/param.h> 38 #include <sys/jail.h> 39 #include <sys/kernel.h> 40 #include <sys/domain.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/rwlock.h> 48 #include <sys/signalvar.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/systm.h> 53 54 #include <net/if.h> 55 #include <net/if_dl.h> 56 #include <net/if_llatbl.h> 57 #include <net/netisr.h> 58 #include <net/raw_cb.h> 59 #include <net/route.h> 60 #include <net/vnet.h> 61 62 #include <netinet/in.h> 63 #include <netinet/if_ether.h> 64 #ifdef INET6 65 #include <netinet6/scope6_var.h> 66 #endif 67 68 #if defined(INET) || defined(INET6) 69 #ifdef SCTP 70 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 71 #endif /* SCTP */ 72 #endif 73 74 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 75 76 /* NB: these are not modified */ 77 static struct sockaddr route_src = { 2, PF_ROUTE, }; 78 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 79 80 static struct { 81 int ip_count; /* attached w/ AF_INET */ 82 int ip6_count; /* attached w/ AF_INET6 */ 83 int ipx_count; /* attached w/ AF_IPX */ 84 int any_count; /* total attached */ 85 } route_cb; 86 87 struct mtx rtsock_mtx; 88 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 89 90 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 91 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 92 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 93 94 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 95 96 struct walkarg { 97 int w_tmemsize; 98 int w_op, w_arg; 99 caddr_t w_tmem; 100 struct sysctl_req *w_req; 101 }; 102 103 static void rts_input(struct mbuf *m); 104 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 105 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 106 caddr_t cp, struct walkarg *w); 107 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 108 struct rt_addrinfo *rtinfo); 109 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 110 static int sysctl_iflist(int af, struct walkarg *w); 111 static int sysctl_ifmalist(int af, struct walkarg *w); 112 static int route_output(struct mbuf *m, struct socket *so); 113 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 114 struct rt_metrics_lite *out); 115 static void rt_getmetrics(const struct rt_metrics_lite *in, 116 struct rt_metrics *out); 117 static void rt_dispatch(struct mbuf *, const struct sockaddr *); 118 119 static struct netisr_handler rtsock_nh = { 120 .nh_name = "rtsock", 121 .nh_handler = rts_input, 122 .nh_proto = NETISR_ROUTE, 123 .nh_policy = NETISR_POLICY_SOURCE, 124 }; 125 126 static int 127 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 128 { 129 int error, qlimit; 130 131 netisr_getqlimit(&rtsock_nh, &qlimit); 132 error = sysctl_handle_int(oidp, &qlimit, 0, req); 133 if (error || !req->newptr) 134 return (error); 135 if (qlimit < 1) 136 return (EINVAL); 137 return (netisr_setqlimit(&rtsock_nh, qlimit)); 138 } 139 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 140 0, 0, sysctl_route_netisr_maxqlen, "I", 141 "maximum routing socket dispatch queue length"); 142 143 static void 144 rts_init(void) 145 { 146 int tmp; 147 148 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 149 rtsock_nh.nh_qlimit = tmp; 150 netisr_register(&rtsock_nh); 151 } 152 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 153 154 static void 155 rts_input(struct mbuf *m) 156 { 157 struct sockproto route_proto; 158 unsigned short *family; 159 struct m_tag *tag; 160 161 route_proto.sp_family = PF_ROUTE; 162 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 163 if (tag != NULL) { 164 family = (unsigned short *)(tag + 1); 165 route_proto.sp_protocol = *family; 166 m_tag_delete(m, tag); 167 } else 168 route_proto.sp_protocol = 0; 169 170 raw_input(m, &route_proto, &route_src); 171 } 172 173 /* 174 * It really doesn't make any sense at all for this code to share much 175 * with raw_usrreq.c, since its functionality is so restricted. XXX 176 */ 177 static void 178 rts_abort(struct socket *so) 179 { 180 181 raw_usrreqs.pru_abort(so); 182 } 183 184 static void 185 rts_close(struct socket *so) 186 { 187 188 raw_usrreqs.pru_close(so); 189 } 190 191 /* pru_accept is EOPNOTSUPP */ 192 193 static int 194 rts_attach(struct socket *so, int proto, struct thread *td) 195 { 196 struct rawcb *rp; 197 int s, error; 198 199 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 200 201 /* XXX */ 202 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 203 if (rp == NULL) 204 return ENOBUFS; 205 206 /* 207 * The splnet() is necessary to block protocols from sending 208 * error notifications (like RTM_REDIRECT or RTM_LOSING) while 209 * this PCB is extant but incompletely initialized. 210 * Probably we should try to do more of this work beforehand and 211 * eliminate the spl. 212 */ 213 s = splnet(); 214 so->so_pcb = (caddr_t)rp; 215 so->so_fibnum = td->td_proc->p_fibnum; 216 error = raw_attach(so, proto); 217 rp = sotorawcb(so); 218 if (error) { 219 splx(s); 220 so->so_pcb = NULL; 221 free(rp, M_PCB); 222 return error; 223 } 224 RTSOCK_LOCK(); 225 switch(rp->rcb_proto.sp_protocol) { 226 case AF_INET: 227 route_cb.ip_count++; 228 break; 229 case AF_INET6: 230 route_cb.ip6_count++; 231 break; 232 case AF_IPX: 233 route_cb.ipx_count++; 234 break; 235 } 236 route_cb.any_count++; 237 RTSOCK_UNLOCK(); 238 soisconnected(so); 239 so->so_options |= SO_USELOOPBACK; 240 splx(s); 241 return 0; 242 } 243 244 static int 245 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 246 { 247 248 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 249 } 250 251 static int 252 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 253 { 254 255 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 256 } 257 258 /* pru_connect2 is EOPNOTSUPP */ 259 /* pru_control is EOPNOTSUPP */ 260 261 static void 262 rts_detach(struct socket *so) 263 { 264 struct rawcb *rp = sotorawcb(so); 265 266 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 267 268 RTSOCK_LOCK(); 269 switch(rp->rcb_proto.sp_protocol) { 270 case AF_INET: 271 route_cb.ip_count--; 272 break; 273 case AF_INET6: 274 route_cb.ip6_count--; 275 break; 276 case AF_IPX: 277 route_cb.ipx_count--; 278 break; 279 } 280 route_cb.any_count--; 281 RTSOCK_UNLOCK(); 282 raw_usrreqs.pru_detach(so); 283 } 284 285 static int 286 rts_disconnect(struct socket *so) 287 { 288 289 return (raw_usrreqs.pru_disconnect(so)); 290 } 291 292 /* pru_listen is EOPNOTSUPP */ 293 294 static int 295 rts_peeraddr(struct socket *so, struct sockaddr **nam) 296 { 297 298 return (raw_usrreqs.pru_peeraddr(so, nam)); 299 } 300 301 /* pru_rcvd is EOPNOTSUPP */ 302 /* pru_rcvoob is EOPNOTSUPP */ 303 304 static int 305 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 306 struct mbuf *control, struct thread *td) 307 { 308 309 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 310 } 311 312 /* pru_sense is null */ 313 314 static int 315 rts_shutdown(struct socket *so) 316 { 317 318 return (raw_usrreqs.pru_shutdown(so)); 319 } 320 321 static int 322 rts_sockaddr(struct socket *so, struct sockaddr **nam) 323 { 324 325 return (raw_usrreqs.pru_sockaddr(so, nam)); 326 } 327 328 static struct pr_usrreqs route_usrreqs = { 329 .pru_abort = rts_abort, 330 .pru_attach = rts_attach, 331 .pru_bind = rts_bind, 332 .pru_connect = rts_connect, 333 .pru_detach = rts_detach, 334 .pru_disconnect = rts_disconnect, 335 .pru_peeraddr = rts_peeraddr, 336 .pru_send = rts_send, 337 .pru_shutdown = rts_shutdown, 338 .pru_sockaddr = rts_sockaddr, 339 .pru_close = rts_close, 340 }; 341 342 #ifndef _SOCKADDR_UNION_DEFINED 343 #define _SOCKADDR_UNION_DEFINED 344 /* 345 * The union of all possible address formats we handle. 346 */ 347 union sockaddr_union { 348 struct sockaddr sa; 349 struct sockaddr_in sin; 350 struct sockaddr_in6 sin6; 351 }; 352 #endif /* _SOCKADDR_UNION_DEFINED */ 353 354 static int 355 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 356 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 357 { 358 359 /* First, see if the returned address is part of the jail. */ 360 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 361 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 362 return (0); 363 } 364 365 switch (info->rti_info[RTAX_DST]->sa_family) { 366 #ifdef INET 367 case AF_INET: 368 { 369 struct in_addr ia; 370 struct ifaddr *ifa; 371 int found; 372 373 found = 0; 374 /* 375 * Try to find an address on the given outgoing interface 376 * that belongs to the jail. 377 */ 378 IF_ADDR_LOCK(ifp); 379 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 380 struct sockaddr *sa; 381 sa = ifa->ifa_addr; 382 if (sa->sa_family != AF_INET) 383 continue; 384 ia = ((struct sockaddr_in *)sa)->sin_addr; 385 if (prison_check_ip4(cred, &ia) == 0) { 386 found = 1; 387 break; 388 } 389 } 390 IF_ADDR_UNLOCK(ifp); 391 if (!found) { 392 /* 393 * As a last resort return the 'default' jail address. 394 */ 395 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 396 sin_addr; 397 if (prison_get_ip4(cred, &ia) != 0) 398 return (ESRCH); 399 } 400 bzero(&saun->sin, sizeof(struct sockaddr_in)); 401 saun->sin.sin_len = sizeof(struct sockaddr_in); 402 saun->sin.sin_family = AF_INET; 403 saun->sin.sin_addr.s_addr = ia.s_addr; 404 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 405 break; 406 } 407 #endif 408 #ifdef INET6 409 case AF_INET6: 410 { 411 struct in6_addr ia6; 412 struct ifaddr *ifa; 413 int found; 414 415 found = 0; 416 /* 417 * Try to find an address on the given outgoing interface 418 * that belongs to the jail. 419 */ 420 IF_ADDR_LOCK(ifp); 421 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 422 struct sockaddr *sa; 423 sa = ifa->ifa_addr; 424 if (sa->sa_family != AF_INET6) 425 continue; 426 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 427 &ia6, sizeof(struct in6_addr)); 428 if (prison_check_ip6(cred, &ia6) == 0) { 429 found = 1; 430 break; 431 } 432 } 433 IF_ADDR_UNLOCK(ifp); 434 if (!found) { 435 /* 436 * As a last resort return the 'default' jail address. 437 */ 438 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 439 sin6_addr; 440 if (prison_get_ip6(cred, &ia6) != 0) 441 return (ESRCH); 442 } 443 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 444 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 445 saun->sin6.sin6_family = AF_INET6; 446 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 447 if (sa6_recoverscope(&saun->sin6) != 0) 448 return (ESRCH); 449 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 450 break; 451 } 452 #endif 453 default: 454 return (ESRCH); 455 } 456 return (0); 457 } 458 459 /*ARGSUSED*/ 460 static int 461 route_output(struct mbuf *m, struct socket *so) 462 { 463 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 464 struct rt_msghdr *rtm = NULL; 465 struct rtentry *rt = NULL; 466 struct radix_node_head *rnh; 467 struct rt_addrinfo info; 468 int len, error = 0; 469 struct ifnet *ifp = NULL; 470 union sockaddr_union saun; 471 472 #define senderr(e) { error = e; goto flush;} 473 if (m == NULL || ((m->m_len < sizeof(long)) && 474 (m = m_pullup(m, sizeof(long))) == NULL)) 475 return (ENOBUFS); 476 if ((m->m_flags & M_PKTHDR) == 0) 477 panic("route_output"); 478 len = m->m_pkthdr.len; 479 if (len < sizeof(*rtm) || 480 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 481 info.rti_info[RTAX_DST] = NULL; 482 senderr(EINVAL); 483 } 484 R_Malloc(rtm, struct rt_msghdr *, len); 485 if (rtm == NULL) { 486 info.rti_info[RTAX_DST] = NULL; 487 senderr(ENOBUFS); 488 } 489 m_copydata(m, 0, len, (caddr_t)rtm); 490 if (rtm->rtm_version != RTM_VERSION) { 491 info.rti_info[RTAX_DST] = NULL; 492 senderr(EPROTONOSUPPORT); 493 } 494 rtm->rtm_pid = curproc->p_pid; 495 bzero(&info, sizeof(info)); 496 info.rti_addrs = rtm->rtm_addrs; 497 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 498 info.rti_info[RTAX_DST] = NULL; 499 senderr(EINVAL); 500 } 501 info.rti_flags = rtm->rtm_flags; 502 if (info.rti_info[RTAX_DST] == NULL || 503 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 504 (info.rti_info[RTAX_GATEWAY] != NULL && 505 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 506 senderr(EINVAL); 507 /* 508 * Verify that the caller has the appropriate privilege; RTM_GET 509 * is the only operation the non-superuser is allowed. 510 */ 511 if (rtm->rtm_type != RTM_GET) { 512 error = priv_check(curthread, PRIV_NET_ROUTE); 513 if (error) 514 senderr(error); 515 } 516 517 /* 518 * The given gateway address may be an interface address. 519 * For example, issuing a "route change" command on a route 520 * entry that was created from a tunnel, and the gateway 521 * address given is the local end point. In this case the 522 * RTF_GATEWAY flag must be cleared or the destination will 523 * not be reachable even though there is no error message. 524 */ 525 if (info.rti_info[RTAX_GATEWAY] != NULL && 526 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 527 struct route gw_ro; 528 529 bzero(&gw_ro, sizeof(gw_ro)); 530 gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY]; 531 rtalloc_ign_fib(&gw_ro, 0, so->so_fibnum); 532 /* 533 * A host route through the loopback interface is 534 * installed for each interface adddress. In pre 8.0 535 * releases the interface address of a PPP link type 536 * is not reachable locally. This behavior is fixed as 537 * part of the new L2/L3 redesign and rewrite work. The 538 * signature of this interface address route is the 539 * AF_LINK sa_family type of the rt_gateway, and the 540 * rt_ifp has the IFF_LOOPBACK flag set. 541 */ 542 if (gw_ro.ro_rt != NULL && 543 gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK && 544 gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) 545 info.rti_flags &= ~RTF_GATEWAY; 546 if (gw_ro.ro_rt != NULL) 547 RTFREE(gw_ro.ro_rt); 548 } 549 550 switch (rtm->rtm_type) { 551 struct rtentry *saved_nrt; 552 553 case RTM_ADD: 554 if (info.rti_info[RTAX_GATEWAY] == NULL) 555 senderr(EINVAL); 556 saved_nrt = NULL; 557 558 /* support for new ARP code */ 559 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 560 (rtm->rtm_flags & RTF_LLDATA) != 0) { 561 error = lla_rt_output(rtm, &info); 562 break; 563 } 564 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 565 so->so_fibnum); 566 if (error == 0 && saved_nrt) { 567 RT_LOCK(saved_nrt); 568 rt_setmetrics(rtm->rtm_inits, 569 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 570 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 571 RT_REMREF(saved_nrt); 572 RT_UNLOCK(saved_nrt); 573 } 574 break; 575 576 case RTM_DELETE: 577 saved_nrt = NULL; 578 /* support for new ARP code */ 579 if (info.rti_info[RTAX_GATEWAY] && 580 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 581 (rtm->rtm_flags & RTF_LLDATA) != 0) { 582 error = lla_rt_output(rtm, &info); 583 break; 584 } 585 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 586 so->so_fibnum); 587 if (error == 0) { 588 RT_LOCK(saved_nrt); 589 rt = saved_nrt; 590 goto report; 591 } 592 break; 593 594 case RTM_GET: 595 case RTM_CHANGE: 596 case RTM_LOCK: 597 rnh = rt_tables_get_rnh(so->so_fibnum, 598 info.rti_info[RTAX_DST]->sa_family); 599 if (rnh == NULL) 600 senderr(EAFNOSUPPORT); 601 RADIX_NODE_HEAD_RLOCK(rnh); 602 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 603 info.rti_info[RTAX_NETMASK], rnh); 604 if (rt == NULL) { /* XXX looks bogus */ 605 RADIX_NODE_HEAD_RUNLOCK(rnh); 606 senderr(ESRCH); 607 } 608 #ifdef RADIX_MPATH 609 /* 610 * for RTM_CHANGE/LOCK, if we got multipath routes, 611 * we require users to specify a matching RTAX_GATEWAY. 612 * 613 * for RTM_GET, gate is optional even with multipath. 614 * if gate == NULL the first match is returned. 615 * (no need to call rt_mpath_matchgate if gate == NULL) 616 */ 617 if (rn_mpath_capable(rnh) && 618 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 619 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 620 if (!rt) { 621 RADIX_NODE_HEAD_RUNLOCK(rnh); 622 senderr(ESRCH); 623 } 624 } 625 #endif 626 /* 627 * If performing proxied L2 entry insertion, and 628 * the actual PPP host entry is found, perform 629 * another search to retrieve the prefix route of 630 * the local end point of the PPP link. 631 */ 632 if ((rtm->rtm_flags & RTF_ANNOUNCE) && 633 (rt->rt_ifp->if_flags & IFF_POINTOPOINT)) { 634 struct sockaddr laddr; 635 rt_maskedcopy(rt->rt_ifa->ifa_addr, 636 &laddr, 637 rt->rt_ifa->ifa_netmask); 638 /* 639 * refactor rt and no lock operation necessary 640 */ 641 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh); 642 if (rt == NULL) { 643 RADIX_NODE_HEAD_RUNLOCK(rnh); 644 senderr(ESRCH); 645 } 646 } 647 RT_LOCK(rt); 648 RT_ADDREF(rt); 649 RADIX_NODE_HEAD_RUNLOCK(rnh); 650 651 /* 652 * Fix for PR: 82974 653 * 654 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 655 * returns a perfect match in case a netmask is 656 * specified. For host routes only a longest prefix 657 * match is returned so it is necessary to compare the 658 * existence of the netmask. If both have a netmask 659 * rnh_lookup() did a perfect match and if none of them 660 * have a netmask both are host routes which is also a 661 * perfect match. 662 */ 663 664 if (rtm->rtm_type != RTM_GET && 665 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 666 RT_UNLOCK(rt); 667 senderr(ESRCH); 668 } 669 670 switch(rtm->rtm_type) { 671 672 case RTM_GET: 673 report: 674 RT_LOCK_ASSERT(rt); 675 if ((rt->rt_flags & RTF_HOST) == 0 676 ? jailed_without_vnet(curthread->td_ucred) 677 : prison_if(curthread->td_ucred, 678 rt_key(rt)) != 0) { 679 RT_UNLOCK(rt); 680 senderr(ESRCH); 681 } 682 info.rti_info[RTAX_DST] = rt_key(rt); 683 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 684 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 685 info.rti_info[RTAX_GENMASK] = 0; 686 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 687 ifp = rt->rt_ifp; 688 if (ifp) { 689 info.rti_info[RTAX_IFP] = 690 ifp->if_addr->ifa_addr; 691 error = rtm_get_jailed(&info, ifp, rt, 692 &saun, curthread->td_ucred); 693 if (error != 0) { 694 RT_UNLOCK(rt); 695 senderr(error); 696 } 697 if (ifp->if_flags & IFF_POINTOPOINT) 698 info.rti_info[RTAX_BRD] = 699 rt->rt_ifa->ifa_dstaddr; 700 rtm->rtm_index = ifp->if_index; 701 } else { 702 info.rti_info[RTAX_IFP] = NULL; 703 info.rti_info[RTAX_IFA] = NULL; 704 } 705 } else if ((ifp = rt->rt_ifp) != NULL) { 706 rtm->rtm_index = ifp->if_index; 707 } 708 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 709 if (len > rtm->rtm_msglen) { 710 struct rt_msghdr *new_rtm; 711 R_Malloc(new_rtm, struct rt_msghdr *, len); 712 if (new_rtm == NULL) { 713 RT_UNLOCK(rt); 714 senderr(ENOBUFS); 715 } 716 bcopy(rtm, new_rtm, rtm->rtm_msglen); 717 Free(rtm); rtm = new_rtm; 718 } 719 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 720 rtm->rtm_flags = rt->rt_flags; 721 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 722 rtm->rtm_addrs = info.rti_addrs; 723 break; 724 725 case RTM_CHANGE: 726 /* 727 * New gateway could require new ifaddr, ifp; 728 * flags may also be different; ifp may be specified 729 * by ll sockaddr when protocol address is ambiguous 730 */ 731 if (((rt->rt_flags & RTF_GATEWAY) && 732 info.rti_info[RTAX_GATEWAY] != NULL) || 733 info.rti_info[RTAX_IFP] != NULL || 734 (info.rti_info[RTAX_IFA] != NULL && 735 !sa_equal(info.rti_info[RTAX_IFA], 736 rt->rt_ifa->ifa_addr))) { 737 RT_UNLOCK(rt); 738 RADIX_NODE_HEAD_LOCK(rnh); 739 error = rt_getifa_fib(&info, rt->rt_fibnum); 740 /* 741 * XXXRW: Really we should release this 742 * reference later, but this maintains 743 * historical behavior. 744 */ 745 if (info.rti_ifa != NULL) 746 ifa_free(info.rti_ifa); 747 RADIX_NODE_HEAD_UNLOCK(rnh); 748 if (error != 0) 749 senderr(error); 750 RT_LOCK(rt); 751 } 752 if (info.rti_ifa != NULL && 753 info.rti_ifa != rt->rt_ifa && 754 rt->rt_ifa != NULL && 755 rt->rt_ifa->ifa_rtrequest != NULL) { 756 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 757 &info); 758 ifa_free(rt->rt_ifa); 759 } 760 if (info.rti_info[RTAX_GATEWAY] != NULL) { 761 RT_UNLOCK(rt); 762 RADIX_NODE_HEAD_LOCK(rnh); 763 RT_LOCK(rt); 764 765 error = rt_setgate(rt, rt_key(rt), 766 info.rti_info[RTAX_GATEWAY]); 767 RADIX_NODE_HEAD_UNLOCK(rnh); 768 if (error != 0) { 769 RT_UNLOCK(rt); 770 senderr(error); 771 } 772 rt->rt_flags |= (RTF_GATEWAY & info.rti_flags); 773 } 774 if (info.rti_ifa != NULL && 775 info.rti_ifa != rt->rt_ifa) { 776 ifa_ref(info.rti_ifa); 777 rt->rt_ifa = info.rti_ifa; 778 rt->rt_ifp = info.rti_ifp; 779 } 780 /* Allow some flags to be toggled on change. */ 781 rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) | 782 (rtm->rtm_flags & RTF_FMASK); 783 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 784 &rt->rt_rmx); 785 rtm->rtm_index = rt->rt_ifp->if_index; 786 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 787 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 788 /* FALLTHROUGH */ 789 case RTM_LOCK: 790 /* We don't support locks anymore */ 791 break; 792 } 793 RT_UNLOCK(rt); 794 break; 795 796 default: 797 senderr(EOPNOTSUPP); 798 } 799 800 flush: 801 if (rtm) { 802 if (error) 803 rtm->rtm_errno = error; 804 else 805 rtm->rtm_flags |= RTF_DONE; 806 } 807 if (rt) /* XXX can this be true? */ 808 RTFREE(rt); 809 { 810 struct rawcb *rp = NULL; 811 /* 812 * Check to see if we don't want our own messages. 813 */ 814 if ((so->so_options & SO_USELOOPBACK) == 0) { 815 if (route_cb.any_count <= 1) { 816 if (rtm) 817 Free(rtm); 818 m_freem(m); 819 return (error); 820 } 821 /* There is another listener, so construct message */ 822 rp = sotorawcb(so); 823 } 824 if (rtm) { 825 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 826 if (m->m_pkthdr.len < rtm->rtm_msglen) { 827 m_freem(m); 828 m = NULL; 829 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 830 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 831 Free(rtm); 832 } 833 if (m) { 834 if (rp) { 835 /* 836 * XXX insure we don't get a copy by 837 * invalidating our protocol 838 */ 839 unsigned short family = rp->rcb_proto.sp_family; 840 rp->rcb_proto.sp_family = 0; 841 rt_dispatch(m, info.rti_info[RTAX_DST]); 842 rp->rcb_proto.sp_family = family; 843 } else 844 rt_dispatch(m, info.rti_info[RTAX_DST]); 845 } 846 } 847 return (error); 848 #undef sa_equal 849 } 850 851 static void 852 rt_setmetrics(u_long which, const struct rt_metrics *in, 853 struct rt_metrics_lite *out) 854 { 855 #define metric(f, e) if (which & (f)) out->e = in->e; 856 /* 857 * Only these are stored in the routing entry since introduction 858 * of tcp hostcache. The rest is ignored. 859 */ 860 metric(RTV_MTU, rmx_mtu); 861 metric(RTV_WEIGHT, rmx_weight); 862 /* Userland -> kernel timebase conversion. */ 863 if (which & RTV_EXPIRE) 864 out->rmx_expire = in->rmx_expire ? 865 in->rmx_expire - time_second + time_uptime : 0; 866 #undef metric 867 } 868 869 static void 870 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 871 { 872 #define metric(e) out->e = in->e; 873 bzero(out, sizeof(*out)); 874 metric(rmx_mtu); 875 metric(rmx_weight); 876 /* Kernel -> userland timebase conversion. */ 877 out->rmx_expire = in->rmx_expire ? 878 in->rmx_expire - time_uptime + time_second : 0; 879 #undef metric 880 } 881 882 /* 883 * Extract the addresses of the passed sockaddrs. 884 * Do a little sanity checking so as to avoid bad memory references. 885 * This data is derived straight from userland. 886 */ 887 static int 888 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 889 { 890 struct sockaddr *sa; 891 int i; 892 893 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 894 if ((rtinfo->rti_addrs & (1 << i)) == 0) 895 continue; 896 sa = (struct sockaddr *)cp; 897 /* 898 * It won't fit. 899 */ 900 if (cp + sa->sa_len > cplim) 901 return (EINVAL); 902 /* 903 * there are no more.. quit now 904 * If there are more bits, they are in error. 905 * I've seen this. route(1) can evidently generate these. 906 * This causes kernel to core dump. 907 * for compatibility, If we see this, point to a safe address. 908 */ 909 if (sa->sa_len == 0) { 910 rtinfo->rti_info[i] = &sa_zero; 911 return (0); /* should be EINVAL but for compat */ 912 } 913 /* accept it */ 914 rtinfo->rti_info[i] = sa; 915 cp += SA_SIZE(sa); 916 } 917 return (0); 918 } 919 920 static struct mbuf * 921 rt_msg1(int type, struct rt_addrinfo *rtinfo) 922 { 923 struct rt_msghdr *rtm; 924 struct mbuf *m; 925 int i; 926 struct sockaddr *sa; 927 int len, dlen; 928 929 switch (type) { 930 931 case RTM_DELADDR: 932 case RTM_NEWADDR: 933 len = sizeof(struct ifa_msghdr); 934 break; 935 936 case RTM_DELMADDR: 937 case RTM_NEWMADDR: 938 len = sizeof(struct ifma_msghdr); 939 break; 940 941 case RTM_IFINFO: 942 len = sizeof(struct if_msghdr); 943 break; 944 945 case RTM_IFANNOUNCE: 946 case RTM_IEEE80211: 947 len = sizeof(struct if_announcemsghdr); 948 break; 949 950 default: 951 len = sizeof(struct rt_msghdr); 952 } 953 if (len > MCLBYTES) 954 panic("rt_msg1"); 955 m = m_gethdr(M_DONTWAIT, MT_DATA); 956 if (m && len > MHLEN) { 957 MCLGET(m, M_DONTWAIT); 958 if ((m->m_flags & M_EXT) == 0) { 959 m_free(m); 960 m = NULL; 961 } 962 } 963 if (m == NULL) 964 return (m); 965 m->m_pkthdr.len = m->m_len = len; 966 m->m_pkthdr.rcvif = NULL; 967 rtm = mtod(m, struct rt_msghdr *); 968 bzero((caddr_t)rtm, len); 969 for (i = 0; i < RTAX_MAX; i++) { 970 if ((sa = rtinfo->rti_info[i]) == NULL) 971 continue; 972 rtinfo->rti_addrs |= (1 << i); 973 dlen = SA_SIZE(sa); 974 m_copyback(m, len, dlen, (caddr_t)sa); 975 len += dlen; 976 } 977 if (m->m_pkthdr.len != len) { 978 m_freem(m); 979 return (NULL); 980 } 981 rtm->rtm_msglen = len; 982 rtm->rtm_version = RTM_VERSION; 983 rtm->rtm_type = type; 984 return (m); 985 } 986 987 static int 988 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 989 { 990 int i; 991 int len, dlen, second_time = 0; 992 caddr_t cp0; 993 994 rtinfo->rti_addrs = 0; 995 again: 996 switch (type) { 997 998 case RTM_DELADDR: 999 case RTM_NEWADDR: 1000 len = sizeof(struct ifa_msghdr); 1001 break; 1002 1003 case RTM_IFINFO: 1004 len = sizeof(struct if_msghdr); 1005 break; 1006 1007 case RTM_NEWMADDR: 1008 len = sizeof(struct ifma_msghdr); 1009 break; 1010 1011 default: 1012 len = sizeof(struct rt_msghdr); 1013 } 1014 cp0 = cp; 1015 if (cp0) 1016 cp += len; 1017 for (i = 0; i < RTAX_MAX; i++) { 1018 struct sockaddr *sa; 1019 1020 if ((sa = rtinfo->rti_info[i]) == NULL) 1021 continue; 1022 rtinfo->rti_addrs |= (1 << i); 1023 dlen = SA_SIZE(sa); 1024 if (cp) { 1025 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1026 cp += dlen; 1027 } 1028 len += dlen; 1029 } 1030 len = ALIGN(len); 1031 if (cp == NULL && w != NULL && !second_time) { 1032 struct walkarg *rw = w; 1033 1034 if (rw->w_req) { 1035 if (rw->w_tmemsize < len) { 1036 if (rw->w_tmem) 1037 free(rw->w_tmem, M_RTABLE); 1038 rw->w_tmem = (caddr_t) 1039 malloc(len, M_RTABLE, M_NOWAIT); 1040 if (rw->w_tmem) 1041 rw->w_tmemsize = len; 1042 } 1043 if (rw->w_tmem) { 1044 cp = rw->w_tmem; 1045 second_time = 1; 1046 goto again; 1047 } 1048 } 1049 } 1050 if (cp) { 1051 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 1052 1053 rtm->rtm_version = RTM_VERSION; 1054 rtm->rtm_type = type; 1055 rtm->rtm_msglen = len; 1056 } 1057 return (len); 1058 } 1059 1060 /* 1061 * This routine is called to generate a message from the routing 1062 * socket indicating that a redirect has occured, a routing lookup 1063 * has failed, or that a protocol has detected timeouts to a particular 1064 * destination. 1065 */ 1066 void 1067 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1068 { 1069 struct rt_msghdr *rtm; 1070 struct mbuf *m; 1071 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1072 1073 if (route_cb.any_count == 0) 1074 return; 1075 m = rt_msg1(type, rtinfo); 1076 if (m == NULL) 1077 return; 1078 rtm = mtod(m, struct rt_msghdr *); 1079 rtm->rtm_flags = RTF_DONE | flags; 1080 rtm->rtm_errno = error; 1081 rtm->rtm_addrs = rtinfo->rti_addrs; 1082 rt_dispatch(m, sa); 1083 } 1084 1085 /* 1086 * This routine is called to generate a message from the routing 1087 * socket indicating that the status of a network interface has changed. 1088 */ 1089 void 1090 rt_ifmsg(struct ifnet *ifp) 1091 { 1092 struct if_msghdr *ifm; 1093 struct mbuf *m; 1094 struct rt_addrinfo info; 1095 1096 if (route_cb.any_count == 0) 1097 return; 1098 bzero((caddr_t)&info, sizeof(info)); 1099 m = rt_msg1(RTM_IFINFO, &info); 1100 if (m == NULL) 1101 return; 1102 ifm = mtod(m, struct if_msghdr *); 1103 ifm->ifm_index = ifp->if_index; 1104 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1105 ifm->ifm_data = ifp->if_data; 1106 ifm->ifm_addrs = 0; 1107 rt_dispatch(m, NULL); 1108 } 1109 1110 /* 1111 * This is called to generate messages from the routing socket 1112 * indicating a network interface has had addresses associated with it. 1113 * if we ever reverse the logic and replace messages TO the routing 1114 * socket indicate a request to configure interfaces, then it will 1115 * be unnecessary as the routing socket will automatically generate 1116 * copies of it. 1117 */ 1118 void 1119 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 1120 { 1121 struct rt_addrinfo info; 1122 struct sockaddr *sa = NULL; 1123 int pass; 1124 struct mbuf *m = NULL; 1125 struct ifnet *ifp = ifa->ifa_ifp; 1126 1127 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 1128 ("unexpected cmd %u", cmd)); 1129 #if defined(INET) || defined(INET6) 1130 #ifdef SCTP 1131 /* 1132 * notify the SCTP stack 1133 * this will only get called when an address is added/deleted 1134 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 1135 */ 1136 sctp_addr_change(ifa, cmd); 1137 #endif /* SCTP */ 1138 #endif 1139 if (route_cb.any_count == 0) 1140 return; 1141 for (pass = 1; pass < 3; pass++) { 1142 bzero((caddr_t)&info, sizeof(info)); 1143 if ((cmd == RTM_ADD && pass == 1) || 1144 (cmd == RTM_DELETE && pass == 2)) { 1145 struct ifa_msghdr *ifam; 1146 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1147 1148 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1149 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1150 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1151 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1152 if ((m = rt_msg1(ncmd, &info)) == NULL) 1153 continue; 1154 ifam = mtod(m, struct ifa_msghdr *); 1155 ifam->ifam_index = ifp->if_index; 1156 ifam->ifam_metric = ifa->ifa_metric; 1157 ifam->ifam_flags = ifa->ifa_flags; 1158 ifam->ifam_addrs = info.rti_addrs; 1159 } 1160 if ((cmd == RTM_ADD && pass == 2) || 1161 (cmd == RTM_DELETE && pass == 1)) { 1162 struct rt_msghdr *rtm; 1163 1164 if (rt == NULL) 1165 continue; 1166 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1167 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1168 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1169 if ((m = rt_msg1(cmd, &info)) == NULL) 1170 continue; 1171 rtm = mtod(m, struct rt_msghdr *); 1172 rtm->rtm_index = ifp->if_index; 1173 rtm->rtm_flags |= rt->rt_flags; 1174 rtm->rtm_errno = error; 1175 rtm->rtm_addrs = info.rti_addrs; 1176 } 1177 rt_dispatch(m, sa); 1178 } 1179 } 1180 1181 /* 1182 * This is the analogue to the rt_newaddrmsg which performs the same 1183 * function but for multicast group memberhips. This is easier since 1184 * there is no route state to worry about. 1185 */ 1186 void 1187 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1188 { 1189 struct rt_addrinfo info; 1190 struct mbuf *m = NULL; 1191 struct ifnet *ifp = ifma->ifma_ifp; 1192 struct ifma_msghdr *ifmam; 1193 1194 if (route_cb.any_count == 0) 1195 return; 1196 1197 bzero((caddr_t)&info, sizeof(info)); 1198 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1199 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1200 /* 1201 * If a link-layer address is present, present it as a ``gateway'' 1202 * (similarly to how ARP entries, e.g., are presented). 1203 */ 1204 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1205 m = rt_msg1(cmd, &info); 1206 if (m == NULL) 1207 return; 1208 ifmam = mtod(m, struct ifma_msghdr *); 1209 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1210 __func__)); 1211 ifmam->ifmam_index = ifp->if_index; 1212 ifmam->ifmam_addrs = info.rti_addrs; 1213 rt_dispatch(m, ifma->ifma_addr); 1214 } 1215 1216 static struct mbuf * 1217 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1218 struct rt_addrinfo *info) 1219 { 1220 struct if_announcemsghdr *ifan; 1221 struct mbuf *m; 1222 1223 if (route_cb.any_count == 0) 1224 return NULL; 1225 bzero((caddr_t)info, sizeof(*info)); 1226 m = rt_msg1(type, info); 1227 if (m != NULL) { 1228 ifan = mtod(m, struct if_announcemsghdr *); 1229 ifan->ifan_index = ifp->if_index; 1230 strlcpy(ifan->ifan_name, ifp->if_xname, 1231 sizeof(ifan->ifan_name)); 1232 ifan->ifan_what = what; 1233 } 1234 return m; 1235 } 1236 1237 /* 1238 * This is called to generate routing socket messages indicating 1239 * IEEE80211 wireless events. 1240 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1241 */ 1242 void 1243 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1244 { 1245 struct mbuf *m; 1246 struct rt_addrinfo info; 1247 1248 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1249 if (m != NULL) { 1250 /* 1251 * Append the ieee80211 data. Try to stick it in the 1252 * mbuf containing the ifannounce msg; otherwise allocate 1253 * a new mbuf and append. 1254 * 1255 * NB: we assume m is a single mbuf. 1256 */ 1257 if (data_len > M_TRAILINGSPACE(m)) { 1258 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1259 if (n == NULL) { 1260 m_freem(m); 1261 return; 1262 } 1263 bcopy(data, mtod(n, void *), data_len); 1264 n->m_len = data_len; 1265 m->m_next = n; 1266 } else if (data_len > 0) { 1267 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1268 m->m_len += data_len; 1269 } 1270 if (m->m_flags & M_PKTHDR) 1271 m->m_pkthdr.len += data_len; 1272 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1273 rt_dispatch(m, NULL); 1274 } 1275 } 1276 1277 /* 1278 * This is called to generate routing socket messages indicating 1279 * network interface arrival and departure. 1280 */ 1281 void 1282 rt_ifannouncemsg(struct ifnet *ifp, int what) 1283 { 1284 struct mbuf *m; 1285 struct rt_addrinfo info; 1286 1287 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1288 if (m != NULL) 1289 rt_dispatch(m, NULL); 1290 } 1291 1292 static void 1293 rt_dispatch(struct mbuf *m, const struct sockaddr *sa) 1294 { 1295 struct m_tag *tag; 1296 1297 /* 1298 * Preserve the family from the sockaddr, if any, in an m_tag for 1299 * use when injecting the mbuf into the routing socket buffer from 1300 * the netisr. 1301 */ 1302 if (sa != NULL) { 1303 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1304 M_NOWAIT); 1305 if (tag == NULL) { 1306 m_freem(m); 1307 return; 1308 } 1309 *(unsigned short *)(tag + 1) = sa->sa_family; 1310 m_tag_prepend(m, tag); 1311 } 1312 #ifdef VIMAGE 1313 if (V_loif) 1314 m->m_pkthdr.rcvif = V_loif; 1315 else { 1316 m_freem(m); 1317 return; 1318 } 1319 #endif 1320 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1321 } 1322 1323 /* 1324 * This is used in dumping the kernel table via sysctl(). 1325 */ 1326 static int 1327 sysctl_dumpentry(struct radix_node *rn, void *vw) 1328 { 1329 struct walkarg *w = vw; 1330 struct rtentry *rt = (struct rtentry *)rn; 1331 int error = 0, size; 1332 struct rt_addrinfo info; 1333 1334 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1335 return 0; 1336 if ((rt->rt_flags & RTF_HOST) == 0 1337 ? jailed_without_vnet(w->w_req->td->td_ucred) 1338 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1339 return (0); 1340 bzero((caddr_t)&info, sizeof(info)); 1341 info.rti_info[RTAX_DST] = rt_key(rt); 1342 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1343 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1344 info.rti_info[RTAX_GENMASK] = 0; 1345 if (rt->rt_ifp) { 1346 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1347 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1348 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1349 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1350 } 1351 size = rt_msg2(RTM_GET, &info, NULL, w); 1352 if (w->w_req && w->w_tmem) { 1353 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1354 1355 rtm->rtm_flags = rt->rt_flags; 1356 /* 1357 * let's be honest about this being a retarded hack 1358 */ 1359 rtm->rtm_fmask = rt->rt_rmx.rmx_pksent; 1360 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1361 rtm->rtm_index = rt->rt_ifp->if_index; 1362 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1363 rtm->rtm_addrs = info.rti_addrs; 1364 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1365 return (error); 1366 } 1367 return (error); 1368 } 1369 1370 static int 1371 sysctl_iflist(int af, struct walkarg *w) 1372 { 1373 struct ifnet *ifp; 1374 struct ifaddr *ifa; 1375 struct rt_addrinfo info; 1376 int len, error = 0; 1377 1378 bzero((caddr_t)&info, sizeof(info)); 1379 IFNET_RLOCK(); 1380 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1381 if (w->w_arg && w->w_arg != ifp->if_index) 1382 continue; 1383 ifa = ifp->if_addr; 1384 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1385 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1386 info.rti_info[RTAX_IFP] = NULL; 1387 if (w->w_req && w->w_tmem) { 1388 struct if_msghdr *ifm; 1389 1390 ifm = (struct if_msghdr *)w->w_tmem; 1391 ifm->ifm_index = ifp->if_index; 1392 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1393 ifm->ifm_data = ifp->if_data; 1394 ifm->ifm_addrs = info.rti_addrs; 1395 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); 1396 if (error) 1397 goto done; 1398 } 1399 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1400 if (af && af != ifa->ifa_addr->sa_family) 1401 continue; 1402 if (prison_if(w->w_req->td->td_ucred, 1403 ifa->ifa_addr) != 0) 1404 continue; 1405 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1406 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1407 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1408 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1409 if (w->w_req && w->w_tmem) { 1410 struct ifa_msghdr *ifam; 1411 1412 ifam = (struct ifa_msghdr *)w->w_tmem; 1413 ifam->ifam_index = ifa->ifa_ifp->if_index; 1414 ifam->ifam_flags = ifa->ifa_flags; 1415 ifam->ifam_metric = ifa->ifa_metric; 1416 ifam->ifam_addrs = info.rti_addrs; 1417 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1418 if (error) 1419 goto done; 1420 } 1421 } 1422 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1423 info.rti_info[RTAX_BRD] = NULL; 1424 } 1425 done: 1426 IFNET_RUNLOCK(); 1427 return (error); 1428 } 1429 1430 static int 1431 sysctl_ifmalist(int af, struct walkarg *w) 1432 { 1433 struct ifnet *ifp; 1434 struct ifmultiaddr *ifma; 1435 struct rt_addrinfo info; 1436 int len, error = 0; 1437 struct ifaddr *ifa; 1438 1439 bzero((caddr_t)&info, sizeof(info)); 1440 IFNET_RLOCK(); 1441 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1442 if (w->w_arg && w->w_arg != ifp->if_index) 1443 continue; 1444 ifa = ifp->if_addr; 1445 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1446 IF_ADDR_LOCK(ifp); 1447 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1448 if (af && af != ifma->ifma_addr->sa_family) 1449 continue; 1450 if (prison_if(w->w_req->td->td_ucred, 1451 ifma->ifma_addr) != 0) 1452 continue; 1453 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1454 info.rti_info[RTAX_GATEWAY] = 1455 (ifma->ifma_addr->sa_family != AF_LINK) ? 1456 ifma->ifma_lladdr : NULL; 1457 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1458 if (w->w_req && w->w_tmem) { 1459 struct ifma_msghdr *ifmam; 1460 1461 ifmam = (struct ifma_msghdr *)w->w_tmem; 1462 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1463 ifmam->ifmam_flags = 0; 1464 ifmam->ifmam_addrs = info.rti_addrs; 1465 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1466 if (error) { 1467 IF_ADDR_UNLOCK(ifp); 1468 goto done; 1469 } 1470 } 1471 } 1472 IF_ADDR_UNLOCK(ifp); 1473 } 1474 done: 1475 IFNET_RUNLOCK(); 1476 return (error); 1477 } 1478 1479 static int 1480 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1481 { 1482 int *name = (int *)arg1; 1483 u_int namelen = arg2; 1484 struct radix_node_head *rnh = NULL; /* silence compiler. */ 1485 int i, lim, error = EINVAL; 1486 u_char af; 1487 struct walkarg w; 1488 1489 name ++; 1490 namelen--; 1491 if (req->newptr) 1492 return (EPERM); 1493 if (namelen != 3) 1494 return ((namelen < 3) ? EISDIR : ENOTDIR); 1495 af = name[0]; 1496 if (af > AF_MAX) 1497 return (EINVAL); 1498 bzero(&w, sizeof(w)); 1499 w.w_op = name[1]; 1500 w.w_arg = name[2]; 1501 w.w_req = req; 1502 1503 error = sysctl_wire_old_buffer(req, 0); 1504 if (error) 1505 return (error); 1506 switch (w.w_op) { 1507 1508 case NET_RT_DUMP: 1509 case NET_RT_FLAGS: 1510 if (af == 0) { /* dump all tables */ 1511 i = 1; 1512 lim = AF_MAX; 1513 } else /* dump only one table */ 1514 i = lim = af; 1515 1516 /* 1517 * take care of llinfo entries, the caller must 1518 * specify an AF 1519 */ 1520 if (w.w_op == NET_RT_FLAGS && 1521 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1522 if (af != 0) 1523 error = lltable_sysctl_dumparp(af, w.w_req); 1524 else 1525 error = EINVAL; 1526 break; 1527 } 1528 /* 1529 * take care of routing entries 1530 */ 1531 for (error = 0; error == 0 && i <= lim; i++) { 1532 rnh = rt_tables_get_rnh(req->td->td_proc->p_fibnum, i); 1533 if (rnh != NULL) { 1534 RADIX_NODE_HEAD_LOCK(rnh); 1535 error = rnh->rnh_walktree(rnh, 1536 sysctl_dumpentry, &w); 1537 RADIX_NODE_HEAD_UNLOCK(rnh); 1538 } else if (af != 0) 1539 error = EAFNOSUPPORT; 1540 } 1541 break; 1542 1543 case NET_RT_IFLIST: 1544 error = sysctl_iflist(af, &w); 1545 break; 1546 1547 case NET_RT_IFMALIST: 1548 error = sysctl_ifmalist(af, &w); 1549 break; 1550 } 1551 if (w.w_tmem) 1552 free(w.w_tmem, M_RTABLE); 1553 return (error); 1554 } 1555 1556 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1557 1558 /* 1559 * Definitions of protocols supported in the ROUTE domain. 1560 */ 1561 1562 static struct domain routedomain; /* or at least forward */ 1563 1564 static struct protosw routesw[] = { 1565 { 1566 .pr_type = SOCK_RAW, 1567 .pr_domain = &routedomain, 1568 .pr_flags = PR_ATOMIC|PR_ADDR, 1569 .pr_output = route_output, 1570 .pr_ctlinput = raw_ctlinput, 1571 .pr_init = raw_init, 1572 .pr_usrreqs = &route_usrreqs 1573 } 1574 }; 1575 1576 static struct domain routedomain = { 1577 .dom_family = PF_ROUTE, 1578 .dom_name = "route", 1579 .dom_protosw = routesw, 1580 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1581 }; 1582 1583 VNET_DOMAIN_SET(route); 1584