1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_sctp.h" 33 #include "opt_mpath.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 37 #include <sys/param.h> 38 #include <sys/domain.h> 39 #include <sys/jail.h> 40 #include <sys/kernel.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/rwlock.h> 48 #include <sys/signalvar.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/systm.h> 53 #include <sys/vimage.h> 54 55 #include <net/if.h> 56 #include <net/if_dl.h> 57 #include <net/if_llatbl.h> 58 #include <net/netisr.h> 59 #include <net/raw_cb.h> 60 #include <net/route.h> 61 #include <net/vnet.h> 62 63 #include <netinet/in.h> 64 #ifdef INET6 65 #include <netinet6/scope6_var.h> 66 #endif 67 68 #ifdef SCTP 69 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 70 #endif /* SCTP */ 71 72 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 73 74 /* NB: these are not modified */ 75 static struct sockaddr route_src = { 2, PF_ROUTE, }; 76 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 77 78 static struct { 79 int ip_count; /* attached w/ AF_INET */ 80 int ip6_count; /* attached w/ AF_INET6 */ 81 int ipx_count; /* attached w/ AF_IPX */ 82 int any_count; /* total attached */ 83 } route_cb; 84 85 struct mtx rtsock_mtx; 86 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 87 88 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 89 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 90 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 91 92 static struct ifqueue rtsintrq; 93 94 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 95 SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW, 96 &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length"); 97 98 struct walkarg { 99 int w_tmemsize; 100 int w_op, w_arg; 101 caddr_t w_tmem; 102 struct sysctl_req *w_req; 103 }; 104 105 static void rts_input(struct mbuf *m); 106 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 107 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 108 caddr_t cp, struct walkarg *w); 109 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 110 struct rt_addrinfo *rtinfo); 111 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 112 static int sysctl_iflist(int af, struct walkarg *w); 113 static int sysctl_ifmalist(int af, struct walkarg *w); 114 static int route_output(struct mbuf *m, struct socket *so); 115 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 116 struct rt_metrics_lite *out); 117 static void rt_getmetrics(const struct rt_metrics_lite *in, 118 struct rt_metrics *out); 119 static void rt_dispatch(struct mbuf *, const struct sockaddr *); 120 121 static void 122 rts_init(void) 123 { 124 int tmp; 125 126 rtsintrq.ifq_maxlen = 256; 127 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 128 rtsintrq.ifq_maxlen = tmp; 129 mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF); 130 netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, 0); 131 } 132 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 133 134 static void 135 rts_input(struct mbuf *m) 136 { 137 struct sockproto route_proto; 138 unsigned short *family; 139 struct m_tag *tag; 140 141 route_proto.sp_family = PF_ROUTE; 142 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 143 if (tag != NULL) { 144 family = (unsigned short *)(tag + 1); 145 route_proto.sp_protocol = *family; 146 m_tag_delete(m, tag); 147 } else 148 route_proto.sp_protocol = 0; 149 150 raw_input(m, &route_proto, &route_src); 151 } 152 153 /* 154 * It really doesn't make any sense at all for this code to share much 155 * with raw_usrreq.c, since its functionality is so restricted. XXX 156 */ 157 static void 158 rts_abort(struct socket *so) 159 { 160 161 raw_usrreqs.pru_abort(so); 162 } 163 164 static void 165 rts_close(struct socket *so) 166 { 167 168 raw_usrreqs.pru_close(so); 169 } 170 171 /* pru_accept is EOPNOTSUPP */ 172 173 static int 174 rts_attach(struct socket *so, int proto, struct thread *td) 175 { 176 struct rawcb *rp; 177 int s, error; 178 179 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 180 181 /* XXX */ 182 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 183 if (rp == NULL) 184 return ENOBUFS; 185 186 /* 187 * The splnet() is necessary to block protocols from sending 188 * error notifications (like RTM_REDIRECT or RTM_LOSING) while 189 * this PCB is extant but incompletely initialized. 190 * Probably we should try to do more of this work beforehand and 191 * eliminate the spl. 192 */ 193 s = splnet(); 194 so->so_pcb = (caddr_t)rp; 195 so->so_fibnum = td->td_proc->p_fibnum; 196 error = raw_attach(so, proto); 197 rp = sotorawcb(so); 198 if (error) { 199 splx(s); 200 so->so_pcb = NULL; 201 free(rp, M_PCB); 202 return error; 203 } 204 RTSOCK_LOCK(); 205 switch(rp->rcb_proto.sp_protocol) { 206 case AF_INET: 207 route_cb.ip_count++; 208 break; 209 case AF_INET6: 210 route_cb.ip6_count++; 211 break; 212 case AF_IPX: 213 route_cb.ipx_count++; 214 break; 215 } 216 route_cb.any_count++; 217 RTSOCK_UNLOCK(); 218 soisconnected(so); 219 so->so_options |= SO_USELOOPBACK; 220 splx(s); 221 return 0; 222 } 223 224 static int 225 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 226 { 227 228 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 229 } 230 231 static int 232 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 233 { 234 235 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 236 } 237 238 /* pru_connect2 is EOPNOTSUPP */ 239 /* pru_control is EOPNOTSUPP */ 240 241 static void 242 rts_detach(struct socket *so) 243 { 244 struct rawcb *rp = sotorawcb(so); 245 246 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 247 248 RTSOCK_LOCK(); 249 switch(rp->rcb_proto.sp_protocol) { 250 case AF_INET: 251 route_cb.ip_count--; 252 break; 253 case AF_INET6: 254 route_cb.ip6_count--; 255 break; 256 case AF_IPX: 257 route_cb.ipx_count--; 258 break; 259 } 260 route_cb.any_count--; 261 RTSOCK_UNLOCK(); 262 raw_usrreqs.pru_detach(so); 263 } 264 265 static int 266 rts_disconnect(struct socket *so) 267 { 268 269 return (raw_usrreqs.pru_disconnect(so)); 270 } 271 272 /* pru_listen is EOPNOTSUPP */ 273 274 static int 275 rts_peeraddr(struct socket *so, struct sockaddr **nam) 276 { 277 278 return (raw_usrreqs.pru_peeraddr(so, nam)); 279 } 280 281 /* pru_rcvd is EOPNOTSUPP */ 282 /* pru_rcvoob is EOPNOTSUPP */ 283 284 static int 285 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 286 struct mbuf *control, struct thread *td) 287 { 288 289 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 290 } 291 292 /* pru_sense is null */ 293 294 static int 295 rts_shutdown(struct socket *so) 296 { 297 298 return (raw_usrreqs.pru_shutdown(so)); 299 } 300 301 static int 302 rts_sockaddr(struct socket *so, struct sockaddr **nam) 303 { 304 305 return (raw_usrreqs.pru_sockaddr(so, nam)); 306 } 307 308 static struct pr_usrreqs route_usrreqs = { 309 .pru_abort = rts_abort, 310 .pru_attach = rts_attach, 311 .pru_bind = rts_bind, 312 .pru_connect = rts_connect, 313 .pru_detach = rts_detach, 314 .pru_disconnect = rts_disconnect, 315 .pru_peeraddr = rts_peeraddr, 316 .pru_send = rts_send, 317 .pru_shutdown = rts_shutdown, 318 .pru_sockaddr = rts_sockaddr, 319 .pru_close = rts_close, 320 }; 321 322 #ifndef _SOCKADDR_UNION_DEFINED 323 #define _SOCKADDR_UNION_DEFINED 324 /* 325 * The union of all possible address formats we handle. 326 */ 327 union sockaddr_union { 328 struct sockaddr sa; 329 struct sockaddr_in sin; 330 struct sockaddr_in6 sin6; 331 }; 332 #endif /* _SOCKADDR_UNION_DEFINED */ 333 334 static int 335 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 336 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 337 { 338 339 switch (info->rti_info[RTAX_DST]->sa_family) { 340 #ifdef INET 341 case AF_INET: 342 { 343 struct in_addr ia; 344 345 /* 346 * 1. Check if the returned address is part of the jail. 347 */ 348 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->sin_addr; 349 if (prison_check_ip4(cred, &ia) != 0) { 350 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 351 352 } else { 353 struct ifaddr *ifa; 354 int found; 355 356 found = 0; 357 358 /* 359 * 2. Try to find an address on the given outgoing 360 * interface that belongs to the jail. 361 */ 362 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 363 struct sockaddr *sa; 364 sa = ifa->ifa_addr; 365 if (sa->sa_family != AF_INET) 366 continue; 367 ia = ((struct sockaddr_in *)sa)->sin_addr; 368 if (prison_check_ip4(cred, &ia) != 0) { 369 found = 1; 370 break; 371 } 372 } 373 if (!found) { 374 /* 375 * 3. As a last resort return the 'default' 376 * jail address. 377 */ 378 if (prison_getip4(cred, &ia) != 0) 379 return (ESRCH); 380 } 381 bzero(&saun->sin, sizeof(struct sockaddr_in)); 382 saun->sin.sin_len = sizeof(struct sockaddr_in); 383 saun->sin.sin_family = AF_INET; 384 saun->sin.sin_addr.s_addr = ia.s_addr; 385 info->rti_info[RTAX_IFA] = 386 (struct sockaddr *)&saun->sin; 387 } 388 break; 389 } 390 #endif 391 #ifdef INET6 392 case AF_INET6: 393 { 394 struct in6_addr ia6; 395 396 /* 397 * 1. Check if the returned address is part of the jail. 398 */ 399 bcopy(&((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->sin6_addr, 400 &ia6, sizeof(struct in6_addr)); 401 if (prison_check_ip6(cred, &ia6) != 0) { 402 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 403 } else { 404 struct ifaddr *ifa; 405 int found; 406 407 found = 0; 408 409 /* 410 * 2. Try to find an address on the given outgoing 411 * interface that belongs to the jail. 412 */ 413 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 414 struct sockaddr *sa; 415 sa = ifa->ifa_addr; 416 if (sa->sa_family != AF_INET6) 417 continue; 418 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 419 &ia6, sizeof(struct in6_addr)); 420 if (prison_check_ip6(cred, &ia6) != 0) { 421 found = 1; 422 break; 423 } 424 } 425 if (!found) { 426 /* 427 * 3. As a last resort return the 'default' 428 * jail address. 429 */ 430 if (prison_getip6(cred, &ia6) != 0) 431 return (ESRCH); 432 } 433 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 434 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 435 saun->sin6.sin6_family = AF_INET6; 436 bcopy(&ia6, &saun->sin6.sin6_addr, 437 sizeof(struct in6_addr)); 438 if (sa6_recoverscope(&saun->sin6) != 0) 439 return (ESRCH); 440 info->rti_info[RTAX_IFA] = 441 (struct sockaddr *)&saun->sin6; 442 } 443 break; 444 } 445 #endif 446 default: 447 return (ESRCH); 448 } 449 return (0); 450 } 451 452 /*ARGSUSED*/ 453 static int 454 route_output(struct mbuf *m, struct socket *so) 455 { 456 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 457 INIT_VNET_NET(so->so_vnet); 458 struct rt_msghdr *rtm = NULL; 459 struct rtentry *rt = NULL; 460 struct radix_node_head *rnh; 461 struct rt_addrinfo info; 462 int len, error = 0; 463 struct ifnet *ifp = NULL; 464 union sockaddr_union saun; 465 466 #define senderr(e) { error = e; goto flush;} 467 if (m == NULL || ((m->m_len < sizeof(long)) && 468 (m = m_pullup(m, sizeof(long))) == NULL)) 469 return (ENOBUFS); 470 if ((m->m_flags & M_PKTHDR) == 0) 471 panic("route_output"); 472 len = m->m_pkthdr.len; 473 if (len < sizeof(*rtm) || 474 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 475 info.rti_info[RTAX_DST] = NULL; 476 senderr(EINVAL); 477 } 478 R_Malloc(rtm, struct rt_msghdr *, len); 479 if (rtm == NULL) { 480 info.rti_info[RTAX_DST] = NULL; 481 senderr(ENOBUFS); 482 } 483 m_copydata(m, 0, len, (caddr_t)rtm); 484 if (rtm->rtm_version != RTM_VERSION) { 485 info.rti_info[RTAX_DST] = NULL; 486 senderr(EPROTONOSUPPORT); 487 } 488 rtm->rtm_pid = curproc->p_pid; 489 bzero(&info, sizeof(info)); 490 info.rti_addrs = rtm->rtm_addrs; 491 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 492 info.rti_info[RTAX_DST] = NULL; 493 senderr(EINVAL); 494 } 495 info.rti_flags = rtm->rtm_flags; 496 if (info.rti_info[RTAX_DST] == NULL || 497 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 498 (info.rti_info[RTAX_GATEWAY] != NULL && 499 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 500 senderr(EINVAL); 501 /* 502 * Verify that the caller has the appropriate privilege; RTM_GET 503 * is the only operation the non-superuser is allowed. 504 */ 505 if (rtm->rtm_type != RTM_GET) { 506 error = priv_check(curthread, PRIV_NET_ROUTE); 507 if (error) 508 senderr(error); 509 } 510 511 switch (rtm->rtm_type) { 512 struct rtentry *saved_nrt; 513 514 case RTM_ADD: 515 if (info.rti_info[RTAX_GATEWAY] == NULL) 516 senderr(EINVAL); 517 saved_nrt = NULL; 518 519 /* support for new ARP code */ 520 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 521 (rtm->rtm_flags & RTF_LLDATA) != 0) { 522 error = lla_rt_output(rtm, &info); 523 break; 524 } 525 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 526 so->so_fibnum); 527 if (error == 0 && saved_nrt) { 528 RT_LOCK(saved_nrt); 529 rt_setmetrics(rtm->rtm_inits, 530 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 531 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 532 RT_REMREF(saved_nrt); 533 RT_UNLOCK(saved_nrt); 534 } 535 break; 536 537 case RTM_DELETE: 538 saved_nrt = NULL; 539 /* support for new ARP code */ 540 if (info.rti_info[RTAX_GATEWAY] && 541 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 542 (rtm->rtm_flags & RTF_LLDATA) != 0) { 543 error = lla_rt_output(rtm, &info); 544 break; 545 } 546 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 547 so->so_fibnum); 548 if (error == 0) { 549 RT_LOCK(saved_nrt); 550 rt = saved_nrt; 551 goto report; 552 } 553 break; 554 555 case RTM_GET: 556 case RTM_CHANGE: 557 case RTM_LOCK: 558 rnh = V_rt_tables[so->so_fibnum][info.rti_info[RTAX_DST]->sa_family]; 559 if (rnh == NULL) 560 senderr(EAFNOSUPPORT); 561 RADIX_NODE_HEAD_RLOCK(rnh); 562 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 563 info.rti_info[RTAX_NETMASK], rnh); 564 if (rt == NULL) { /* XXX looks bogus */ 565 RADIX_NODE_HEAD_RUNLOCK(rnh); 566 senderr(ESRCH); 567 } 568 #ifdef RADIX_MPATH 569 /* 570 * for RTM_CHANGE/LOCK, if we got multipath routes, 571 * we require users to specify a matching RTAX_GATEWAY. 572 * 573 * for RTM_GET, gate is optional even with multipath. 574 * if gate == NULL the first match is returned. 575 * (no need to call rt_mpath_matchgate if gate == NULL) 576 */ 577 if (rn_mpath_capable(rnh) && 578 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 579 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 580 if (!rt) { 581 RADIX_NODE_HEAD_RUNLOCK(rnh); 582 senderr(ESRCH); 583 } 584 } 585 #endif 586 RT_LOCK(rt); 587 RT_ADDREF(rt); 588 RADIX_NODE_HEAD_RUNLOCK(rnh); 589 590 /* 591 * Fix for PR: 82974 592 * 593 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 594 * returns a perfect match in case a netmask is 595 * specified. For host routes only a longest prefix 596 * match is returned so it is necessary to compare the 597 * existence of the netmask. If both have a netmask 598 * rnh_lookup() did a perfect match and if none of them 599 * have a netmask both are host routes which is also a 600 * perfect match. 601 */ 602 603 if (rtm->rtm_type != RTM_GET && 604 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 605 RT_UNLOCK(rt); 606 senderr(ESRCH); 607 } 608 609 switch(rtm->rtm_type) { 610 611 case RTM_GET: 612 report: 613 RT_LOCK_ASSERT(rt); 614 if (jailed(curthread->td_ucred) && 615 ((rt->rt_flags & RTF_HOST) == 0 || 616 !prison_if(curthread->td_ucred, rt_key(rt)))) { 617 RT_UNLOCK(rt); 618 senderr(ESRCH); 619 } 620 info.rti_info[RTAX_DST] = rt_key(rt); 621 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 622 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 623 info.rti_info[RTAX_GENMASK] = 0; 624 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 625 ifp = rt->rt_ifp; 626 if (ifp) { 627 info.rti_info[RTAX_IFP] = 628 ifp->if_addr->ifa_addr; 629 if (jailed(curthread->td_ucred)) { 630 error = rtm_get_jailed( 631 &info, ifp, rt, &saun, 632 curthread->td_ucred); 633 if (error != 0) { 634 RT_UNLOCK(rt); 635 senderr(ESRCH); 636 } 637 } else { 638 info.rti_info[RTAX_IFA] = 639 rt->rt_ifa->ifa_addr; 640 } 641 if (ifp->if_flags & IFF_POINTOPOINT) 642 info.rti_info[RTAX_BRD] = 643 rt->rt_ifa->ifa_dstaddr; 644 rtm->rtm_index = ifp->if_index; 645 } else { 646 info.rti_info[RTAX_IFP] = NULL; 647 info.rti_info[RTAX_IFA] = NULL; 648 } 649 } else if ((ifp = rt->rt_ifp) != NULL) { 650 rtm->rtm_index = ifp->if_index; 651 } 652 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 653 if (len > rtm->rtm_msglen) { 654 struct rt_msghdr *new_rtm; 655 R_Malloc(new_rtm, struct rt_msghdr *, len); 656 if (new_rtm == NULL) { 657 RT_UNLOCK(rt); 658 senderr(ENOBUFS); 659 } 660 bcopy(rtm, new_rtm, rtm->rtm_msglen); 661 Free(rtm); rtm = new_rtm; 662 } 663 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 664 rtm->rtm_flags = rt->rt_flags; 665 rtm->rtm_use = 0; 666 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 667 rtm->rtm_addrs = info.rti_addrs; 668 break; 669 670 case RTM_CHANGE: 671 /* 672 * New gateway could require new ifaddr, ifp; 673 * flags may also be different; ifp may be specified 674 * by ll sockaddr when protocol address is ambiguous 675 */ 676 if (((rt->rt_flags & RTF_GATEWAY) && 677 info.rti_info[RTAX_GATEWAY] != NULL) || 678 info.rti_info[RTAX_IFP] != NULL || 679 (info.rti_info[RTAX_IFA] != NULL && 680 !sa_equal(info.rti_info[RTAX_IFA], 681 rt->rt_ifa->ifa_addr))) { 682 RT_UNLOCK(rt); 683 RADIX_NODE_HEAD_LOCK(rnh); 684 error = rt_getifa_fib(&info, rt->rt_fibnum); 685 RADIX_NODE_HEAD_UNLOCK(rnh); 686 if (error != 0) 687 senderr(error); 688 RT_LOCK(rt); 689 } 690 if (info.rti_ifa != NULL && 691 info.rti_ifa != rt->rt_ifa && 692 rt->rt_ifa != NULL && 693 rt->rt_ifa->ifa_rtrequest != NULL) { 694 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 695 &info); 696 IFAFREE(rt->rt_ifa); 697 } 698 if (info.rti_info[RTAX_GATEWAY] != NULL) { 699 RT_UNLOCK(rt); 700 RADIX_NODE_HEAD_LOCK(rnh); 701 RT_LOCK(rt); 702 703 error = rt_setgate(rt, rt_key(rt), 704 info.rti_info[RTAX_GATEWAY]); 705 RADIX_NODE_HEAD_UNLOCK(rnh); 706 if (error != 0) { 707 RT_UNLOCK(rt); 708 senderr(error); 709 } 710 rt->rt_flags |= RTF_GATEWAY; 711 } 712 if (info.rti_ifa != NULL && 713 info.rti_ifa != rt->rt_ifa) { 714 IFAREF(info.rti_ifa); 715 rt->rt_ifa = info.rti_ifa; 716 rt->rt_ifp = info.rti_ifp; 717 } 718 /* Allow some flags to be toggled on change. */ 719 if (rtm->rtm_fmask & RTF_FMASK) 720 rt->rt_flags = (rt->rt_flags & 721 ~rtm->rtm_fmask) | 722 (rtm->rtm_flags & rtm->rtm_fmask); 723 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 724 &rt->rt_rmx); 725 rtm->rtm_index = rt->rt_ifp->if_index; 726 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 727 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 728 /* FALLTHROUGH */ 729 case RTM_LOCK: 730 /* We don't support locks anymore */ 731 break; 732 } 733 RT_UNLOCK(rt); 734 break; 735 736 default: 737 senderr(EOPNOTSUPP); 738 } 739 740 flush: 741 if (rtm) { 742 if (error) 743 rtm->rtm_errno = error; 744 else 745 rtm->rtm_flags |= RTF_DONE; 746 } 747 if (rt) /* XXX can this be true? */ 748 RTFREE(rt); 749 { 750 struct rawcb *rp = NULL; 751 /* 752 * Check to see if we don't want our own messages. 753 */ 754 if ((so->so_options & SO_USELOOPBACK) == 0) { 755 if (route_cb.any_count <= 1) { 756 if (rtm) 757 Free(rtm); 758 m_freem(m); 759 return (error); 760 } 761 /* There is another listener, so construct message */ 762 rp = sotorawcb(so); 763 } 764 if (rtm) { 765 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 766 if (m->m_pkthdr.len < rtm->rtm_msglen) { 767 m_freem(m); 768 m = NULL; 769 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 770 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 771 Free(rtm); 772 } 773 if (m) { 774 if (rp) { 775 /* 776 * XXX insure we don't get a copy by 777 * invalidating our protocol 778 */ 779 unsigned short family = rp->rcb_proto.sp_family; 780 rp->rcb_proto.sp_family = 0; 781 rt_dispatch(m, info.rti_info[RTAX_DST]); 782 rp->rcb_proto.sp_family = family; 783 } else 784 rt_dispatch(m, info.rti_info[RTAX_DST]); 785 } 786 } 787 return (error); 788 #undef sa_equal 789 } 790 791 static void 792 rt_setmetrics(u_long which, const struct rt_metrics *in, 793 struct rt_metrics_lite *out) 794 { 795 #define metric(f, e) if (which & (f)) out->e = in->e; 796 /* 797 * Only these are stored in the routing entry since introduction 798 * of tcp hostcache. The rest is ignored. 799 */ 800 metric(RTV_MTU, rmx_mtu); 801 /* Userland -> kernel timebase conversion. */ 802 if (which & RTV_EXPIRE) 803 out->rmx_expire = in->rmx_expire ? 804 in->rmx_expire - time_second + time_uptime : 0; 805 #undef metric 806 } 807 808 static void 809 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 810 { 811 #define metric(e) out->e = in->e; 812 bzero(out, sizeof(*out)); 813 metric(rmx_mtu); 814 /* Kernel -> userland timebase conversion. */ 815 out->rmx_expire = in->rmx_expire ? 816 in->rmx_expire - time_uptime + time_second : 0; 817 #undef metric 818 } 819 820 /* 821 * Extract the addresses of the passed sockaddrs. 822 * Do a little sanity checking so as to avoid bad memory references. 823 * This data is derived straight from userland. 824 */ 825 static int 826 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 827 { 828 struct sockaddr *sa; 829 int i; 830 831 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 832 if ((rtinfo->rti_addrs & (1 << i)) == 0) 833 continue; 834 sa = (struct sockaddr *)cp; 835 /* 836 * It won't fit. 837 */ 838 if (cp + sa->sa_len > cplim) 839 return (EINVAL); 840 /* 841 * there are no more.. quit now 842 * If there are more bits, they are in error. 843 * I've seen this. route(1) can evidently generate these. 844 * This causes kernel to core dump. 845 * for compatibility, If we see this, point to a safe address. 846 */ 847 if (sa->sa_len == 0) { 848 rtinfo->rti_info[i] = &sa_zero; 849 return (0); /* should be EINVAL but for compat */ 850 } 851 /* accept it */ 852 rtinfo->rti_info[i] = sa; 853 cp += SA_SIZE(sa); 854 } 855 return (0); 856 } 857 858 static struct mbuf * 859 rt_msg1(int type, struct rt_addrinfo *rtinfo) 860 { 861 struct rt_msghdr *rtm; 862 struct mbuf *m; 863 int i; 864 struct sockaddr *sa; 865 int len, dlen; 866 867 switch (type) { 868 869 case RTM_DELADDR: 870 case RTM_NEWADDR: 871 len = sizeof(struct ifa_msghdr); 872 break; 873 874 case RTM_DELMADDR: 875 case RTM_NEWMADDR: 876 len = sizeof(struct ifma_msghdr); 877 break; 878 879 case RTM_IFINFO: 880 len = sizeof(struct if_msghdr); 881 break; 882 883 case RTM_IFANNOUNCE: 884 case RTM_IEEE80211: 885 len = sizeof(struct if_announcemsghdr); 886 break; 887 888 default: 889 len = sizeof(struct rt_msghdr); 890 } 891 if (len > MCLBYTES) 892 panic("rt_msg1"); 893 m = m_gethdr(M_DONTWAIT, MT_DATA); 894 if (m && len > MHLEN) { 895 MCLGET(m, M_DONTWAIT); 896 if ((m->m_flags & M_EXT) == 0) { 897 m_free(m); 898 m = NULL; 899 } 900 } 901 if (m == NULL) 902 return (m); 903 m->m_pkthdr.len = m->m_len = len; 904 m->m_pkthdr.rcvif = NULL; 905 rtm = mtod(m, struct rt_msghdr *); 906 bzero((caddr_t)rtm, len); 907 for (i = 0; i < RTAX_MAX; i++) { 908 if ((sa = rtinfo->rti_info[i]) == NULL) 909 continue; 910 rtinfo->rti_addrs |= (1 << i); 911 dlen = SA_SIZE(sa); 912 m_copyback(m, len, dlen, (caddr_t)sa); 913 len += dlen; 914 } 915 if (m->m_pkthdr.len != len) { 916 m_freem(m); 917 return (NULL); 918 } 919 rtm->rtm_msglen = len; 920 rtm->rtm_version = RTM_VERSION; 921 rtm->rtm_type = type; 922 return (m); 923 } 924 925 static int 926 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 927 { 928 int i; 929 int len, dlen, second_time = 0; 930 caddr_t cp0; 931 932 rtinfo->rti_addrs = 0; 933 again: 934 switch (type) { 935 936 case RTM_DELADDR: 937 case RTM_NEWADDR: 938 len = sizeof(struct ifa_msghdr); 939 break; 940 941 case RTM_IFINFO: 942 len = sizeof(struct if_msghdr); 943 break; 944 945 case RTM_NEWMADDR: 946 len = sizeof(struct ifma_msghdr); 947 break; 948 949 default: 950 len = sizeof(struct rt_msghdr); 951 } 952 cp0 = cp; 953 if (cp0) 954 cp += len; 955 for (i = 0; i < RTAX_MAX; i++) { 956 struct sockaddr *sa; 957 958 if ((sa = rtinfo->rti_info[i]) == NULL) 959 continue; 960 rtinfo->rti_addrs |= (1 << i); 961 dlen = SA_SIZE(sa); 962 if (cp) { 963 bcopy((caddr_t)sa, cp, (unsigned)dlen); 964 cp += dlen; 965 } 966 len += dlen; 967 } 968 len = ALIGN(len); 969 if (cp == NULL && w != NULL && !second_time) { 970 struct walkarg *rw = w; 971 972 if (rw->w_req) { 973 if (rw->w_tmemsize < len) { 974 if (rw->w_tmem) 975 free(rw->w_tmem, M_RTABLE); 976 rw->w_tmem = (caddr_t) 977 malloc(len, M_RTABLE, M_NOWAIT); 978 if (rw->w_tmem) 979 rw->w_tmemsize = len; 980 } 981 if (rw->w_tmem) { 982 cp = rw->w_tmem; 983 second_time = 1; 984 goto again; 985 } 986 } 987 } 988 if (cp) { 989 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 990 991 rtm->rtm_version = RTM_VERSION; 992 rtm->rtm_type = type; 993 rtm->rtm_msglen = len; 994 } 995 return (len); 996 } 997 998 /* 999 * This routine is called to generate a message from the routing 1000 * socket indicating that a redirect has occured, a routing lookup 1001 * has failed, or that a protocol has detected timeouts to a particular 1002 * destination. 1003 */ 1004 void 1005 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1006 { 1007 struct rt_msghdr *rtm; 1008 struct mbuf *m; 1009 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1010 1011 if (route_cb.any_count == 0) 1012 return; 1013 m = rt_msg1(type, rtinfo); 1014 if (m == NULL) 1015 return; 1016 rtm = mtod(m, struct rt_msghdr *); 1017 rtm->rtm_flags = RTF_DONE | flags; 1018 rtm->rtm_errno = error; 1019 rtm->rtm_addrs = rtinfo->rti_addrs; 1020 rt_dispatch(m, sa); 1021 } 1022 1023 /* 1024 * This routine is called to generate a message from the routing 1025 * socket indicating that the status of a network interface has changed. 1026 */ 1027 void 1028 rt_ifmsg(struct ifnet *ifp) 1029 { 1030 struct if_msghdr *ifm; 1031 struct mbuf *m; 1032 struct rt_addrinfo info; 1033 1034 if (route_cb.any_count == 0) 1035 return; 1036 bzero((caddr_t)&info, sizeof(info)); 1037 m = rt_msg1(RTM_IFINFO, &info); 1038 if (m == NULL) 1039 return; 1040 ifm = mtod(m, struct if_msghdr *); 1041 ifm->ifm_index = ifp->if_index; 1042 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1043 ifm->ifm_data = ifp->if_data; 1044 ifm->ifm_addrs = 0; 1045 rt_dispatch(m, NULL); 1046 } 1047 1048 /* 1049 * This is called to generate messages from the routing socket 1050 * indicating a network interface has had addresses associated with it. 1051 * if we ever reverse the logic and replace messages TO the routing 1052 * socket indicate a request to configure interfaces, then it will 1053 * be unnecessary as the routing socket will automatically generate 1054 * copies of it. 1055 */ 1056 void 1057 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 1058 { 1059 struct rt_addrinfo info; 1060 struct sockaddr *sa = NULL; 1061 int pass; 1062 struct mbuf *m = NULL; 1063 struct ifnet *ifp = ifa->ifa_ifp; 1064 1065 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 1066 ("unexpected cmd %u", cmd)); 1067 #ifdef SCTP 1068 /* 1069 * notify the SCTP stack 1070 * this will only get called when an address is added/deleted 1071 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 1072 */ 1073 sctp_addr_change(ifa, cmd); 1074 #endif /* SCTP */ 1075 if (route_cb.any_count == 0) 1076 return; 1077 for (pass = 1; pass < 3; pass++) { 1078 bzero((caddr_t)&info, sizeof(info)); 1079 if ((cmd == RTM_ADD && pass == 1) || 1080 (cmd == RTM_DELETE && pass == 2)) { 1081 struct ifa_msghdr *ifam; 1082 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1083 1084 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1085 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1086 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1087 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1088 if ((m = rt_msg1(ncmd, &info)) == NULL) 1089 continue; 1090 ifam = mtod(m, struct ifa_msghdr *); 1091 ifam->ifam_index = ifp->if_index; 1092 ifam->ifam_metric = ifa->ifa_metric; 1093 ifam->ifam_flags = ifa->ifa_flags; 1094 ifam->ifam_addrs = info.rti_addrs; 1095 } 1096 if ((cmd == RTM_ADD && pass == 2) || 1097 (cmd == RTM_DELETE && pass == 1)) { 1098 struct rt_msghdr *rtm; 1099 1100 if (rt == NULL) 1101 continue; 1102 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1103 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1104 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1105 if ((m = rt_msg1(cmd, &info)) == NULL) 1106 continue; 1107 rtm = mtod(m, struct rt_msghdr *); 1108 rtm->rtm_index = ifp->if_index; 1109 rtm->rtm_flags |= rt->rt_flags; 1110 rtm->rtm_errno = error; 1111 rtm->rtm_addrs = info.rti_addrs; 1112 } 1113 rt_dispatch(m, sa); 1114 } 1115 } 1116 1117 /* 1118 * This is the analogue to the rt_newaddrmsg which performs the same 1119 * function but for multicast group memberhips. This is easier since 1120 * there is no route state to worry about. 1121 */ 1122 void 1123 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1124 { 1125 struct rt_addrinfo info; 1126 struct mbuf *m = NULL; 1127 struct ifnet *ifp = ifma->ifma_ifp; 1128 struct ifma_msghdr *ifmam; 1129 1130 if (route_cb.any_count == 0) 1131 return; 1132 1133 bzero((caddr_t)&info, sizeof(info)); 1134 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1135 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1136 /* 1137 * If a link-layer address is present, present it as a ``gateway'' 1138 * (similarly to how ARP entries, e.g., are presented). 1139 */ 1140 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1141 m = rt_msg1(cmd, &info); 1142 if (m == NULL) 1143 return; 1144 ifmam = mtod(m, struct ifma_msghdr *); 1145 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1146 __func__)); 1147 ifmam->ifmam_index = ifp->if_index; 1148 ifmam->ifmam_addrs = info.rti_addrs; 1149 rt_dispatch(m, ifma->ifma_addr); 1150 } 1151 1152 static struct mbuf * 1153 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1154 struct rt_addrinfo *info) 1155 { 1156 struct if_announcemsghdr *ifan; 1157 struct mbuf *m; 1158 1159 if (route_cb.any_count == 0) 1160 return NULL; 1161 bzero((caddr_t)info, sizeof(*info)); 1162 m = rt_msg1(type, info); 1163 if (m != NULL) { 1164 ifan = mtod(m, struct if_announcemsghdr *); 1165 ifan->ifan_index = ifp->if_index; 1166 strlcpy(ifan->ifan_name, ifp->if_xname, 1167 sizeof(ifan->ifan_name)); 1168 ifan->ifan_what = what; 1169 } 1170 return m; 1171 } 1172 1173 /* 1174 * This is called to generate routing socket messages indicating 1175 * IEEE80211 wireless events. 1176 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1177 */ 1178 void 1179 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1180 { 1181 struct mbuf *m; 1182 struct rt_addrinfo info; 1183 1184 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1185 if (m != NULL) { 1186 /* 1187 * Append the ieee80211 data. Try to stick it in the 1188 * mbuf containing the ifannounce msg; otherwise allocate 1189 * a new mbuf and append. 1190 * 1191 * NB: we assume m is a single mbuf. 1192 */ 1193 if (data_len > M_TRAILINGSPACE(m)) { 1194 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1195 if (n == NULL) { 1196 m_freem(m); 1197 return; 1198 } 1199 bcopy(data, mtod(n, void *), data_len); 1200 n->m_len = data_len; 1201 m->m_next = n; 1202 } else if (data_len > 0) { 1203 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1204 m->m_len += data_len; 1205 } 1206 if (m->m_flags & M_PKTHDR) 1207 m->m_pkthdr.len += data_len; 1208 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1209 rt_dispatch(m, NULL); 1210 } 1211 } 1212 1213 /* 1214 * This is called to generate routing socket messages indicating 1215 * network interface arrival and departure. 1216 */ 1217 void 1218 rt_ifannouncemsg(struct ifnet *ifp, int what) 1219 { 1220 struct mbuf *m; 1221 struct rt_addrinfo info; 1222 1223 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1224 if (m != NULL) 1225 rt_dispatch(m, NULL); 1226 } 1227 1228 static void 1229 rt_dispatch(struct mbuf *m, const struct sockaddr *sa) 1230 { 1231 INIT_VNET_NET(curvnet); 1232 struct m_tag *tag; 1233 1234 /* 1235 * Preserve the family from the sockaddr, if any, in an m_tag for 1236 * use when injecting the mbuf into the routing socket buffer from 1237 * the netisr. 1238 */ 1239 if (sa != NULL) { 1240 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1241 M_NOWAIT); 1242 if (tag == NULL) { 1243 m_freem(m); 1244 return; 1245 } 1246 *(unsigned short *)(tag + 1) = sa->sa_family; 1247 m_tag_prepend(m, tag); 1248 } 1249 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1250 } 1251 1252 /* 1253 * This is used in dumping the kernel table via sysctl(). 1254 */ 1255 static int 1256 sysctl_dumpentry(struct radix_node *rn, void *vw) 1257 { 1258 struct walkarg *w = vw; 1259 struct rtentry *rt = (struct rtentry *)rn; 1260 int error = 0, size; 1261 struct rt_addrinfo info; 1262 1263 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1264 return 0; 1265 if (jailed(w->w_req->td->td_ucred) && 1266 ((rt->rt_flags & RTF_HOST) == 0 || 1267 !prison_if(w->w_req->td->td_ucred, rt_key(rt)))) 1268 return (0); 1269 bzero((caddr_t)&info, sizeof(info)); 1270 info.rti_info[RTAX_DST] = rt_key(rt); 1271 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1272 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1273 info.rti_info[RTAX_GENMASK] = 0; 1274 if (rt->rt_ifp) { 1275 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1276 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1277 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1278 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1279 } 1280 size = rt_msg2(RTM_GET, &info, NULL, w); 1281 if (w->w_req && w->w_tmem) { 1282 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1283 1284 rtm->rtm_flags = rt->rt_flags; 1285 rtm->rtm_use = rt->rt_rmx.rmx_pksent; 1286 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1287 rtm->rtm_index = rt->rt_ifp->if_index; 1288 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1289 rtm->rtm_addrs = info.rti_addrs; 1290 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1291 return (error); 1292 } 1293 return (error); 1294 } 1295 1296 static int 1297 sysctl_iflist(int af, struct walkarg *w) 1298 { 1299 INIT_VNET_NET(curvnet); 1300 struct ifnet *ifp; 1301 struct ifaddr *ifa; 1302 struct rt_addrinfo info; 1303 int len, error = 0; 1304 1305 bzero((caddr_t)&info, sizeof(info)); 1306 IFNET_RLOCK(); 1307 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1308 if (w->w_arg && w->w_arg != ifp->if_index) 1309 continue; 1310 ifa = ifp->if_addr; 1311 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1312 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1313 info.rti_info[RTAX_IFP] = NULL; 1314 if (w->w_req && w->w_tmem) { 1315 struct if_msghdr *ifm; 1316 1317 ifm = (struct if_msghdr *)w->w_tmem; 1318 ifm->ifm_index = ifp->if_index; 1319 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1320 ifm->ifm_data = ifp->if_data; 1321 ifm->ifm_addrs = info.rti_addrs; 1322 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); 1323 if (error) 1324 goto done; 1325 } 1326 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1327 if (af && af != ifa->ifa_addr->sa_family) 1328 continue; 1329 if (jailed(w->w_req->td->td_ucred) && 1330 !prison_if(w->w_req->td->td_ucred, ifa->ifa_addr)) 1331 continue; 1332 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1333 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1334 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1335 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1336 if (w->w_req && w->w_tmem) { 1337 struct ifa_msghdr *ifam; 1338 1339 ifam = (struct ifa_msghdr *)w->w_tmem; 1340 ifam->ifam_index = ifa->ifa_ifp->if_index; 1341 ifam->ifam_flags = ifa->ifa_flags; 1342 ifam->ifam_metric = ifa->ifa_metric; 1343 ifam->ifam_addrs = info.rti_addrs; 1344 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1345 if (error) 1346 goto done; 1347 } 1348 } 1349 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1350 info.rti_info[RTAX_BRD] = NULL; 1351 } 1352 done: 1353 IFNET_RUNLOCK(); 1354 return (error); 1355 } 1356 1357 static int 1358 sysctl_ifmalist(int af, struct walkarg *w) 1359 { 1360 INIT_VNET_NET(curvnet); 1361 struct ifnet *ifp; 1362 struct ifmultiaddr *ifma; 1363 struct rt_addrinfo info; 1364 int len, error = 0; 1365 struct ifaddr *ifa; 1366 1367 bzero((caddr_t)&info, sizeof(info)); 1368 IFNET_RLOCK(); 1369 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1370 if (w->w_arg && w->w_arg != ifp->if_index) 1371 continue; 1372 ifa = ifp->if_addr; 1373 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1374 IF_ADDR_LOCK(ifp); 1375 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1376 if (af && af != ifma->ifma_addr->sa_family) 1377 continue; 1378 if (jailed(w->w_req->td->td_ucred) && 1379 !prison_if(w->w_req->td->td_ucred, ifma->ifma_addr)) 1380 continue; 1381 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1382 info.rti_info[RTAX_GATEWAY] = 1383 (ifma->ifma_addr->sa_family != AF_LINK) ? 1384 ifma->ifma_lladdr : NULL; 1385 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1386 if (w->w_req && w->w_tmem) { 1387 struct ifma_msghdr *ifmam; 1388 1389 ifmam = (struct ifma_msghdr *)w->w_tmem; 1390 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1391 ifmam->ifmam_flags = 0; 1392 ifmam->ifmam_addrs = info.rti_addrs; 1393 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1394 if (error) { 1395 IF_ADDR_UNLOCK(ifp); 1396 goto done; 1397 } 1398 } 1399 } 1400 IF_ADDR_UNLOCK(ifp); 1401 } 1402 done: 1403 IFNET_RUNLOCK(); 1404 return (error); 1405 } 1406 1407 static int 1408 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1409 { 1410 INIT_VNET_NET(curvnet); 1411 int *name = (int *)arg1; 1412 u_int namelen = arg2; 1413 struct radix_node_head *rnh; 1414 int i, lim, error = EINVAL; 1415 u_char af; 1416 struct walkarg w; 1417 1418 name ++; 1419 namelen--; 1420 if (req->newptr) 1421 return (EPERM); 1422 if (namelen != 3) 1423 return ((namelen < 3) ? EISDIR : ENOTDIR); 1424 af = name[0]; 1425 if (af > AF_MAX) 1426 return (EINVAL); 1427 bzero(&w, sizeof(w)); 1428 w.w_op = name[1]; 1429 w.w_arg = name[2]; 1430 w.w_req = req; 1431 1432 error = sysctl_wire_old_buffer(req, 0); 1433 if (error) 1434 return (error); 1435 switch (w.w_op) { 1436 1437 case NET_RT_DUMP: 1438 case NET_RT_FLAGS: 1439 if (af == 0) { /* dump all tables */ 1440 i = 1; 1441 lim = AF_MAX; 1442 } else /* dump only one table */ 1443 i = lim = af; 1444 1445 /* 1446 * take care of llinfo entries, the caller must 1447 * specify an AF 1448 */ 1449 if (w.w_op == NET_RT_FLAGS && w.w_arg == 0) { 1450 if (af != 0) 1451 error = lltable_sysctl_dumparp(af, w.w_req); 1452 else 1453 error = EINVAL; 1454 break; 1455 } 1456 /* 1457 * take care of routing entries 1458 */ 1459 for (error = 0; error == 0 && i <= lim; i++) 1460 if ((rnh = V_rt_tables[req->td->td_proc->p_fibnum][i]) != NULL) { 1461 RADIX_NODE_HEAD_LOCK(rnh); 1462 error = rnh->rnh_walktree(rnh, 1463 sysctl_dumpentry, &w); 1464 RADIX_NODE_HEAD_UNLOCK(rnh); 1465 } else if (af != 0) 1466 error = EAFNOSUPPORT; 1467 break; 1468 1469 case NET_RT_IFLIST: 1470 error = sysctl_iflist(af, &w); 1471 break; 1472 1473 case NET_RT_IFMALIST: 1474 error = sysctl_ifmalist(af, &w); 1475 break; 1476 } 1477 if (w.w_tmem) 1478 free(w.w_tmem, M_RTABLE); 1479 return (error); 1480 } 1481 1482 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1483 1484 /* 1485 * Definitions of protocols supported in the ROUTE domain. 1486 */ 1487 1488 static struct domain routedomain; /* or at least forward */ 1489 1490 static struct protosw routesw[] = { 1491 { 1492 .pr_type = SOCK_RAW, 1493 .pr_domain = &routedomain, 1494 .pr_flags = PR_ATOMIC|PR_ADDR, 1495 .pr_output = route_output, 1496 .pr_ctlinput = raw_ctlinput, 1497 .pr_init = raw_init, 1498 .pr_usrreqs = &route_usrreqs 1499 } 1500 }; 1501 1502 static struct domain routedomain = { 1503 .dom_family = PF_ROUTE, 1504 .dom_name = "route", 1505 .dom_protosw = routesw, 1506 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1507 }; 1508 1509 DOMAIN_SET(route); 1510