1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_compat.h" 33 #include "opt_sctp.h" 34 #include "opt_mpath.h" 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/jail.h> 40 #include <sys/kernel.h> 41 #include <sys/domain.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/rwlock.h> 49 #include <sys/signalvar.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <net/if.h> 56 #include <net/if_var.h> 57 #include <net/if_dl.h> 58 #include <net/if_llatbl.h> 59 #include <net/if_types.h> 60 #include <net/netisr.h> 61 #include <net/raw_cb.h> 62 #include <net/route.h> 63 #include <net/vnet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/if_ether.h> 67 #include <netinet/ip_carp.h> 68 #ifdef INET6 69 #include <netinet6/ip6_var.h> 70 #include <netinet6/scope6_var.h> 71 #endif 72 73 #if defined(INET) || defined(INET6) 74 #ifdef SCTP 75 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 76 #endif /* SCTP */ 77 #endif 78 79 #ifdef COMPAT_FREEBSD32 80 #include <sys/mount.h> 81 #include <compat/freebsd32/freebsd32.h> 82 83 struct if_data32 { 84 uint8_t ifi_type; 85 uint8_t ifi_physical; 86 uint8_t ifi_addrlen; 87 uint8_t ifi_hdrlen; 88 uint8_t ifi_link_state; 89 uint8_t ifi_vhid; 90 uint8_t ifi_baudrate_pf; 91 uint8_t ifi_datalen; 92 uint32_t ifi_mtu; 93 uint32_t ifi_metric; 94 uint32_t ifi_baudrate; 95 uint32_t ifi_ipackets; 96 uint32_t ifi_ierrors; 97 uint32_t ifi_opackets; 98 uint32_t ifi_oerrors; 99 uint32_t ifi_collisions; 100 uint32_t ifi_ibytes; 101 uint32_t ifi_obytes; 102 uint32_t ifi_imcasts; 103 uint32_t ifi_omcasts; 104 uint32_t ifi_iqdrops; 105 uint32_t ifi_noproto; 106 uint32_t ifi_hwassist; 107 int32_t ifi_epoch; 108 struct timeval32 ifi_lastchange; 109 }; 110 111 struct if_msghdr32 { 112 uint16_t ifm_msglen; 113 uint8_t ifm_version; 114 uint8_t ifm_type; 115 int32_t ifm_addrs; 116 int32_t ifm_flags; 117 uint16_t ifm_index; 118 struct if_data32 ifm_data; 119 }; 120 121 struct if_msghdrl32 { 122 uint16_t ifm_msglen; 123 uint8_t ifm_version; 124 uint8_t ifm_type; 125 int32_t ifm_addrs; 126 int32_t ifm_flags; 127 uint16_t ifm_index; 128 uint16_t _ifm_spare1; 129 uint16_t ifm_len; 130 uint16_t ifm_data_off; 131 struct if_data32 ifm_data; 132 }; 133 134 struct ifa_msghdrl32 { 135 uint16_t ifam_msglen; 136 uint8_t ifam_version; 137 uint8_t ifam_type; 138 int32_t ifam_addrs; 139 int32_t ifam_flags; 140 uint16_t ifam_index; 141 uint16_t _ifam_spare1; 142 uint16_t ifam_len; 143 uint16_t ifam_data_off; 144 int32_t ifam_metric; 145 struct if_data32 ifam_data; 146 }; 147 #endif /* COMPAT_FREEBSD32 */ 148 149 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 150 151 /* NB: these are not modified */ 152 static struct sockaddr route_src = { 2, PF_ROUTE, }; 153 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 154 155 /* These are external hooks for CARP. */ 156 int (*carp_get_vhid_p)(struct ifaddr *); 157 158 /* 159 * Used by rtsock/raw_input callback code to decide whether to filter the update 160 * notification to a socket bound to a particular FIB. 161 */ 162 #define RTS_FILTER_FIB M_PROTO8 163 #define RTS_ALLFIBS -1 164 165 static struct { 166 int ip_count; /* attached w/ AF_INET */ 167 int ip6_count; /* attached w/ AF_INET6 */ 168 int ipx_count; /* attached w/ AF_IPX */ 169 int any_count; /* total attached */ 170 } route_cb; 171 172 struct mtx rtsock_mtx; 173 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 174 175 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 176 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 177 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 178 179 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 180 181 struct walkarg { 182 int w_tmemsize; 183 int w_op, w_arg; 184 caddr_t w_tmem; 185 struct sysctl_req *w_req; 186 }; 187 188 static void rts_input(struct mbuf *m); 189 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 190 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 191 caddr_t cp, struct walkarg *w); 192 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 193 struct rt_addrinfo *rtinfo); 194 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 195 static int sysctl_iflist(int af, struct walkarg *w); 196 static int sysctl_ifmalist(int af, struct walkarg *w); 197 static int route_output(struct mbuf *m, struct socket *so); 198 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 199 struct rt_metrics_lite *out); 200 static void rt_getmetrics(const struct rt_metrics_lite *in, 201 struct rt_metrics *out); 202 static void rt_dispatch(struct mbuf *, sa_family_t); 203 204 static struct netisr_handler rtsock_nh = { 205 .nh_name = "rtsock", 206 .nh_handler = rts_input, 207 .nh_proto = NETISR_ROUTE, 208 .nh_policy = NETISR_POLICY_SOURCE, 209 }; 210 211 static int 212 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 213 { 214 int error, qlimit; 215 216 netisr_getqlimit(&rtsock_nh, &qlimit); 217 error = sysctl_handle_int(oidp, &qlimit, 0, req); 218 if (error || !req->newptr) 219 return (error); 220 if (qlimit < 1) 221 return (EINVAL); 222 return (netisr_setqlimit(&rtsock_nh, qlimit)); 223 } 224 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 225 0, 0, sysctl_route_netisr_maxqlen, "I", 226 "maximum routing socket dispatch queue length"); 227 228 static void 229 rts_init(void) 230 { 231 int tmp; 232 233 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 234 rtsock_nh.nh_qlimit = tmp; 235 netisr_register(&rtsock_nh); 236 } 237 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 238 239 static int 240 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 241 struct rawcb *rp) 242 { 243 int fibnum; 244 245 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 246 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 247 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 248 249 /* No filtering requested. */ 250 if ((m->m_flags & RTS_FILTER_FIB) == 0) 251 return (0); 252 253 /* Check if it is a rts and the fib matches the one of the socket. */ 254 fibnum = M_GETFIB(m); 255 if (proto->sp_family != PF_ROUTE || 256 rp->rcb_socket == NULL || 257 rp->rcb_socket->so_fibnum == fibnum) 258 return (0); 259 260 /* Filtering requested and no match, the socket shall be skipped. */ 261 return (1); 262 } 263 264 static void 265 rts_input(struct mbuf *m) 266 { 267 struct sockproto route_proto; 268 unsigned short *family; 269 struct m_tag *tag; 270 271 route_proto.sp_family = PF_ROUTE; 272 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 273 if (tag != NULL) { 274 family = (unsigned short *)(tag + 1); 275 route_proto.sp_protocol = *family; 276 m_tag_delete(m, tag); 277 } else 278 route_proto.sp_protocol = 0; 279 280 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 281 } 282 283 /* 284 * It really doesn't make any sense at all for this code to share much 285 * with raw_usrreq.c, since its functionality is so restricted. XXX 286 */ 287 static void 288 rts_abort(struct socket *so) 289 { 290 291 raw_usrreqs.pru_abort(so); 292 } 293 294 static void 295 rts_close(struct socket *so) 296 { 297 298 raw_usrreqs.pru_close(so); 299 } 300 301 /* pru_accept is EOPNOTSUPP */ 302 303 static int 304 rts_attach(struct socket *so, int proto, struct thread *td) 305 { 306 struct rawcb *rp; 307 int error; 308 309 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 310 311 /* XXX */ 312 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 313 if (rp == NULL) 314 return ENOBUFS; 315 316 so->so_pcb = (caddr_t)rp; 317 so->so_fibnum = td->td_proc->p_fibnum; 318 error = raw_attach(so, proto); 319 rp = sotorawcb(so); 320 if (error) { 321 so->so_pcb = NULL; 322 free(rp, M_PCB); 323 return error; 324 } 325 RTSOCK_LOCK(); 326 switch(rp->rcb_proto.sp_protocol) { 327 case AF_INET: 328 route_cb.ip_count++; 329 break; 330 case AF_INET6: 331 route_cb.ip6_count++; 332 break; 333 case AF_IPX: 334 route_cb.ipx_count++; 335 break; 336 } 337 route_cb.any_count++; 338 RTSOCK_UNLOCK(); 339 soisconnected(so); 340 so->so_options |= SO_USELOOPBACK; 341 return 0; 342 } 343 344 static int 345 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 346 { 347 348 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 349 } 350 351 static int 352 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 353 { 354 355 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 356 } 357 358 /* pru_connect2 is EOPNOTSUPP */ 359 /* pru_control is EOPNOTSUPP */ 360 361 static void 362 rts_detach(struct socket *so) 363 { 364 struct rawcb *rp = sotorawcb(so); 365 366 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 367 368 RTSOCK_LOCK(); 369 switch(rp->rcb_proto.sp_protocol) { 370 case AF_INET: 371 route_cb.ip_count--; 372 break; 373 case AF_INET6: 374 route_cb.ip6_count--; 375 break; 376 case AF_IPX: 377 route_cb.ipx_count--; 378 break; 379 } 380 route_cb.any_count--; 381 RTSOCK_UNLOCK(); 382 raw_usrreqs.pru_detach(so); 383 } 384 385 static int 386 rts_disconnect(struct socket *so) 387 { 388 389 return (raw_usrreqs.pru_disconnect(so)); 390 } 391 392 /* pru_listen is EOPNOTSUPP */ 393 394 static int 395 rts_peeraddr(struct socket *so, struct sockaddr **nam) 396 { 397 398 return (raw_usrreqs.pru_peeraddr(so, nam)); 399 } 400 401 /* pru_rcvd is EOPNOTSUPP */ 402 /* pru_rcvoob is EOPNOTSUPP */ 403 404 static int 405 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 406 struct mbuf *control, struct thread *td) 407 { 408 409 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 410 } 411 412 /* pru_sense is null */ 413 414 static int 415 rts_shutdown(struct socket *so) 416 { 417 418 return (raw_usrreqs.pru_shutdown(so)); 419 } 420 421 static int 422 rts_sockaddr(struct socket *so, struct sockaddr **nam) 423 { 424 425 return (raw_usrreqs.pru_sockaddr(so, nam)); 426 } 427 428 static struct pr_usrreqs route_usrreqs = { 429 .pru_abort = rts_abort, 430 .pru_attach = rts_attach, 431 .pru_bind = rts_bind, 432 .pru_connect = rts_connect, 433 .pru_detach = rts_detach, 434 .pru_disconnect = rts_disconnect, 435 .pru_peeraddr = rts_peeraddr, 436 .pru_send = rts_send, 437 .pru_shutdown = rts_shutdown, 438 .pru_sockaddr = rts_sockaddr, 439 .pru_close = rts_close, 440 }; 441 442 #ifndef _SOCKADDR_UNION_DEFINED 443 #define _SOCKADDR_UNION_DEFINED 444 /* 445 * The union of all possible address formats we handle. 446 */ 447 union sockaddr_union { 448 struct sockaddr sa; 449 struct sockaddr_in sin; 450 struct sockaddr_in6 sin6; 451 }; 452 #endif /* _SOCKADDR_UNION_DEFINED */ 453 454 static int 455 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 456 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 457 { 458 459 /* First, see if the returned address is part of the jail. */ 460 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 461 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 462 return (0); 463 } 464 465 switch (info->rti_info[RTAX_DST]->sa_family) { 466 #ifdef INET 467 case AF_INET: 468 { 469 struct in_addr ia; 470 struct ifaddr *ifa; 471 int found; 472 473 found = 0; 474 /* 475 * Try to find an address on the given outgoing interface 476 * that belongs to the jail. 477 */ 478 IF_ADDR_RLOCK(ifp); 479 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 480 struct sockaddr *sa; 481 sa = ifa->ifa_addr; 482 if (sa->sa_family != AF_INET) 483 continue; 484 ia = ((struct sockaddr_in *)sa)->sin_addr; 485 if (prison_check_ip4(cred, &ia) == 0) { 486 found = 1; 487 break; 488 } 489 } 490 IF_ADDR_RUNLOCK(ifp); 491 if (!found) { 492 /* 493 * As a last resort return the 'default' jail address. 494 */ 495 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 496 sin_addr; 497 if (prison_get_ip4(cred, &ia) != 0) 498 return (ESRCH); 499 } 500 bzero(&saun->sin, sizeof(struct sockaddr_in)); 501 saun->sin.sin_len = sizeof(struct sockaddr_in); 502 saun->sin.sin_family = AF_INET; 503 saun->sin.sin_addr.s_addr = ia.s_addr; 504 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 505 break; 506 } 507 #endif 508 #ifdef INET6 509 case AF_INET6: 510 { 511 struct in6_addr ia6; 512 struct ifaddr *ifa; 513 int found; 514 515 found = 0; 516 /* 517 * Try to find an address on the given outgoing interface 518 * that belongs to the jail. 519 */ 520 IF_ADDR_RLOCK(ifp); 521 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 522 struct sockaddr *sa; 523 sa = ifa->ifa_addr; 524 if (sa->sa_family != AF_INET6) 525 continue; 526 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 527 &ia6, sizeof(struct in6_addr)); 528 if (prison_check_ip6(cred, &ia6) == 0) { 529 found = 1; 530 break; 531 } 532 } 533 IF_ADDR_RUNLOCK(ifp); 534 if (!found) { 535 /* 536 * As a last resort return the 'default' jail address. 537 */ 538 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 539 sin6_addr; 540 if (prison_get_ip6(cred, &ia6) != 0) 541 return (ESRCH); 542 } 543 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 544 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 545 saun->sin6.sin6_family = AF_INET6; 546 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 547 if (sa6_recoverscope(&saun->sin6) != 0) 548 return (ESRCH); 549 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 550 break; 551 } 552 #endif 553 default: 554 return (ESRCH); 555 } 556 return (0); 557 } 558 559 /*ARGSUSED*/ 560 static int 561 route_output(struct mbuf *m, struct socket *so) 562 { 563 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 564 struct rt_msghdr *rtm = NULL; 565 struct rtentry *rt = NULL; 566 struct radix_node_head *rnh; 567 struct rt_addrinfo info; 568 #ifdef INET6 569 struct sockaddr_storage ss; 570 struct sockaddr_in6 *sin6; 571 int i, rti_need_deembed = 0; 572 #endif 573 int len, error = 0; 574 struct ifnet *ifp = NULL; 575 union sockaddr_union saun; 576 sa_family_t saf = AF_UNSPEC; 577 578 #define senderr(e) { error = e; goto flush;} 579 if (m == NULL || ((m->m_len < sizeof(long)) && 580 (m = m_pullup(m, sizeof(long))) == NULL)) 581 return (ENOBUFS); 582 if ((m->m_flags & M_PKTHDR) == 0) 583 panic("route_output"); 584 len = m->m_pkthdr.len; 585 if (len < sizeof(*rtm) || 586 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 587 info.rti_info[RTAX_DST] = NULL; 588 senderr(EINVAL); 589 } 590 R_Malloc(rtm, struct rt_msghdr *, len); 591 if (rtm == NULL) { 592 info.rti_info[RTAX_DST] = NULL; 593 senderr(ENOBUFS); 594 } 595 m_copydata(m, 0, len, (caddr_t)rtm); 596 if (rtm->rtm_version != RTM_VERSION) { 597 info.rti_info[RTAX_DST] = NULL; 598 senderr(EPROTONOSUPPORT); 599 } 600 rtm->rtm_pid = curproc->p_pid; 601 bzero(&info, sizeof(info)); 602 info.rti_addrs = rtm->rtm_addrs; 603 /* 604 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 605 * link-local address because rtrequest requires addresses with 606 * embedded scope id. 607 */ 608 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 609 info.rti_info[RTAX_DST] = NULL; 610 senderr(EINVAL); 611 } 612 info.rti_flags = rtm->rtm_flags; 613 if (info.rti_info[RTAX_DST] == NULL || 614 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 615 (info.rti_info[RTAX_GATEWAY] != NULL && 616 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 617 senderr(EINVAL); 618 saf = info.rti_info[RTAX_DST]->sa_family; 619 /* 620 * Verify that the caller has the appropriate privilege; RTM_GET 621 * is the only operation the non-superuser is allowed. 622 */ 623 if (rtm->rtm_type != RTM_GET) { 624 error = priv_check(curthread, PRIV_NET_ROUTE); 625 if (error) 626 senderr(error); 627 } 628 629 /* 630 * The given gateway address may be an interface address. 631 * For example, issuing a "route change" command on a route 632 * entry that was created from a tunnel, and the gateway 633 * address given is the local end point. In this case the 634 * RTF_GATEWAY flag must be cleared or the destination will 635 * not be reachable even though there is no error message. 636 */ 637 if (info.rti_info[RTAX_GATEWAY] != NULL && 638 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 639 struct route gw_ro; 640 641 bzero(&gw_ro, sizeof(gw_ro)); 642 gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY]; 643 rtalloc_ign_fib(&gw_ro, 0, so->so_fibnum); 644 /* 645 * A host route through the loopback interface is 646 * installed for each interface adddress. In pre 8.0 647 * releases the interface address of a PPP link type 648 * is not reachable locally. This behavior is fixed as 649 * part of the new L2/L3 redesign and rewrite work. The 650 * signature of this interface address route is the 651 * AF_LINK sa_family type of the rt_gateway, and the 652 * rt_ifp has the IFF_LOOPBACK flag set. 653 */ 654 if (gw_ro.ro_rt != NULL && 655 gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK && 656 gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) { 657 info.rti_flags &= ~RTF_GATEWAY; 658 info.rti_flags |= RTF_GWFLAG_COMPAT; 659 } 660 if (gw_ro.ro_rt != NULL) 661 RTFREE(gw_ro.ro_rt); 662 } 663 664 switch (rtm->rtm_type) { 665 struct rtentry *saved_nrt; 666 667 case RTM_ADD: 668 if (info.rti_info[RTAX_GATEWAY] == NULL) 669 senderr(EINVAL); 670 saved_nrt = NULL; 671 672 /* support for new ARP code */ 673 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 674 (rtm->rtm_flags & RTF_LLDATA) != 0) { 675 error = lla_rt_output(rtm, &info); 676 #ifdef INET6 677 if (error == 0) 678 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 679 #endif 680 break; 681 } 682 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 683 so->so_fibnum); 684 if (error == 0 && saved_nrt) { 685 #ifdef INET6 686 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 687 #endif 688 RT_LOCK(saved_nrt); 689 rt_setmetrics(rtm->rtm_inits, 690 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 691 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 692 RT_REMREF(saved_nrt); 693 RT_UNLOCK(saved_nrt); 694 } 695 break; 696 697 case RTM_DELETE: 698 saved_nrt = NULL; 699 /* support for new ARP code */ 700 if (info.rti_info[RTAX_GATEWAY] && 701 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 702 (rtm->rtm_flags & RTF_LLDATA) != 0) { 703 error = lla_rt_output(rtm, &info); 704 #ifdef INET6 705 if (error == 0) 706 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 707 #endif 708 break; 709 } 710 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 711 so->so_fibnum); 712 if (error == 0) { 713 RT_LOCK(saved_nrt); 714 rt = saved_nrt; 715 goto report; 716 } 717 #ifdef INET6 718 /* rt_msg2() will not be used when RTM_DELETE fails. */ 719 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 720 #endif 721 break; 722 723 case RTM_GET: 724 case RTM_CHANGE: 725 case RTM_LOCK: 726 rnh = rt_tables_get_rnh(so->so_fibnum, 727 info.rti_info[RTAX_DST]->sa_family); 728 if (rnh == NULL) 729 senderr(EAFNOSUPPORT); 730 RADIX_NODE_HEAD_RLOCK(rnh); 731 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 732 info.rti_info[RTAX_NETMASK], rnh); 733 if (rt == NULL) { /* XXX looks bogus */ 734 RADIX_NODE_HEAD_RUNLOCK(rnh); 735 senderr(ESRCH); 736 } 737 #ifdef RADIX_MPATH 738 /* 739 * for RTM_CHANGE/LOCK, if we got multipath routes, 740 * we require users to specify a matching RTAX_GATEWAY. 741 * 742 * for RTM_GET, gate is optional even with multipath. 743 * if gate == NULL the first match is returned. 744 * (no need to call rt_mpath_matchgate if gate == NULL) 745 */ 746 if (rn_mpath_capable(rnh) && 747 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 748 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 749 if (!rt) { 750 RADIX_NODE_HEAD_RUNLOCK(rnh); 751 senderr(ESRCH); 752 } 753 } 754 #endif 755 /* 756 * If performing proxied L2 entry insertion, and 757 * the actual PPP host entry is found, perform 758 * another search to retrieve the prefix route of 759 * the local end point of the PPP link. 760 */ 761 if (rtm->rtm_flags & RTF_ANNOUNCE) { 762 struct sockaddr laddr; 763 764 if (rt->rt_ifp != NULL && 765 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 766 struct ifaddr *ifa; 767 768 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1); 769 if (ifa != NULL) 770 rt_maskedcopy(ifa->ifa_addr, 771 &laddr, 772 ifa->ifa_netmask); 773 } else 774 rt_maskedcopy(rt->rt_ifa->ifa_addr, 775 &laddr, 776 rt->rt_ifa->ifa_netmask); 777 /* 778 * refactor rt and no lock operation necessary 779 */ 780 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh); 781 if (rt == NULL) { 782 RADIX_NODE_HEAD_RUNLOCK(rnh); 783 senderr(ESRCH); 784 } 785 } 786 RT_LOCK(rt); 787 RT_ADDREF(rt); 788 RADIX_NODE_HEAD_RUNLOCK(rnh); 789 790 /* 791 * Fix for PR: 82974 792 * 793 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 794 * returns a perfect match in case a netmask is 795 * specified. For host routes only a longest prefix 796 * match is returned so it is necessary to compare the 797 * existence of the netmask. If both have a netmask 798 * rnh_lookup() did a perfect match and if none of them 799 * have a netmask both are host routes which is also a 800 * perfect match. 801 */ 802 803 if (rtm->rtm_type != RTM_GET && 804 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 805 RT_UNLOCK(rt); 806 senderr(ESRCH); 807 } 808 809 switch(rtm->rtm_type) { 810 811 case RTM_GET: 812 report: 813 RT_LOCK_ASSERT(rt); 814 if ((rt->rt_flags & RTF_HOST) == 0 815 ? jailed_without_vnet(curthread->td_ucred) 816 : prison_if(curthread->td_ucred, 817 rt_key(rt)) != 0) { 818 RT_UNLOCK(rt); 819 senderr(ESRCH); 820 } 821 info.rti_info[RTAX_DST] = rt_key(rt); 822 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 823 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 824 info.rti_info[RTAX_GENMASK] = 0; 825 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 826 ifp = rt->rt_ifp; 827 if (ifp) { 828 info.rti_info[RTAX_IFP] = 829 ifp->if_addr->ifa_addr; 830 error = rtm_get_jailed(&info, ifp, rt, 831 &saun, curthread->td_ucred); 832 if (error != 0) { 833 RT_UNLOCK(rt); 834 senderr(error); 835 } 836 if (ifp->if_flags & IFF_POINTOPOINT) 837 info.rti_info[RTAX_BRD] = 838 rt->rt_ifa->ifa_dstaddr; 839 rtm->rtm_index = ifp->if_index; 840 } else { 841 info.rti_info[RTAX_IFP] = NULL; 842 info.rti_info[RTAX_IFA] = NULL; 843 } 844 } else if ((ifp = rt->rt_ifp) != NULL) { 845 rtm->rtm_index = ifp->if_index; 846 } 847 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 848 if (len > rtm->rtm_msglen) { 849 struct rt_msghdr *new_rtm; 850 R_Malloc(new_rtm, struct rt_msghdr *, len); 851 if (new_rtm == NULL) { 852 RT_UNLOCK(rt); 853 senderr(ENOBUFS); 854 } 855 bcopy(rtm, new_rtm, rtm->rtm_msglen); 856 Free(rtm); rtm = new_rtm; 857 } 858 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 859 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 860 rtm->rtm_flags = RTF_GATEWAY | 861 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 862 else 863 rtm->rtm_flags = rt->rt_flags; 864 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 865 rtm->rtm_addrs = info.rti_addrs; 866 break; 867 868 case RTM_CHANGE: 869 /* 870 * New gateway could require new ifaddr, ifp; 871 * flags may also be different; ifp may be specified 872 * by ll sockaddr when protocol address is ambiguous 873 */ 874 if (((rt->rt_flags & RTF_GATEWAY) && 875 info.rti_info[RTAX_GATEWAY] != NULL) || 876 info.rti_info[RTAX_IFP] != NULL || 877 (info.rti_info[RTAX_IFA] != NULL && 878 !sa_equal(info.rti_info[RTAX_IFA], 879 rt->rt_ifa->ifa_addr))) { 880 RT_UNLOCK(rt); 881 RADIX_NODE_HEAD_LOCK(rnh); 882 error = rt_getifa_fib(&info, rt->rt_fibnum); 883 /* 884 * XXXRW: Really we should release this 885 * reference later, but this maintains 886 * historical behavior. 887 */ 888 if (info.rti_ifa != NULL) 889 ifa_free(info.rti_ifa); 890 RADIX_NODE_HEAD_UNLOCK(rnh); 891 if (error != 0) 892 senderr(error); 893 RT_LOCK(rt); 894 } 895 if (info.rti_ifa != NULL && 896 info.rti_ifa != rt->rt_ifa && 897 rt->rt_ifa != NULL && 898 rt->rt_ifa->ifa_rtrequest != NULL) { 899 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 900 &info); 901 ifa_free(rt->rt_ifa); 902 } 903 if (info.rti_info[RTAX_GATEWAY] != NULL) { 904 RT_UNLOCK(rt); 905 RADIX_NODE_HEAD_LOCK(rnh); 906 RT_LOCK(rt); 907 908 error = rt_setgate(rt, rt_key(rt), 909 info.rti_info[RTAX_GATEWAY]); 910 RADIX_NODE_HEAD_UNLOCK(rnh); 911 if (error != 0) { 912 RT_UNLOCK(rt); 913 senderr(error); 914 } 915 rt->rt_flags &= ~RTF_GATEWAY; 916 rt->rt_flags |= (RTF_GATEWAY & info.rti_flags); 917 } 918 if (info.rti_ifa != NULL && 919 info.rti_ifa != rt->rt_ifa) { 920 ifa_ref(info.rti_ifa); 921 rt->rt_ifa = info.rti_ifa; 922 rt->rt_ifp = info.rti_ifp; 923 } 924 /* Allow some flags to be toggled on change. */ 925 rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) | 926 (rtm->rtm_flags & RTF_FMASK); 927 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 928 &rt->rt_rmx); 929 rtm->rtm_index = rt->rt_ifp->if_index; 930 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 931 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 932 /* FALLTHROUGH */ 933 case RTM_LOCK: 934 /* We don't support locks anymore */ 935 break; 936 } 937 RT_UNLOCK(rt); 938 break; 939 940 default: 941 senderr(EOPNOTSUPP); 942 } 943 944 flush: 945 if (rtm) { 946 if (error) 947 rtm->rtm_errno = error; 948 else 949 rtm->rtm_flags |= RTF_DONE; 950 } 951 if (rt) /* XXX can this be true? */ 952 RTFREE(rt); 953 { 954 struct rawcb *rp = NULL; 955 /* 956 * Check to see if we don't want our own messages. 957 */ 958 if ((so->so_options & SO_USELOOPBACK) == 0) { 959 if (route_cb.any_count <= 1) { 960 if (rtm) 961 Free(rtm); 962 m_freem(m); 963 return (error); 964 } 965 /* There is another listener, so construct message */ 966 rp = sotorawcb(so); 967 } 968 if (rtm) { 969 #ifdef INET6 970 if (rti_need_deembed) { 971 /* sin6_scope_id is recovered before sending rtm. */ 972 sin6 = (struct sockaddr_in6 *)&ss; 973 for (i = 0; i < RTAX_MAX; i++) { 974 if (info.rti_info[i] == NULL) 975 continue; 976 if (info.rti_info[i]->sa_family != AF_INET6) 977 continue; 978 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 979 if (sa6_recoverscope(sin6) == 0) 980 bcopy(sin6, info.rti_info[i], 981 sizeof(*sin6)); 982 } 983 } 984 #endif 985 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 986 if (m->m_pkthdr.len < rtm->rtm_msglen) { 987 m_freem(m); 988 m = NULL; 989 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 990 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 991 } 992 if (m) { 993 M_SETFIB(m, so->so_fibnum); 994 m->m_flags |= RTS_FILTER_FIB; 995 if (rp) { 996 /* 997 * XXX insure we don't get a copy by 998 * invalidating our protocol 999 */ 1000 unsigned short family = rp->rcb_proto.sp_family; 1001 rp->rcb_proto.sp_family = 0; 1002 rt_dispatch(m, saf); 1003 rp->rcb_proto.sp_family = family; 1004 } else 1005 rt_dispatch(m, saf); 1006 } 1007 /* info.rti_info[RTAX_DST] (used above) can point inside of rtm */ 1008 if (rtm) 1009 Free(rtm); 1010 } 1011 return (error); 1012 #undef sa_equal 1013 } 1014 1015 static void 1016 rt_setmetrics(u_long which, const struct rt_metrics *in, 1017 struct rt_metrics_lite *out) 1018 { 1019 #define metric(f, e) if (which & (f)) out->e = in->e; 1020 /* 1021 * Only these are stored in the routing entry since introduction 1022 * of tcp hostcache. The rest is ignored. 1023 */ 1024 metric(RTV_MTU, rmx_mtu); 1025 metric(RTV_WEIGHT, rmx_weight); 1026 /* Userland -> kernel timebase conversion. */ 1027 if (which & RTV_EXPIRE) 1028 out->rmx_expire = in->rmx_expire ? 1029 in->rmx_expire - time_second + time_uptime : 0; 1030 #undef metric 1031 } 1032 1033 static void 1034 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 1035 { 1036 #define metric(e) out->e = in->e; 1037 bzero(out, sizeof(*out)); 1038 metric(rmx_mtu); 1039 metric(rmx_weight); 1040 /* Kernel -> userland timebase conversion. */ 1041 out->rmx_expire = in->rmx_expire ? 1042 in->rmx_expire - time_uptime + time_second : 0; 1043 #undef metric 1044 } 1045 1046 /* 1047 * Extract the addresses of the passed sockaddrs. 1048 * Do a little sanity checking so as to avoid bad memory references. 1049 * This data is derived straight from userland. 1050 */ 1051 static int 1052 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1053 { 1054 struct sockaddr *sa; 1055 int i; 1056 1057 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1058 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1059 continue; 1060 sa = (struct sockaddr *)cp; 1061 /* 1062 * It won't fit. 1063 */ 1064 if (cp + sa->sa_len > cplim) 1065 return (EINVAL); 1066 /* 1067 * there are no more.. quit now 1068 * If there are more bits, they are in error. 1069 * I've seen this. route(1) can evidently generate these. 1070 * This causes kernel to core dump. 1071 * for compatibility, If we see this, point to a safe address. 1072 */ 1073 if (sa->sa_len == 0) { 1074 rtinfo->rti_info[i] = &sa_zero; 1075 return (0); /* should be EINVAL but for compat */ 1076 } 1077 /* accept it */ 1078 #ifdef INET6 1079 if (sa->sa_family == AF_INET6) 1080 sa6_embedscope((struct sockaddr_in6 *)sa, 1081 V_ip6_use_defzone); 1082 #endif 1083 rtinfo->rti_info[i] = sa; 1084 cp += SA_SIZE(sa); 1085 } 1086 return (0); 1087 } 1088 1089 /* 1090 * Used by the routing socket. 1091 */ 1092 static struct mbuf * 1093 rt_msg1(int type, struct rt_addrinfo *rtinfo) 1094 { 1095 struct rt_msghdr *rtm; 1096 struct mbuf *m; 1097 int i; 1098 struct sockaddr *sa; 1099 #ifdef INET6 1100 struct sockaddr_storage ss; 1101 struct sockaddr_in6 *sin6; 1102 #endif 1103 int len, dlen; 1104 1105 switch (type) { 1106 1107 case RTM_DELADDR: 1108 case RTM_NEWADDR: 1109 len = sizeof(struct ifa_msghdr); 1110 break; 1111 1112 case RTM_DELMADDR: 1113 case RTM_NEWMADDR: 1114 len = sizeof(struct ifma_msghdr); 1115 break; 1116 1117 case RTM_IFINFO: 1118 len = sizeof(struct if_msghdr); 1119 break; 1120 1121 case RTM_IFANNOUNCE: 1122 case RTM_IEEE80211: 1123 len = sizeof(struct if_announcemsghdr); 1124 break; 1125 1126 default: 1127 len = sizeof(struct rt_msghdr); 1128 } 1129 1130 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1131 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1132 if (len > MHLEN) 1133 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1134 else 1135 m = m_gethdr(M_NOWAIT, MT_DATA); 1136 if (m == NULL) 1137 return (m); 1138 1139 m->m_pkthdr.len = m->m_len = len; 1140 rtm = mtod(m, struct rt_msghdr *); 1141 bzero((caddr_t)rtm, len); 1142 for (i = 0; i < RTAX_MAX; i++) { 1143 if ((sa = rtinfo->rti_info[i]) == NULL) 1144 continue; 1145 rtinfo->rti_addrs |= (1 << i); 1146 dlen = SA_SIZE(sa); 1147 #ifdef INET6 1148 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1149 sin6 = (struct sockaddr_in6 *)&ss; 1150 bcopy(sa, sin6, sizeof(*sin6)); 1151 if (sa6_recoverscope(sin6) == 0) 1152 sa = (struct sockaddr *)sin6; 1153 } 1154 #endif 1155 m_copyback(m, len, dlen, (caddr_t)sa); 1156 len += dlen; 1157 } 1158 if (m->m_pkthdr.len != len) { 1159 m_freem(m); 1160 return (NULL); 1161 } 1162 rtm->rtm_msglen = len; 1163 rtm->rtm_version = RTM_VERSION; 1164 rtm->rtm_type = type; 1165 return (m); 1166 } 1167 1168 /* 1169 * Used by the sysctl code and routing socket. 1170 */ 1171 static int 1172 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 1173 { 1174 int i; 1175 int len, dlen, second_time = 0; 1176 caddr_t cp0; 1177 #ifdef INET6 1178 struct sockaddr_storage ss; 1179 struct sockaddr_in6 *sin6; 1180 #endif 1181 1182 rtinfo->rti_addrs = 0; 1183 again: 1184 switch (type) { 1185 1186 case RTM_DELADDR: 1187 case RTM_NEWADDR: 1188 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1189 #ifdef COMPAT_FREEBSD32 1190 if (w->w_req->flags & SCTL_MASK32) 1191 len = sizeof(struct ifa_msghdrl32); 1192 else 1193 #endif 1194 len = sizeof(struct ifa_msghdrl); 1195 } else 1196 len = sizeof(struct ifa_msghdr); 1197 break; 1198 1199 case RTM_IFINFO: 1200 #ifdef COMPAT_FREEBSD32 1201 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1202 if (w->w_op == NET_RT_IFLISTL) 1203 len = sizeof(struct if_msghdrl32); 1204 else 1205 len = sizeof(struct if_msghdr32); 1206 break; 1207 } 1208 #endif 1209 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1210 len = sizeof(struct if_msghdrl); 1211 else 1212 len = sizeof(struct if_msghdr); 1213 break; 1214 1215 case RTM_NEWMADDR: 1216 len = sizeof(struct ifma_msghdr); 1217 break; 1218 1219 default: 1220 len = sizeof(struct rt_msghdr); 1221 } 1222 cp0 = cp; 1223 if (cp0) 1224 cp += len; 1225 for (i = 0; i < RTAX_MAX; i++) { 1226 struct sockaddr *sa; 1227 1228 if ((sa = rtinfo->rti_info[i]) == NULL) 1229 continue; 1230 rtinfo->rti_addrs |= (1 << i); 1231 dlen = SA_SIZE(sa); 1232 if (cp) { 1233 #ifdef INET6 1234 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1235 sin6 = (struct sockaddr_in6 *)&ss; 1236 bcopy(sa, sin6, sizeof(*sin6)); 1237 if (sa6_recoverscope(sin6) == 0) 1238 sa = (struct sockaddr *)sin6; 1239 } 1240 #endif 1241 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1242 cp += dlen; 1243 } 1244 len += dlen; 1245 } 1246 len = ALIGN(len); 1247 if (cp == NULL && w != NULL && !second_time) { 1248 struct walkarg *rw = w; 1249 1250 if (rw->w_req) { 1251 if (rw->w_tmemsize < len) { 1252 if (rw->w_tmem) 1253 free(rw->w_tmem, M_RTABLE); 1254 rw->w_tmem = (caddr_t) 1255 malloc(len, M_RTABLE, M_NOWAIT); 1256 if (rw->w_tmem) 1257 rw->w_tmemsize = len; 1258 } 1259 if (rw->w_tmem) { 1260 cp = rw->w_tmem; 1261 second_time = 1; 1262 goto again; 1263 } 1264 } 1265 } 1266 if (cp) { 1267 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 1268 1269 rtm->rtm_version = RTM_VERSION; 1270 rtm->rtm_type = type; 1271 rtm->rtm_msglen = len; 1272 } 1273 return (len); 1274 } 1275 1276 /* 1277 * This routine is called to generate a message from the routing 1278 * socket indicating that a redirect has occured, a routing lookup 1279 * has failed, or that a protocol has detected timeouts to a particular 1280 * destination. 1281 */ 1282 void 1283 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1284 int fibnum) 1285 { 1286 struct rt_msghdr *rtm; 1287 struct mbuf *m; 1288 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1289 1290 if (route_cb.any_count == 0) 1291 return; 1292 m = rt_msg1(type, rtinfo); 1293 if (m == NULL) 1294 return; 1295 1296 if (fibnum != RTS_ALLFIBS) { 1297 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1298 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1299 M_SETFIB(m, fibnum); 1300 m->m_flags |= RTS_FILTER_FIB; 1301 } 1302 1303 rtm = mtod(m, struct rt_msghdr *); 1304 rtm->rtm_flags = RTF_DONE | flags; 1305 rtm->rtm_errno = error; 1306 rtm->rtm_addrs = rtinfo->rti_addrs; 1307 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1308 } 1309 1310 void 1311 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1312 { 1313 1314 rt_missmsg_fib(type, rtinfo, flags, error, RTS_ALLFIBS); 1315 } 1316 1317 /* 1318 * This routine is called to generate a message from the routing 1319 * socket indicating that the status of a network interface has changed. 1320 */ 1321 void 1322 rt_ifmsg(struct ifnet *ifp) 1323 { 1324 struct if_msghdr *ifm; 1325 struct mbuf *m; 1326 struct rt_addrinfo info; 1327 1328 if (route_cb.any_count == 0) 1329 return; 1330 bzero((caddr_t)&info, sizeof(info)); 1331 m = rt_msg1(RTM_IFINFO, &info); 1332 if (m == NULL) 1333 return; 1334 ifm = mtod(m, struct if_msghdr *); 1335 ifm->ifm_index = ifp->if_index; 1336 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1337 ifm->ifm_data = ifp->if_data; 1338 ifm->ifm_addrs = 0; 1339 rt_dispatch(m, AF_UNSPEC); 1340 } 1341 1342 /* 1343 * This is called to generate messages from the routing socket 1344 * indicating a network interface has had addresses associated with it. 1345 * if we ever reverse the logic and replace messages TO the routing 1346 * socket indicate a request to configure interfaces, then it will 1347 * be unnecessary as the routing socket will automatically generate 1348 * copies of it. 1349 */ 1350 void 1351 rt_newaddrmsg_fib(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt, 1352 int fibnum) 1353 { 1354 struct rt_addrinfo info; 1355 struct sockaddr *sa = NULL; 1356 int pass; 1357 struct mbuf *m = NULL; 1358 struct ifnet *ifp = ifa->ifa_ifp; 1359 1360 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 1361 ("unexpected cmd %u", cmd)); 1362 #if defined(INET) || defined(INET6) 1363 #ifdef SCTP 1364 /* 1365 * notify the SCTP stack 1366 * this will only get called when an address is added/deleted 1367 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 1368 */ 1369 sctp_addr_change(ifa, cmd); 1370 #endif /* SCTP */ 1371 #endif 1372 if (route_cb.any_count == 0) 1373 return; 1374 for (pass = 1; pass < 3; pass++) { 1375 bzero((caddr_t)&info, sizeof(info)); 1376 if ((cmd == RTM_ADD && pass == 1) || 1377 (cmd == RTM_DELETE && pass == 2)) { 1378 struct ifa_msghdr *ifam; 1379 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1380 1381 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1382 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1383 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1384 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1385 if ((m = rt_msg1(ncmd, &info)) == NULL) 1386 continue; 1387 ifam = mtod(m, struct ifa_msghdr *); 1388 ifam->ifam_index = ifp->if_index; 1389 ifam->ifam_metric = ifa->ifa_metric; 1390 ifam->ifam_flags = ifa->ifa_flags; 1391 ifam->ifam_addrs = info.rti_addrs; 1392 } 1393 if ((cmd == RTM_ADD && pass == 2) || 1394 (cmd == RTM_DELETE && pass == 1)) { 1395 struct rt_msghdr *rtm; 1396 1397 if (rt == NULL) 1398 continue; 1399 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1400 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1401 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1402 if ((m = rt_msg1(cmd, &info)) == NULL) 1403 continue; 1404 rtm = mtod(m, struct rt_msghdr *); 1405 rtm->rtm_index = ifp->if_index; 1406 rtm->rtm_flags |= rt->rt_flags; 1407 rtm->rtm_errno = error; 1408 rtm->rtm_addrs = info.rti_addrs; 1409 } 1410 if (fibnum != RTS_ALLFIBS) { 1411 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: " 1412 "fibnum out of range 0 <= %d < %d", __func__, 1413 fibnum, rt_numfibs)); 1414 M_SETFIB(m, fibnum); 1415 m->m_flags |= RTS_FILTER_FIB; 1416 } 1417 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1418 } 1419 } 1420 1421 void 1422 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 1423 { 1424 1425 rt_newaddrmsg_fib(cmd, ifa, error, rt, RTS_ALLFIBS); 1426 } 1427 1428 /* 1429 * This is the analogue to the rt_newaddrmsg which performs the same 1430 * function but for multicast group memberhips. This is easier since 1431 * there is no route state to worry about. 1432 */ 1433 void 1434 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1435 { 1436 struct rt_addrinfo info; 1437 struct mbuf *m = NULL; 1438 struct ifnet *ifp = ifma->ifma_ifp; 1439 struct ifma_msghdr *ifmam; 1440 1441 if (route_cb.any_count == 0) 1442 return; 1443 1444 bzero((caddr_t)&info, sizeof(info)); 1445 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1446 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1447 /* 1448 * If a link-layer address is present, present it as a ``gateway'' 1449 * (similarly to how ARP entries, e.g., are presented). 1450 */ 1451 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1452 m = rt_msg1(cmd, &info); 1453 if (m == NULL) 1454 return; 1455 ifmam = mtod(m, struct ifma_msghdr *); 1456 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1457 __func__)); 1458 ifmam->ifmam_index = ifp->if_index; 1459 ifmam->ifmam_addrs = info.rti_addrs; 1460 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1461 } 1462 1463 static struct mbuf * 1464 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1465 struct rt_addrinfo *info) 1466 { 1467 struct if_announcemsghdr *ifan; 1468 struct mbuf *m; 1469 1470 if (route_cb.any_count == 0) 1471 return NULL; 1472 bzero((caddr_t)info, sizeof(*info)); 1473 m = rt_msg1(type, info); 1474 if (m != NULL) { 1475 ifan = mtod(m, struct if_announcemsghdr *); 1476 ifan->ifan_index = ifp->if_index; 1477 strlcpy(ifan->ifan_name, ifp->if_xname, 1478 sizeof(ifan->ifan_name)); 1479 ifan->ifan_what = what; 1480 } 1481 return m; 1482 } 1483 1484 /* 1485 * This is called to generate routing socket messages indicating 1486 * IEEE80211 wireless events. 1487 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1488 */ 1489 void 1490 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1491 { 1492 struct mbuf *m; 1493 struct rt_addrinfo info; 1494 1495 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1496 if (m != NULL) { 1497 /* 1498 * Append the ieee80211 data. Try to stick it in the 1499 * mbuf containing the ifannounce msg; otherwise allocate 1500 * a new mbuf and append. 1501 * 1502 * NB: we assume m is a single mbuf. 1503 */ 1504 if (data_len > M_TRAILINGSPACE(m)) { 1505 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1506 if (n == NULL) { 1507 m_freem(m); 1508 return; 1509 } 1510 bcopy(data, mtod(n, void *), data_len); 1511 n->m_len = data_len; 1512 m->m_next = n; 1513 } else if (data_len > 0) { 1514 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1515 m->m_len += data_len; 1516 } 1517 if (m->m_flags & M_PKTHDR) 1518 m->m_pkthdr.len += data_len; 1519 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1520 rt_dispatch(m, AF_UNSPEC); 1521 } 1522 } 1523 1524 /* 1525 * This is called to generate routing socket messages indicating 1526 * network interface arrival and departure. 1527 */ 1528 void 1529 rt_ifannouncemsg(struct ifnet *ifp, int what) 1530 { 1531 struct mbuf *m; 1532 struct rt_addrinfo info; 1533 1534 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1535 if (m != NULL) 1536 rt_dispatch(m, AF_UNSPEC); 1537 } 1538 1539 static void 1540 rt_dispatch(struct mbuf *m, sa_family_t saf) 1541 { 1542 struct m_tag *tag; 1543 1544 /* 1545 * Preserve the family from the sockaddr, if any, in an m_tag for 1546 * use when injecting the mbuf into the routing socket buffer from 1547 * the netisr. 1548 */ 1549 if (saf != AF_UNSPEC) { 1550 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1551 M_NOWAIT); 1552 if (tag == NULL) { 1553 m_freem(m); 1554 return; 1555 } 1556 *(unsigned short *)(tag + 1) = saf; 1557 m_tag_prepend(m, tag); 1558 } 1559 #ifdef VIMAGE 1560 if (V_loif) 1561 m->m_pkthdr.rcvif = V_loif; 1562 else { 1563 m_freem(m); 1564 return; 1565 } 1566 #endif 1567 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1568 } 1569 1570 /* 1571 * This is used in dumping the kernel table via sysctl(). 1572 */ 1573 static int 1574 sysctl_dumpentry(struct radix_node *rn, void *vw) 1575 { 1576 struct walkarg *w = vw; 1577 struct rtentry *rt = (struct rtentry *)rn; 1578 int error = 0, size; 1579 struct rt_addrinfo info; 1580 1581 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1582 return 0; 1583 if ((rt->rt_flags & RTF_HOST) == 0 1584 ? jailed_without_vnet(w->w_req->td->td_ucred) 1585 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1586 return (0); 1587 bzero((caddr_t)&info, sizeof(info)); 1588 info.rti_info[RTAX_DST] = rt_key(rt); 1589 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1590 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1591 info.rti_info[RTAX_GENMASK] = 0; 1592 if (rt->rt_ifp) { 1593 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1594 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1595 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1596 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1597 } 1598 size = rt_msg2(RTM_GET, &info, NULL, w); 1599 if (w->w_req && w->w_tmem) { 1600 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1601 1602 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1603 rtm->rtm_flags = RTF_GATEWAY | 1604 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1605 else 1606 rtm->rtm_flags = rt->rt_flags; 1607 /* 1608 * let's be honest about this being a retarded hack 1609 */ 1610 rtm->rtm_fmask = rt->rt_rmx.rmx_pksent; 1611 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1612 rtm->rtm_index = rt->rt_ifp->if_index; 1613 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1614 rtm->rtm_addrs = info.rti_addrs; 1615 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1616 return (error); 1617 } 1618 return (error); 1619 } 1620 1621 #ifdef COMPAT_FREEBSD32 1622 static void 1623 copy_ifdata32(struct if_data *src, struct if_data32 *dst) 1624 { 1625 1626 bzero(dst, sizeof(*dst)); 1627 CP(*src, *dst, ifi_type); 1628 CP(*src, *dst, ifi_physical); 1629 CP(*src, *dst, ifi_addrlen); 1630 CP(*src, *dst, ifi_hdrlen); 1631 CP(*src, *dst, ifi_link_state); 1632 CP(*src, *dst, ifi_vhid); 1633 CP(*src, *dst, ifi_baudrate_pf); 1634 dst->ifi_datalen = sizeof(struct if_data32); 1635 CP(*src, *dst, ifi_mtu); 1636 CP(*src, *dst, ifi_metric); 1637 CP(*src, *dst, ifi_baudrate); 1638 CP(*src, *dst, ifi_ipackets); 1639 CP(*src, *dst, ifi_ierrors); 1640 CP(*src, *dst, ifi_opackets); 1641 CP(*src, *dst, ifi_oerrors); 1642 CP(*src, *dst, ifi_collisions); 1643 CP(*src, *dst, ifi_ibytes); 1644 CP(*src, *dst, ifi_obytes); 1645 CP(*src, *dst, ifi_imcasts); 1646 CP(*src, *dst, ifi_omcasts); 1647 CP(*src, *dst, ifi_iqdrops); 1648 CP(*src, *dst, ifi_noproto); 1649 CP(*src, *dst, ifi_hwassist); 1650 CP(*src, *dst, ifi_epoch); 1651 TV_CP(*src, *dst, ifi_lastchange); 1652 } 1653 #endif 1654 1655 static int 1656 sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info, 1657 struct walkarg *w, int len) 1658 { 1659 struct if_msghdrl *ifm; 1660 1661 #ifdef COMPAT_FREEBSD32 1662 if (w->w_req->flags & SCTL_MASK32) { 1663 struct if_msghdrl32 *ifm32; 1664 1665 ifm32 = (struct if_msghdrl32 *)w->w_tmem; 1666 ifm32->ifm_addrs = info->rti_addrs; 1667 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1668 ifm32->ifm_index = ifp->if_index; 1669 ifm32->_ifm_spare1 = 0; 1670 ifm32->ifm_len = sizeof(*ifm32); 1671 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1672 1673 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1674 /* Fixup if_data carp(4) vhid. */ 1675 if (carp_get_vhid_p != NULL) 1676 ifm32->ifm_data.ifi_vhid = 1677 (*carp_get_vhid_p)(ifp->if_addr); 1678 1679 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len)); 1680 } 1681 #endif 1682 ifm = (struct if_msghdrl *)w->w_tmem; 1683 ifm->ifm_addrs = info->rti_addrs; 1684 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1685 ifm->ifm_index = ifp->if_index; 1686 ifm->_ifm_spare1 = 0; 1687 ifm->ifm_len = sizeof(*ifm); 1688 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1689 1690 ifm->ifm_data = ifp->if_data; 1691 /* Fixup if_data carp(4) vhid. */ 1692 if (carp_get_vhid_p != NULL) 1693 ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr); 1694 1695 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1696 } 1697 1698 static int 1699 sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info, 1700 struct walkarg *w, int len) 1701 { 1702 struct if_msghdr *ifm; 1703 1704 #ifdef COMPAT_FREEBSD32 1705 if (w->w_req->flags & SCTL_MASK32) { 1706 struct if_msghdr32 *ifm32; 1707 1708 ifm32 = (struct if_msghdr32 *)w->w_tmem; 1709 ifm32->ifm_addrs = info->rti_addrs; 1710 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1711 ifm32->ifm_index = ifp->if_index; 1712 1713 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1714 /* Fixup if_data carp(4) vhid. */ 1715 if (carp_get_vhid_p != NULL) 1716 ifm32->ifm_data.ifi_vhid = 1717 (*carp_get_vhid_p)(ifp->if_addr); 1718 1719 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len)); 1720 } 1721 #endif 1722 ifm = (struct if_msghdr *)w->w_tmem; 1723 ifm->ifm_addrs = info->rti_addrs; 1724 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1725 ifm->ifm_index = ifp->if_index; 1726 1727 ifm->ifm_data = ifp->if_data; 1728 /* Fixup if_data carp(4) vhid. */ 1729 if (carp_get_vhid_p != NULL) 1730 ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr); 1731 1732 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1733 } 1734 1735 static int 1736 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1737 struct walkarg *w, int len) 1738 { 1739 struct ifa_msghdrl *ifam; 1740 1741 #ifdef COMPAT_FREEBSD32 1742 if (w->w_req->flags & SCTL_MASK32) { 1743 struct ifa_msghdrl32 *ifam32; 1744 1745 ifam32 = (struct ifa_msghdrl32 *)w->w_tmem; 1746 ifam32->ifam_addrs = info->rti_addrs; 1747 ifam32->ifam_flags = ifa->ifa_flags; 1748 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1749 ifam32->_ifam_spare1 = 0; 1750 ifam32->ifam_len = sizeof(*ifam32); 1751 ifam32->ifam_data_off = 1752 offsetof(struct ifa_msghdrl32, ifam_data); 1753 ifam32->ifam_metric = ifa->ifa_metric; 1754 1755 bzero(&ifam32->ifam_data, sizeof(ifam32->ifam_data)); 1756 ifam32->ifam_data.ifi_datalen = sizeof(struct if_data32); 1757 ifam32->ifam_data.ifi_ipackets = 1758 counter_u64_fetch(ifa->ifa_ipackets); 1759 ifam32->ifam_data.ifi_opackets = 1760 counter_u64_fetch(ifa->ifa_opackets); 1761 ifam32->ifam_data.ifi_ibytes = 1762 counter_u64_fetch(ifa->ifa_ibytes); 1763 ifam32->ifam_data.ifi_obytes = 1764 counter_u64_fetch(ifa->ifa_obytes); 1765 1766 /* Fixup if_data carp(4) vhid. */ 1767 if (carp_get_vhid_p != NULL) 1768 ifam32->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa); 1769 1770 return (SYSCTL_OUT(w->w_req, (caddr_t)ifam32, len)); 1771 } 1772 #endif 1773 1774 ifam = (struct ifa_msghdrl *)w->w_tmem; 1775 ifam->ifam_addrs = info->rti_addrs; 1776 ifam->ifam_flags = ifa->ifa_flags; 1777 ifam->ifam_index = ifa->ifa_ifp->if_index; 1778 ifam->_ifam_spare1 = 0; 1779 ifam->ifam_len = sizeof(*ifam); 1780 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1781 ifam->ifam_metric = ifa->ifa_metric; 1782 1783 bzero(&ifam->ifam_data, sizeof(ifam->ifam_data)); 1784 ifam->ifam_data.ifi_datalen = sizeof(struct if_data); 1785 ifam->ifam_data.ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1786 ifam->ifam_data.ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1787 ifam->ifam_data.ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1788 ifam->ifam_data.ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1789 1790 /* Fixup if_data carp(4) vhid. */ 1791 if (carp_get_vhid_p != NULL) 1792 ifam->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa); 1793 1794 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1795 } 1796 1797 static int 1798 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1799 struct walkarg *w, int len) 1800 { 1801 struct ifa_msghdr *ifam; 1802 1803 ifam = (struct ifa_msghdr *)w->w_tmem; 1804 ifam->ifam_addrs = info->rti_addrs; 1805 ifam->ifam_flags = ifa->ifa_flags; 1806 ifam->ifam_index = ifa->ifa_ifp->if_index; 1807 ifam->ifam_metric = ifa->ifa_metric; 1808 1809 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1810 } 1811 1812 static int 1813 sysctl_iflist(int af, struct walkarg *w) 1814 { 1815 struct ifnet *ifp; 1816 struct ifaddr *ifa; 1817 struct rt_addrinfo info; 1818 int len, error = 0; 1819 1820 bzero((caddr_t)&info, sizeof(info)); 1821 IFNET_RLOCK_NOSLEEP(); 1822 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1823 if (w->w_arg && w->w_arg != ifp->if_index) 1824 continue; 1825 IF_ADDR_RLOCK(ifp); 1826 ifa = ifp->if_addr; 1827 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1828 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1829 info.rti_info[RTAX_IFP] = NULL; 1830 if (w->w_req && w->w_tmem) { 1831 if (w->w_op == NET_RT_IFLISTL) 1832 error = sysctl_iflist_ifml(ifp, &info, w, len); 1833 else 1834 error = sysctl_iflist_ifm(ifp, &info, w, len); 1835 if (error) 1836 goto done; 1837 } 1838 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1839 if (af && af != ifa->ifa_addr->sa_family) 1840 continue; 1841 if (prison_if(w->w_req->td->td_ucred, 1842 ifa->ifa_addr) != 0) 1843 continue; 1844 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1845 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1846 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1847 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1848 if (w->w_req && w->w_tmem) { 1849 if (w->w_op == NET_RT_IFLISTL) 1850 error = sysctl_iflist_ifaml(ifa, &info, 1851 w, len); 1852 else 1853 error = sysctl_iflist_ifam(ifa, &info, 1854 w, len); 1855 if (error) 1856 goto done; 1857 } 1858 } 1859 IF_ADDR_RUNLOCK(ifp); 1860 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1861 info.rti_info[RTAX_BRD] = NULL; 1862 } 1863 done: 1864 if (ifp != NULL) 1865 IF_ADDR_RUNLOCK(ifp); 1866 IFNET_RUNLOCK_NOSLEEP(); 1867 return (error); 1868 } 1869 1870 static int 1871 sysctl_ifmalist(int af, struct walkarg *w) 1872 { 1873 struct ifnet *ifp; 1874 struct ifmultiaddr *ifma; 1875 struct rt_addrinfo info; 1876 int len, error = 0; 1877 struct ifaddr *ifa; 1878 1879 bzero((caddr_t)&info, sizeof(info)); 1880 IFNET_RLOCK_NOSLEEP(); 1881 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1882 if (w->w_arg && w->w_arg != ifp->if_index) 1883 continue; 1884 ifa = ifp->if_addr; 1885 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1886 IF_ADDR_RLOCK(ifp); 1887 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1888 if (af && af != ifma->ifma_addr->sa_family) 1889 continue; 1890 if (prison_if(w->w_req->td->td_ucred, 1891 ifma->ifma_addr) != 0) 1892 continue; 1893 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1894 info.rti_info[RTAX_GATEWAY] = 1895 (ifma->ifma_addr->sa_family != AF_LINK) ? 1896 ifma->ifma_lladdr : NULL; 1897 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1898 if (w->w_req && w->w_tmem) { 1899 struct ifma_msghdr *ifmam; 1900 1901 ifmam = (struct ifma_msghdr *)w->w_tmem; 1902 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1903 ifmam->ifmam_flags = 0; 1904 ifmam->ifmam_addrs = info.rti_addrs; 1905 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1906 if (error) { 1907 IF_ADDR_RUNLOCK(ifp); 1908 goto done; 1909 } 1910 } 1911 } 1912 IF_ADDR_RUNLOCK(ifp); 1913 } 1914 done: 1915 IFNET_RUNLOCK_NOSLEEP(); 1916 return (error); 1917 } 1918 1919 static int 1920 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1921 { 1922 int *name = (int *)arg1; 1923 u_int namelen = arg2; 1924 struct radix_node_head *rnh = NULL; /* silence compiler. */ 1925 int i, lim, error = EINVAL; 1926 int fib = 0; 1927 u_char af; 1928 struct walkarg w; 1929 1930 name ++; 1931 namelen--; 1932 if (req->newptr) 1933 return (EPERM); 1934 if (name[1] == NET_RT_DUMP) { 1935 if (namelen == 3) 1936 fib = req->td->td_proc->p_fibnum; 1937 else if (namelen == 4) 1938 fib = (name[3] == -1) ? 1939 req->td->td_proc->p_fibnum : name[3]; 1940 else 1941 return ((namelen < 3) ? EISDIR : ENOTDIR); 1942 if (fib < 0 || fib >= rt_numfibs) 1943 return (EINVAL); 1944 } else if (namelen != 3) 1945 return ((namelen < 3) ? EISDIR : ENOTDIR); 1946 af = name[0]; 1947 if (af > AF_MAX) 1948 return (EINVAL); 1949 bzero(&w, sizeof(w)); 1950 w.w_op = name[1]; 1951 w.w_arg = name[2]; 1952 w.w_req = req; 1953 1954 error = sysctl_wire_old_buffer(req, 0); 1955 if (error) 1956 return (error); 1957 switch (w.w_op) { 1958 1959 case NET_RT_DUMP: 1960 case NET_RT_FLAGS: 1961 if (af == 0) { /* dump all tables */ 1962 i = 1; 1963 lim = AF_MAX; 1964 } else /* dump only one table */ 1965 i = lim = af; 1966 1967 /* 1968 * take care of llinfo entries, the caller must 1969 * specify an AF 1970 */ 1971 if (w.w_op == NET_RT_FLAGS && 1972 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1973 if (af != 0) 1974 error = lltable_sysctl_dumparp(af, w.w_req); 1975 else 1976 error = EINVAL; 1977 break; 1978 } 1979 /* 1980 * take care of routing entries 1981 */ 1982 for (error = 0; error == 0 && i <= lim; i++) { 1983 rnh = rt_tables_get_rnh(fib, i); 1984 if (rnh != NULL) { 1985 RADIX_NODE_HEAD_RLOCK(rnh); 1986 error = rnh->rnh_walktree(rnh, 1987 sysctl_dumpentry, &w); 1988 RADIX_NODE_HEAD_RUNLOCK(rnh); 1989 } else if (af != 0) 1990 error = EAFNOSUPPORT; 1991 } 1992 break; 1993 1994 case NET_RT_IFLIST: 1995 case NET_RT_IFLISTL: 1996 error = sysctl_iflist(af, &w); 1997 break; 1998 1999 case NET_RT_IFMALIST: 2000 error = sysctl_ifmalist(af, &w); 2001 break; 2002 } 2003 if (w.w_tmem) 2004 free(w.w_tmem, M_RTABLE); 2005 return (error); 2006 } 2007 2008 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 2009 2010 /* 2011 * Definitions of protocols supported in the ROUTE domain. 2012 */ 2013 2014 static struct domain routedomain; /* or at least forward */ 2015 2016 static struct protosw routesw[] = { 2017 { 2018 .pr_type = SOCK_RAW, 2019 .pr_domain = &routedomain, 2020 .pr_flags = PR_ATOMIC|PR_ADDR, 2021 .pr_output = route_output, 2022 .pr_ctlinput = raw_ctlinput, 2023 .pr_init = raw_init, 2024 .pr_usrreqs = &route_usrreqs 2025 } 2026 }; 2027 2028 static struct domain routedomain = { 2029 .dom_family = PF_ROUTE, 2030 .dom_name = "route", 2031 .dom_protosw = routesw, 2032 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 2033 }; 2034 2035 VNET_DOMAIN_SET(route); 2036