1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_compat.h" 33 #include "opt_mpath.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 37 #include <sys/param.h> 38 #include <sys/jail.h> 39 #include <sys/kernel.h> 40 #include <sys/domain.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/rwlock.h> 48 #include <sys/signalvar.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/systm.h> 53 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_dl.h> 57 #include <net/if_llatbl.h> 58 #include <net/if_types.h> 59 #include <net/netisr.h> 60 #include <net/raw_cb.h> 61 #include <net/route.h> 62 #include <net/vnet.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 #include <netinet/ip_carp.h> 67 #ifdef INET6 68 #include <netinet6/ip6_var.h> 69 #include <netinet6/scope6_var.h> 70 #endif 71 72 #ifdef COMPAT_FREEBSD32 73 #include <sys/mount.h> 74 #include <compat/freebsd32/freebsd32.h> 75 76 struct if_msghdr32 { 77 uint16_t ifm_msglen; 78 uint8_t ifm_version; 79 uint8_t ifm_type; 80 int32_t ifm_addrs; 81 int32_t ifm_flags; 82 uint16_t ifm_index; 83 struct if_data ifm_data; 84 }; 85 86 struct if_msghdrl32 { 87 uint16_t ifm_msglen; 88 uint8_t ifm_version; 89 uint8_t ifm_type; 90 int32_t ifm_addrs; 91 int32_t ifm_flags; 92 uint16_t ifm_index; 93 uint16_t _ifm_spare1; 94 uint16_t ifm_len; 95 uint16_t ifm_data_off; 96 struct if_data ifm_data; 97 }; 98 99 struct ifa_msghdrl32 { 100 uint16_t ifam_msglen; 101 uint8_t ifam_version; 102 uint8_t ifam_type; 103 int32_t ifam_addrs; 104 int32_t ifam_flags; 105 uint16_t ifam_index; 106 uint16_t _ifam_spare1; 107 uint16_t ifam_len; 108 uint16_t ifam_data_off; 109 int32_t ifam_metric; 110 struct if_data ifam_data; 111 }; 112 #endif /* COMPAT_FREEBSD32 */ 113 114 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 115 116 /* NB: these are not modified */ 117 static struct sockaddr route_src = { 2, PF_ROUTE, }; 118 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 119 120 /* These are external hooks for CARP. */ 121 int (*carp_get_vhid_p)(struct ifaddr *); 122 123 /* 124 * Used by rtsock/raw_input callback code to decide whether to filter the update 125 * notification to a socket bound to a particular FIB. 126 */ 127 #define RTS_FILTER_FIB M_PROTO8 128 129 typedef struct { 130 int ip_count; /* attached w/ AF_INET */ 131 int ip6_count; /* attached w/ AF_INET6 */ 132 int any_count; /* total attached */ 133 } route_cb_t; 134 static VNET_DEFINE(route_cb_t, route_cb); 135 #define V_route_cb VNET(route_cb) 136 137 struct mtx rtsock_mtx; 138 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 139 140 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 141 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 142 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 143 144 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 145 146 struct walkarg { 147 int w_tmemsize; 148 int w_op, w_arg; 149 caddr_t w_tmem; 150 struct sysctl_req *w_req; 151 }; 152 153 static void rts_input(struct mbuf *m); 154 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 155 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 156 struct walkarg *w, int *plen); 157 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 158 struct rt_addrinfo *rtinfo); 159 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 160 static int sysctl_iflist(int af, struct walkarg *w); 161 static int sysctl_ifmalist(int af, struct walkarg *w); 162 static int route_output(struct mbuf *m, struct socket *so, ...); 163 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 164 static void rt_dispatch(struct mbuf *, sa_family_t); 165 static struct sockaddr *rtsock_fix_netmask(struct sockaddr *dst, 166 struct sockaddr *smask, struct sockaddr_storage *dmask); 167 168 static struct netisr_handler rtsock_nh = { 169 .nh_name = "rtsock", 170 .nh_handler = rts_input, 171 .nh_proto = NETISR_ROUTE, 172 .nh_policy = NETISR_POLICY_SOURCE, 173 }; 174 175 static int 176 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 177 { 178 int error, qlimit; 179 180 netisr_getqlimit(&rtsock_nh, &qlimit); 181 error = sysctl_handle_int(oidp, &qlimit, 0, req); 182 if (error || !req->newptr) 183 return (error); 184 if (qlimit < 1) 185 return (EINVAL); 186 return (netisr_setqlimit(&rtsock_nh, qlimit)); 187 } 188 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 189 0, 0, sysctl_route_netisr_maxqlen, "I", 190 "maximum routing socket dispatch queue length"); 191 192 static void 193 rts_init(void) 194 { 195 int tmp; 196 197 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 198 rtsock_nh.nh_qlimit = tmp; 199 netisr_register(&rtsock_nh); 200 } 201 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 202 203 static int 204 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 205 struct rawcb *rp) 206 { 207 int fibnum; 208 209 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 210 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 211 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 212 213 /* No filtering requested. */ 214 if ((m->m_flags & RTS_FILTER_FIB) == 0) 215 return (0); 216 217 /* Check if it is a rts and the fib matches the one of the socket. */ 218 fibnum = M_GETFIB(m); 219 if (proto->sp_family != PF_ROUTE || 220 rp->rcb_socket == NULL || 221 rp->rcb_socket->so_fibnum == fibnum) 222 return (0); 223 224 /* Filtering requested and no match, the socket shall be skipped. */ 225 return (1); 226 } 227 228 static void 229 rts_input(struct mbuf *m) 230 { 231 struct sockproto route_proto; 232 unsigned short *family; 233 struct m_tag *tag; 234 235 route_proto.sp_family = PF_ROUTE; 236 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 237 if (tag != NULL) { 238 family = (unsigned short *)(tag + 1); 239 route_proto.sp_protocol = *family; 240 m_tag_delete(m, tag); 241 } else 242 route_proto.sp_protocol = 0; 243 244 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 245 } 246 247 /* 248 * It really doesn't make any sense at all for this code to share much 249 * with raw_usrreq.c, since its functionality is so restricted. XXX 250 */ 251 static void 252 rts_abort(struct socket *so) 253 { 254 255 raw_usrreqs.pru_abort(so); 256 } 257 258 static void 259 rts_close(struct socket *so) 260 { 261 262 raw_usrreqs.pru_close(so); 263 } 264 265 /* pru_accept is EOPNOTSUPP */ 266 267 static int 268 rts_attach(struct socket *so, int proto, struct thread *td) 269 { 270 struct rawcb *rp; 271 int error; 272 273 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 274 275 /* XXX */ 276 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 277 if (rp == NULL) 278 return ENOBUFS; 279 280 so->so_pcb = (caddr_t)rp; 281 so->so_fibnum = td->td_proc->p_fibnum; 282 error = raw_attach(so, proto); 283 rp = sotorawcb(so); 284 if (error) { 285 so->so_pcb = NULL; 286 free(rp, M_PCB); 287 return error; 288 } 289 RTSOCK_LOCK(); 290 switch(rp->rcb_proto.sp_protocol) { 291 case AF_INET: 292 V_route_cb.ip_count++; 293 break; 294 case AF_INET6: 295 V_route_cb.ip6_count++; 296 break; 297 } 298 V_route_cb.any_count++; 299 RTSOCK_UNLOCK(); 300 soisconnected(so); 301 so->so_options |= SO_USELOOPBACK; 302 return 0; 303 } 304 305 static int 306 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 307 { 308 309 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 310 } 311 312 static int 313 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 314 { 315 316 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 317 } 318 319 /* pru_connect2 is EOPNOTSUPP */ 320 /* pru_control is EOPNOTSUPP */ 321 322 static void 323 rts_detach(struct socket *so) 324 { 325 struct rawcb *rp = sotorawcb(so); 326 327 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 328 329 RTSOCK_LOCK(); 330 switch(rp->rcb_proto.sp_protocol) { 331 case AF_INET: 332 V_route_cb.ip_count--; 333 break; 334 case AF_INET6: 335 V_route_cb.ip6_count--; 336 break; 337 } 338 V_route_cb.any_count--; 339 RTSOCK_UNLOCK(); 340 raw_usrreqs.pru_detach(so); 341 } 342 343 static int 344 rts_disconnect(struct socket *so) 345 { 346 347 return (raw_usrreqs.pru_disconnect(so)); 348 } 349 350 /* pru_listen is EOPNOTSUPP */ 351 352 static int 353 rts_peeraddr(struct socket *so, struct sockaddr **nam) 354 { 355 356 return (raw_usrreqs.pru_peeraddr(so, nam)); 357 } 358 359 /* pru_rcvd is EOPNOTSUPP */ 360 /* pru_rcvoob is EOPNOTSUPP */ 361 362 static int 363 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 364 struct mbuf *control, struct thread *td) 365 { 366 367 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 368 } 369 370 /* pru_sense is null */ 371 372 static int 373 rts_shutdown(struct socket *so) 374 { 375 376 return (raw_usrreqs.pru_shutdown(so)); 377 } 378 379 static int 380 rts_sockaddr(struct socket *so, struct sockaddr **nam) 381 { 382 383 return (raw_usrreqs.pru_sockaddr(so, nam)); 384 } 385 386 static struct pr_usrreqs route_usrreqs = { 387 .pru_abort = rts_abort, 388 .pru_attach = rts_attach, 389 .pru_bind = rts_bind, 390 .pru_connect = rts_connect, 391 .pru_detach = rts_detach, 392 .pru_disconnect = rts_disconnect, 393 .pru_peeraddr = rts_peeraddr, 394 .pru_send = rts_send, 395 .pru_shutdown = rts_shutdown, 396 .pru_sockaddr = rts_sockaddr, 397 .pru_close = rts_close, 398 }; 399 400 #ifndef _SOCKADDR_UNION_DEFINED 401 #define _SOCKADDR_UNION_DEFINED 402 /* 403 * The union of all possible address formats we handle. 404 */ 405 union sockaddr_union { 406 struct sockaddr sa; 407 struct sockaddr_in sin; 408 struct sockaddr_in6 sin6; 409 }; 410 #endif /* _SOCKADDR_UNION_DEFINED */ 411 412 static int 413 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 414 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 415 { 416 417 /* First, see if the returned address is part of the jail. */ 418 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 419 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 420 return (0); 421 } 422 423 switch (info->rti_info[RTAX_DST]->sa_family) { 424 #ifdef INET 425 case AF_INET: 426 { 427 struct in_addr ia; 428 struct ifaddr *ifa; 429 int found; 430 431 found = 0; 432 /* 433 * Try to find an address on the given outgoing interface 434 * that belongs to the jail. 435 */ 436 IF_ADDR_RLOCK(ifp); 437 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 438 struct sockaddr *sa; 439 sa = ifa->ifa_addr; 440 if (sa->sa_family != AF_INET) 441 continue; 442 ia = ((struct sockaddr_in *)sa)->sin_addr; 443 if (prison_check_ip4(cred, &ia) == 0) { 444 found = 1; 445 break; 446 } 447 } 448 IF_ADDR_RUNLOCK(ifp); 449 if (!found) { 450 /* 451 * As a last resort return the 'default' jail address. 452 */ 453 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 454 sin_addr; 455 if (prison_get_ip4(cred, &ia) != 0) 456 return (ESRCH); 457 } 458 bzero(&saun->sin, sizeof(struct sockaddr_in)); 459 saun->sin.sin_len = sizeof(struct sockaddr_in); 460 saun->sin.sin_family = AF_INET; 461 saun->sin.sin_addr.s_addr = ia.s_addr; 462 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 463 break; 464 } 465 #endif 466 #ifdef INET6 467 case AF_INET6: 468 { 469 struct in6_addr ia6; 470 struct ifaddr *ifa; 471 int found; 472 473 found = 0; 474 /* 475 * Try to find an address on the given outgoing interface 476 * that belongs to the jail. 477 */ 478 IF_ADDR_RLOCK(ifp); 479 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 480 struct sockaddr *sa; 481 sa = ifa->ifa_addr; 482 if (sa->sa_family != AF_INET6) 483 continue; 484 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 485 &ia6, sizeof(struct in6_addr)); 486 if (prison_check_ip6(cred, &ia6) == 0) { 487 found = 1; 488 break; 489 } 490 } 491 IF_ADDR_RUNLOCK(ifp); 492 if (!found) { 493 /* 494 * As a last resort return the 'default' jail address. 495 */ 496 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 497 sin6_addr; 498 if (prison_get_ip6(cred, &ia6) != 0) 499 return (ESRCH); 500 } 501 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 502 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 503 saun->sin6.sin6_family = AF_INET6; 504 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 505 if (sa6_recoverscope(&saun->sin6) != 0) 506 return (ESRCH); 507 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 508 break; 509 } 510 #endif 511 default: 512 return (ESRCH); 513 } 514 return (0); 515 } 516 517 /*ARGSUSED*/ 518 static int 519 route_output(struct mbuf *m, struct socket *so, ...) 520 { 521 struct rt_msghdr *rtm = NULL; 522 struct rtentry *rt = NULL; 523 struct radix_node_head *rnh; 524 struct rt_addrinfo info; 525 struct sockaddr_storage ss; 526 #ifdef INET6 527 struct sockaddr_in6 *sin6; 528 int i, rti_need_deembed = 0; 529 #endif 530 int alloc_len = 0, len, error = 0, fibnum; 531 struct ifnet *ifp = NULL; 532 union sockaddr_union saun; 533 sa_family_t saf = AF_UNSPEC; 534 struct rawcb *rp = NULL; 535 struct walkarg w; 536 537 fibnum = so->so_fibnum; 538 539 #define senderr(e) { error = e; goto flush;} 540 if (m == NULL || ((m->m_len < sizeof(long)) && 541 (m = m_pullup(m, sizeof(long))) == NULL)) 542 return (ENOBUFS); 543 if ((m->m_flags & M_PKTHDR) == 0) 544 panic("route_output"); 545 len = m->m_pkthdr.len; 546 if (len < sizeof(*rtm) || 547 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 548 senderr(EINVAL); 549 550 /* 551 * Most of current messages are in range 200-240 bytes, 552 * minimize possible re-allocation on reply using larger size 553 * buffer aligned on 1k boundaty. 554 */ 555 alloc_len = roundup2(len, 1024); 556 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 557 senderr(ENOBUFS); 558 559 m_copydata(m, 0, len, (caddr_t)rtm); 560 bzero(&info, sizeof(info)); 561 bzero(&w, sizeof(w)); 562 563 if (rtm->rtm_version != RTM_VERSION) { 564 /* Do not touch message since format is unknown */ 565 free(rtm, M_TEMP); 566 rtm = NULL; 567 senderr(EPROTONOSUPPORT); 568 } 569 570 /* 571 * Starting from here, it is possible 572 * to alter original message and insert 573 * caller PID and error value. 574 */ 575 576 rtm->rtm_pid = curproc->p_pid; 577 info.rti_addrs = rtm->rtm_addrs; 578 579 info.rti_mflags = rtm->rtm_inits; 580 info.rti_rmx = &rtm->rtm_rmx; 581 582 /* 583 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 584 * link-local address because rtrequest requires addresses with 585 * embedded scope id. 586 */ 587 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) 588 senderr(EINVAL); 589 590 info.rti_flags = rtm->rtm_flags; 591 if (info.rti_info[RTAX_DST] == NULL || 592 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 593 (info.rti_info[RTAX_GATEWAY] != NULL && 594 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 595 senderr(EINVAL); 596 saf = info.rti_info[RTAX_DST]->sa_family; 597 /* 598 * Verify that the caller has the appropriate privilege; RTM_GET 599 * is the only operation the non-superuser is allowed. 600 */ 601 if (rtm->rtm_type != RTM_GET) { 602 error = priv_check(curthread, PRIV_NET_ROUTE); 603 if (error) 604 senderr(error); 605 } 606 607 /* 608 * The given gateway address may be an interface address. 609 * For example, issuing a "route change" command on a route 610 * entry that was created from a tunnel, and the gateway 611 * address given is the local end point. In this case the 612 * RTF_GATEWAY flag must be cleared or the destination will 613 * not be reachable even though there is no error message. 614 */ 615 if (info.rti_info[RTAX_GATEWAY] != NULL && 616 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 617 struct rt_addrinfo ginfo; 618 struct sockaddr *gdst; 619 620 bzero(&ginfo, sizeof(ginfo)); 621 bzero(&ss, sizeof(ss)); 622 ss.ss_len = sizeof(ss); 623 624 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 625 gdst = info.rti_info[RTAX_GATEWAY]; 626 627 /* 628 * A host route through the loopback interface is 629 * installed for each interface adddress. In pre 8.0 630 * releases the interface address of a PPP link type 631 * is not reachable locally. This behavior is fixed as 632 * part of the new L2/L3 redesign and rewrite work. The 633 * signature of this interface address route is the 634 * AF_LINK sa_family type of the rt_gateway, and the 635 * rt_ifp has the IFF_LOOPBACK flag set. 636 */ 637 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 638 if (ss.ss_family == AF_LINK && 639 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 640 info.rti_flags &= ~RTF_GATEWAY; 641 info.rti_flags |= RTF_GWFLAG_COMPAT; 642 } 643 rib_free_info(&ginfo); 644 } 645 } 646 647 switch (rtm->rtm_type) { 648 struct rtentry *saved_nrt; 649 650 case RTM_ADD: 651 case RTM_CHANGE: 652 if (info.rti_info[RTAX_GATEWAY] == NULL) 653 senderr(EINVAL); 654 saved_nrt = NULL; 655 656 /* support for new ARP code */ 657 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 658 (rtm->rtm_flags & RTF_LLDATA) != 0) { 659 error = lla_rt_output(rtm, &info); 660 #ifdef INET6 661 if (error == 0) 662 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 663 #endif 664 break; 665 } 666 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt, 667 fibnum); 668 if (error == 0 && saved_nrt != NULL) { 669 #ifdef INET6 670 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 671 #endif 672 RT_LOCK(saved_nrt); 673 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 674 RT_REMREF(saved_nrt); 675 RT_UNLOCK(saved_nrt); 676 } 677 break; 678 679 case RTM_DELETE: 680 saved_nrt = NULL; 681 /* support for new ARP code */ 682 if (info.rti_info[RTAX_GATEWAY] && 683 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 684 (rtm->rtm_flags & RTF_LLDATA) != 0) { 685 error = lla_rt_output(rtm, &info); 686 #ifdef INET6 687 if (error == 0) 688 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 689 #endif 690 break; 691 } 692 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum); 693 if (error == 0) { 694 RT_LOCK(saved_nrt); 695 rt = saved_nrt; 696 goto report; 697 } 698 #ifdef INET6 699 /* rt_msg2() will not be used when RTM_DELETE fails. */ 700 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 701 #endif 702 break; 703 704 case RTM_GET: 705 rnh = rt_tables_get_rnh(fibnum, saf); 706 if (rnh == NULL) 707 senderr(EAFNOSUPPORT); 708 709 RADIX_NODE_HEAD_RLOCK(rnh); 710 711 if (info.rti_info[RTAX_NETMASK] == NULL && 712 rtm->rtm_type == RTM_GET) { 713 /* 714 * Provide logest prefix match for 715 * address lookup (no mask). 716 * 'route -n get addr' 717 */ 718 rt = (struct rtentry *) rnh->rnh_matchaddr( 719 info.rti_info[RTAX_DST], rnh); 720 } else 721 rt = (struct rtentry *) rnh->rnh_lookup( 722 info.rti_info[RTAX_DST], 723 info.rti_info[RTAX_NETMASK], rnh); 724 725 if (rt == NULL) { 726 RADIX_NODE_HEAD_RUNLOCK(rnh); 727 senderr(ESRCH); 728 } 729 #ifdef RADIX_MPATH 730 /* 731 * for RTM_CHANGE/LOCK, if we got multipath routes, 732 * we require users to specify a matching RTAX_GATEWAY. 733 * 734 * for RTM_GET, gate is optional even with multipath. 735 * if gate == NULL the first match is returned. 736 * (no need to call rt_mpath_matchgate if gate == NULL) 737 */ 738 if (rn_mpath_capable(rnh) && 739 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 740 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 741 if (!rt) { 742 RADIX_NODE_HEAD_RUNLOCK(rnh); 743 senderr(ESRCH); 744 } 745 } 746 #endif 747 /* 748 * If performing proxied L2 entry insertion, and 749 * the actual PPP host entry is found, perform 750 * another search to retrieve the prefix route of 751 * the local end point of the PPP link. 752 */ 753 if (rtm->rtm_flags & RTF_ANNOUNCE) { 754 struct sockaddr laddr; 755 756 if (rt->rt_ifp != NULL && 757 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 758 struct ifaddr *ifa; 759 760 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1, 761 RT_ALL_FIBS); 762 if (ifa != NULL) 763 rt_maskedcopy(ifa->ifa_addr, 764 &laddr, 765 ifa->ifa_netmask); 766 } else 767 rt_maskedcopy(rt->rt_ifa->ifa_addr, 768 &laddr, 769 rt->rt_ifa->ifa_netmask); 770 /* 771 * refactor rt and no lock operation necessary 772 */ 773 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh); 774 if (rt == NULL) { 775 RADIX_NODE_HEAD_RUNLOCK(rnh); 776 senderr(ESRCH); 777 } 778 } 779 RT_LOCK(rt); 780 RT_ADDREF(rt); 781 RADIX_NODE_HEAD_RUNLOCK(rnh); 782 783 report: 784 RT_LOCK_ASSERT(rt); 785 if ((rt->rt_flags & RTF_HOST) == 0 786 ? jailed_without_vnet(curthread->td_ucred) 787 : prison_if(curthread->td_ucred, 788 rt_key(rt)) != 0) { 789 RT_UNLOCK(rt); 790 senderr(ESRCH); 791 } 792 info.rti_info[RTAX_DST] = rt_key(rt); 793 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 794 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 795 rt_mask(rt), &ss); 796 info.rti_info[RTAX_GENMASK] = 0; 797 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 798 ifp = rt->rt_ifp; 799 if (ifp) { 800 info.rti_info[RTAX_IFP] = 801 ifp->if_addr->ifa_addr; 802 error = rtm_get_jailed(&info, ifp, rt, 803 &saun, curthread->td_ucred); 804 if (error != 0) { 805 RT_UNLOCK(rt); 806 senderr(error); 807 } 808 if (ifp->if_flags & IFF_POINTOPOINT) 809 info.rti_info[RTAX_BRD] = 810 rt->rt_ifa->ifa_dstaddr; 811 rtm->rtm_index = ifp->if_index; 812 } else { 813 info.rti_info[RTAX_IFP] = NULL; 814 info.rti_info[RTAX_IFA] = NULL; 815 } 816 } else if ((ifp = rt->rt_ifp) != NULL) { 817 rtm->rtm_index = ifp->if_index; 818 } 819 820 /* Check if we need to realloc storage */ 821 rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len); 822 if (len > alloc_len) { 823 struct rt_msghdr *new_rtm; 824 new_rtm = malloc(len, M_TEMP, M_NOWAIT); 825 if (new_rtm == NULL) { 826 RT_UNLOCK(rt); 827 senderr(ENOBUFS); 828 } 829 bcopy(rtm, new_rtm, rtm->rtm_msglen); 830 free(rtm, M_TEMP); 831 rtm = new_rtm; 832 alloc_len = len; 833 } 834 835 w.w_tmem = (caddr_t)rtm; 836 w.w_tmemsize = alloc_len; 837 rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len); 838 839 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 840 rtm->rtm_flags = RTF_GATEWAY | 841 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 842 else 843 rtm->rtm_flags = rt->rt_flags; 844 rt_getmetrics(rt, &rtm->rtm_rmx); 845 rtm->rtm_addrs = info.rti_addrs; 846 847 RT_UNLOCK(rt); 848 break; 849 850 default: 851 senderr(EOPNOTSUPP); 852 } 853 854 flush: 855 if (rt != NULL) 856 RTFREE(rt); 857 /* 858 * Check to see if we don't want our own messages. 859 */ 860 if ((so->so_options & SO_USELOOPBACK) == 0) { 861 if (V_route_cb.any_count <= 1) { 862 if (rtm != NULL) 863 free(rtm, M_TEMP); 864 m_freem(m); 865 return (error); 866 } 867 /* There is another listener, so construct message */ 868 rp = sotorawcb(so); 869 } 870 871 if (rtm != NULL) { 872 #ifdef INET6 873 if (rti_need_deembed) { 874 /* sin6_scope_id is recovered before sending rtm. */ 875 sin6 = (struct sockaddr_in6 *)&ss; 876 for (i = 0; i < RTAX_MAX; i++) { 877 if (info.rti_info[i] == NULL) 878 continue; 879 if (info.rti_info[i]->sa_family != AF_INET6) 880 continue; 881 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 882 if (sa6_recoverscope(sin6) == 0) 883 bcopy(sin6, info.rti_info[i], 884 sizeof(*sin6)); 885 } 886 } 887 #endif 888 if (error != 0) 889 rtm->rtm_errno = error; 890 else 891 rtm->rtm_flags |= RTF_DONE; 892 893 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 894 if (m->m_pkthdr.len < rtm->rtm_msglen) { 895 m_freem(m); 896 m = NULL; 897 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 898 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 899 900 free(rtm, M_TEMP); 901 } 902 if (m != NULL) { 903 M_SETFIB(m, fibnum); 904 m->m_flags |= RTS_FILTER_FIB; 905 if (rp) { 906 /* 907 * XXX insure we don't get a copy by 908 * invalidating our protocol 909 */ 910 unsigned short family = rp->rcb_proto.sp_family; 911 rp->rcb_proto.sp_family = 0; 912 rt_dispatch(m, saf); 913 rp->rcb_proto.sp_family = family; 914 } else 915 rt_dispatch(m, saf); 916 } 917 918 return (error); 919 } 920 921 static void 922 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 923 { 924 925 bzero(out, sizeof(*out)); 926 out->rmx_mtu = rt->rt_mtu; 927 out->rmx_weight = rt->rt_weight; 928 out->rmx_pksent = counter_u64_fetch(rt->rt_pksent); 929 /* Kernel -> userland timebase conversion. */ 930 out->rmx_expire = rt->rt_expire ? 931 rt->rt_expire - time_uptime + time_second : 0; 932 } 933 934 /* 935 * Extract the addresses of the passed sockaddrs. 936 * Do a little sanity checking so as to avoid bad memory references. 937 * This data is derived straight from userland. 938 */ 939 static int 940 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 941 { 942 struct sockaddr *sa; 943 int i; 944 945 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 946 if ((rtinfo->rti_addrs & (1 << i)) == 0) 947 continue; 948 sa = (struct sockaddr *)cp; 949 /* 950 * It won't fit. 951 */ 952 if (cp + sa->sa_len > cplim) 953 return (EINVAL); 954 /* 955 * there are no more.. quit now 956 * If there are more bits, they are in error. 957 * I've seen this. route(1) can evidently generate these. 958 * This causes kernel to core dump. 959 * for compatibility, If we see this, point to a safe address. 960 */ 961 if (sa->sa_len == 0) { 962 rtinfo->rti_info[i] = &sa_zero; 963 return (0); /* should be EINVAL but for compat */ 964 } 965 /* accept it */ 966 #ifdef INET6 967 if (sa->sa_family == AF_INET6) 968 sa6_embedscope((struct sockaddr_in6 *)sa, 969 V_ip6_use_defzone); 970 #endif 971 rtinfo->rti_info[i] = sa; 972 cp += SA_SIZE(sa); 973 } 974 return (0); 975 } 976 977 /* 978 * Fill in @dmask with valid netmask leaving original @smask 979 * intact. Mostly used with radix netmasks. 980 */ 981 static struct sockaddr * 982 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask, 983 struct sockaddr_storage *dmask) 984 { 985 if (dst == NULL || smask == NULL) 986 return (NULL); 987 988 memset(dmask, 0, dst->sa_len); 989 memcpy(dmask, smask, smask->sa_len); 990 dmask->ss_len = dst->sa_len; 991 dmask->ss_family = dst->sa_family; 992 993 return ((struct sockaddr *)dmask); 994 } 995 996 /* 997 * Writes information related to @rtinfo object to newly-allocated mbuf. 998 * Assumes MCLBYTES is enough to construct any message. 999 * Used for OS notifications of vaious events (if/ifa announces,etc) 1000 * 1001 * Returns allocated mbuf or NULL on failure. 1002 */ 1003 static struct mbuf * 1004 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1005 { 1006 struct rt_msghdr *rtm; 1007 struct mbuf *m; 1008 int i; 1009 struct sockaddr *sa; 1010 #ifdef INET6 1011 struct sockaddr_storage ss; 1012 struct sockaddr_in6 *sin6; 1013 #endif 1014 int len, dlen; 1015 1016 switch (type) { 1017 1018 case RTM_DELADDR: 1019 case RTM_NEWADDR: 1020 len = sizeof(struct ifa_msghdr); 1021 break; 1022 1023 case RTM_DELMADDR: 1024 case RTM_NEWMADDR: 1025 len = sizeof(struct ifma_msghdr); 1026 break; 1027 1028 case RTM_IFINFO: 1029 len = sizeof(struct if_msghdr); 1030 break; 1031 1032 case RTM_IFANNOUNCE: 1033 case RTM_IEEE80211: 1034 len = sizeof(struct if_announcemsghdr); 1035 break; 1036 1037 default: 1038 len = sizeof(struct rt_msghdr); 1039 } 1040 1041 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1042 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1043 if (len > MHLEN) 1044 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1045 else 1046 m = m_gethdr(M_NOWAIT, MT_DATA); 1047 if (m == NULL) 1048 return (m); 1049 1050 m->m_pkthdr.len = m->m_len = len; 1051 rtm = mtod(m, struct rt_msghdr *); 1052 bzero((caddr_t)rtm, len); 1053 for (i = 0; i < RTAX_MAX; i++) { 1054 if ((sa = rtinfo->rti_info[i]) == NULL) 1055 continue; 1056 rtinfo->rti_addrs |= (1 << i); 1057 dlen = SA_SIZE(sa); 1058 #ifdef INET6 1059 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1060 sin6 = (struct sockaddr_in6 *)&ss; 1061 bcopy(sa, sin6, sizeof(*sin6)); 1062 if (sa6_recoverscope(sin6) == 0) 1063 sa = (struct sockaddr *)sin6; 1064 } 1065 #endif 1066 m_copyback(m, len, dlen, (caddr_t)sa); 1067 len += dlen; 1068 } 1069 if (m->m_pkthdr.len != len) { 1070 m_freem(m); 1071 return (NULL); 1072 } 1073 rtm->rtm_msglen = len; 1074 rtm->rtm_version = RTM_VERSION; 1075 rtm->rtm_type = type; 1076 return (m); 1077 } 1078 1079 /* 1080 * Writes information related to @rtinfo object to preallocated buffer. 1081 * Stores needed size in @plen. If @w is NULL, calculates size without 1082 * writing. 1083 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1084 * 1085 * Returns 0 on success. 1086 * 1087 */ 1088 static int 1089 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1090 { 1091 int i; 1092 int len, buflen = 0, dlen; 1093 caddr_t cp = NULL; 1094 struct rt_msghdr *rtm = NULL; 1095 #ifdef INET6 1096 struct sockaddr_storage ss; 1097 struct sockaddr_in6 *sin6; 1098 #endif 1099 1100 switch (type) { 1101 1102 case RTM_DELADDR: 1103 case RTM_NEWADDR: 1104 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1105 #ifdef COMPAT_FREEBSD32 1106 if (w->w_req->flags & SCTL_MASK32) 1107 len = sizeof(struct ifa_msghdrl32); 1108 else 1109 #endif 1110 len = sizeof(struct ifa_msghdrl); 1111 } else 1112 len = sizeof(struct ifa_msghdr); 1113 break; 1114 1115 case RTM_IFINFO: 1116 #ifdef COMPAT_FREEBSD32 1117 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1118 if (w->w_op == NET_RT_IFLISTL) 1119 len = sizeof(struct if_msghdrl32); 1120 else 1121 len = sizeof(struct if_msghdr32); 1122 break; 1123 } 1124 #endif 1125 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1126 len = sizeof(struct if_msghdrl); 1127 else 1128 len = sizeof(struct if_msghdr); 1129 break; 1130 1131 case RTM_NEWMADDR: 1132 len = sizeof(struct ifma_msghdr); 1133 break; 1134 1135 default: 1136 len = sizeof(struct rt_msghdr); 1137 } 1138 1139 if (w != NULL) { 1140 rtm = (struct rt_msghdr *)w->w_tmem; 1141 buflen = w->w_tmemsize - len; 1142 cp = (caddr_t)w->w_tmem + len; 1143 } 1144 1145 rtinfo->rti_addrs = 0; 1146 for (i = 0; i < RTAX_MAX; i++) { 1147 struct sockaddr *sa; 1148 1149 if ((sa = rtinfo->rti_info[i]) == NULL) 1150 continue; 1151 rtinfo->rti_addrs |= (1 << i); 1152 dlen = SA_SIZE(sa); 1153 if (cp != NULL && buflen >= dlen) { 1154 #ifdef INET6 1155 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1156 sin6 = (struct sockaddr_in6 *)&ss; 1157 bcopy(sa, sin6, sizeof(*sin6)); 1158 if (sa6_recoverscope(sin6) == 0) 1159 sa = (struct sockaddr *)sin6; 1160 } 1161 #endif 1162 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1163 cp += dlen; 1164 buflen -= dlen; 1165 } else if (cp != NULL) { 1166 /* 1167 * Buffer too small. Count needed size 1168 * and return with error. 1169 */ 1170 cp = NULL; 1171 } 1172 1173 len += dlen; 1174 } 1175 1176 if (cp != NULL) { 1177 dlen = ALIGN(len) - len; 1178 if (buflen < dlen) 1179 cp = NULL; 1180 else 1181 buflen -= dlen; 1182 } 1183 len = ALIGN(len); 1184 1185 if (cp != NULL) { 1186 /* fill header iff buffer is large enough */ 1187 rtm->rtm_version = RTM_VERSION; 1188 rtm->rtm_type = type; 1189 rtm->rtm_msglen = len; 1190 } 1191 1192 *plen = len; 1193 1194 if (w != NULL && cp == NULL) 1195 return (ENOBUFS); 1196 1197 return (0); 1198 } 1199 1200 /* 1201 * This routine is called to generate a message from the routing 1202 * socket indicating that a redirect has occured, a routing lookup 1203 * has failed, or that a protocol has detected timeouts to a particular 1204 * destination. 1205 */ 1206 void 1207 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1208 int fibnum) 1209 { 1210 struct rt_msghdr *rtm; 1211 struct mbuf *m; 1212 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1213 1214 if (V_route_cb.any_count == 0) 1215 return; 1216 m = rtsock_msg_mbuf(type, rtinfo); 1217 if (m == NULL) 1218 return; 1219 1220 if (fibnum != RT_ALL_FIBS) { 1221 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1222 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1223 M_SETFIB(m, fibnum); 1224 m->m_flags |= RTS_FILTER_FIB; 1225 } 1226 1227 rtm = mtod(m, struct rt_msghdr *); 1228 rtm->rtm_flags = RTF_DONE | flags; 1229 rtm->rtm_errno = error; 1230 rtm->rtm_addrs = rtinfo->rti_addrs; 1231 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1232 } 1233 1234 void 1235 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1236 { 1237 1238 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1239 } 1240 1241 /* 1242 * This routine is called to generate a message from the routing 1243 * socket indicating that the status of a network interface has changed. 1244 */ 1245 void 1246 rt_ifmsg(struct ifnet *ifp) 1247 { 1248 struct if_msghdr *ifm; 1249 struct mbuf *m; 1250 struct rt_addrinfo info; 1251 1252 if (V_route_cb.any_count == 0) 1253 return; 1254 bzero((caddr_t)&info, sizeof(info)); 1255 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1256 if (m == NULL) 1257 return; 1258 ifm = mtod(m, struct if_msghdr *); 1259 ifm->ifm_index = ifp->if_index; 1260 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1261 if_data_copy(ifp, &ifm->ifm_data); 1262 ifm->ifm_addrs = 0; 1263 rt_dispatch(m, AF_UNSPEC); 1264 } 1265 1266 /* 1267 * Announce interface address arrival/withdraw. 1268 * Please do not call directly, use rt_addrmsg(). 1269 * Assume input data to be valid. 1270 * Returns 0 on success. 1271 */ 1272 int 1273 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1274 { 1275 struct rt_addrinfo info; 1276 struct sockaddr *sa; 1277 int ncmd; 1278 struct mbuf *m; 1279 struct ifa_msghdr *ifam; 1280 struct ifnet *ifp = ifa->ifa_ifp; 1281 struct sockaddr_storage ss; 1282 1283 if (V_route_cb.any_count == 0) 1284 return (0); 1285 1286 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1287 1288 bzero((caddr_t)&info, sizeof(info)); 1289 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1290 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1291 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1292 info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss); 1293 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1294 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1295 return (ENOBUFS); 1296 ifam = mtod(m, struct ifa_msghdr *); 1297 ifam->ifam_index = ifp->if_index; 1298 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1299 ifam->ifam_flags = ifa->ifa_flags; 1300 ifam->ifam_addrs = info.rti_addrs; 1301 1302 if (fibnum != RT_ALL_FIBS) { 1303 M_SETFIB(m, fibnum); 1304 m->m_flags |= RTS_FILTER_FIB; 1305 } 1306 1307 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1308 1309 return (0); 1310 } 1311 1312 /* 1313 * Announce route addition/removal. 1314 * Please do not call directly, use rt_routemsg(). 1315 * Note that @rt data MAY be inconsistent/invalid: 1316 * if some userland app sends us "invalid" route message (invalid mask, 1317 * no dst, wrong address families, etc...) we need to pass it back 1318 * to app (and any other rtsock consumers) with rtm_errno field set to 1319 * non-zero value. 1320 * 1321 * Returns 0 on success. 1322 */ 1323 int 1324 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1325 int fibnum) 1326 { 1327 struct rt_addrinfo info; 1328 struct sockaddr *sa; 1329 struct mbuf *m; 1330 struct rt_msghdr *rtm; 1331 struct sockaddr_storage ss; 1332 1333 if (V_route_cb.any_count == 0) 1334 return (0); 1335 1336 bzero((caddr_t)&info, sizeof(info)); 1337 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1338 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss); 1339 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1340 if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL) 1341 return (ENOBUFS); 1342 rtm = mtod(m, struct rt_msghdr *); 1343 rtm->rtm_index = ifp->if_index; 1344 rtm->rtm_flags |= rt->rt_flags; 1345 rtm->rtm_errno = error; 1346 rtm->rtm_addrs = info.rti_addrs; 1347 1348 if (fibnum != RT_ALL_FIBS) { 1349 M_SETFIB(m, fibnum); 1350 m->m_flags |= RTS_FILTER_FIB; 1351 } 1352 1353 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1354 1355 return (0); 1356 } 1357 1358 /* 1359 * This is the analogue to the rt_newaddrmsg which performs the same 1360 * function but for multicast group memberhips. This is easier since 1361 * there is no route state to worry about. 1362 */ 1363 void 1364 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1365 { 1366 struct rt_addrinfo info; 1367 struct mbuf *m = NULL; 1368 struct ifnet *ifp = ifma->ifma_ifp; 1369 struct ifma_msghdr *ifmam; 1370 1371 if (V_route_cb.any_count == 0) 1372 return; 1373 1374 bzero((caddr_t)&info, sizeof(info)); 1375 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1376 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1377 /* 1378 * If a link-layer address is present, present it as a ``gateway'' 1379 * (similarly to how ARP entries, e.g., are presented). 1380 */ 1381 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1382 m = rtsock_msg_mbuf(cmd, &info); 1383 if (m == NULL) 1384 return; 1385 ifmam = mtod(m, struct ifma_msghdr *); 1386 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1387 __func__)); 1388 ifmam->ifmam_index = ifp->if_index; 1389 ifmam->ifmam_addrs = info.rti_addrs; 1390 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1391 } 1392 1393 static struct mbuf * 1394 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1395 struct rt_addrinfo *info) 1396 { 1397 struct if_announcemsghdr *ifan; 1398 struct mbuf *m; 1399 1400 if (V_route_cb.any_count == 0) 1401 return NULL; 1402 bzero((caddr_t)info, sizeof(*info)); 1403 m = rtsock_msg_mbuf(type, info); 1404 if (m != NULL) { 1405 ifan = mtod(m, struct if_announcemsghdr *); 1406 ifan->ifan_index = ifp->if_index; 1407 strlcpy(ifan->ifan_name, ifp->if_xname, 1408 sizeof(ifan->ifan_name)); 1409 ifan->ifan_what = what; 1410 } 1411 return m; 1412 } 1413 1414 /* 1415 * This is called to generate routing socket messages indicating 1416 * IEEE80211 wireless events. 1417 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1418 */ 1419 void 1420 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1421 { 1422 struct mbuf *m; 1423 struct rt_addrinfo info; 1424 1425 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1426 if (m != NULL) { 1427 /* 1428 * Append the ieee80211 data. Try to stick it in the 1429 * mbuf containing the ifannounce msg; otherwise allocate 1430 * a new mbuf and append. 1431 * 1432 * NB: we assume m is a single mbuf. 1433 */ 1434 if (data_len > M_TRAILINGSPACE(m)) { 1435 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1436 if (n == NULL) { 1437 m_freem(m); 1438 return; 1439 } 1440 bcopy(data, mtod(n, void *), data_len); 1441 n->m_len = data_len; 1442 m->m_next = n; 1443 } else if (data_len > 0) { 1444 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1445 m->m_len += data_len; 1446 } 1447 if (m->m_flags & M_PKTHDR) 1448 m->m_pkthdr.len += data_len; 1449 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1450 rt_dispatch(m, AF_UNSPEC); 1451 } 1452 } 1453 1454 /* 1455 * This is called to generate routing socket messages indicating 1456 * network interface arrival and departure. 1457 */ 1458 void 1459 rt_ifannouncemsg(struct ifnet *ifp, int what) 1460 { 1461 struct mbuf *m; 1462 struct rt_addrinfo info; 1463 1464 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1465 if (m != NULL) 1466 rt_dispatch(m, AF_UNSPEC); 1467 } 1468 1469 static void 1470 rt_dispatch(struct mbuf *m, sa_family_t saf) 1471 { 1472 struct m_tag *tag; 1473 1474 /* 1475 * Preserve the family from the sockaddr, if any, in an m_tag for 1476 * use when injecting the mbuf into the routing socket buffer from 1477 * the netisr. 1478 */ 1479 if (saf != AF_UNSPEC) { 1480 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1481 M_NOWAIT); 1482 if (tag == NULL) { 1483 m_freem(m); 1484 return; 1485 } 1486 *(unsigned short *)(tag + 1) = saf; 1487 m_tag_prepend(m, tag); 1488 } 1489 #ifdef VIMAGE 1490 if (V_loif) 1491 m->m_pkthdr.rcvif = V_loif; 1492 else { 1493 m_freem(m); 1494 return; 1495 } 1496 #endif 1497 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1498 } 1499 1500 /* 1501 * This is used in dumping the kernel table via sysctl(). 1502 */ 1503 static int 1504 sysctl_dumpentry(struct radix_node *rn, void *vw) 1505 { 1506 struct walkarg *w = vw; 1507 struct rtentry *rt = (struct rtentry *)rn; 1508 int error = 0, size; 1509 struct rt_addrinfo info; 1510 struct sockaddr_storage ss; 1511 1512 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1513 return 0; 1514 if ((rt->rt_flags & RTF_HOST) == 0 1515 ? jailed_without_vnet(w->w_req->td->td_ucred) 1516 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1517 return (0); 1518 bzero((caddr_t)&info, sizeof(info)); 1519 info.rti_info[RTAX_DST] = rt_key(rt); 1520 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1521 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1522 rt_mask(rt), &ss); 1523 info.rti_info[RTAX_GENMASK] = 0; 1524 if (rt->rt_ifp) { 1525 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1526 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1527 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1528 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1529 } 1530 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1531 return (error); 1532 if (w->w_req && w->w_tmem) { 1533 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1534 1535 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1536 rtm->rtm_flags = RTF_GATEWAY | 1537 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1538 else 1539 rtm->rtm_flags = rt->rt_flags; 1540 rt_getmetrics(rt, &rtm->rtm_rmx); 1541 rtm->rtm_index = rt->rt_ifp->if_index; 1542 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1543 rtm->rtm_addrs = info.rti_addrs; 1544 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1545 return (error); 1546 } 1547 return (error); 1548 } 1549 1550 static int 1551 sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info, 1552 struct walkarg *w, int len) 1553 { 1554 struct if_msghdrl *ifm; 1555 struct if_data *ifd; 1556 1557 ifm = (struct if_msghdrl *)w->w_tmem; 1558 1559 #ifdef COMPAT_FREEBSD32 1560 if (w->w_req->flags & SCTL_MASK32) { 1561 struct if_msghdrl32 *ifm32; 1562 1563 ifm32 = (struct if_msghdrl32 *)ifm; 1564 ifm32->ifm_addrs = info->rti_addrs; 1565 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1566 ifm32->ifm_index = ifp->if_index; 1567 ifm32->_ifm_spare1 = 0; 1568 ifm32->ifm_len = sizeof(*ifm32); 1569 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1570 ifd = &ifm32->ifm_data; 1571 } else 1572 #endif 1573 { 1574 ifm->ifm_addrs = info->rti_addrs; 1575 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1576 ifm->ifm_index = ifp->if_index; 1577 ifm->_ifm_spare1 = 0; 1578 ifm->ifm_len = sizeof(*ifm); 1579 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1580 ifd = &ifm->ifm_data; 1581 } 1582 1583 if_data_copy(ifp, ifd); 1584 1585 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1586 } 1587 1588 static int 1589 sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info, 1590 struct walkarg *w, int len) 1591 { 1592 struct if_msghdr *ifm; 1593 struct if_data *ifd; 1594 1595 ifm = (struct if_msghdr *)w->w_tmem; 1596 1597 #ifdef COMPAT_FREEBSD32 1598 if (w->w_req->flags & SCTL_MASK32) { 1599 struct if_msghdr32 *ifm32; 1600 1601 ifm32 = (struct if_msghdr32 *)ifm; 1602 ifm32->ifm_addrs = info->rti_addrs; 1603 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1604 ifm32->ifm_index = ifp->if_index; 1605 ifd = &ifm32->ifm_data; 1606 } else 1607 #endif 1608 { 1609 ifm->ifm_addrs = info->rti_addrs; 1610 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1611 ifm->ifm_index = ifp->if_index; 1612 ifd = &ifm->ifm_data; 1613 } 1614 1615 if_data_copy(ifp, ifd); 1616 1617 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1618 } 1619 1620 static int 1621 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1622 struct walkarg *w, int len) 1623 { 1624 struct ifa_msghdrl *ifam; 1625 struct if_data *ifd; 1626 1627 ifam = (struct ifa_msghdrl *)w->w_tmem; 1628 1629 #ifdef COMPAT_FREEBSD32 1630 if (w->w_req->flags & SCTL_MASK32) { 1631 struct ifa_msghdrl32 *ifam32; 1632 1633 ifam32 = (struct ifa_msghdrl32 *)ifam; 1634 ifam32->ifam_addrs = info->rti_addrs; 1635 ifam32->ifam_flags = ifa->ifa_flags; 1636 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1637 ifam32->_ifam_spare1 = 0; 1638 ifam32->ifam_len = sizeof(*ifam32); 1639 ifam32->ifam_data_off = 1640 offsetof(struct ifa_msghdrl32, ifam_data); 1641 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1642 ifd = &ifam32->ifam_data; 1643 } else 1644 #endif 1645 { 1646 ifam->ifam_addrs = info->rti_addrs; 1647 ifam->ifam_flags = ifa->ifa_flags; 1648 ifam->ifam_index = ifa->ifa_ifp->if_index; 1649 ifam->_ifam_spare1 = 0; 1650 ifam->ifam_len = sizeof(*ifam); 1651 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1652 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1653 ifd = &ifam->ifam_data; 1654 } 1655 1656 bzero(ifd, sizeof(*ifd)); 1657 ifd->ifi_datalen = sizeof(struct if_data); 1658 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1659 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1660 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1661 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1662 1663 /* Fixup if_data carp(4) vhid. */ 1664 if (carp_get_vhid_p != NULL) 1665 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1666 1667 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1668 } 1669 1670 static int 1671 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1672 struct walkarg *w, int len) 1673 { 1674 struct ifa_msghdr *ifam; 1675 1676 ifam = (struct ifa_msghdr *)w->w_tmem; 1677 ifam->ifam_addrs = info->rti_addrs; 1678 ifam->ifam_flags = ifa->ifa_flags; 1679 ifam->ifam_index = ifa->ifa_ifp->if_index; 1680 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1681 1682 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1683 } 1684 1685 static int 1686 sysctl_iflist(int af, struct walkarg *w) 1687 { 1688 struct ifnet *ifp; 1689 struct ifaddr *ifa; 1690 struct rt_addrinfo info; 1691 int len, error = 0; 1692 struct sockaddr_storage ss; 1693 1694 bzero((caddr_t)&info, sizeof(info)); 1695 IFNET_RLOCK_NOSLEEP(); 1696 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1697 if (w->w_arg && w->w_arg != ifp->if_index) 1698 continue; 1699 IF_ADDR_RLOCK(ifp); 1700 ifa = ifp->if_addr; 1701 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1702 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1703 if (error != 0) 1704 goto done; 1705 info.rti_info[RTAX_IFP] = NULL; 1706 if (w->w_req && w->w_tmem) { 1707 if (w->w_op == NET_RT_IFLISTL) 1708 error = sysctl_iflist_ifml(ifp, &info, w, len); 1709 else 1710 error = sysctl_iflist_ifm(ifp, &info, w, len); 1711 if (error) 1712 goto done; 1713 } 1714 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1715 if (af && af != ifa->ifa_addr->sa_family) 1716 continue; 1717 if (prison_if(w->w_req->td->td_ucred, 1718 ifa->ifa_addr) != 0) 1719 continue; 1720 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1721 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1722 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1723 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1724 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1725 if (error != 0) 1726 goto done; 1727 if (w->w_req && w->w_tmem) { 1728 if (w->w_op == NET_RT_IFLISTL) 1729 error = sysctl_iflist_ifaml(ifa, &info, 1730 w, len); 1731 else 1732 error = sysctl_iflist_ifam(ifa, &info, 1733 w, len); 1734 if (error) 1735 goto done; 1736 } 1737 } 1738 IF_ADDR_RUNLOCK(ifp); 1739 info.rti_info[RTAX_IFA] = NULL; 1740 info.rti_info[RTAX_NETMASK] = NULL; 1741 info.rti_info[RTAX_BRD] = NULL; 1742 } 1743 done: 1744 if (ifp != NULL) 1745 IF_ADDR_RUNLOCK(ifp); 1746 IFNET_RUNLOCK_NOSLEEP(); 1747 return (error); 1748 } 1749 1750 static int 1751 sysctl_ifmalist(int af, struct walkarg *w) 1752 { 1753 struct ifnet *ifp; 1754 struct ifmultiaddr *ifma; 1755 struct rt_addrinfo info; 1756 int len, error = 0; 1757 struct ifaddr *ifa; 1758 1759 bzero((caddr_t)&info, sizeof(info)); 1760 IFNET_RLOCK_NOSLEEP(); 1761 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1762 if (w->w_arg && w->w_arg != ifp->if_index) 1763 continue; 1764 ifa = ifp->if_addr; 1765 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1766 IF_ADDR_RLOCK(ifp); 1767 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1768 if (af && af != ifma->ifma_addr->sa_family) 1769 continue; 1770 if (prison_if(w->w_req->td->td_ucred, 1771 ifma->ifma_addr) != 0) 1772 continue; 1773 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1774 info.rti_info[RTAX_GATEWAY] = 1775 (ifma->ifma_addr->sa_family != AF_LINK) ? 1776 ifma->ifma_lladdr : NULL; 1777 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1778 if (error != 0) 1779 goto done; 1780 if (w->w_req && w->w_tmem) { 1781 struct ifma_msghdr *ifmam; 1782 1783 ifmam = (struct ifma_msghdr *)w->w_tmem; 1784 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1785 ifmam->ifmam_flags = 0; 1786 ifmam->ifmam_addrs = info.rti_addrs; 1787 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1788 if (error) { 1789 IF_ADDR_RUNLOCK(ifp); 1790 goto done; 1791 } 1792 } 1793 } 1794 IF_ADDR_RUNLOCK(ifp); 1795 } 1796 done: 1797 IFNET_RUNLOCK_NOSLEEP(); 1798 return (error); 1799 } 1800 1801 static int 1802 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1803 { 1804 int *name = (int *)arg1; 1805 u_int namelen = arg2; 1806 struct radix_node_head *rnh = NULL; /* silence compiler. */ 1807 int i, lim, error = EINVAL; 1808 int fib = 0; 1809 u_char af; 1810 struct walkarg w; 1811 1812 name ++; 1813 namelen--; 1814 if (req->newptr) 1815 return (EPERM); 1816 if (name[1] == NET_RT_DUMP) { 1817 if (namelen == 3) 1818 fib = req->td->td_proc->p_fibnum; 1819 else if (namelen == 4) 1820 fib = (name[3] == RT_ALL_FIBS) ? 1821 req->td->td_proc->p_fibnum : name[3]; 1822 else 1823 return ((namelen < 3) ? EISDIR : ENOTDIR); 1824 if (fib < 0 || fib >= rt_numfibs) 1825 return (EINVAL); 1826 } else if (namelen != 3) 1827 return ((namelen < 3) ? EISDIR : ENOTDIR); 1828 af = name[0]; 1829 if (af > AF_MAX) 1830 return (EINVAL); 1831 bzero(&w, sizeof(w)); 1832 w.w_op = name[1]; 1833 w.w_arg = name[2]; 1834 w.w_req = req; 1835 1836 error = sysctl_wire_old_buffer(req, 0); 1837 if (error) 1838 return (error); 1839 1840 /* 1841 * Allocate reply buffer in advance. 1842 * All rtsock messages has maximum length of u_short. 1843 */ 1844 w.w_tmemsize = 65536; 1845 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 1846 1847 switch (w.w_op) { 1848 1849 case NET_RT_DUMP: 1850 case NET_RT_FLAGS: 1851 if (af == 0) { /* dump all tables */ 1852 i = 1; 1853 lim = AF_MAX; 1854 } else /* dump only one table */ 1855 i = lim = af; 1856 1857 /* 1858 * take care of llinfo entries, the caller must 1859 * specify an AF 1860 */ 1861 if (w.w_op == NET_RT_FLAGS && 1862 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1863 if (af != 0) 1864 error = lltable_sysctl_dumparp(af, w.w_req); 1865 else 1866 error = EINVAL; 1867 break; 1868 } 1869 /* 1870 * take care of routing entries 1871 */ 1872 for (error = 0; error == 0 && i <= lim; i++) { 1873 rnh = rt_tables_get_rnh(fib, i); 1874 if (rnh != NULL) { 1875 RADIX_NODE_HEAD_RLOCK(rnh); 1876 error = rnh->rnh_walktree(rnh, 1877 sysctl_dumpentry, &w); 1878 RADIX_NODE_HEAD_RUNLOCK(rnh); 1879 } else if (af != 0) 1880 error = EAFNOSUPPORT; 1881 } 1882 break; 1883 1884 case NET_RT_IFLIST: 1885 case NET_RT_IFLISTL: 1886 error = sysctl_iflist(af, &w); 1887 break; 1888 1889 case NET_RT_IFMALIST: 1890 error = sysctl_ifmalist(af, &w); 1891 break; 1892 } 1893 1894 free(w.w_tmem, M_TEMP); 1895 return (error); 1896 } 1897 1898 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1899 1900 /* 1901 * Definitions of protocols supported in the ROUTE domain. 1902 */ 1903 1904 static struct domain routedomain; /* or at least forward */ 1905 1906 static struct protosw routesw[] = { 1907 { 1908 .pr_type = SOCK_RAW, 1909 .pr_domain = &routedomain, 1910 .pr_flags = PR_ATOMIC|PR_ADDR, 1911 .pr_output = route_output, 1912 .pr_ctlinput = raw_ctlinput, 1913 .pr_init = raw_init, 1914 .pr_usrreqs = &route_usrreqs 1915 } 1916 }; 1917 1918 static struct domain routedomain = { 1919 .dom_family = PF_ROUTE, 1920 .dom_name = "route", 1921 .dom_protosw = routesw, 1922 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1923 }; 1924 1925 VNET_DOMAIN_SET(route); 1926