1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_compat.h" 33 #include "opt_sctp.h" 34 #include "opt_mpath.h" 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/jail.h> 40 #include <sys/kernel.h> 41 #include <sys/domain.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/rwlock.h> 49 #include <sys/signalvar.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <net/if.h> 56 #include <net/if_dl.h> 57 #include <net/if_llatbl.h> 58 #include <net/if_types.h> 59 #include <net/netisr.h> 60 #include <net/raw_cb.h> 61 #include <net/route.h> 62 #include <net/vnet.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 #ifdef INET6 67 #include <netinet6/scope6_var.h> 68 #endif 69 70 #if defined(INET) || defined(INET6) 71 #ifdef SCTP 72 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 73 #endif /* SCTP */ 74 #endif 75 76 #ifdef COMPAT_FREEBSD32 77 #include <sys/mount.h> 78 #include <compat/freebsd32/freebsd32.h> 79 80 struct if_data32 { 81 uint8_t ifi_type; 82 uint8_t ifi_physical; 83 uint8_t ifi_addrlen; 84 uint8_t ifi_hdrlen; 85 uint8_t ifi_link_state; 86 uint8_t ifi_spare_char1; 87 uint8_t ifi_spare_char2; 88 uint8_t ifi_datalen; 89 uint32_t ifi_mtu; 90 uint32_t ifi_metric; 91 uint32_t ifi_baudrate; 92 uint32_t ifi_ipackets; 93 uint32_t ifi_ierrors; 94 uint32_t ifi_opackets; 95 uint32_t ifi_oerrors; 96 uint32_t ifi_collisions; 97 uint32_t ifi_ibytes; 98 uint32_t ifi_obytes; 99 uint32_t ifi_imcasts; 100 uint32_t ifi_omcasts; 101 uint32_t ifi_iqdrops; 102 uint32_t ifi_noproto; 103 uint32_t ifi_hwassist; 104 int32_t ifi_epoch; 105 struct timeval32 ifi_lastchange; 106 }; 107 108 struct if_msghdr32 { 109 uint16_t ifm_msglen; 110 uint8_t ifm_version; 111 uint8_t ifm_type; 112 int32_t ifm_addrs; 113 int32_t ifm_flags; 114 uint16_t ifm_index; 115 struct if_data32 ifm_data; 116 }; 117 #endif 118 119 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 120 121 /* NB: these are not modified */ 122 static struct sockaddr route_src = { 2, PF_ROUTE, }; 123 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 124 125 /* 126 * Used by rtsock/raw_input callback code to decide whether to filter the update 127 * notification to a socket bound to a particular FIB. 128 */ 129 #define RTS_FILTER_FIB M_PROTO8 130 #define RTS_ALLFIBS -1 131 132 static struct { 133 int ip_count; /* attached w/ AF_INET */ 134 int ip6_count; /* attached w/ AF_INET6 */ 135 int ipx_count; /* attached w/ AF_IPX */ 136 int any_count; /* total attached */ 137 } route_cb; 138 139 struct mtx rtsock_mtx; 140 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 141 142 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 143 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 144 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 145 146 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 147 148 struct walkarg { 149 int w_tmemsize; 150 int w_op, w_arg; 151 caddr_t w_tmem; 152 struct sysctl_req *w_req; 153 }; 154 155 static void rts_input(struct mbuf *m); 156 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 157 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 158 caddr_t cp, struct walkarg *w); 159 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 160 struct rt_addrinfo *rtinfo); 161 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 162 static int sysctl_iflist(int af, struct walkarg *w); 163 static int sysctl_ifmalist(int af, struct walkarg *w); 164 static int route_output(struct mbuf *m, struct socket *so); 165 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 166 struct rt_metrics_lite *out); 167 static void rt_getmetrics(const struct rt_metrics_lite *in, 168 struct rt_metrics *out); 169 static void rt_dispatch(struct mbuf *, const struct sockaddr *); 170 171 static struct netisr_handler rtsock_nh = { 172 .nh_name = "rtsock", 173 .nh_handler = rts_input, 174 .nh_proto = NETISR_ROUTE, 175 .nh_policy = NETISR_POLICY_SOURCE, 176 }; 177 178 static int 179 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 180 { 181 int error, qlimit; 182 183 netisr_getqlimit(&rtsock_nh, &qlimit); 184 error = sysctl_handle_int(oidp, &qlimit, 0, req); 185 if (error || !req->newptr) 186 return (error); 187 if (qlimit < 1) 188 return (EINVAL); 189 return (netisr_setqlimit(&rtsock_nh, qlimit)); 190 } 191 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 192 0, 0, sysctl_route_netisr_maxqlen, "I", 193 "maximum routing socket dispatch queue length"); 194 195 static void 196 rts_init(void) 197 { 198 int tmp; 199 200 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 201 rtsock_nh.nh_qlimit = tmp; 202 netisr_register(&rtsock_nh); 203 } 204 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 205 206 static int 207 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 208 struct rawcb *rp) 209 { 210 int fibnum; 211 212 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 213 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 214 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 215 216 /* No filtering requested. */ 217 if ((m->m_flags & RTS_FILTER_FIB) == 0) 218 return (0); 219 220 /* Check if it is a rts and the fib matches the one of the socket. */ 221 fibnum = M_GETFIB(m); 222 if (proto->sp_family != PF_ROUTE || 223 rp->rcb_socket == NULL || 224 rp->rcb_socket->so_fibnum == fibnum) 225 return (0); 226 227 /* Filtering requested and no match, the socket shall be skipped. */ 228 return (1); 229 } 230 231 static void 232 rts_input(struct mbuf *m) 233 { 234 struct sockproto route_proto; 235 unsigned short *family; 236 struct m_tag *tag; 237 238 route_proto.sp_family = PF_ROUTE; 239 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 240 if (tag != NULL) { 241 family = (unsigned short *)(tag + 1); 242 route_proto.sp_protocol = *family; 243 m_tag_delete(m, tag); 244 } else 245 route_proto.sp_protocol = 0; 246 247 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 248 } 249 250 /* 251 * It really doesn't make any sense at all for this code to share much 252 * with raw_usrreq.c, since its functionality is so restricted. XXX 253 */ 254 static void 255 rts_abort(struct socket *so) 256 { 257 258 raw_usrreqs.pru_abort(so); 259 } 260 261 static void 262 rts_close(struct socket *so) 263 { 264 265 raw_usrreqs.pru_close(so); 266 } 267 268 /* pru_accept is EOPNOTSUPP */ 269 270 static int 271 rts_attach(struct socket *so, int proto, struct thread *td) 272 { 273 struct rawcb *rp; 274 int s, error; 275 276 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 277 278 /* XXX */ 279 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 280 if (rp == NULL) 281 return ENOBUFS; 282 283 /* 284 * The splnet() is necessary to block protocols from sending 285 * error notifications (like RTM_REDIRECT or RTM_LOSING) while 286 * this PCB is extant but incompletely initialized. 287 * Probably we should try to do more of this work beforehand and 288 * eliminate the spl. 289 */ 290 s = splnet(); 291 so->so_pcb = (caddr_t)rp; 292 so->so_fibnum = td->td_proc->p_fibnum; 293 error = raw_attach(so, proto); 294 rp = sotorawcb(so); 295 if (error) { 296 splx(s); 297 so->so_pcb = NULL; 298 free(rp, M_PCB); 299 return error; 300 } 301 RTSOCK_LOCK(); 302 switch(rp->rcb_proto.sp_protocol) { 303 case AF_INET: 304 route_cb.ip_count++; 305 break; 306 case AF_INET6: 307 route_cb.ip6_count++; 308 break; 309 case AF_IPX: 310 route_cb.ipx_count++; 311 break; 312 } 313 route_cb.any_count++; 314 RTSOCK_UNLOCK(); 315 soisconnected(so); 316 so->so_options |= SO_USELOOPBACK; 317 splx(s); 318 return 0; 319 } 320 321 static int 322 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 323 { 324 325 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 326 } 327 328 static int 329 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 330 { 331 332 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 333 } 334 335 /* pru_connect2 is EOPNOTSUPP */ 336 /* pru_control is EOPNOTSUPP */ 337 338 static void 339 rts_detach(struct socket *so) 340 { 341 struct rawcb *rp = sotorawcb(so); 342 343 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 344 345 RTSOCK_LOCK(); 346 switch(rp->rcb_proto.sp_protocol) { 347 case AF_INET: 348 route_cb.ip_count--; 349 break; 350 case AF_INET6: 351 route_cb.ip6_count--; 352 break; 353 case AF_IPX: 354 route_cb.ipx_count--; 355 break; 356 } 357 route_cb.any_count--; 358 RTSOCK_UNLOCK(); 359 raw_usrreqs.pru_detach(so); 360 } 361 362 static int 363 rts_disconnect(struct socket *so) 364 { 365 366 return (raw_usrreqs.pru_disconnect(so)); 367 } 368 369 /* pru_listen is EOPNOTSUPP */ 370 371 static int 372 rts_peeraddr(struct socket *so, struct sockaddr **nam) 373 { 374 375 return (raw_usrreqs.pru_peeraddr(so, nam)); 376 } 377 378 /* pru_rcvd is EOPNOTSUPP */ 379 /* pru_rcvoob is EOPNOTSUPP */ 380 381 static int 382 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 383 struct mbuf *control, struct thread *td) 384 { 385 386 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 387 } 388 389 /* pru_sense is null */ 390 391 static int 392 rts_shutdown(struct socket *so) 393 { 394 395 return (raw_usrreqs.pru_shutdown(so)); 396 } 397 398 static int 399 rts_sockaddr(struct socket *so, struct sockaddr **nam) 400 { 401 402 return (raw_usrreqs.pru_sockaddr(so, nam)); 403 } 404 405 static struct pr_usrreqs route_usrreqs = { 406 .pru_abort = rts_abort, 407 .pru_attach = rts_attach, 408 .pru_bind = rts_bind, 409 .pru_connect = rts_connect, 410 .pru_detach = rts_detach, 411 .pru_disconnect = rts_disconnect, 412 .pru_peeraddr = rts_peeraddr, 413 .pru_send = rts_send, 414 .pru_shutdown = rts_shutdown, 415 .pru_sockaddr = rts_sockaddr, 416 .pru_close = rts_close, 417 }; 418 419 #ifndef _SOCKADDR_UNION_DEFINED 420 #define _SOCKADDR_UNION_DEFINED 421 /* 422 * The union of all possible address formats we handle. 423 */ 424 union sockaddr_union { 425 struct sockaddr sa; 426 struct sockaddr_in sin; 427 struct sockaddr_in6 sin6; 428 }; 429 #endif /* _SOCKADDR_UNION_DEFINED */ 430 431 static int 432 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 433 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 434 { 435 436 /* First, see if the returned address is part of the jail. */ 437 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 438 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 439 return (0); 440 } 441 442 switch (info->rti_info[RTAX_DST]->sa_family) { 443 #ifdef INET 444 case AF_INET: 445 { 446 struct in_addr ia; 447 struct ifaddr *ifa; 448 int found; 449 450 found = 0; 451 /* 452 * Try to find an address on the given outgoing interface 453 * that belongs to the jail. 454 */ 455 IF_ADDR_LOCK(ifp); 456 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 457 struct sockaddr *sa; 458 sa = ifa->ifa_addr; 459 if (sa->sa_family != AF_INET) 460 continue; 461 ia = ((struct sockaddr_in *)sa)->sin_addr; 462 if (prison_check_ip4(cred, &ia) == 0) { 463 found = 1; 464 break; 465 } 466 } 467 IF_ADDR_UNLOCK(ifp); 468 if (!found) { 469 /* 470 * As a last resort return the 'default' jail address. 471 */ 472 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 473 sin_addr; 474 if (prison_get_ip4(cred, &ia) != 0) 475 return (ESRCH); 476 } 477 bzero(&saun->sin, sizeof(struct sockaddr_in)); 478 saun->sin.sin_len = sizeof(struct sockaddr_in); 479 saun->sin.sin_family = AF_INET; 480 saun->sin.sin_addr.s_addr = ia.s_addr; 481 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 482 break; 483 } 484 #endif 485 #ifdef INET6 486 case AF_INET6: 487 { 488 struct in6_addr ia6; 489 struct ifaddr *ifa; 490 int found; 491 492 found = 0; 493 /* 494 * Try to find an address on the given outgoing interface 495 * that belongs to the jail. 496 */ 497 IF_ADDR_LOCK(ifp); 498 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 499 struct sockaddr *sa; 500 sa = ifa->ifa_addr; 501 if (sa->sa_family != AF_INET6) 502 continue; 503 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 504 &ia6, sizeof(struct in6_addr)); 505 if (prison_check_ip6(cred, &ia6) == 0) { 506 found = 1; 507 break; 508 } 509 } 510 IF_ADDR_UNLOCK(ifp); 511 if (!found) { 512 /* 513 * As a last resort return the 'default' jail address. 514 */ 515 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 516 sin6_addr; 517 if (prison_get_ip6(cred, &ia6) != 0) 518 return (ESRCH); 519 } 520 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 521 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 522 saun->sin6.sin6_family = AF_INET6; 523 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 524 if (sa6_recoverscope(&saun->sin6) != 0) 525 return (ESRCH); 526 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 527 break; 528 } 529 #endif 530 default: 531 return (ESRCH); 532 } 533 return (0); 534 } 535 536 /*ARGSUSED*/ 537 static int 538 route_output(struct mbuf *m, struct socket *so) 539 { 540 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 541 struct rt_msghdr *rtm = NULL; 542 struct rtentry *rt = NULL; 543 struct radix_node_head *rnh; 544 struct rt_addrinfo info; 545 int len, error = 0; 546 struct ifnet *ifp = NULL; 547 union sockaddr_union saun; 548 549 #define senderr(e) { error = e; goto flush;} 550 if (m == NULL || ((m->m_len < sizeof(long)) && 551 (m = m_pullup(m, sizeof(long))) == NULL)) 552 return (ENOBUFS); 553 if ((m->m_flags & M_PKTHDR) == 0) 554 panic("route_output"); 555 len = m->m_pkthdr.len; 556 if (len < sizeof(*rtm) || 557 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 558 info.rti_info[RTAX_DST] = NULL; 559 senderr(EINVAL); 560 } 561 R_Malloc(rtm, struct rt_msghdr *, len); 562 if (rtm == NULL) { 563 info.rti_info[RTAX_DST] = NULL; 564 senderr(ENOBUFS); 565 } 566 m_copydata(m, 0, len, (caddr_t)rtm); 567 if (rtm->rtm_version != RTM_VERSION) { 568 info.rti_info[RTAX_DST] = NULL; 569 senderr(EPROTONOSUPPORT); 570 } 571 rtm->rtm_pid = curproc->p_pid; 572 bzero(&info, sizeof(info)); 573 info.rti_addrs = rtm->rtm_addrs; 574 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 575 info.rti_info[RTAX_DST] = NULL; 576 senderr(EINVAL); 577 } 578 info.rti_flags = rtm->rtm_flags; 579 if (info.rti_info[RTAX_DST] == NULL || 580 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 581 (info.rti_info[RTAX_GATEWAY] != NULL && 582 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 583 senderr(EINVAL); 584 /* 585 * Verify that the caller has the appropriate privilege; RTM_GET 586 * is the only operation the non-superuser is allowed. 587 */ 588 if (rtm->rtm_type != RTM_GET) { 589 error = priv_check(curthread, PRIV_NET_ROUTE); 590 if (error) 591 senderr(error); 592 } 593 594 /* 595 * The given gateway address may be an interface address. 596 * For example, issuing a "route change" command on a route 597 * entry that was created from a tunnel, and the gateway 598 * address given is the local end point. In this case the 599 * RTF_GATEWAY flag must be cleared or the destination will 600 * not be reachable even though there is no error message. 601 */ 602 if (info.rti_info[RTAX_GATEWAY] != NULL && 603 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 604 struct route gw_ro; 605 606 bzero(&gw_ro, sizeof(gw_ro)); 607 gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY]; 608 rtalloc_ign_fib(&gw_ro, 0, so->so_fibnum); 609 /* 610 * A host route through the loopback interface is 611 * installed for each interface adddress. In pre 8.0 612 * releases the interface address of a PPP link type 613 * is not reachable locally. This behavior is fixed as 614 * part of the new L2/L3 redesign and rewrite work. The 615 * signature of this interface address route is the 616 * AF_LINK sa_family type of the rt_gateway, and the 617 * rt_ifp has the IFF_LOOPBACK flag set. 618 */ 619 if (gw_ro.ro_rt != NULL && 620 gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK && 621 gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) 622 info.rti_flags &= ~RTF_GATEWAY; 623 if (gw_ro.ro_rt != NULL) 624 RTFREE(gw_ro.ro_rt); 625 } 626 627 switch (rtm->rtm_type) { 628 struct rtentry *saved_nrt; 629 630 case RTM_ADD: 631 if (info.rti_info[RTAX_GATEWAY] == NULL) 632 senderr(EINVAL); 633 saved_nrt = NULL; 634 635 /* support for new ARP code */ 636 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 637 (rtm->rtm_flags & RTF_LLDATA) != 0) { 638 error = lla_rt_output(rtm, &info); 639 break; 640 } 641 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 642 so->so_fibnum); 643 if (error == 0 && saved_nrt) { 644 RT_LOCK(saved_nrt); 645 rt_setmetrics(rtm->rtm_inits, 646 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 647 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 648 RT_REMREF(saved_nrt); 649 RT_UNLOCK(saved_nrt); 650 } 651 break; 652 653 case RTM_DELETE: 654 saved_nrt = NULL; 655 /* support for new ARP code */ 656 if (info.rti_info[RTAX_GATEWAY] && 657 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 658 (rtm->rtm_flags & RTF_LLDATA) != 0) { 659 error = lla_rt_output(rtm, &info); 660 break; 661 } 662 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 663 so->so_fibnum); 664 if (error == 0) { 665 RT_LOCK(saved_nrt); 666 rt = saved_nrt; 667 goto report; 668 } 669 break; 670 671 case RTM_GET: 672 case RTM_CHANGE: 673 case RTM_LOCK: 674 rnh = rt_tables_get_rnh(so->so_fibnum, 675 info.rti_info[RTAX_DST]->sa_family); 676 if (rnh == NULL) 677 senderr(EAFNOSUPPORT); 678 RADIX_NODE_HEAD_RLOCK(rnh); 679 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 680 info.rti_info[RTAX_NETMASK], rnh); 681 if (rt == NULL) { /* XXX looks bogus */ 682 RADIX_NODE_HEAD_RUNLOCK(rnh); 683 senderr(ESRCH); 684 } 685 #ifdef RADIX_MPATH 686 /* 687 * for RTM_CHANGE/LOCK, if we got multipath routes, 688 * we require users to specify a matching RTAX_GATEWAY. 689 * 690 * for RTM_GET, gate is optional even with multipath. 691 * if gate == NULL the first match is returned. 692 * (no need to call rt_mpath_matchgate if gate == NULL) 693 */ 694 if (rn_mpath_capable(rnh) && 695 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 696 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 697 if (!rt) { 698 RADIX_NODE_HEAD_RUNLOCK(rnh); 699 senderr(ESRCH); 700 } 701 } 702 #endif 703 /* 704 * If performing proxied L2 entry insertion, and 705 * the actual PPP host entry is found, perform 706 * another search to retrieve the prefix route of 707 * the local end point of the PPP link. 708 */ 709 if (rtm->rtm_flags & RTF_ANNOUNCE) { 710 struct sockaddr laddr; 711 712 if (rt->rt_ifp != NULL && 713 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 714 struct ifaddr *ifa; 715 716 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1); 717 if (ifa != NULL) 718 rt_maskedcopy(ifa->ifa_addr, 719 &laddr, 720 ifa->ifa_netmask); 721 } else 722 rt_maskedcopy(rt->rt_ifa->ifa_addr, 723 &laddr, 724 rt->rt_ifa->ifa_netmask); 725 /* 726 * refactor rt and no lock operation necessary 727 */ 728 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh); 729 if (rt == NULL) { 730 RADIX_NODE_HEAD_RUNLOCK(rnh); 731 senderr(ESRCH); 732 } 733 } 734 RT_LOCK(rt); 735 RT_ADDREF(rt); 736 RADIX_NODE_HEAD_RUNLOCK(rnh); 737 738 /* 739 * Fix for PR: 82974 740 * 741 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 742 * returns a perfect match in case a netmask is 743 * specified. For host routes only a longest prefix 744 * match is returned so it is necessary to compare the 745 * existence of the netmask. If both have a netmask 746 * rnh_lookup() did a perfect match and if none of them 747 * have a netmask both are host routes which is also a 748 * perfect match. 749 */ 750 751 if (rtm->rtm_type != RTM_GET && 752 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 753 RT_UNLOCK(rt); 754 senderr(ESRCH); 755 } 756 757 switch(rtm->rtm_type) { 758 759 case RTM_GET: 760 report: 761 RT_LOCK_ASSERT(rt); 762 if ((rt->rt_flags & RTF_HOST) == 0 763 ? jailed_without_vnet(curthread->td_ucred) 764 : prison_if(curthread->td_ucred, 765 rt_key(rt)) != 0) { 766 RT_UNLOCK(rt); 767 senderr(ESRCH); 768 } 769 info.rti_info[RTAX_DST] = rt_key(rt); 770 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 771 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 772 info.rti_info[RTAX_GENMASK] = 0; 773 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 774 ifp = rt->rt_ifp; 775 if (ifp) { 776 info.rti_info[RTAX_IFP] = 777 ifp->if_addr->ifa_addr; 778 error = rtm_get_jailed(&info, ifp, rt, 779 &saun, curthread->td_ucred); 780 if (error != 0) { 781 RT_UNLOCK(rt); 782 senderr(error); 783 } 784 if (ifp->if_flags & IFF_POINTOPOINT) 785 info.rti_info[RTAX_BRD] = 786 rt->rt_ifa->ifa_dstaddr; 787 rtm->rtm_index = ifp->if_index; 788 } else { 789 info.rti_info[RTAX_IFP] = NULL; 790 info.rti_info[RTAX_IFA] = NULL; 791 } 792 } else if ((ifp = rt->rt_ifp) != NULL) { 793 rtm->rtm_index = ifp->if_index; 794 } 795 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 796 if (len > rtm->rtm_msglen) { 797 struct rt_msghdr *new_rtm; 798 R_Malloc(new_rtm, struct rt_msghdr *, len); 799 if (new_rtm == NULL) { 800 RT_UNLOCK(rt); 801 senderr(ENOBUFS); 802 } 803 bcopy(rtm, new_rtm, rtm->rtm_msglen); 804 Free(rtm); rtm = new_rtm; 805 } 806 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 807 rtm->rtm_flags = rt->rt_flags; 808 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 809 rtm->rtm_addrs = info.rti_addrs; 810 break; 811 812 case RTM_CHANGE: 813 /* 814 * New gateway could require new ifaddr, ifp; 815 * flags may also be different; ifp may be specified 816 * by ll sockaddr when protocol address is ambiguous 817 */ 818 if (((rt->rt_flags & RTF_GATEWAY) && 819 info.rti_info[RTAX_GATEWAY] != NULL) || 820 info.rti_info[RTAX_IFP] != NULL || 821 (info.rti_info[RTAX_IFA] != NULL && 822 !sa_equal(info.rti_info[RTAX_IFA], 823 rt->rt_ifa->ifa_addr))) { 824 RT_UNLOCK(rt); 825 RADIX_NODE_HEAD_LOCK(rnh); 826 error = rt_getifa_fib(&info, rt->rt_fibnum); 827 /* 828 * XXXRW: Really we should release this 829 * reference later, but this maintains 830 * historical behavior. 831 */ 832 if (info.rti_ifa != NULL) 833 ifa_free(info.rti_ifa); 834 RADIX_NODE_HEAD_UNLOCK(rnh); 835 if (error != 0) 836 senderr(error); 837 RT_LOCK(rt); 838 } 839 if (info.rti_ifa != NULL && 840 info.rti_ifa != rt->rt_ifa && 841 rt->rt_ifa != NULL && 842 rt->rt_ifa->ifa_rtrequest != NULL) { 843 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 844 &info); 845 ifa_free(rt->rt_ifa); 846 } 847 if (info.rti_info[RTAX_GATEWAY] != NULL) { 848 RT_UNLOCK(rt); 849 RADIX_NODE_HEAD_LOCK(rnh); 850 RT_LOCK(rt); 851 852 error = rt_setgate(rt, rt_key(rt), 853 info.rti_info[RTAX_GATEWAY]); 854 RADIX_NODE_HEAD_UNLOCK(rnh); 855 if (error != 0) { 856 RT_UNLOCK(rt); 857 senderr(error); 858 } 859 rt->rt_flags |= (RTF_GATEWAY & info.rti_flags); 860 } 861 if (info.rti_ifa != NULL && 862 info.rti_ifa != rt->rt_ifa) { 863 ifa_ref(info.rti_ifa); 864 rt->rt_ifa = info.rti_ifa; 865 rt->rt_ifp = info.rti_ifp; 866 } 867 /* Allow some flags to be toggled on change. */ 868 rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) | 869 (rtm->rtm_flags & RTF_FMASK); 870 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 871 &rt->rt_rmx); 872 rtm->rtm_index = rt->rt_ifp->if_index; 873 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 874 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 875 /* FALLTHROUGH */ 876 case RTM_LOCK: 877 /* We don't support locks anymore */ 878 break; 879 } 880 RT_UNLOCK(rt); 881 break; 882 883 default: 884 senderr(EOPNOTSUPP); 885 } 886 887 flush: 888 if (rtm) { 889 if (error) 890 rtm->rtm_errno = error; 891 else 892 rtm->rtm_flags |= RTF_DONE; 893 } 894 if (rt) /* XXX can this be true? */ 895 RTFREE(rt); 896 { 897 struct rawcb *rp = NULL; 898 /* 899 * Check to see if we don't want our own messages. 900 */ 901 if ((so->so_options & SO_USELOOPBACK) == 0) { 902 if (route_cb.any_count <= 1) { 903 if (rtm) 904 Free(rtm); 905 m_freem(m); 906 return (error); 907 } 908 /* There is another listener, so construct message */ 909 rp = sotorawcb(so); 910 } 911 if (rtm) { 912 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 913 if (m->m_pkthdr.len < rtm->rtm_msglen) { 914 m_freem(m); 915 m = NULL; 916 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 917 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 918 } 919 if (m) { 920 M_SETFIB(m, so->so_fibnum); 921 m->m_flags |= RTS_FILTER_FIB; 922 if (rp) { 923 /* 924 * XXX insure we don't get a copy by 925 * invalidating our protocol 926 */ 927 unsigned short family = rp->rcb_proto.sp_family; 928 rp->rcb_proto.sp_family = 0; 929 rt_dispatch(m, info.rti_info[RTAX_DST]); 930 rp->rcb_proto.sp_family = family; 931 } else 932 rt_dispatch(m, info.rti_info[RTAX_DST]); 933 } 934 /* info.rti_info[RTAX_DST] (used above) can point inside of rtm */ 935 if (rtm) 936 Free(rtm); 937 } 938 return (error); 939 #undef sa_equal 940 } 941 942 static void 943 rt_setmetrics(u_long which, const struct rt_metrics *in, 944 struct rt_metrics_lite *out) 945 { 946 #define metric(f, e) if (which & (f)) out->e = in->e; 947 /* 948 * Only these are stored in the routing entry since introduction 949 * of tcp hostcache. The rest is ignored. 950 */ 951 metric(RTV_MTU, rmx_mtu); 952 metric(RTV_WEIGHT, rmx_weight); 953 /* Userland -> kernel timebase conversion. */ 954 if (which & RTV_EXPIRE) 955 out->rmx_expire = in->rmx_expire ? 956 in->rmx_expire - time_second + time_uptime : 0; 957 #undef metric 958 } 959 960 static void 961 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 962 { 963 #define metric(e) out->e = in->e; 964 bzero(out, sizeof(*out)); 965 metric(rmx_mtu); 966 metric(rmx_weight); 967 /* Kernel -> userland timebase conversion. */ 968 out->rmx_expire = in->rmx_expire ? 969 in->rmx_expire - time_uptime + time_second : 0; 970 #undef metric 971 } 972 973 /* 974 * Extract the addresses of the passed sockaddrs. 975 * Do a little sanity checking so as to avoid bad memory references. 976 * This data is derived straight from userland. 977 */ 978 static int 979 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 980 { 981 struct sockaddr *sa; 982 int i; 983 984 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 985 if ((rtinfo->rti_addrs & (1 << i)) == 0) 986 continue; 987 sa = (struct sockaddr *)cp; 988 /* 989 * It won't fit. 990 */ 991 if (cp + sa->sa_len > cplim) 992 return (EINVAL); 993 /* 994 * there are no more.. quit now 995 * If there are more bits, they are in error. 996 * I've seen this. route(1) can evidently generate these. 997 * This causes kernel to core dump. 998 * for compatibility, If we see this, point to a safe address. 999 */ 1000 if (sa->sa_len == 0) { 1001 rtinfo->rti_info[i] = &sa_zero; 1002 return (0); /* should be EINVAL but for compat */ 1003 } 1004 /* accept it */ 1005 rtinfo->rti_info[i] = sa; 1006 cp += SA_SIZE(sa); 1007 } 1008 return (0); 1009 } 1010 1011 static struct mbuf * 1012 rt_msg1(int type, struct rt_addrinfo *rtinfo) 1013 { 1014 struct rt_msghdr *rtm; 1015 struct mbuf *m; 1016 int i; 1017 struct sockaddr *sa; 1018 int len, dlen; 1019 1020 switch (type) { 1021 1022 case RTM_DELADDR: 1023 case RTM_NEWADDR: 1024 len = sizeof(struct ifa_msghdr); 1025 break; 1026 1027 case RTM_DELMADDR: 1028 case RTM_NEWMADDR: 1029 len = sizeof(struct ifma_msghdr); 1030 break; 1031 1032 case RTM_IFINFO: 1033 len = sizeof(struct if_msghdr); 1034 break; 1035 1036 case RTM_IFANNOUNCE: 1037 case RTM_IEEE80211: 1038 len = sizeof(struct if_announcemsghdr); 1039 break; 1040 1041 default: 1042 len = sizeof(struct rt_msghdr); 1043 } 1044 if (len > MCLBYTES) 1045 panic("rt_msg1"); 1046 m = m_gethdr(M_DONTWAIT, MT_DATA); 1047 if (m && len > MHLEN) { 1048 MCLGET(m, M_DONTWAIT); 1049 if ((m->m_flags & M_EXT) == 0) { 1050 m_free(m); 1051 m = NULL; 1052 } 1053 } 1054 if (m == NULL) 1055 return (m); 1056 m->m_pkthdr.len = m->m_len = len; 1057 m->m_pkthdr.rcvif = NULL; 1058 rtm = mtod(m, struct rt_msghdr *); 1059 bzero((caddr_t)rtm, len); 1060 for (i = 0; i < RTAX_MAX; i++) { 1061 if ((sa = rtinfo->rti_info[i]) == NULL) 1062 continue; 1063 rtinfo->rti_addrs |= (1 << i); 1064 dlen = SA_SIZE(sa); 1065 m_copyback(m, len, dlen, (caddr_t)sa); 1066 len += dlen; 1067 } 1068 if (m->m_pkthdr.len != len) { 1069 m_freem(m); 1070 return (NULL); 1071 } 1072 rtm->rtm_msglen = len; 1073 rtm->rtm_version = RTM_VERSION; 1074 rtm->rtm_type = type; 1075 return (m); 1076 } 1077 1078 static int 1079 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 1080 { 1081 int i; 1082 int len, dlen, second_time = 0; 1083 caddr_t cp0; 1084 1085 rtinfo->rti_addrs = 0; 1086 again: 1087 switch (type) { 1088 1089 case RTM_DELADDR: 1090 case RTM_NEWADDR: 1091 len = sizeof(struct ifa_msghdr); 1092 break; 1093 1094 case RTM_IFINFO: 1095 #ifdef COMPAT_FREEBSD32 1096 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1097 len = sizeof(struct if_msghdr32); 1098 break; 1099 } 1100 #endif 1101 len = sizeof(struct if_msghdr); 1102 break; 1103 1104 case RTM_NEWMADDR: 1105 len = sizeof(struct ifma_msghdr); 1106 break; 1107 1108 default: 1109 len = sizeof(struct rt_msghdr); 1110 } 1111 cp0 = cp; 1112 if (cp0) 1113 cp += len; 1114 for (i = 0; i < RTAX_MAX; i++) { 1115 struct sockaddr *sa; 1116 1117 if ((sa = rtinfo->rti_info[i]) == NULL) 1118 continue; 1119 rtinfo->rti_addrs |= (1 << i); 1120 dlen = SA_SIZE(sa); 1121 if (cp) { 1122 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1123 cp += dlen; 1124 } 1125 len += dlen; 1126 } 1127 len = ALIGN(len); 1128 if (cp == NULL && w != NULL && !second_time) { 1129 struct walkarg *rw = w; 1130 1131 if (rw->w_req) { 1132 if (rw->w_tmemsize < len) { 1133 if (rw->w_tmem) 1134 free(rw->w_tmem, M_RTABLE); 1135 rw->w_tmem = (caddr_t) 1136 malloc(len, M_RTABLE, M_NOWAIT); 1137 if (rw->w_tmem) 1138 rw->w_tmemsize = len; 1139 } 1140 if (rw->w_tmem) { 1141 cp = rw->w_tmem; 1142 second_time = 1; 1143 goto again; 1144 } 1145 } 1146 } 1147 if (cp) { 1148 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 1149 1150 rtm->rtm_version = RTM_VERSION; 1151 rtm->rtm_type = type; 1152 rtm->rtm_msglen = len; 1153 } 1154 return (len); 1155 } 1156 1157 /* 1158 * This routine is called to generate a message from the routing 1159 * socket indicating that a redirect has occured, a routing lookup 1160 * has failed, or that a protocol has detected timeouts to a particular 1161 * destination. 1162 */ 1163 void 1164 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1165 int fibnum) 1166 { 1167 struct rt_msghdr *rtm; 1168 struct mbuf *m; 1169 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1170 1171 if (route_cb.any_count == 0) 1172 return; 1173 m = rt_msg1(type, rtinfo); 1174 if (m == NULL) 1175 return; 1176 1177 if (fibnum != RTS_ALLFIBS) { 1178 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1179 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1180 M_SETFIB(m, fibnum); 1181 m->m_flags |= RTS_FILTER_FIB; 1182 } 1183 1184 rtm = mtod(m, struct rt_msghdr *); 1185 rtm->rtm_flags = RTF_DONE | flags; 1186 rtm->rtm_errno = error; 1187 rtm->rtm_addrs = rtinfo->rti_addrs; 1188 rt_dispatch(m, sa); 1189 } 1190 1191 void 1192 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1193 { 1194 1195 rt_missmsg_fib(type, rtinfo, flags, error, RTS_ALLFIBS); 1196 } 1197 1198 /* 1199 * This routine is called to generate a message from the routing 1200 * socket indicating that the status of a network interface has changed. 1201 */ 1202 void 1203 rt_ifmsg(struct ifnet *ifp) 1204 { 1205 struct if_msghdr *ifm; 1206 struct mbuf *m; 1207 struct rt_addrinfo info; 1208 1209 if (route_cb.any_count == 0) 1210 return; 1211 bzero((caddr_t)&info, sizeof(info)); 1212 m = rt_msg1(RTM_IFINFO, &info); 1213 if (m == NULL) 1214 return; 1215 ifm = mtod(m, struct if_msghdr *); 1216 ifm->ifm_index = ifp->if_index; 1217 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1218 ifm->ifm_data = ifp->if_data; 1219 ifm->ifm_addrs = 0; 1220 rt_dispatch(m, NULL); 1221 } 1222 1223 /* 1224 * This is called to generate messages from the routing socket 1225 * indicating a network interface has had addresses associated with it. 1226 * if we ever reverse the logic and replace messages TO the routing 1227 * socket indicate a request to configure interfaces, then it will 1228 * be unnecessary as the routing socket will automatically generate 1229 * copies of it. 1230 */ 1231 void 1232 rt_newaddrmsg_fib(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt, 1233 int fibnum) 1234 { 1235 struct rt_addrinfo info; 1236 struct sockaddr *sa = NULL; 1237 int pass; 1238 struct mbuf *m = NULL; 1239 struct ifnet *ifp = ifa->ifa_ifp; 1240 1241 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 1242 ("unexpected cmd %u", cmd)); 1243 #if defined(INET) || defined(INET6) 1244 #ifdef SCTP 1245 /* 1246 * notify the SCTP stack 1247 * this will only get called when an address is added/deleted 1248 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 1249 */ 1250 sctp_addr_change(ifa, cmd); 1251 #endif /* SCTP */ 1252 #endif 1253 if (route_cb.any_count == 0) 1254 return; 1255 for (pass = 1; pass < 3; pass++) { 1256 bzero((caddr_t)&info, sizeof(info)); 1257 if ((cmd == RTM_ADD && pass == 1) || 1258 (cmd == RTM_DELETE && pass == 2)) { 1259 struct ifa_msghdr *ifam; 1260 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1261 1262 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1263 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1264 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1265 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1266 if ((m = rt_msg1(ncmd, &info)) == NULL) 1267 continue; 1268 ifam = mtod(m, struct ifa_msghdr *); 1269 ifam->ifam_index = ifp->if_index; 1270 ifam->ifam_metric = ifa->ifa_metric; 1271 ifam->ifam_flags = ifa->ifa_flags; 1272 ifam->ifam_addrs = info.rti_addrs; 1273 } 1274 if ((cmd == RTM_ADD && pass == 2) || 1275 (cmd == RTM_DELETE && pass == 1)) { 1276 struct rt_msghdr *rtm; 1277 1278 if (rt == NULL) 1279 continue; 1280 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1281 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1282 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1283 if ((m = rt_msg1(cmd, &info)) == NULL) 1284 continue; 1285 rtm = mtod(m, struct rt_msghdr *); 1286 rtm->rtm_index = ifp->if_index; 1287 rtm->rtm_flags |= rt->rt_flags; 1288 rtm->rtm_errno = error; 1289 rtm->rtm_addrs = info.rti_addrs; 1290 } 1291 if (fibnum != RTS_ALLFIBS) { 1292 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: " 1293 "fibnum out of range 0 <= %d < %d", __func__, 1294 fibnum, rt_numfibs)); 1295 M_SETFIB(m, fibnum); 1296 m->m_flags |= RTS_FILTER_FIB; 1297 } 1298 rt_dispatch(m, sa); 1299 } 1300 } 1301 1302 void 1303 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 1304 { 1305 1306 rt_newaddrmsg_fib(cmd, ifa, error, rt, RTS_ALLFIBS); 1307 } 1308 1309 /* 1310 * This is the analogue to the rt_newaddrmsg which performs the same 1311 * function but for multicast group memberhips. This is easier since 1312 * there is no route state to worry about. 1313 */ 1314 void 1315 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1316 { 1317 struct rt_addrinfo info; 1318 struct mbuf *m = NULL; 1319 struct ifnet *ifp = ifma->ifma_ifp; 1320 struct ifma_msghdr *ifmam; 1321 1322 if (route_cb.any_count == 0) 1323 return; 1324 1325 bzero((caddr_t)&info, sizeof(info)); 1326 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1327 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1328 /* 1329 * If a link-layer address is present, present it as a ``gateway'' 1330 * (similarly to how ARP entries, e.g., are presented). 1331 */ 1332 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1333 m = rt_msg1(cmd, &info); 1334 if (m == NULL) 1335 return; 1336 ifmam = mtod(m, struct ifma_msghdr *); 1337 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1338 __func__)); 1339 ifmam->ifmam_index = ifp->if_index; 1340 ifmam->ifmam_addrs = info.rti_addrs; 1341 rt_dispatch(m, ifma->ifma_addr); 1342 } 1343 1344 static struct mbuf * 1345 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1346 struct rt_addrinfo *info) 1347 { 1348 struct if_announcemsghdr *ifan; 1349 struct mbuf *m; 1350 1351 if (route_cb.any_count == 0) 1352 return NULL; 1353 bzero((caddr_t)info, sizeof(*info)); 1354 m = rt_msg1(type, info); 1355 if (m != NULL) { 1356 ifan = mtod(m, struct if_announcemsghdr *); 1357 ifan->ifan_index = ifp->if_index; 1358 strlcpy(ifan->ifan_name, ifp->if_xname, 1359 sizeof(ifan->ifan_name)); 1360 ifan->ifan_what = what; 1361 } 1362 return m; 1363 } 1364 1365 /* 1366 * This is called to generate routing socket messages indicating 1367 * IEEE80211 wireless events. 1368 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1369 */ 1370 void 1371 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1372 { 1373 struct mbuf *m; 1374 struct rt_addrinfo info; 1375 1376 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1377 if (m != NULL) { 1378 /* 1379 * Append the ieee80211 data. Try to stick it in the 1380 * mbuf containing the ifannounce msg; otherwise allocate 1381 * a new mbuf and append. 1382 * 1383 * NB: we assume m is a single mbuf. 1384 */ 1385 if (data_len > M_TRAILINGSPACE(m)) { 1386 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1387 if (n == NULL) { 1388 m_freem(m); 1389 return; 1390 } 1391 bcopy(data, mtod(n, void *), data_len); 1392 n->m_len = data_len; 1393 m->m_next = n; 1394 } else if (data_len > 0) { 1395 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1396 m->m_len += data_len; 1397 } 1398 if (m->m_flags & M_PKTHDR) 1399 m->m_pkthdr.len += data_len; 1400 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1401 rt_dispatch(m, NULL); 1402 } 1403 } 1404 1405 /* 1406 * This is called to generate routing socket messages indicating 1407 * network interface arrival and departure. 1408 */ 1409 void 1410 rt_ifannouncemsg(struct ifnet *ifp, int what) 1411 { 1412 struct mbuf *m; 1413 struct rt_addrinfo info; 1414 1415 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1416 if (m != NULL) 1417 rt_dispatch(m, NULL); 1418 } 1419 1420 static void 1421 rt_dispatch(struct mbuf *m, const struct sockaddr *sa) 1422 { 1423 struct m_tag *tag; 1424 1425 /* 1426 * Preserve the family from the sockaddr, if any, in an m_tag for 1427 * use when injecting the mbuf into the routing socket buffer from 1428 * the netisr. 1429 */ 1430 if (sa != NULL) { 1431 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1432 M_NOWAIT); 1433 if (tag == NULL) { 1434 m_freem(m); 1435 return; 1436 } 1437 *(unsigned short *)(tag + 1) = sa->sa_family; 1438 m_tag_prepend(m, tag); 1439 } 1440 #ifdef VIMAGE 1441 if (V_loif) 1442 m->m_pkthdr.rcvif = V_loif; 1443 else { 1444 m_freem(m); 1445 return; 1446 } 1447 #endif 1448 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1449 } 1450 1451 /* 1452 * This is used in dumping the kernel table via sysctl(). 1453 */ 1454 static int 1455 sysctl_dumpentry(struct radix_node *rn, void *vw) 1456 { 1457 struct walkarg *w = vw; 1458 struct rtentry *rt = (struct rtentry *)rn; 1459 int error = 0, size; 1460 struct rt_addrinfo info; 1461 1462 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1463 return 0; 1464 if ((rt->rt_flags & RTF_HOST) == 0 1465 ? jailed_without_vnet(w->w_req->td->td_ucred) 1466 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1467 return (0); 1468 bzero((caddr_t)&info, sizeof(info)); 1469 info.rti_info[RTAX_DST] = rt_key(rt); 1470 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1471 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1472 info.rti_info[RTAX_GENMASK] = 0; 1473 if (rt->rt_ifp) { 1474 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1475 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1476 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1477 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1478 } 1479 size = rt_msg2(RTM_GET, &info, NULL, w); 1480 if (w->w_req && w->w_tmem) { 1481 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1482 1483 rtm->rtm_flags = rt->rt_flags; 1484 /* 1485 * let's be honest about this being a retarded hack 1486 */ 1487 rtm->rtm_fmask = rt->rt_rmx.rmx_pksent; 1488 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1489 rtm->rtm_index = rt->rt_ifp->if_index; 1490 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1491 rtm->rtm_addrs = info.rti_addrs; 1492 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1493 return (error); 1494 } 1495 return (error); 1496 } 1497 1498 #ifdef COMPAT_FREEBSD32 1499 static void 1500 copy_ifdata32(struct if_data *src, struct if_data32 *dst) 1501 { 1502 1503 bzero(dst, sizeof(*dst)); 1504 CP(*src, *dst, ifi_type); 1505 CP(*src, *dst, ifi_physical); 1506 CP(*src, *dst, ifi_addrlen); 1507 CP(*src, *dst, ifi_hdrlen); 1508 CP(*src, *dst, ifi_link_state); 1509 dst->ifi_datalen = sizeof(struct if_data32); 1510 CP(*src, *dst, ifi_mtu); 1511 CP(*src, *dst, ifi_metric); 1512 CP(*src, *dst, ifi_baudrate); 1513 CP(*src, *dst, ifi_ipackets); 1514 CP(*src, *dst, ifi_ierrors); 1515 CP(*src, *dst, ifi_opackets); 1516 CP(*src, *dst, ifi_oerrors); 1517 CP(*src, *dst, ifi_collisions); 1518 CP(*src, *dst, ifi_ibytes); 1519 CP(*src, *dst, ifi_obytes); 1520 CP(*src, *dst, ifi_imcasts); 1521 CP(*src, *dst, ifi_omcasts); 1522 CP(*src, *dst, ifi_iqdrops); 1523 CP(*src, *dst, ifi_noproto); 1524 CP(*src, *dst, ifi_hwassist); 1525 CP(*src, *dst, ifi_epoch); 1526 TV_CP(*src, *dst, ifi_lastchange); 1527 } 1528 #endif 1529 1530 static int 1531 sysctl_iflist(int af, struct walkarg *w) 1532 { 1533 struct ifnet *ifp; 1534 struct ifaddr *ifa; 1535 struct rt_addrinfo info; 1536 int len, error = 0; 1537 1538 bzero((caddr_t)&info, sizeof(info)); 1539 IFNET_RLOCK(); 1540 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1541 if (w->w_arg && w->w_arg != ifp->if_index) 1542 continue; 1543 IF_ADDR_LOCK(ifp); 1544 ifa = ifp->if_addr; 1545 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1546 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1547 info.rti_info[RTAX_IFP] = NULL; 1548 if (w->w_req && w->w_tmem) { 1549 struct if_msghdr *ifm; 1550 1551 #ifdef COMPAT_FREEBSD32 1552 if (w->w_req->flags & SCTL_MASK32) { 1553 struct if_msghdr32 *ifm32; 1554 1555 ifm32 = (struct if_msghdr32 *)w->w_tmem; 1556 ifm32->ifm_index = ifp->if_index; 1557 ifm32->ifm_flags = ifp->if_flags | 1558 ifp->if_drv_flags; 1559 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1560 ifm32->ifm_addrs = info.rti_addrs; 1561 error = SYSCTL_OUT(w->w_req, (caddr_t)ifm32, 1562 len); 1563 goto sysctl_out; 1564 } 1565 #endif 1566 ifm = (struct if_msghdr *)w->w_tmem; 1567 ifm->ifm_index = ifp->if_index; 1568 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1569 ifm->ifm_data = ifp->if_data; 1570 ifm->ifm_addrs = info.rti_addrs; 1571 error = SYSCTL_OUT(w->w_req, (caddr_t)ifm, len); 1572 #ifdef COMPAT_FREEBSD32 1573 sysctl_out: 1574 #endif 1575 if (error) 1576 goto done; 1577 } 1578 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1579 if (af && af != ifa->ifa_addr->sa_family) 1580 continue; 1581 if (prison_if(w->w_req->td->td_ucred, 1582 ifa->ifa_addr) != 0) 1583 continue; 1584 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1585 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1586 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1587 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1588 if (w->w_req && w->w_tmem) { 1589 struct ifa_msghdr *ifam; 1590 1591 ifam = (struct ifa_msghdr *)w->w_tmem; 1592 ifam->ifam_index = ifa->ifa_ifp->if_index; 1593 ifam->ifam_flags = ifa->ifa_flags; 1594 ifam->ifam_metric = ifa->ifa_metric; 1595 ifam->ifam_addrs = info.rti_addrs; 1596 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1597 if (error) 1598 goto done; 1599 } 1600 } 1601 IF_ADDR_UNLOCK(ifp); 1602 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1603 info.rti_info[RTAX_BRD] = NULL; 1604 } 1605 done: 1606 if (ifp != NULL) 1607 IF_ADDR_UNLOCK(ifp); 1608 IFNET_RUNLOCK(); 1609 return (error); 1610 } 1611 1612 static int 1613 sysctl_ifmalist(int af, struct walkarg *w) 1614 { 1615 struct ifnet *ifp; 1616 struct ifmultiaddr *ifma; 1617 struct rt_addrinfo info; 1618 int len, error = 0; 1619 struct ifaddr *ifa; 1620 1621 bzero((caddr_t)&info, sizeof(info)); 1622 IFNET_RLOCK(); 1623 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1624 if (w->w_arg && w->w_arg != ifp->if_index) 1625 continue; 1626 ifa = ifp->if_addr; 1627 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1628 IF_ADDR_LOCK(ifp); 1629 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1630 if (af && af != ifma->ifma_addr->sa_family) 1631 continue; 1632 if (prison_if(w->w_req->td->td_ucred, 1633 ifma->ifma_addr) != 0) 1634 continue; 1635 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1636 info.rti_info[RTAX_GATEWAY] = 1637 (ifma->ifma_addr->sa_family != AF_LINK) ? 1638 ifma->ifma_lladdr : NULL; 1639 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1640 if (w->w_req && w->w_tmem) { 1641 struct ifma_msghdr *ifmam; 1642 1643 ifmam = (struct ifma_msghdr *)w->w_tmem; 1644 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1645 ifmam->ifmam_flags = 0; 1646 ifmam->ifmam_addrs = info.rti_addrs; 1647 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1648 if (error) { 1649 IF_ADDR_UNLOCK(ifp); 1650 goto done; 1651 } 1652 } 1653 } 1654 IF_ADDR_UNLOCK(ifp); 1655 } 1656 done: 1657 IFNET_RUNLOCK(); 1658 return (error); 1659 } 1660 1661 static int 1662 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1663 { 1664 int *name = (int *)arg1; 1665 u_int namelen = arg2; 1666 struct radix_node_head *rnh = NULL; /* silence compiler. */ 1667 int i, lim, error = EINVAL; 1668 u_char af; 1669 struct walkarg w; 1670 1671 name ++; 1672 namelen--; 1673 if (req->newptr) 1674 return (EPERM); 1675 if (namelen != 3) 1676 return ((namelen < 3) ? EISDIR : ENOTDIR); 1677 af = name[0]; 1678 if (af > AF_MAX) 1679 return (EINVAL); 1680 bzero(&w, sizeof(w)); 1681 w.w_op = name[1]; 1682 w.w_arg = name[2]; 1683 w.w_req = req; 1684 1685 error = sysctl_wire_old_buffer(req, 0); 1686 if (error) 1687 return (error); 1688 switch (w.w_op) { 1689 1690 case NET_RT_DUMP: 1691 case NET_RT_FLAGS: 1692 if (af == 0) { /* dump all tables */ 1693 i = 1; 1694 lim = AF_MAX; 1695 } else /* dump only one table */ 1696 i = lim = af; 1697 1698 /* 1699 * take care of llinfo entries, the caller must 1700 * specify an AF 1701 */ 1702 if (w.w_op == NET_RT_FLAGS && 1703 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1704 if (af != 0) 1705 error = lltable_sysctl_dumparp(af, w.w_req); 1706 else 1707 error = EINVAL; 1708 break; 1709 } 1710 /* 1711 * take care of routing entries 1712 */ 1713 for (error = 0; error == 0 && i <= lim; i++) { 1714 rnh = rt_tables_get_rnh(req->td->td_proc->p_fibnum, i); 1715 if (rnh != NULL) { 1716 RADIX_NODE_HEAD_LOCK(rnh); 1717 error = rnh->rnh_walktree(rnh, 1718 sysctl_dumpentry, &w); 1719 RADIX_NODE_HEAD_UNLOCK(rnh); 1720 } else if (af != 0) 1721 error = EAFNOSUPPORT; 1722 } 1723 break; 1724 1725 case NET_RT_IFLIST: 1726 error = sysctl_iflist(af, &w); 1727 break; 1728 1729 case NET_RT_IFMALIST: 1730 error = sysctl_ifmalist(af, &w); 1731 break; 1732 } 1733 if (w.w_tmem) 1734 free(w.w_tmem, M_RTABLE); 1735 return (error); 1736 } 1737 1738 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1739 1740 /* 1741 * Definitions of protocols supported in the ROUTE domain. 1742 */ 1743 1744 static struct domain routedomain; /* or at least forward */ 1745 1746 static struct protosw routesw[] = { 1747 { 1748 .pr_type = SOCK_RAW, 1749 .pr_domain = &routedomain, 1750 .pr_flags = PR_ATOMIC|PR_ADDR, 1751 .pr_output = route_output, 1752 .pr_ctlinput = raw_ctlinput, 1753 .pr_init = raw_init, 1754 .pr_usrreqs = &route_usrreqs 1755 } 1756 }; 1757 1758 static struct domain routedomain = { 1759 .dom_family = PF_ROUTE, 1760 .dom_name = "route", 1761 .dom_protosw = routesw, 1762 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1763 }; 1764 1765 VNET_DOMAIN_SET(route); 1766