xref: /freebsd/sys/net/rtsock.c (revision 7562eaabc01a48e6b11d5b558c41e3b92dae5c2d)
1 /*
2  * Copyright (c) 1988, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
30  * $FreeBSD$
31  */
32 
33 #include <sys/param.h>
34 #include <sys/domain.h>
35 #include <sys/kernel.h>
36 #include <sys/jail.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/proc.h>
40 #include <sys/protosw.h>
41 #include <sys/signalvar.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/sysctl.h>
45 #include <sys/systm.h>
46 
47 #include <net/if.h>
48 #include <net/netisr.h>
49 #include <net/raw_cb.h>
50 #include <net/route.h>
51 
52 #include <netinet/in.h>
53 
54 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
55 
56 /* NB: these are not modified */
57 static struct	sockaddr route_dst = { 2, PF_ROUTE, };
58 static struct	sockaddr route_src = { 2, PF_ROUTE, };
59 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
60 
61 static struct {
62 	int	ip_count;	/* attached w/ AF_INET */
63 	int	ip6_count;	/* attached w/ AF_INET6 */
64 	int	ipx_count;	/* attached w/ AF_IPX */
65 	int	any_count;	/* total attached */
66 } route_cb;
67 
68 struct mtx rtsock_mtx;
69 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
70 
71 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
72 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
73 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
74 
75 static struct	ifqueue rtsintrq;
76 
77 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
78 SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW,
79     &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length");
80 
81 struct walkarg {
82 	int	w_tmemsize;
83 	int	w_op, w_arg;
84 	caddr_t	w_tmem;
85 	struct sysctl_req *w_req;
86 };
87 
88 static void	rts_input(struct mbuf *m);
89 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo);
90 static int	rt_msg2(int type, struct rt_addrinfo *rtinfo,
91 			caddr_t cp, struct walkarg *w);
92 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
93 			struct rt_addrinfo *rtinfo);
94 static int	sysctl_dumpentry(struct radix_node *rn, void *vw);
95 static int	sysctl_iflist(int af, struct walkarg *w);
96 static int	sysctl_ifmalist(int af, struct walkarg *w);
97 static int	route_output(struct mbuf *m, struct socket *so);
98 static void	rt_setmetrics(u_long which, const struct rt_metrics *in,
99 			struct rt_metrics_lite *out);
100 static void	rt_getmetrics(const struct rt_metrics_lite *in,
101 			struct rt_metrics *out);
102 static void	rt_dispatch(struct mbuf *, const struct sockaddr *);
103 
104 static void
105 rts_init(void)
106 {
107 	int tmp;
108 
109 	rtsintrq.ifq_maxlen = 256;
110 	if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
111 		rtsintrq.ifq_maxlen = tmp;
112 	mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF);
113 	netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, NETISR_MPSAFE);
114 }
115 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0)
116 
117 static void
118 rts_input(struct mbuf *m)
119 {
120 	struct sockproto route_proto;
121 	unsigned short *family;
122 	struct m_tag *tag;
123 
124 	route_proto.sp_family = PF_ROUTE;
125 	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
126 	if (tag != NULL) {
127 		family = (unsigned short *)(tag + 1);
128 		route_proto.sp_protocol = *family;
129 		m_tag_delete(m, tag);
130 	} else
131 		route_proto.sp_protocol = 0;
132 
133 	raw_input(m, &route_proto, &route_src, &route_dst);
134 }
135 
136 /*
137  * It really doesn't make any sense at all for this code to share much
138  * with raw_usrreq.c, since its functionality is so restricted.  XXX
139  */
140 static int
141 rts_abort(struct socket *so)
142 {
143 	int s, error;
144 	s = splnet();
145 	error = raw_usrreqs.pru_abort(so);
146 	splx(s);
147 	return error;
148 }
149 
150 /* pru_accept is EOPNOTSUPP */
151 
152 static int
153 rts_attach(struct socket *so, int proto, struct thread *td)
154 {
155 	struct rawcb *rp;
156 	int s, error;
157 
158 	if (sotorawcb(so) != NULL)
159 		return EISCONN;	/* XXX panic? */
160 	/* XXX */
161 	MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
162 	if (rp == NULL)
163 		return ENOBUFS;
164 
165 	/*
166 	 * The splnet() is necessary to block protocols from sending
167 	 * error notifications (like RTM_REDIRECT or RTM_LOSING) while
168 	 * this PCB is extant but incompletely initialized.
169 	 * Probably we should try to do more of this work beforehand and
170 	 * eliminate the spl.
171 	 */
172 	s = splnet();
173 	so->so_pcb = (caddr_t)rp;
174 	error = raw_attach(so, proto);
175 	rp = sotorawcb(so);
176 	if (error) {
177 		splx(s);
178 		so->so_pcb = NULL;
179 		free(rp, M_PCB);
180 		return error;
181 	}
182 	RTSOCK_LOCK();
183 	switch(rp->rcb_proto.sp_protocol) {
184 	case AF_INET:
185 		route_cb.ip_count++;
186 		break;
187 	case AF_INET6:
188 		route_cb.ip6_count++;
189 		break;
190 	case AF_IPX:
191 		route_cb.ipx_count++;
192 		break;
193 	}
194 	rp->rcb_faddr = &route_src;
195 	route_cb.any_count++;
196 	RTSOCK_UNLOCK();
197 	soisconnected(so);
198 	so->so_options |= SO_USELOOPBACK;
199 	splx(s);
200 	return 0;
201 }
202 
203 static int
204 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
205 {
206 	int s, error;
207 	s = splnet();
208 	error = raw_usrreqs.pru_bind(so, nam, td); /* xxx just EINVAL */
209 	splx(s);
210 	return error;
211 }
212 
213 static int
214 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
215 {
216 	int s, error;
217 	s = splnet();
218 	error = raw_usrreqs.pru_connect(so, nam, td); /* XXX just EINVAL */
219 	splx(s);
220 	return error;
221 }
222 
223 /* pru_connect2 is EOPNOTSUPP */
224 /* pru_control is EOPNOTSUPP */
225 
226 static int
227 rts_detach(struct socket *so)
228 {
229 	struct rawcb *rp = sotorawcb(so);
230 	int s, error;
231 
232 	s = splnet();
233 	if (rp != NULL) {
234 		RTSOCK_LOCK();
235 		switch(rp->rcb_proto.sp_protocol) {
236 		case AF_INET:
237 			route_cb.ip_count--;
238 			break;
239 		case AF_INET6:
240 			route_cb.ip6_count--;
241 			break;
242 		case AF_IPX:
243 			route_cb.ipx_count--;
244 			break;
245 		}
246 		route_cb.any_count--;
247 		RTSOCK_UNLOCK();
248 	}
249 	error = raw_usrreqs.pru_detach(so);
250 	splx(s);
251 	return error;
252 }
253 
254 static int
255 rts_disconnect(struct socket *so)
256 {
257 	int s, error;
258 	s = splnet();
259 	error = raw_usrreqs.pru_disconnect(so);
260 	splx(s);
261 	return error;
262 }
263 
264 /* pru_listen is EOPNOTSUPP */
265 
266 static int
267 rts_peeraddr(struct socket *so, struct sockaddr **nam)
268 {
269 	int s, error;
270 	s = splnet();
271 	error = raw_usrreqs.pru_peeraddr(so, nam);
272 	splx(s);
273 	return error;
274 }
275 
276 /* pru_rcvd is EOPNOTSUPP */
277 /* pru_rcvoob is EOPNOTSUPP */
278 
279 static int
280 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
281 	 struct mbuf *control, struct thread *td)
282 {
283 	int s, error;
284 	s = splnet();
285 	error = raw_usrreqs.pru_send(so, flags, m, nam, control, td);
286 	splx(s);
287 	return error;
288 }
289 
290 /* pru_sense is null */
291 
292 static int
293 rts_shutdown(struct socket *so)
294 {
295 	int s, error;
296 	s = splnet();
297 	error = raw_usrreqs.pru_shutdown(so);
298 	splx(s);
299 	return error;
300 }
301 
302 static int
303 rts_sockaddr(struct socket *so, struct sockaddr **nam)
304 {
305 	int s, error;
306 	s = splnet();
307 	error = raw_usrreqs.pru_sockaddr(so, nam);
308 	splx(s);
309 	return error;
310 }
311 
312 static struct pr_usrreqs route_usrreqs = {
313 	rts_abort, pru_accept_notsupp, rts_attach, rts_bind, rts_connect,
314 	pru_connect2_notsupp, pru_control_notsupp, rts_detach, rts_disconnect,
315 	pru_listen_notsupp, rts_peeraddr, pru_rcvd_notsupp, pru_rcvoob_notsupp,
316 	rts_send, pru_sense_null, rts_shutdown, rts_sockaddr,
317 	sosend, soreceive, sopoll, pru_sosetlabel_null
318 };
319 
320 /*ARGSUSED*/
321 static int
322 route_output(struct mbuf *m, struct socket *so)
323 {
324 #define	sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0)
325 	struct rt_msghdr *rtm = NULL;
326 	struct rtentry *rt = NULL;
327 	struct radix_node_head *rnh;
328 	struct rt_addrinfo info;
329 	int len, error = 0;
330 	struct ifnet *ifp = NULL;
331 	struct ifaddr *ifa = NULL;
332 	struct sockaddr_in jail;
333 
334 #define senderr(e) { error = e; goto flush;}
335 	if (m == NULL || ((m->m_len < sizeof(long)) &&
336 		       (m = m_pullup(m, sizeof(long))) == NULL))
337 		return (ENOBUFS);
338 	if ((m->m_flags & M_PKTHDR) == 0)
339 		panic("route_output");
340 	len = m->m_pkthdr.len;
341 	if (len < sizeof(*rtm) ||
342 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
343 		info.rti_info[RTAX_DST] = NULL;
344 		senderr(EINVAL);
345 	}
346 	R_Malloc(rtm, struct rt_msghdr *, len);
347 	if (rtm == NULL) {
348 		info.rti_info[RTAX_DST] = NULL;
349 		senderr(ENOBUFS);
350 	}
351 	m_copydata(m, 0, len, (caddr_t)rtm);
352 	if (rtm->rtm_version != RTM_VERSION) {
353 		info.rti_info[RTAX_DST] = NULL;
354 		senderr(EPROTONOSUPPORT);
355 	}
356 	rtm->rtm_pid = curproc->p_pid;
357 	bzero(&info, sizeof(info));
358 	info.rti_addrs = rtm->rtm_addrs;
359 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
360 		info.rti_info[RTAX_DST] = NULL;
361 		senderr(EINVAL);
362 	}
363 	info.rti_flags = rtm->rtm_flags;
364 	if (info.rti_info[RTAX_DST] == NULL ||
365 	    info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
366 	    (info.rti_info[RTAX_GATEWAY] != NULL &&
367 	     info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
368 		senderr(EINVAL);
369 	if (info.rti_info[RTAX_GENMASK]) {
370 		struct radix_node *t;
371 		t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1);
372 		if (t != NULL &&
373 		    bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1,
374 		    (char *)(void *)t->rn_key + 1,
375 		    ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0)
376 			info.rti_info[RTAX_GENMASK] =
377 			    (struct sockaddr *)t->rn_key;
378 		else
379 			senderr(ENOBUFS);
380 	}
381 
382 	/*
383 	 * Verify that the caller has the appropriate privilege; RTM_GET
384 	 * is the only operation the non-superuser is allowed.
385 	 */
386 	if (rtm->rtm_type != RTM_GET && (error = suser(curthread)) != 0)
387 		senderr(error);
388 
389 	switch (rtm->rtm_type) {
390 		struct rtentry *saved_nrt;
391 
392 	case RTM_ADD:
393 		if (info.rti_info[RTAX_GATEWAY] == NULL)
394 			senderr(EINVAL);
395 		saved_nrt = NULL;
396 		error = rtrequest1(RTM_ADD, &info, &saved_nrt);
397 		if (error == 0 && saved_nrt) {
398 			RT_LOCK(saved_nrt);
399 			rt_setmetrics(rtm->rtm_inits,
400 				&rtm->rtm_rmx, &saved_nrt->rt_rmx);
401 			RT_REMREF(saved_nrt);
402 			saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK];
403 			RT_UNLOCK(saved_nrt);
404 		}
405 		break;
406 
407 	case RTM_DELETE:
408 		saved_nrt = NULL;
409 		error = rtrequest1(RTM_DELETE, &info, &saved_nrt);
410 		if (error == 0) {
411 			RT_LOCK(saved_nrt);
412 			rt = saved_nrt;
413 			goto report;
414 		}
415 		break;
416 
417 	case RTM_GET:
418 	case RTM_CHANGE:
419 	case RTM_LOCK:
420 		rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family];
421 		if (rnh == NULL)
422 			senderr(EAFNOSUPPORT);
423 		RADIX_NODE_HEAD_LOCK(rnh);
424 		rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST],
425 			info.rti_info[RTAX_NETMASK], rnh);
426 		RADIX_NODE_HEAD_UNLOCK(rnh);
427 		if (rt == NULL)		/* XXX looks bogus */
428 			senderr(ESRCH);
429 		RT_LOCK(rt);
430 		RT_ADDREF(rt);
431 
432 		switch(rtm->rtm_type) {
433 
434 		case RTM_GET:
435 		report:
436 			RT_LOCK_ASSERT(rt);
437 			info.rti_info[RTAX_DST] = rt_key(rt);
438 			info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
439 			info.rti_info[RTAX_NETMASK] = rt_mask(rt);
440 			info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
441 			if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
442 				ifp = rt->rt_ifp;
443 				if (ifp) {
444 					info.rti_info[RTAX_IFP] =
445 					    ifaddr_byindex(ifp->if_index)->ifa_addr;
446 					if (jailed(so->so_cred)) {
447 						bzero(&jail, sizeof(jail));
448 						jail.sin_family = PF_INET;
449 						jail.sin_len = sizeof(jail);
450 						jail.sin_addr.s_addr =
451 						htonl(prison_getip(so->so_cred));
452 						info.rti_info[RTAX_IFA] =
453 						    (struct sockaddr *)&jail;
454 					} else
455 						info.rti_info[RTAX_IFA] =
456 						    rt->rt_ifa->ifa_addr;
457 					if (ifp->if_flags & IFF_POINTOPOINT)
458 						info.rti_info[RTAX_BRD] =
459 						    rt->rt_ifa->ifa_dstaddr;
460 					rtm->rtm_index = ifp->if_index;
461 				} else {
462 					info.rti_info[RTAX_IFP] = NULL;
463 					info.rti_info[RTAX_IFA] = NULL;
464 				}
465 			}
466 			len = rt_msg2(rtm->rtm_type, &info, NULL, NULL);
467 			if (len > rtm->rtm_msglen) {
468 				struct rt_msghdr *new_rtm;
469 				R_Malloc(new_rtm, struct rt_msghdr *, len);
470 				if (new_rtm == NULL) {
471 					RT_UNLOCK(rt);
472 					senderr(ENOBUFS);
473 				}
474 				bcopy(rtm, new_rtm, rtm->rtm_msglen);
475 				Free(rtm); rtm = new_rtm;
476 			}
477 			(void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL);
478 			rtm->rtm_flags = rt->rt_flags;
479 			rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
480 			rtm->rtm_addrs = info.rti_addrs;
481 			break;
482 
483 		case RTM_CHANGE:
484 			/*
485 			 * New gateway could require new ifaddr, ifp;
486 			 * flags may also be different; ifp may be specified
487 			 * by ll sockaddr when protocol address is ambiguous
488 			 */
489 			if (((rt->rt_flags & RTF_GATEWAY) &&
490 			     info.rti_info[RTAX_GATEWAY] != NULL) ||
491 			    info.rti_info[RTAX_IFP] != NULL ||
492 			    (info.rti_info[RTAX_IFA] != NULL &&
493 			     !sa_equal(info.rti_info[RTAX_IFA],
494 				       rt->rt_ifa->ifa_addr))) {
495 				if ((error = rt_getifa(&info)) != 0) {
496 					RT_UNLOCK(rt);
497 					senderr(error);
498 				}
499 			}
500 			if (info.rti_info[RTAX_GATEWAY] != NULL &&
501 			    (error = rt_setgate(rt, rt_key(rt),
502 					info.rti_info[RTAX_GATEWAY])) != 0) {
503 				RT_UNLOCK(rt);
504 				senderr(error);
505 			}
506 			if ((ifa = info.rti_ifa) != NULL) {
507 				struct ifaddr *oifa = rt->rt_ifa;
508 				if (oifa != ifa) {
509 					if (oifa) {
510 						if (oifa->ifa_rtrequest)
511 							oifa->ifa_rtrequest(
512 								RTM_DELETE, rt,
513 								&info);
514 						IFAFREE(oifa);
515 					}
516 				        IFAREF(ifa);
517 				        rt->rt_ifa = ifa;
518 				        rt->rt_ifp = info.rti_ifp;
519 				}
520 			}
521 			rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
522 					&rt->rt_rmx);
523 			if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
524 			       rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
525 			if (info.rti_info[RTAX_GENMASK])
526 				rt->rt_genmask = info.rti_info[RTAX_GENMASK];
527 			/* FALLTHROUGH */
528 		case RTM_LOCK:
529 			/* We don't support locks anymore */
530 			break;
531 		}
532 		RT_UNLOCK(rt);
533 		break;
534 
535 	default:
536 		senderr(EOPNOTSUPP);
537 	}
538 
539 flush:
540 	if (rtm) {
541 		if (error)
542 			rtm->rtm_errno = error;
543 		else
544 			rtm->rtm_flags |= RTF_DONE;
545 	}
546 	if (rt)		/* XXX can this be true? */
547 		RTFREE(rt);
548     {
549 	struct rawcb *rp = NULL;
550 	/*
551 	 * Check to see if we don't want our own messages.
552 	 */
553 	if ((so->so_options & SO_USELOOPBACK) == 0) {
554 		if (route_cb.any_count <= 1) {
555 			if (rtm)
556 				Free(rtm);
557 			m_freem(m);
558 			return (error);
559 		}
560 		/* There is another listener, so construct message */
561 		rp = sotorawcb(so);
562 	}
563 	if (rtm) {
564 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
565 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
566 			m_freem(m);
567 			m = NULL;
568 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
569 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
570 		Free(rtm);
571 	}
572 	if (m) {
573 		if (rp) {
574 			/*
575 			 * XXX insure we don't get a copy by
576 			 * invalidating our protocol
577 			 */
578 			unsigned short family = rp->rcb_proto.sp_family;
579 			rp->rcb_proto.sp_family = 0;
580 			rt_dispatch(m, info.rti_info[RTAX_DST]);
581 			rp->rcb_proto.sp_family = family;
582 		} else
583 			rt_dispatch(m, info.rti_info[RTAX_DST]);
584 	}
585     }
586 	return (error);
587 #undef	sa_equal
588 }
589 
590 static void
591 rt_setmetrics(u_long which, const struct rt_metrics *in,
592 	struct rt_metrics_lite *out)
593 {
594 #define metric(f, e) if (which & (f)) out->e = in->e;
595 	/*
596 	 * Only these are stored in the routing entry since introduction
597 	 * of tcp hostcache. The rest is ignored.
598 	 */
599 	metric(RTV_MTU, rmx_mtu);
600 	metric(RTV_EXPIRE, rmx_expire);
601 #undef metric
602 }
603 
604 static void
605 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out)
606 {
607 #define metric(e) out->e = in->e;
608 	bzero(out, sizeof(*out));
609 	metric(rmx_mtu);
610 	metric(rmx_expire);
611 #undef metric
612 }
613 
614 /*
615  * Extract the addresses of the passed sockaddrs.
616  * Do a little sanity checking so as to avoid bad memory references.
617  * This data is derived straight from userland.
618  */
619 static int
620 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
621 {
622 	struct sockaddr *sa;
623 	int i;
624 
625 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
626 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
627 			continue;
628 		sa = (struct sockaddr *)cp;
629 		/*
630 		 * It won't fit.
631 		 */
632 		if (cp + sa->sa_len > cplim)
633 			return (EINVAL);
634 		/*
635 		 * there are no more.. quit now
636 		 * If there are more bits, they are in error.
637 		 * I've seen this. route(1) can evidently generate these.
638 		 * This causes kernel to core dump.
639 		 * for compatibility, If we see this, point to a safe address.
640 		 */
641 		if (sa->sa_len == 0) {
642 			rtinfo->rti_info[i] = &sa_zero;
643 			return (0); /* should be EINVAL but for compat */
644 		}
645 		/* accept it */
646 		rtinfo->rti_info[i] = sa;
647 		cp += SA_SIZE(sa);
648 	}
649 	return (0);
650 }
651 
652 static struct mbuf *
653 rt_msg1(int type, struct rt_addrinfo *rtinfo)
654 {
655 	struct rt_msghdr *rtm;
656 	struct mbuf *m;
657 	int i;
658 	struct sockaddr *sa;
659 	int len, dlen;
660 
661 	switch (type) {
662 
663 	case RTM_DELADDR:
664 	case RTM_NEWADDR:
665 		len = sizeof(struct ifa_msghdr);
666 		break;
667 
668 	case RTM_DELMADDR:
669 	case RTM_NEWMADDR:
670 		len = sizeof(struct ifma_msghdr);
671 		break;
672 
673 	case RTM_IFINFO:
674 		len = sizeof(struct if_msghdr);
675 		break;
676 
677 	case RTM_IFANNOUNCE:
678 	case RTM_IEEE80211:
679 		len = sizeof(struct if_announcemsghdr);
680 		break;
681 
682 	default:
683 		len = sizeof(struct rt_msghdr);
684 	}
685 	if (len > MCLBYTES)
686 		panic("rt_msg1");
687 	m = m_gethdr(M_DONTWAIT, MT_DATA);
688 	if (m && len > MHLEN) {
689 		MCLGET(m, M_DONTWAIT);
690 		if ((m->m_flags & M_EXT) == 0) {
691 			m_free(m);
692 			m = NULL;
693 		}
694 	}
695 	if (m == NULL)
696 		return (m);
697 	m->m_pkthdr.len = m->m_len = len;
698 	m->m_pkthdr.rcvif = NULL;
699 	rtm = mtod(m, struct rt_msghdr *);
700 	bzero((caddr_t)rtm, len);
701 	for (i = 0; i < RTAX_MAX; i++) {
702 		if ((sa = rtinfo->rti_info[i]) == NULL)
703 			continue;
704 		rtinfo->rti_addrs |= (1 << i);
705 		dlen = SA_SIZE(sa);
706 		m_copyback(m, len, dlen, (caddr_t)sa);
707 		len += dlen;
708 	}
709 	if (m->m_pkthdr.len != len) {
710 		m_freem(m);
711 		return (NULL);
712 	}
713 	rtm->rtm_msglen = len;
714 	rtm->rtm_version = RTM_VERSION;
715 	rtm->rtm_type = type;
716 	return (m);
717 }
718 
719 static int
720 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w)
721 {
722 	int i;
723 	int len, dlen, second_time = 0;
724 	caddr_t cp0;
725 
726 	rtinfo->rti_addrs = 0;
727 again:
728 	switch (type) {
729 
730 	case RTM_DELADDR:
731 	case RTM_NEWADDR:
732 		len = sizeof(struct ifa_msghdr);
733 		break;
734 
735 	case RTM_IFINFO:
736 		len = sizeof(struct if_msghdr);
737 		break;
738 
739 	case RTM_NEWMADDR:
740 		len = sizeof(struct ifma_msghdr);
741 		break;
742 
743 	default:
744 		len = sizeof(struct rt_msghdr);
745 	}
746 	cp0 = cp;
747 	if (cp0)
748 		cp += len;
749 	for (i = 0; i < RTAX_MAX; i++) {
750 		struct sockaddr *sa;
751 
752 		if ((sa = rtinfo->rti_info[i]) == NULL)
753 			continue;
754 		rtinfo->rti_addrs |= (1 << i);
755 		dlen = SA_SIZE(sa);
756 		if (cp) {
757 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
758 			cp += dlen;
759 		}
760 		len += dlen;
761 	}
762 	len = ALIGN(len);
763 	if (cp == NULL && w != NULL && !second_time) {
764 		struct walkarg *rw = w;
765 
766 		if (rw->w_req) {
767 			if (rw->w_tmemsize < len) {
768 				if (rw->w_tmem)
769 					free(rw->w_tmem, M_RTABLE);
770 				rw->w_tmem = (caddr_t)
771 					malloc(len, M_RTABLE, M_NOWAIT);
772 				if (rw->w_tmem)
773 					rw->w_tmemsize = len;
774 			}
775 			if (rw->w_tmem) {
776 				cp = rw->w_tmem;
777 				second_time = 1;
778 				goto again;
779 			}
780 		}
781 	}
782 	if (cp) {
783 		struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
784 
785 		rtm->rtm_version = RTM_VERSION;
786 		rtm->rtm_type = type;
787 		rtm->rtm_msglen = len;
788 	}
789 	return (len);
790 }
791 
792 /*
793  * This routine is called to generate a message from the routing
794  * socket indicating that a redirect has occured, a routing lookup
795  * has failed, or that a protocol has detected timeouts to a particular
796  * destination.
797  */
798 void
799 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
800 {
801 	struct rt_msghdr *rtm;
802 	struct mbuf *m;
803 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
804 
805 	if (route_cb.any_count == 0)
806 		return;
807 	m = rt_msg1(type, rtinfo);
808 	if (m == NULL)
809 		return;
810 	rtm = mtod(m, struct rt_msghdr *);
811 	rtm->rtm_flags = RTF_DONE | flags;
812 	rtm->rtm_errno = error;
813 	rtm->rtm_addrs = rtinfo->rti_addrs;
814 	rt_dispatch(m, sa);
815 }
816 
817 /*
818  * This routine is called to generate a message from the routing
819  * socket indicating that the status of a network interface has changed.
820  */
821 void
822 rt_ifmsg(struct ifnet *ifp)
823 {
824 	struct if_msghdr *ifm;
825 	struct mbuf *m;
826 	struct rt_addrinfo info;
827 
828 	if (route_cb.any_count == 0)
829 		return;
830 	bzero((caddr_t)&info, sizeof(info));
831 	m = rt_msg1(RTM_IFINFO, &info);
832 	if (m == NULL)
833 		return;
834 	ifm = mtod(m, struct if_msghdr *);
835 	ifm->ifm_index = ifp->if_index;
836 	ifm->ifm_flags = ifp->if_flags;
837 	ifm->ifm_data = ifp->if_data;
838 	ifm->ifm_addrs = 0;
839 	rt_dispatch(m, NULL);
840 }
841 
842 /*
843  * This is called to generate messages from the routing socket
844  * indicating a network interface has had addresses associated with it.
845  * if we ever reverse the logic and replace messages TO the routing
846  * socket indicate a request to configure interfaces, then it will
847  * be unnecessary as the routing socket will automatically generate
848  * copies of it.
849  */
850 void
851 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
852 {
853 	struct rt_addrinfo info;
854 	struct sockaddr *sa = NULL;
855 	int pass;
856 	struct mbuf *m = NULL;
857 	struct ifnet *ifp = ifa->ifa_ifp;
858 
859 	if (route_cb.any_count == 0)
860 		return;
861 	for (pass = 1; pass < 3; pass++) {
862 		bzero((caddr_t)&info, sizeof(info));
863 		if ((cmd == RTM_ADD && pass == 1) ||
864 		    (cmd == RTM_DELETE && pass == 2)) {
865 			struct ifa_msghdr *ifam;
866 			int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
867 
868 			info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
869 			info.rti_info[RTAX_IFP] =
870 			    ifaddr_byindex(ifp->if_index)->ifa_addr;
871 			info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
872 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
873 			if ((m = rt_msg1(ncmd, &info)) == NULL)
874 				continue;
875 			ifam = mtod(m, struct ifa_msghdr *);
876 			ifam->ifam_index = ifp->if_index;
877 			ifam->ifam_metric = ifa->ifa_metric;
878 			ifam->ifam_flags = ifa->ifa_flags;
879 			ifam->ifam_addrs = info.rti_addrs;
880 		}
881 		if ((cmd == RTM_ADD && pass == 2) ||
882 		    (cmd == RTM_DELETE && pass == 1)) {
883 			struct rt_msghdr *rtm;
884 
885 			if (rt == NULL)
886 				continue;
887 			info.rti_info[RTAX_NETMASK] = rt_mask(rt);
888 			info.rti_info[RTAX_DST] = sa = rt_key(rt);
889 			info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
890 			if ((m = rt_msg1(cmd, &info)) == NULL)
891 				continue;
892 			rtm = mtod(m, struct rt_msghdr *);
893 			rtm->rtm_index = ifp->if_index;
894 			rtm->rtm_flags |= rt->rt_flags;
895 			rtm->rtm_errno = error;
896 			rtm->rtm_addrs = info.rti_addrs;
897 		}
898 		rt_dispatch(m, sa);
899 	}
900 }
901 
902 /*
903  * This is the analogue to the rt_newaddrmsg which performs the same
904  * function but for multicast group memberhips.  This is easier since
905  * there is no route state to worry about.
906  */
907 void
908 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
909 {
910 	struct rt_addrinfo info;
911 	struct mbuf *m = NULL;
912 	struct ifnet *ifp = ifma->ifma_ifp;
913 	struct ifma_msghdr *ifmam;
914 
915 	if (route_cb.any_count == 0)
916 		return;
917 
918 	bzero((caddr_t)&info, sizeof(info));
919 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
920 	info.rti_info[RTAX_IFP] =
921 	    ifp ? ifaddr_byindex(ifp->if_index)->ifa_addr : NULL;
922 	/*
923 	 * If a link-layer address is present, present it as a ``gateway''
924 	 * (similarly to how ARP entries, e.g., are presented).
925 	 */
926 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
927 	m = rt_msg1(cmd, &info);
928 	if (m == NULL)
929 		return;
930 	ifmam = mtod(m, struct ifma_msghdr *);
931 	ifmam->ifmam_index = ifp->if_index;
932 	ifmam->ifmam_addrs = info.rti_addrs;
933 	rt_dispatch(m, ifma->ifma_addr);
934 }
935 
936 static struct mbuf *
937 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
938 	struct rt_addrinfo *info)
939 {
940 	struct if_announcemsghdr *ifan;
941 	struct mbuf *m;
942 
943 	if (route_cb.any_count == 0)
944 		return NULL;
945 	bzero((caddr_t)info, sizeof(*info));
946 	m = rt_msg1(type, info);
947 	if (m != NULL) {
948 		ifan = mtod(m, struct if_announcemsghdr *);
949 		ifan->ifan_index = ifp->if_index;
950 		strlcpy(ifan->ifan_name, ifp->if_xname,
951 			sizeof(ifan->ifan_name));
952 		ifan->ifan_what = what;
953 	}
954 	return m;
955 }
956 
957 /*
958  * This is called to generate routing socket messages indicating
959  * IEEE80211 wireless events.
960  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
961  */
962 void
963 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
964 {
965 	struct mbuf *m;
966 	struct rt_addrinfo info;
967 
968 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
969 	if (m != NULL) {
970 		/*
971 		 * Append the ieee80211 data.  Try to stick it in the
972 		 * mbuf containing the ifannounce msg; otherwise allocate
973 		 * a new mbuf and append.
974 		 *
975 		 * NB: we assume m is a single mbuf.
976 		 */
977 		if (data_len > M_TRAILINGSPACE(m)) {
978 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
979 			if (n == NULL) {
980 				m_freem(m);
981 				return;
982 			}
983 			bcopy(data, mtod(n, void *), data_len);
984 			n->m_len = data_len;
985 			m->m_next = n;
986 		} else if (data_len > 0) {
987 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
988 			m->m_len += data_len;
989 		}
990 		if (m->m_flags & M_PKTHDR)
991 			m->m_pkthdr.len += data_len;
992 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
993 		rt_dispatch(m, NULL);
994 	}
995 }
996 
997 /*
998  * This is called to generate routing socket messages indicating
999  * network interface arrival and departure.
1000  */
1001 void
1002 rt_ifannouncemsg(struct ifnet *ifp, int what)
1003 {
1004 	struct mbuf *m;
1005 	struct rt_addrinfo info;
1006 
1007 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1008 	if (m != NULL)
1009 		rt_dispatch(m, NULL);
1010 }
1011 
1012 static void
1013 rt_dispatch(struct mbuf *m, const struct sockaddr *sa)
1014 {
1015 	unsigned short *family;
1016 	struct m_tag *tag;
1017 
1018 	/*
1019 	 * Preserve the family from the sockaddr, if any, in an m_tag for
1020 	 * use when injecting the mbuf into the routing socket buffer from
1021 	 * the netisr.
1022 	 */
1023 	if (sa != NULL) {
1024 		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1025 		    M_NOWAIT);
1026 		if (tag == NULL) {
1027 			m_freem(m);
1028 			return;
1029 		}
1030 		family = (unsigned short *)(tag + 1);
1031 		*family = sa ? sa->sa_family : 0;
1032 		m_tag_prepend(m, tag);
1033 	}
1034 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
1035 }
1036 
1037 /*
1038  * This is used in dumping the kernel table via sysctl().
1039  */
1040 static int
1041 sysctl_dumpentry(struct radix_node *rn, void *vw)
1042 {
1043 	struct walkarg *w = vw;
1044 	struct rtentry *rt = (struct rtentry *)rn;
1045 	int error = 0, size;
1046 	struct rt_addrinfo info;
1047 
1048 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1049 		return 0;
1050 	bzero((caddr_t)&info, sizeof(info));
1051 	info.rti_info[RTAX_DST] = rt_key(rt);
1052 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1053 	info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1054 	info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
1055 	if (rt->rt_ifp) {
1056 		info.rti_info[RTAX_IFP] =
1057 		    ifaddr_byindex(rt->rt_ifp->if_index)->ifa_addr;
1058 		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1059 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1060 			info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1061 	}
1062 	size = rt_msg2(RTM_GET, &info, NULL, w);
1063 	if (w->w_req && w->w_tmem) {
1064 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1065 
1066 		rtm->rtm_flags = rt->rt_flags;
1067 		rtm->rtm_use = rt->rt_rmx.rmx_pksent;
1068 		rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
1069 		rtm->rtm_index = rt->rt_ifp->if_index;
1070 		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1071 		rtm->rtm_addrs = info.rti_addrs;
1072 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1073 		return (error);
1074 	}
1075 	return (error);
1076 }
1077 
1078 static int
1079 sysctl_iflist(int af, struct walkarg *w)
1080 {
1081 	struct ifnet *ifp;
1082 	struct ifaddr *ifa;
1083 	struct rt_addrinfo info;
1084 	int len, error = 0;
1085 
1086 	bzero((caddr_t)&info, sizeof(info));
1087 	/* IFNET_RLOCK(); */		/* could sleep XXX */
1088 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1089 		if (w->w_arg && w->w_arg != ifp->if_index)
1090 			continue;
1091 		ifa = ifaddr_byindex(ifp->if_index);
1092 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1093 		len = rt_msg2(RTM_IFINFO, &info, NULL, w);
1094 		info.rti_info[RTAX_IFP] = NULL;
1095 		if (w->w_req && w->w_tmem) {
1096 			struct if_msghdr *ifm;
1097 
1098 			ifm = (struct if_msghdr *)w->w_tmem;
1099 			ifm->ifm_index = ifp->if_index;
1100 			ifm->ifm_flags = ifp->if_flags;
1101 			ifm->ifm_data = ifp->if_data;
1102 			ifm->ifm_addrs = info.rti_addrs;
1103 			error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len);
1104 			if (error)
1105 				goto done;
1106 		}
1107 		while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
1108 			if (af && af != ifa->ifa_addr->sa_family)
1109 				continue;
1110 			if (jailed(curthread->td_ucred) &&
1111 			    prison_if(curthread->td_ucred, ifa->ifa_addr))
1112 				continue;
1113 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1114 			info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1115 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1116 			len = rt_msg2(RTM_NEWADDR, &info, NULL, w);
1117 			if (w->w_req && w->w_tmem) {
1118 				struct ifa_msghdr *ifam;
1119 
1120 				ifam = (struct ifa_msghdr *)w->w_tmem;
1121 				ifam->ifam_index = ifa->ifa_ifp->if_index;
1122 				ifam->ifam_flags = ifa->ifa_flags;
1123 				ifam->ifam_metric = ifa->ifa_metric;
1124 				ifam->ifam_addrs = info.rti_addrs;
1125 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1126 				if (error)
1127 					goto done;
1128 			}
1129 		}
1130 		info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1131 			info.rti_info[RTAX_BRD] = NULL;
1132 	}
1133 done:
1134 	/* IFNET_RUNLOCK(); */ /* XXX */
1135 	return (error);
1136 }
1137 
1138 int
1139 sysctl_ifmalist(int af, struct walkarg *w)
1140 {
1141 	struct ifnet *ifp;
1142 	struct ifmultiaddr *ifma;
1143 	struct	rt_addrinfo info;
1144 	int	len, error = 0;
1145 	struct ifaddr *ifa;
1146 
1147 	bzero((caddr_t)&info, sizeof(info));
1148 	/* IFNET_RLOCK(); */		/* could sleep XXX */
1149 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1150 		if (w->w_arg && w->w_arg != ifp->if_index)
1151 			continue;
1152 		ifa = ifaddr_byindex(ifp->if_index);
1153 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1154 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1155 			if (af && af != ifma->ifma_addr->sa_family)
1156 				continue;
1157 			if (jailed(curproc->p_ucred) &&
1158 			    prison_if(curproc->p_ucred, ifma->ifma_addr))
1159 				continue;
1160 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1161 			info.rti_info[RTAX_GATEWAY] =
1162 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
1163 			    ifma->ifma_lladdr : NULL;
1164 			len = rt_msg2(RTM_NEWMADDR, &info, NULL, w);
1165 			if (w->w_req && w->w_tmem) {
1166 				struct ifma_msghdr *ifmam;
1167 
1168 				ifmam = (struct ifma_msghdr *)w->w_tmem;
1169 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1170 				ifmam->ifmam_flags = 0;
1171 				ifmam->ifmam_addrs = info.rti_addrs;
1172 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1173 				if (error)
1174 					goto done;
1175 			}
1176 		}
1177 	}
1178 done:
1179 	/* IFNET_RUNLOCK(); */ /* XXX */
1180 	return (error);
1181 }
1182 
1183 static int
1184 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1185 {
1186 	int	*name = (int *)arg1;
1187 	u_int	namelen = arg2;
1188 	struct radix_node_head *rnh;
1189 	int	i, lim, s, error = EINVAL;
1190 	u_char	af;
1191 	struct	walkarg w;
1192 
1193 	name ++;
1194 	namelen--;
1195 	if (req->newptr)
1196 		return (EPERM);
1197 	if (namelen != 3)
1198 		return ((namelen < 3) ? EISDIR : ENOTDIR);
1199 	af = name[0];
1200 	if (af > AF_MAX)
1201 		return (EINVAL);
1202 	bzero(&w, sizeof(w));
1203 	w.w_op = name[1];
1204 	w.w_arg = name[2];
1205 	w.w_req = req;
1206 
1207 	s = splnet();
1208 	switch (w.w_op) {
1209 
1210 	case NET_RT_DUMP:
1211 	case NET_RT_FLAGS:
1212 		if (af == 0) {			/* dump all tables */
1213 			i = 1;
1214 			lim = AF_MAX;
1215 		} else				/* dump only one table */
1216 			i = lim = af;
1217 		for (error = 0; error == 0 && i <= lim; i++)
1218 			if ((rnh = rt_tables[i]) != NULL) {
1219 				/* RADIX_NODE_HEAD_LOCK(rnh); */
1220 			    	error = rnh->rnh_walktree(rnh,
1221 				    sysctl_dumpentry, &w);/* could sleep XXX */
1222 				/* RADIX_NODE_HEAD_UNLOCK(rnh); */
1223 			} else if (af != 0)
1224 				error = EAFNOSUPPORT;
1225 		break;
1226 
1227 	case NET_RT_IFLIST:
1228 		error = sysctl_iflist(af, &w);
1229 		break;
1230 
1231 	case NET_RT_IFMALIST:
1232 		error = sysctl_ifmalist(af, &w);
1233 		break;
1234 	}
1235 	splx(s);
1236 	if (w.w_tmem)
1237 		free(w.w_tmem, M_RTABLE);
1238 	return (error);
1239 }
1240 
1241 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1242 
1243 /*
1244  * Definitions of protocols supported in the ROUTE domain.
1245  */
1246 
1247 extern struct domain routedomain;		/* or at least forward */
1248 
1249 static struct protosw routesw[] = {
1250 { SOCK_RAW,	&routedomain,	0,		PR_ATOMIC|PR_ADDR,
1251   0,		route_output,	raw_ctlinput,	0,
1252   0,
1253   raw_init,	0,		0,		0,
1254   &route_usrreqs
1255 }
1256 };
1257 
1258 static struct domain routedomain =
1259     { PF_ROUTE, "route", 0, 0, 0,
1260       routesw, &routesw[sizeof(routesw)/sizeof(routesw[0])] };
1261 
1262 DOMAIN_SET(route);
1263