1 /* 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 33 #include <sys/param.h> 34 #include <sys/domain.h> 35 #include <sys/kernel.h> 36 #include <sys/jail.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/proc.h> 40 #include <sys/protosw.h> 41 #include <sys/signalvar.h> 42 #include <sys/socket.h> 43 #include <sys/socketvar.h> 44 #include <sys/sysctl.h> 45 #include <sys/systm.h> 46 47 #include <net/if.h> 48 #include <net/netisr.h> 49 #include <net/raw_cb.h> 50 #include <net/route.h> 51 52 #include <netinet/in.h> 53 54 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 55 56 /* NB: these are not modified */ 57 static struct sockaddr route_dst = { 2, PF_ROUTE, }; 58 static struct sockaddr route_src = { 2, PF_ROUTE, }; 59 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 60 61 static struct { 62 int ip_count; /* attached w/ AF_INET */ 63 int ip6_count; /* attached w/ AF_INET6 */ 64 int ipx_count; /* attached w/ AF_IPX */ 65 int any_count; /* total attached */ 66 } route_cb; 67 68 struct mtx rtsock_mtx; 69 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 70 71 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 72 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 73 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 74 75 static struct ifqueue rtsintrq; 76 77 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 78 SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW, 79 &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length"); 80 81 struct walkarg { 82 int w_tmemsize; 83 int w_op, w_arg; 84 caddr_t w_tmem; 85 struct sysctl_req *w_req; 86 }; 87 88 static void rts_input(struct mbuf *m); 89 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 90 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 91 caddr_t cp, struct walkarg *w); 92 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 93 struct rt_addrinfo *rtinfo); 94 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 95 static int sysctl_iflist(int af, struct walkarg *w); 96 static int sysctl_ifmalist(int af, struct walkarg *w); 97 static int route_output(struct mbuf *m, struct socket *so); 98 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 99 struct rt_metrics_lite *out); 100 static void rt_getmetrics(const struct rt_metrics_lite *in, 101 struct rt_metrics *out); 102 static void rt_dispatch(struct mbuf *, const struct sockaddr *); 103 104 static void 105 rts_init(void) 106 { 107 int tmp; 108 109 rtsintrq.ifq_maxlen = 256; 110 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 111 rtsintrq.ifq_maxlen = tmp; 112 mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF); 113 netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, NETISR_MPSAFE); 114 } 115 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0) 116 117 static void 118 rts_input(struct mbuf *m) 119 { 120 struct sockproto route_proto; 121 unsigned short *family; 122 struct m_tag *tag; 123 124 route_proto.sp_family = PF_ROUTE; 125 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 126 if (tag != NULL) { 127 family = (unsigned short *)(tag + 1); 128 route_proto.sp_protocol = *family; 129 m_tag_delete(m, tag); 130 } else 131 route_proto.sp_protocol = 0; 132 133 raw_input(m, &route_proto, &route_src, &route_dst); 134 } 135 136 /* 137 * It really doesn't make any sense at all for this code to share much 138 * with raw_usrreq.c, since its functionality is so restricted. XXX 139 */ 140 static int 141 rts_abort(struct socket *so) 142 { 143 int s, error; 144 s = splnet(); 145 error = raw_usrreqs.pru_abort(so); 146 splx(s); 147 return error; 148 } 149 150 /* pru_accept is EOPNOTSUPP */ 151 152 static int 153 rts_attach(struct socket *so, int proto, struct thread *td) 154 { 155 struct rawcb *rp; 156 int s, error; 157 158 if (sotorawcb(so) != NULL) 159 return EISCONN; /* XXX panic? */ 160 /* XXX */ 161 MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 162 if (rp == NULL) 163 return ENOBUFS; 164 165 /* 166 * The splnet() is necessary to block protocols from sending 167 * error notifications (like RTM_REDIRECT or RTM_LOSING) while 168 * this PCB is extant but incompletely initialized. 169 * Probably we should try to do more of this work beforehand and 170 * eliminate the spl. 171 */ 172 s = splnet(); 173 so->so_pcb = (caddr_t)rp; 174 error = raw_attach(so, proto); 175 rp = sotorawcb(so); 176 if (error) { 177 splx(s); 178 so->so_pcb = NULL; 179 free(rp, M_PCB); 180 return error; 181 } 182 RTSOCK_LOCK(); 183 switch(rp->rcb_proto.sp_protocol) { 184 case AF_INET: 185 route_cb.ip_count++; 186 break; 187 case AF_INET6: 188 route_cb.ip6_count++; 189 break; 190 case AF_IPX: 191 route_cb.ipx_count++; 192 break; 193 } 194 rp->rcb_faddr = &route_src; 195 route_cb.any_count++; 196 RTSOCK_UNLOCK(); 197 soisconnected(so); 198 so->so_options |= SO_USELOOPBACK; 199 splx(s); 200 return 0; 201 } 202 203 static int 204 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 205 { 206 int s, error; 207 s = splnet(); 208 error = raw_usrreqs.pru_bind(so, nam, td); /* xxx just EINVAL */ 209 splx(s); 210 return error; 211 } 212 213 static int 214 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 215 { 216 int s, error; 217 s = splnet(); 218 error = raw_usrreqs.pru_connect(so, nam, td); /* XXX just EINVAL */ 219 splx(s); 220 return error; 221 } 222 223 /* pru_connect2 is EOPNOTSUPP */ 224 /* pru_control is EOPNOTSUPP */ 225 226 static int 227 rts_detach(struct socket *so) 228 { 229 struct rawcb *rp = sotorawcb(so); 230 int s, error; 231 232 s = splnet(); 233 if (rp != NULL) { 234 RTSOCK_LOCK(); 235 switch(rp->rcb_proto.sp_protocol) { 236 case AF_INET: 237 route_cb.ip_count--; 238 break; 239 case AF_INET6: 240 route_cb.ip6_count--; 241 break; 242 case AF_IPX: 243 route_cb.ipx_count--; 244 break; 245 } 246 route_cb.any_count--; 247 RTSOCK_UNLOCK(); 248 } 249 error = raw_usrreqs.pru_detach(so); 250 splx(s); 251 return error; 252 } 253 254 static int 255 rts_disconnect(struct socket *so) 256 { 257 int s, error; 258 s = splnet(); 259 error = raw_usrreqs.pru_disconnect(so); 260 splx(s); 261 return error; 262 } 263 264 /* pru_listen is EOPNOTSUPP */ 265 266 static int 267 rts_peeraddr(struct socket *so, struct sockaddr **nam) 268 { 269 int s, error; 270 s = splnet(); 271 error = raw_usrreqs.pru_peeraddr(so, nam); 272 splx(s); 273 return error; 274 } 275 276 /* pru_rcvd is EOPNOTSUPP */ 277 /* pru_rcvoob is EOPNOTSUPP */ 278 279 static int 280 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 281 struct mbuf *control, struct thread *td) 282 { 283 int s, error; 284 s = splnet(); 285 error = raw_usrreqs.pru_send(so, flags, m, nam, control, td); 286 splx(s); 287 return error; 288 } 289 290 /* pru_sense is null */ 291 292 static int 293 rts_shutdown(struct socket *so) 294 { 295 int s, error; 296 s = splnet(); 297 error = raw_usrreqs.pru_shutdown(so); 298 splx(s); 299 return error; 300 } 301 302 static int 303 rts_sockaddr(struct socket *so, struct sockaddr **nam) 304 { 305 int s, error; 306 s = splnet(); 307 error = raw_usrreqs.pru_sockaddr(so, nam); 308 splx(s); 309 return error; 310 } 311 312 static struct pr_usrreqs route_usrreqs = { 313 rts_abort, pru_accept_notsupp, rts_attach, rts_bind, rts_connect, 314 pru_connect2_notsupp, pru_control_notsupp, rts_detach, rts_disconnect, 315 pru_listen_notsupp, rts_peeraddr, pru_rcvd_notsupp, pru_rcvoob_notsupp, 316 rts_send, pru_sense_null, rts_shutdown, rts_sockaddr, 317 sosend, soreceive, sopoll, pru_sosetlabel_null 318 }; 319 320 /*ARGSUSED*/ 321 static int 322 route_output(struct mbuf *m, struct socket *so) 323 { 324 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 325 struct rt_msghdr *rtm = NULL; 326 struct rtentry *rt = NULL; 327 struct radix_node_head *rnh; 328 struct rt_addrinfo info; 329 int len, error = 0; 330 struct ifnet *ifp = NULL; 331 struct ifaddr *ifa = NULL; 332 struct sockaddr_in jail; 333 334 #define senderr(e) { error = e; goto flush;} 335 if (m == NULL || ((m->m_len < sizeof(long)) && 336 (m = m_pullup(m, sizeof(long))) == NULL)) 337 return (ENOBUFS); 338 if ((m->m_flags & M_PKTHDR) == 0) 339 panic("route_output"); 340 len = m->m_pkthdr.len; 341 if (len < sizeof(*rtm) || 342 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 343 info.rti_info[RTAX_DST] = NULL; 344 senderr(EINVAL); 345 } 346 R_Malloc(rtm, struct rt_msghdr *, len); 347 if (rtm == NULL) { 348 info.rti_info[RTAX_DST] = NULL; 349 senderr(ENOBUFS); 350 } 351 m_copydata(m, 0, len, (caddr_t)rtm); 352 if (rtm->rtm_version != RTM_VERSION) { 353 info.rti_info[RTAX_DST] = NULL; 354 senderr(EPROTONOSUPPORT); 355 } 356 rtm->rtm_pid = curproc->p_pid; 357 bzero(&info, sizeof(info)); 358 info.rti_addrs = rtm->rtm_addrs; 359 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 360 info.rti_info[RTAX_DST] = NULL; 361 senderr(EINVAL); 362 } 363 info.rti_flags = rtm->rtm_flags; 364 if (info.rti_info[RTAX_DST] == NULL || 365 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 366 (info.rti_info[RTAX_GATEWAY] != NULL && 367 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 368 senderr(EINVAL); 369 if (info.rti_info[RTAX_GENMASK]) { 370 struct radix_node *t; 371 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1); 372 if (t != NULL && 373 bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1, 374 (char *)(void *)t->rn_key + 1, 375 ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0) 376 info.rti_info[RTAX_GENMASK] = 377 (struct sockaddr *)t->rn_key; 378 else 379 senderr(ENOBUFS); 380 } 381 382 /* 383 * Verify that the caller has the appropriate privilege; RTM_GET 384 * is the only operation the non-superuser is allowed. 385 */ 386 if (rtm->rtm_type != RTM_GET && (error = suser(curthread)) != 0) 387 senderr(error); 388 389 switch (rtm->rtm_type) { 390 struct rtentry *saved_nrt; 391 392 case RTM_ADD: 393 if (info.rti_info[RTAX_GATEWAY] == NULL) 394 senderr(EINVAL); 395 saved_nrt = NULL; 396 error = rtrequest1(RTM_ADD, &info, &saved_nrt); 397 if (error == 0 && saved_nrt) { 398 RT_LOCK(saved_nrt); 399 rt_setmetrics(rtm->rtm_inits, 400 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 401 RT_REMREF(saved_nrt); 402 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; 403 RT_UNLOCK(saved_nrt); 404 } 405 break; 406 407 case RTM_DELETE: 408 saved_nrt = NULL; 409 error = rtrequest1(RTM_DELETE, &info, &saved_nrt); 410 if (error == 0) { 411 RT_LOCK(saved_nrt); 412 rt = saved_nrt; 413 goto report; 414 } 415 break; 416 417 case RTM_GET: 418 case RTM_CHANGE: 419 case RTM_LOCK: 420 rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family]; 421 if (rnh == NULL) 422 senderr(EAFNOSUPPORT); 423 RADIX_NODE_HEAD_LOCK(rnh); 424 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 425 info.rti_info[RTAX_NETMASK], rnh); 426 RADIX_NODE_HEAD_UNLOCK(rnh); 427 if (rt == NULL) /* XXX looks bogus */ 428 senderr(ESRCH); 429 RT_LOCK(rt); 430 RT_ADDREF(rt); 431 432 switch(rtm->rtm_type) { 433 434 case RTM_GET: 435 report: 436 RT_LOCK_ASSERT(rt); 437 info.rti_info[RTAX_DST] = rt_key(rt); 438 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 439 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 440 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 441 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 442 ifp = rt->rt_ifp; 443 if (ifp) { 444 info.rti_info[RTAX_IFP] = 445 ifaddr_byindex(ifp->if_index)->ifa_addr; 446 if (jailed(so->so_cred)) { 447 bzero(&jail, sizeof(jail)); 448 jail.sin_family = PF_INET; 449 jail.sin_len = sizeof(jail); 450 jail.sin_addr.s_addr = 451 htonl(prison_getip(so->so_cred)); 452 info.rti_info[RTAX_IFA] = 453 (struct sockaddr *)&jail; 454 } else 455 info.rti_info[RTAX_IFA] = 456 rt->rt_ifa->ifa_addr; 457 if (ifp->if_flags & IFF_POINTOPOINT) 458 info.rti_info[RTAX_BRD] = 459 rt->rt_ifa->ifa_dstaddr; 460 rtm->rtm_index = ifp->if_index; 461 } else { 462 info.rti_info[RTAX_IFP] = NULL; 463 info.rti_info[RTAX_IFA] = NULL; 464 } 465 } 466 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 467 if (len > rtm->rtm_msglen) { 468 struct rt_msghdr *new_rtm; 469 R_Malloc(new_rtm, struct rt_msghdr *, len); 470 if (new_rtm == NULL) { 471 RT_UNLOCK(rt); 472 senderr(ENOBUFS); 473 } 474 bcopy(rtm, new_rtm, rtm->rtm_msglen); 475 Free(rtm); rtm = new_rtm; 476 } 477 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 478 rtm->rtm_flags = rt->rt_flags; 479 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 480 rtm->rtm_addrs = info.rti_addrs; 481 break; 482 483 case RTM_CHANGE: 484 /* 485 * New gateway could require new ifaddr, ifp; 486 * flags may also be different; ifp may be specified 487 * by ll sockaddr when protocol address is ambiguous 488 */ 489 if (((rt->rt_flags & RTF_GATEWAY) && 490 info.rti_info[RTAX_GATEWAY] != NULL) || 491 info.rti_info[RTAX_IFP] != NULL || 492 (info.rti_info[RTAX_IFA] != NULL && 493 !sa_equal(info.rti_info[RTAX_IFA], 494 rt->rt_ifa->ifa_addr))) { 495 if ((error = rt_getifa(&info)) != 0) { 496 RT_UNLOCK(rt); 497 senderr(error); 498 } 499 } 500 if (info.rti_info[RTAX_GATEWAY] != NULL && 501 (error = rt_setgate(rt, rt_key(rt), 502 info.rti_info[RTAX_GATEWAY])) != 0) { 503 RT_UNLOCK(rt); 504 senderr(error); 505 } 506 if ((ifa = info.rti_ifa) != NULL) { 507 struct ifaddr *oifa = rt->rt_ifa; 508 if (oifa != ifa) { 509 if (oifa) { 510 if (oifa->ifa_rtrequest) 511 oifa->ifa_rtrequest( 512 RTM_DELETE, rt, 513 &info); 514 IFAFREE(oifa); 515 } 516 IFAREF(ifa); 517 rt->rt_ifa = ifa; 518 rt->rt_ifp = info.rti_ifp; 519 } 520 } 521 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 522 &rt->rt_rmx); 523 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 524 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 525 if (info.rti_info[RTAX_GENMASK]) 526 rt->rt_genmask = info.rti_info[RTAX_GENMASK]; 527 /* FALLTHROUGH */ 528 case RTM_LOCK: 529 /* We don't support locks anymore */ 530 break; 531 } 532 RT_UNLOCK(rt); 533 break; 534 535 default: 536 senderr(EOPNOTSUPP); 537 } 538 539 flush: 540 if (rtm) { 541 if (error) 542 rtm->rtm_errno = error; 543 else 544 rtm->rtm_flags |= RTF_DONE; 545 } 546 if (rt) /* XXX can this be true? */ 547 RTFREE(rt); 548 { 549 struct rawcb *rp = NULL; 550 /* 551 * Check to see if we don't want our own messages. 552 */ 553 if ((so->so_options & SO_USELOOPBACK) == 0) { 554 if (route_cb.any_count <= 1) { 555 if (rtm) 556 Free(rtm); 557 m_freem(m); 558 return (error); 559 } 560 /* There is another listener, so construct message */ 561 rp = sotorawcb(so); 562 } 563 if (rtm) { 564 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 565 if (m->m_pkthdr.len < rtm->rtm_msglen) { 566 m_freem(m); 567 m = NULL; 568 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 569 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 570 Free(rtm); 571 } 572 if (m) { 573 if (rp) { 574 /* 575 * XXX insure we don't get a copy by 576 * invalidating our protocol 577 */ 578 unsigned short family = rp->rcb_proto.sp_family; 579 rp->rcb_proto.sp_family = 0; 580 rt_dispatch(m, info.rti_info[RTAX_DST]); 581 rp->rcb_proto.sp_family = family; 582 } else 583 rt_dispatch(m, info.rti_info[RTAX_DST]); 584 } 585 } 586 return (error); 587 #undef sa_equal 588 } 589 590 static void 591 rt_setmetrics(u_long which, const struct rt_metrics *in, 592 struct rt_metrics_lite *out) 593 { 594 #define metric(f, e) if (which & (f)) out->e = in->e; 595 /* 596 * Only these are stored in the routing entry since introduction 597 * of tcp hostcache. The rest is ignored. 598 */ 599 metric(RTV_MTU, rmx_mtu); 600 metric(RTV_EXPIRE, rmx_expire); 601 #undef metric 602 } 603 604 static void 605 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 606 { 607 #define metric(e) out->e = in->e; 608 bzero(out, sizeof(*out)); 609 metric(rmx_mtu); 610 metric(rmx_expire); 611 #undef metric 612 } 613 614 /* 615 * Extract the addresses of the passed sockaddrs. 616 * Do a little sanity checking so as to avoid bad memory references. 617 * This data is derived straight from userland. 618 */ 619 static int 620 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 621 { 622 struct sockaddr *sa; 623 int i; 624 625 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 626 if ((rtinfo->rti_addrs & (1 << i)) == 0) 627 continue; 628 sa = (struct sockaddr *)cp; 629 /* 630 * It won't fit. 631 */ 632 if (cp + sa->sa_len > cplim) 633 return (EINVAL); 634 /* 635 * there are no more.. quit now 636 * If there are more bits, they are in error. 637 * I've seen this. route(1) can evidently generate these. 638 * This causes kernel to core dump. 639 * for compatibility, If we see this, point to a safe address. 640 */ 641 if (sa->sa_len == 0) { 642 rtinfo->rti_info[i] = &sa_zero; 643 return (0); /* should be EINVAL but for compat */ 644 } 645 /* accept it */ 646 rtinfo->rti_info[i] = sa; 647 cp += SA_SIZE(sa); 648 } 649 return (0); 650 } 651 652 static struct mbuf * 653 rt_msg1(int type, struct rt_addrinfo *rtinfo) 654 { 655 struct rt_msghdr *rtm; 656 struct mbuf *m; 657 int i; 658 struct sockaddr *sa; 659 int len, dlen; 660 661 switch (type) { 662 663 case RTM_DELADDR: 664 case RTM_NEWADDR: 665 len = sizeof(struct ifa_msghdr); 666 break; 667 668 case RTM_DELMADDR: 669 case RTM_NEWMADDR: 670 len = sizeof(struct ifma_msghdr); 671 break; 672 673 case RTM_IFINFO: 674 len = sizeof(struct if_msghdr); 675 break; 676 677 case RTM_IFANNOUNCE: 678 len = sizeof(struct if_announcemsghdr); 679 break; 680 681 default: 682 len = sizeof(struct rt_msghdr); 683 } 684 if (len > MCLBYTES) 685 panic("rt_msg1"); 686 m = m_gethdr(M_DONTWAIT, MT_DATA); 687 if (m && len > MHLEN) { 688 MCLGET(m, M_DONTWAIT); 689 if ((m->m_flags & M_EXT) == 0) { 690 m_free(m); 691 m = NULL; 692 } 693 } 694 if (m == NULL) 695 return (m); 696 m->m_pkthdr.len = m->m_len = len; 697 m->m_pkthdr.rcvif = NULL; 698 rtm = mtod(m, struct rt_msghdr *); 699 bzero((caddr_t)rtm, len); 700 for (i = 0; i < RTAX_MAX; i++) { 701 if ((sa = rtinfo->rti_info[i]) == NULL) 702 continue; 703 rtinfo->rti_addrs |= (1 << i); 704 dlen = SA_SIZE(sa); 705 m_copyback(m, len, dlen, (caddr_t)sa); 706 len += dlen; 707 } 708 if (m->m_pkthdr.len != len) { 709 m_freem(m); 710 return (NULL); 711 } 712 rtm->rtm_msglen = len; 713 rtm->rtm_version = RTM_VERSION; 714 rtm->rtm_type = type; 715 return (m); 716 } 717 718 static int 719 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 720 { 721 int i; 722 int len, dlen, second_time = 0; 723 caddr_t cp0; 724 725 rtinfo->rti_addrs = 0; 726 again: 727 switch (type) { 728 729 case RTM_DELADDR: 730 case RTM_NEWADDR: 731 len = sizeof(struct ifa_msghdr); 732 break; 733 734 case RTM_IFINFO: 735 len = sizeof(struct if_msghdr); 736 break; 737 738 case RTM_NEWMADDR: 739 len = sizeof(struct ifma_msghdr); 740 break; 741 742 default: 743 len = sizeof(struct rt_msghdr); 744 } 745 cp0 = cp; 746 if (cp0) 747 cp += len; 748 for (i = 0; i < RTAX_MAX; i++) { 749 struct sockaddr *sa; 750 751 if ((sa = rtinfo->rti_info[i]) == NULL) 752 continue; 753 rtinfo->rti_addrs |= (1 << i); 754 dlen = SA_SIZE(sa); 755 if (cp) { 756 bcopy((caddr_t)sa, cp, (unsigned)dlen); 757 cp += dlen; 758 } 759 len += dlen; 760 } 761 len = ALIGN(len); 762 if (cp == NULL && w != NULL && !second_time) { 763 struct walkarg *rw = w; 764 765 if (rw->w_req) { 766 if (rw->w_tmemsize < len) { 767 if (rw->w_tmem) 768 free(rw->w_tmem, M_RTABLE); 769 rw->w_tmem = (caddr_t) 770 malloc(len, M_RTABLE, M_NOWAIT); 771 if (rw->w_tmem) 772 rw->w_tmemsize = len; 773 } 774 if (rw->w_tmem) { 775 cp = rw->w_tmem; 776 second_time = 1; 777 goto again; 778 } 779 } 780 } 781 if (cp) { 782 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 783 784 rtm->rtm_version = RTM_VERSION; 785 rtm->rtm_type = type; 786 rtm->rtm_msglen = len; 787 } 788 return (len); 789 } 790 791 /* 792 * This routine is called to generate a message from the routing 793 * socket indicating that a redirect has occured, a routing lookup 794 * has failed, or that a protocol has detected timeouts to a particular 795 * destination. 796 */ 797 void 798 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 799 { 800 struct rt_msghdr *rtm; 801 struct mbuf *m; 802 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 803 804 if (route_cb.any_count == 0) 805 return; 806 m = rt_msg1(type, rtinfo); 807 if (m == NULL) 808 return; 809 rtm = mtod(m, struct rt_msghdr *); 810 rtm->rtm_flags = RTF_DONE | flags; 811 rtm->rtm_errno = error; 812 rtm->rtm_addrs = rtinfo->rti_addrs; 813 rt_dispatch(m, sa); 814 } 815 816 /* 817 * This routine is called to generate a message from the routing 818 * socket indicating that the status of a network interface has changed. 819 */ 820 void 821 rt_ifmsg(struct ifnet *ifp) 822 { 823 struct if_msghdr *ifm; 824 struct mbuf *m; 825 struct rt_addrinfo info; 826 827 if (route_cb.any_count == 0) 828 return; 829 bzero((caddr_t)&info, sizeof(info)); 830 m = rt_msg1(RTM_IFINFO, &info); 831 if (m == NULL) 832 return; 833 ifm = mtod(m, struct if_msghdr *); 834 ifm->ifm_index = ifp->if_index; 835 ifm->ifm_flags = ifp->if_flags; 836 ifm->ifm_data = ifp->if_data; 837 ifm->ifm_addrs = 0; 838 rt_dispatch(m, NULL); 839 } 840 841 /* 842 * This is called to generate messages from the routing socket 843 * indicating a network interface has had addresses associated with it. 844 * if we ever reverse the logic and replace messages TO the routing 845 * socket indicate a request to configure interfaces, then it will 846 * be unnecessary as the routing socket will automatically generate 847 * copies of it. 848 */ 849 void 850 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 851 { 852 struct rt_addrinfo info; 853 struct sockaddr *sa = NULL; 854 int pass; 855 struct mbuf *m = NULL; 856 struct ifnet *ifp = ifa->ifa_ifp; 857 858 if (route_cb.any_count == 0) 859 return; 860 for (pass = 1; pass < 3; pass++) { 861 bzero((caddr_t)&info, sizeof(info)); 862 if ((cmd == RTM_ADD && pass == 1) || 863 (cmd == RTM_DELETE && pass == 2)) { 864 struct ifa_msghdr *ifam; 865 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 866 867 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 868 info.rti_info[RTAX_IFP] = 869 ifaddr_byindex(ifp->if_index)->ifa_addr; 870 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 871 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 872 if ((m = rt_msg1(ncmd, &info)) == NULL) 873 continue; 874 ifam = mtod(m, struct ifa_msghdr *); 875 ifam->ifam_index = ifp->if_index; 876 ifam->ifam_metric = ifa->ifa_metric; 877 ifam->ifam_flags = ifa->ifa_flags; 878 ifam->ifam_addrs = info.rti_addrs; 879 } 880 if ((cmd == RTM_ADD && pass == 2) || 881 (cmd == RTM_DELETE && pass == 1)) { 882 struct rt_msghdr *rtm; 883 884 if (rt == NULL) 885 continue; 886 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 887 info.rti_info[RTAX_DST] = sa = rt_key(rt); 888 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 889 if ((m = rt_msg1(cmd, &info)) == NULL) 890 continue; 891 rtm = mtod(m, struct rt_msghdr *); 892 rtm->rtm_index = ifp->if_index; 893 rtm->rtm_flags |= rt->rt_flags; 894 rtm->rtm_errno = error; 895 rtm->rtm_addrs = info.rti_addrs; 896 } 897 rt_dispatch(m, sa); 898 } 899 } 900 901 /* 902 * This is the analogue to the rt_newaddrmsg which performs the same 903 * function but for multicast group memberhips. This is easier since 904 * there is no route state to worry about. 905 */ 906 void 907 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 908 { 909 struct rt_addrinfo info; 910 struct mbuf *m = NULL; 911 struct ifnet *ifp = ifma->ifma_ifp; 912 struct ifma_msghdr *ifmam; 913 914 if (route_cb.any_count == 0) 915 return; 916 917 bzero((caddr_t)&info, sizeof(info)); 918 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 919 info.rti_info[RTAX_IFP] = 920 ifp ? ifaddr_byindex(ifp->if_index)->ifa_addr : NULL; 921 /* 922 * If a link-layer address is present, present it as a ``gateway'' 923 * (similarly to how ARP entries, e.g., are presented). 924 */ 925 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 926 m = rt_msg1(cmd, &info); 927 if (m == NULL) 928 return; 929 ifmam = mtod(m, struct ifma_msghdr *); 930 ifmam->ifmam_index = ifp->if_index; 931 ifmam->ifmam_addrs = info.rti_addrs; 932 rt_dispatch(m, ifma->ifma_addr); 933 } 934 935 /* 936 * This is called to generate routing socket messages indicating 937 * network interface arrival and departure. 938 */ 939 void 940 rt_ifannouncemsg(struct ifnet *ifp, int what) 941 { 942 struct if_announcemsghdr *ifan; 943 struct mbuf *m; 944 struct rt_addrinfo info; 945 946 if (route_cb.any_count == 0) 947 return; 948 bzero((caddr_t)&info, sizeof(info)); 949 m = rt_msg1(RTM_IFANNOUNCE, &info); 950 if (m == NULL) 951 return; 952 ifan = mtod(m, struct if_announcemsghdr *); 953 ifan->ifan_index = ifp->if_index; 954 strlcpy(ifan->ifan_name, ifp->if_xname, sizeof(ifan->ifan_name)); 955 ifan->ifan_what = what; 956 rt_dispatch(m, NULL); 957 } 958 959 static void 960 rt_dispatch(struct mbuf *m, const struct sockaddr *sa) 961 { 962 unsigned short *family; 963 struct m_tag *tag; 964 965 /* 966 * Preserve the family from the sockaddr, if any, in an m_tag for 967 * use when injecting the mbuf into the routing socket buffer from 968 * the netisr. 969 */ 970 if (sa != NULL) { 971 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 972 M_NOWAIT); 973 if (tag == NULL) { 974 m_freem(m); 975 return; 976 } 977 family = (unsigned short *)(tag + 1); 978 *family = sa ? sa->sa_family : 0; 979 m_tag_prepend(m, tag); 980 } 981 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 982 } 983 984 /* 985 * This is used in dumping the kernel table via sysctl(). 986 */ 987 static int 988 sysctl_dumpentry(struct radix_node *rn, void *vw) 989 { 990 struct walkarg *w = vw; 991 struct rtentry *rt = (struct rtentry *)rn; 992 int error = 0, size; 993 struct rt_addrinfo info; 994 995 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 996 return 0; 997 bzero((caddr_t)&info, sizeof(info)); 998 info.rti_info[RTAX_DST] = rt_key(rt); 999 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1000 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1001 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 1002 if (rt->rt_ifp) { 1003 info.rti_info[RTAX_IFP] = 1004 ifaddr_byindex(rt->rt_ifp->if_index)->ifa_addr; 1005 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1006 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1007 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1008 } 1009 size = rt_msg2(RTM_GET, &info, NULL, w); 1010 if (w->w_req && w->w_tmem) { 1011 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1012 1013 rtm->rtm_flags = rt->rt_flags; 1014 rtm->rtm_use = rt->rt_rmx.rmx_pksent; 1015 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1016 rtm->rtm_index = rt->rt_ifp->if_index; 1017 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1018 rtm->rtm_addrs = info.rti_addrs; 1019 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1020 return (error); 1021 } 1022 return (error); 1023 } 1024 1025 static int 1026 sysctl_iflist(int af, struct walkarg *w) 1027 { 1028 struct ifnet *ifp; 1029 struct ifaddr *ifa; 1030 struct rt_addrinfo info; 1031 int len, error = 0; 1032 1033 bzero((caddr_t)&info, sizeof(info)); 1034 /* IFNET_RLOCK(); */ /* could sleep XXX */ 1035 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1036 if (w->w_arg && w->w_arg != ifp->if_index) 1037 continue; 1038 ifa = ifaddr_byindex(ifp->if_index); 1039 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1040 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1041 info.rti_info[RTAX_IFP] = NULL; 1042 if (w->w_req && w->w_tmem) { 1043 struct if_msghdr *ifm; 1044 1045 ifm = (struct if_msghdr *)w->w_tmem; 1046 ifm->ifm_index = ifp->if_index; 1047 ifm->ifm_flags = ifp->if_flags; 1048 ifm->ifm_data = ifp->if_data; 1049 ifm->ifm_addrs = info.rti_addrs; 1050 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); 1051 if (error) 1052 goto done; 1053 } 1054 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1055 if (af && af != ifa->ifa_addr->sa_family) 1056 continue; 1057 if (jailed(curthread->td_ucred) && 1058 prison_if(curthread->td_ucred, ifa->ifa_addr)) 1059 continue; 1060 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1061 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1062 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1063 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1064 if (w->w_req && w->w_tmem) { 1065 struct ifa_msghdr *ifam; 1066 1067 ifam = (struct ifa_msghdr *)w->w_tmem; 1068 ifam->ifam_index = ifa->ifa_ifp->if_index; 1069 ifam->ifam_flags = ifa->ifa_flags; 1070 ifam->ifam_metric = ifa->ifa_metric; 1071 ifam->ifam_addrs = info.rti_addrs; 1072 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1073 if (error) 1074 goto done; 1075 } 1076 } 1077 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1078 info.rti_info[RTAX_BRD] = NULL; 1079 } 1080 done: 1081 /* IFNET_RUNLOCK(); */ /* XXX */ 1082 return (error); 1083 } 1084 1085 int 1086 sysctl_ifmalist(int af, struct walkarg *w) 1087 { 1088 struct ifnet *ifp; 1089 struct ifmultiaddr *ifma; 1090 struct rt_addrinfo info; 1091 int len, error = 0; 1092 struct ifaddr *ifa; 1093 1094 bzero((caddr_t)&info, sizeof(info)); 1095 /* IFNET_RLOCK(); */ /* could sleep XXX */ 1096 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1097 if (w->w_arg && w->w_arg != ifp->if_index) 1098 continue; 1099 ifa = ifaddr_byindex(ifp->if_index); 1100 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1101 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1102 if (af && af != ifma->ifma_addr->sa_family) 1103 continue; 1104 if (jailed(curproc->p_ucred) && 1105 prison_if(curproc->p_ucred, ifma->ifma_addr)) 1106 continue; 1107 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1108 info.rti_info[RTAX_GATEWAY] = 1109 (ifma->ifma_addr->sa_family != AF_LINK) ? 1110 ifma->ifma_lladdr : NULL; 1111 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1112 if (w->w_req && w->w_tmem) { 1113 struct ifma_msghdr *ifmam; 1114 1115 ifmam = (struct ifma_msghdr *)w->w_tmem; 1116 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1117 ifmam->ifmam_flags = 0; 1118 ifmam->ifmam_addrs = info.rti_addrs; 1119 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1120 if (error) 1121 goto done; 1122 } 1123 } 1124 } 1125 done: 1126 /* IFNET_RUNLOCK(); */ /* XXX */ 1127 return (error); 1128 } 1129 1130 static int 1131 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1132 { 1133 int *name = (int *)arg1; 1134 u_int namelen = arg2; 1135 struct radix_node_head *rnh; 1136 int i, lim, s, error = EINVAL; 1137 u_char af; 1138 struct walkarg w; 1139 1140 name ++; 1141 namelen--; 1142 if (req->newptr) 1143 return (EPERM); 1144 if (namelen != 3) 1145 return ((namelen < 3) ? EISDIR : ENOTDIR); 1146 af = name[0]; 1147 if (af > AF_MAX) 1148 return (EINVAL); 1149 bzero(&w, sizeof(w)); 1150 w.w_op = name[1]; 1151 w.w_arg = name[2]; 1152 w.w_req = req; 1153 1154 s = splnet(); 1155 switch (w.w_op) { 1156 1157 case NET_RT_DUMP: 1158 case NET_RT_FLAGS: 1159 if (af == 0) { /* dump all tables */ 1160 i = 1; 1161 lim = AF_MAX; 1162 } else /* dump only one table */ 1163 i = lim = af; 1164 for (error = 0; error == 0 && i <= lim; i++) 1165 if ((rnh = rt_tables[i]) != NULL) { 1166 /* RADIX_NODE_HEAD_LOCK(rnh); */ 1167 error = rnh->rnh_walktree(rnh, 1168 sysctl_dumpentry, &w);/* could sleep XXX */ 1169 /* RADIX_NODE_HEAD_UNLOCK(rnh); */ 1170 } else if (af != 0) 1171 error = EAFNOSUPPORT; 1172 break; 1173 1174 case NET_RT_IFLIST: 1175 error = sysctl_iflist(af, &w); 1176 break; 1177 1178 case NET_RT_IFMALIST: 1179 error = sysctl_ifmalist(af, &w); 1180 break; 1181 } 1182 splx(s); 1183 if (w.w_tmem) 1184 free(w.w_tmem, M_RTABLE); 1185 return (error); 1186 } 1187 1188 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1189 1190 /* 1191 * Definitions of protocols supported in the ROUTE domain. 1192 */ 1193 1194 extern struct domain routedomain; /* or at least forward */ 1195 1196 static struct protosw routesw[] = { 1197 { SOCK_RAW, &routedomain, 0, PR_ATOMIC|PR_ADDR, 1198 0, route_output, raw_ctlinput, 0, 1199 0, 1200 raw_init, 0, 0, 0, 1201 &route_usrreqs 1202 } 1203 }; 1204 1205 static struct domain routedomain = 1206 { PF_ROUTE, "route", 0, 0, 0, 1207 routesw, &routesw[sizeof(routesw)/sizeof(routesw[0])] }; 1208 1209 DOMAIN_SET(route); 1210