1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_sctp.h" 33 #include "opt_mpath.h" 34 35 #include <sys/param.h> 36 #include <sys/domain.h> 37 #include <sys/kernel.h> 38 #include <sys/jail.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/priv.h> 42 #include <sys/proc.h> 43 #include <sys/protosw.h> 44 #include <sys/signalvar.h> 45 #include <sys/socket.h> 46 #include <sys/socketvar.h> 47 #include <sys/sysctl.h> 48 #include <sys/systm.h> 49 50 #include <net/if.h> 51 #include <net/netisr.h> 52 #include <net/raw_cb.h> 53 #include <net/route.h> 54 55 #include <netinet/in.h> 56 57 #ifdef SCTP 58 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 59 #endif /* SCTP */ 60 61 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 62 63 /* NB: these are not modified */ 64 static struct sockaddr route_dst = { 2, PF_ROUTE, }; 65 static struct sockaddr route_src = { 2, PF_ROUTE, }; 66 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 67 68 static struct { 69 int ip_count; /* attached w/ AF_INET */ 70 int ip6_count; /* attached w/ AF_INET6 */ 71 int ipx_count; /* attached w/ AF_IPX */ 72 int any_count; /* total attached */ 73 } route_cb; 74 75 struct mtx rtsock_mtx; 76 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 77 78 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 79 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 80 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 81 82 static struct ifqueue rtsintrq; 83 84 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 85 SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW, 86 &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length"); 87 88 struct walkarg { 89 int w_tmemsize; 90 int w_op, w_arg; 91 caddr_t w_tmem; 92 struct sysctl_req *w_req; 93 }; 94 95 static void rts_input(struct mbuf *m); 96 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 97 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 98 caddr_t cp, struct walkarg *w); 99 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 100 struct rt_addrinfo *rtinfo); 101 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 102 static int sysctl_iflist(int af, struct walkarg *w); 103 static int sysctl_ifmalist(int af, struct walkarg *w); 104 static int route_output(struct mbuf *m, struct socket *so); 105 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 106 struct rt_metrics_lite *out); 107 static void rt_getmetrics(const struct rt_metrics_lite *in, 108 struct rt_metrics *out); 109 static void rt_dispatch(struct mbuf *, const struct sockaddr *); 110 111 static void 112 rts_init(void) 113 { 114 int tmp; 115 116 rtsintrq.ifq_maxlen = 256; 117 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 118 rtsintrq.ifq_maxlen = tmp; 119 mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF); 120 netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, NETISR_MPSAFE); 121 } 122 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 123 124 static void 125 rts_input(struct mbuf *m) 126 { 127 struct sockproto route_proto; 128 unsigned short *family; 129 struct m_tag *tag; 130 131 route_proto.sp_family = PF_ROUTE; 132 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 133 if (tag != NULL) { 134 family = (unsigned short *)(tag + 1); 135 route_proto.sp_protocol = *family; 136 m_tag_delete(m, tag); 137 } else 138 route_proto.sp_protocol = 0; 139 140 raw_input(m, &route_proto, &route_src, &route_dst); 141 } 142 143 /* 144 * It really doesn't make any sense at all for this code to share much 145 * with raw_usrreq.c, since its functionality is so restricted. XXX 146 */ 147 static void 148 rts_abort(struct socket *so) 149 { 150 151 raw_usrreqs.pru_abort(so); 152 } 153 154 static void 155 rts_close(struct socket *so) 156 { 157 158 raw_usrreqs.pru_close(so); 159 } 160 161 /* pru_accept is EOPNOTSUPP */ 162 163 static int 164 rts_attach(struct socket *so, int proto, struct thread *td) 165 { 166 struct rawcb *rp; 167 int s, error; 168 169 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 170 171 /* XXX */ 172 MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 173 if (rp == NULL) 174 return ENOBUFS; 175 176 /* 177 * The splnet() is necessary to block protocols from sending 178 * error notifications (like RTM_REDIRECT or RTM_LOSING) while 179 * this PCB is extant but incompletely initialized. 180 * Probably we should try to do more of this work beforehand and 181 * eliminate the spl. 182 */ 183 s = splnet(); 184 so->so_pcb = (caddr_t)rp; 185 so->so_fibnum = td->td_proc->p_fibnum; 186 error = raw_attach(so, proto); 187 rp = sotorawcb(so); 188 if (error) { 189 splx(s); 190 so->so_pcb = NULL; 191 free(rp, M_PCB); 192 return error; 193 } 194 RTSOCK_LOCK(); 195 switch(rp->rcb_proto.sp_protocol) { 196 case AF_INET: 197 route_cb.ip_count++; 198 break; 199 case AF_INET6: 200 route_cb.ip6_count++; 201 break; 202 case AF_IPX: 203 route_cb.ipx_count++; 204 break; 205 } 206 rp->rcb_faddr = &route_src; 207 route_cb.any_count++; 208 RTSOCK_UNLOCK(); 209 soisconnected(so); 210 so->so_options |= SO_USELOOPBACK; 211 splx(s); 212 return 0; 213 } 214 215 static int 216 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 217 { 218 219 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 220 } 221 222 static int 223 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 224 { 225 226 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 227 } 228 229 /* pru_connect2 is EOPNOTSUPP */ 230 /* pru_control is EOPNOTSUPP */ 231 232 static void 233 rts_detach(struct socket *so) 234 { 235 struct rawcb *rp = sotorawcb(so); 236 237 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 238 239 RTSOCK_LOCK(); 240 switch(rp->rcb_proto.sp_protocol) { 241 case AF_INET: 242 route_cb.ip_count--; 243 break; 244 case AF_INET6: 245 route_cb.ip6_count--; 246 break; 247 case AF_IPX: 248 route_cb.ipx_count--; 249 break; 250 } 251 route_cb.any_count--; 252 RTSOCK_UNLOCK(); 253 raw_usrreqs.pru_detach(so); 254 } 255 256 static int 257 rts_disconnect(struct socket *so) 258 { 259 260 return (raw_usrreqs.pru_disconnect(so)); 261 } 262 263 /* pru_listen is EOPNOTSUPP */ 264 265 static int 266 rts_peeraddr(struct socket *so, struct sockaddr **nam) 267 { 268 269 return (raw_usrreqs.pru_peeraddr(so, nam)); 270 } 271 272 /* pru_rcvd is EOPNOTSUPP */ 273 /* pru_rcvoob is EOPNOTSUPP */ 274 275 static int 276 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 277 struct mbuf *control, struct thread *td) 278 { 279 280 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 281 } 282 283 /* pru_sense is null */ 284 285 static int 286 rts_shutdown(struct socket *so) 287 { 288 289 return (raw_usrreqs.pru_shutdown(so)); 290 } 291 292 static int 293 rts_sockaddr(struct socket *so, struct sockaddr **nam) 294 { 295 296 return (raw_usrreqs.pru_sockaddr(so, nam)); 297 } 298 299 static struct pr_usrreqs route_usrreqs = { 300 .pru_abort = rts_abort, 301 .pru_attach = rts_attach, 302 .pru_bind = rts_bind, 303 .pru_connect = rts_connect, 304 .pru_detach = rts_detach, 305 .pru_disconnect = rts_disconnect, 306 .pru_peeraddr = rts_peeraddr, 307 .pru_send = rts_send, 308 .pru_shutdown = rts_shutdown, 309 .pru_sockaddr = rts_sockaddr, 310 .pru_close = rts_close, 311 }; 312 313 /*ARGSUSED*/ 314 static int 315 route_output(struct mbuf *m, struct socket *so) 316 { 317 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 318 struct rt_msghdr *rtm = NULL; 319 struct rtentry *rt = NULL; 320 struct radix_node_head *rnh; 321 struct rt_addrinfo info; 322 int len, error = 0; 323 struct ifnet *ifp = NULL; 324 struct sockaddr_in jail; 325 326 #define senderr(e) { error = e; goto flush;} 327 if (m == NULL || ((m->m_len < sizeof(long)) && 328 (m = m_pullup(m, sizeof(long))) == NULL)) 329 return (ENOBUFS); 330 if ((m->m_flags & M_PKTHDR) == 0) 331 panic("route_output"); 332 len = m->m_pkthdr.len; 333 if (len < sizeof(*rtm) || 334 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 335 info.rti_info[RTAX_DST] = NULL; 336 senderr(EINVAL); 337 } 338 R_Malloc(rtm, struct rt_msghdr *, len); 339 if (rtm == NULL) { 340 info.rti_info[RTAX_DST] = NULL; 341 senderr(ENOBUFS); 342 } 343 m_copydata(m, 0, len, (caddr_t)rtm); 344 if (rtm->rtm_version != RTM_VERSION) { 345 info.rti_info[RTAX_DST] = NULL; 346 senderr(EPROTONOSUPPORT); 347 } 348 rtm->rtm_pid = curproc->p_pid; 349 bzero(&info, sizeof(info)); 350 info.rti_addrs = rtm->rtm_addrs; 351 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 352 info.rti_info[RTAX_DST] = NULL; 353 senderr(EINVAL); 354 } 355 info.rti_flags = rtm->rtm_flags; 356 if (info.rti_info[RTAX_DST] == NULL || 357 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 358 (info.rti_info[RTAX_GATEWAY] != NULL && 359 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 360 senderr(EINVAL); 361 if (info.rti_info[RTAX_GENMASK]) { 362 struct radix_node *t; 363 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1); 364 if (t != NULL && 365 bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1, 366 (char *)(void *)t->rn_key + 1, 367 ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0) 368 info.rti_info[RTAX_GENMASK] = 369 (struct sockaddr *)t->rn_key; 370 else 371 senderr(ENOBUFS); 372 } 373 374 /* 375 * Verify that the caller has the appropriate privilege; RTM_GET 376 * is the only operation the non-superuser is allowed. 377 */ 378 if (rtm->rtm_type != RTM_GET) { 379 error = priv_check(curthread, PRIV_NET_ROUTE); 380 if (error) 381 senderr(error); 382 } 383 384 switch (rtm->rtm_type) { 385 struct rtentry *saved_nrt; 386 387 case RTM_ADD: 388 if (info.rti_info[RTAX_GATEWAY] == NULL) 389 senderr(EINVAL); 390 saved_nrt = NULL; 391 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 392 so->so_fibnum); 393 if (error == 0 && saved_nrt) { 394 RT_LOCK(saved_nrt); 395 rt_setmetrics(rtm->rtm_inits, 396 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 397 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 398 RT_REMREF(saved_nrt); 399 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; 400 RT_UNLOCK(saved_nrt); 401 } 402 break; 403 404 case RTM_DELETE: 405 saved_nrt = NULL; 406 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 407 so->so_fibnum); 408 if (error == 0) { 409 RT_LOCK(saved_nrt); 410 rt = saved_nrt; 411 goto report; 412 } 413 break; 414 415 case RTM_GET: 416 case RTM_CHANGE: 417 case RTM_LOCK: 418 rnh = rt_tables[so->so_fibnum][info.rti_info[RTAX_DST]->sa_family]; 419 if (rnh == NULL) 420 senderr(EAFNOSUPPORT); 421 RADIX_NODE_HEAD_LOCK(rnh); 422 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 423 info.rti_info[RTAX_NETMASK], rnh); 424 if (rt == NULL) { /* XXX looks bogus */ 425 RADIX_NODE_HEAD_UNLOCK(rnh); 426 senderr(ESRCH); 427 } 428 #ifdef RADIX_MPATH 429 /* 430 * for RTM_CHANGE/LOCK, if we got multipath routes, 431 * we require users to specify a matching RTAX_GATEWAY. 432 * 433 * for RTM_GET, gate is optional even with multipath. 434 * if gate == NULL the first match is returned. 435 * (no need to call rt_mpath_matchgate if gate == NULL) 436 */ 437 if (rn_mpath_capable(rnh) && 438 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 439 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 440 if (!rt) { 441 RADIX_NODE_HEAD_UNLOCK(rnh); 442 senderr(ESRCH); 443 } 444 } 445 #endif 446 RT_LOCK(rt); 447 RT_ADDREF(rt); 448 RADIX_NODE_HEAD_UNLOCK(rnh); 449 450 /* 451 * Fix for PR: 82974 452 * 453 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 454 * returns a perfect match in case a netmask is 455 * specified. For host routes only a longest prefix 456 * match is returned so it is necessary to compare the 457 * existence of the netmask. If both have a netmask 458 * rnh_lookup() did a perfect match and if none of them 459 * have a netmask both are host routes which is also a 460 * perfect match. 461 */ 462 463 if (rtm->rtm_type != RTM_GET && 464 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 465 RT_UNLOCK(rt); 466 senderr(ESRCH); 467 } 468 469 switch(rtm->rtm_type) { 470 471 case RTM_GET: 472 report: 473 RT_LOCK_ASSERT(rt); 474 info.rti_info[RTAX_DST] = rt_key(rt); 475 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 476 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 477 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 478 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 479 ifp = rt->rt_ifp; 480 if (ifp) { 481 info.rti_info[RTAX_IFP] = 482 ifp->if_addr->ifa_addr; 483 if (jailed(so->so_cred)) { 484 bzero(&jail, sizeof(jail)); 485 jail.sin_family = PF_INET; 486 jail.sin_len = sizeof(jail); 487 jail.sin_addr.s_addr = 488 htonl(prison_getip(so->so_cred)); 489 info.rti_info[RTAX_IFA] = 490 (struct sockaddr *)&jail; 491 } else 492 info.rti_info[RTAX_IFA] = 493 rt->rt_ifa->ifa_addr; 494 if (ifp->if_flags & IFF_POINTOPOINT) 495 info.rti_info[RTAX_BRD] = 496 rt->rt_ifa->ifa_dstaddr; 497 rtm->rtm_index = ifp->if_index; 498 } else { 499 info.rti_info[RTAX_IFP] = NULL; 500 info.rti_info[RTAX_IFA] = NULL; 501 } 502 } else if ((ifp = rt->rt_ifp) != NULL) { 503 rtm->rtm_index = ifp->if_index; 504 } 505 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 506 if (len > rtm->rtm_msglen) { 507 struct rt_msghdr *new_rtm; 508 R_Malloc(new_rtm, struct rt_msghdr *, len); 509 if (new_rtm == NULL) { 510 RT_UNLOCK(rt); 511 senderr(ENOBUFS); 512 } 513 bcopy(rtm, new_rtm, rtm->rtm_msglen); 514 Free(rtm); rtm = new_rtm; 515 } 516 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 517 rtm->rtm_flags = rt->rt_flags; 518 rtm->rtm_use = 0; 519 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 520 rtm->rtm_addrs = info.rti_addrs; 521 break; 522 523 case RTM_CHANGE: 524 /* 525 * New gateway could require new ifaddr, ifp; 526 * flags may also be different; ifp may be specified 527 * by ll sockaddr when protocol address is ambiguous 528 */ 529 if (((rt->rt_flags & RTF_GATEWAY) && 530 info.rti_info[RTAX_GATEWAY] != NULL) || 531 info.rti_info[RTAX_IFP] != NULL || 532 (info.rti_info[RTAX_IFA] != NULL && 533 !sa_equal(info.rti_info[RTAX_IFA], 534 rt->rt_ifa->ifa_addr))) { 535 RT_UNLOCK(rt); 536 if ((error = rt_getifa_fib(&info, 537 rt->rt_fibnum)) != 0) 538 senderr(error); 539 RT_LOCK(rt); 540 } 541 if (info.rti_ifa != NULL && 542 info.rti_ifa != rt->rt_ifa && 543 rt->rt_ifa != NULL && 544 rt->rt_ifa->ifa_rtrequest != NULL) { 545 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 546 &info); 547 IFAFREE(rt->rt_ifa); 548 } 549 if (info.rti_info[RTAX_GATEWAY] != NULL) { 550 if ((error = rt_setgate(rt, rt_key(rt), 551 info.rti_info[RTAX_GATEWAY])) != 0) { 552 RT_UNLOCK(rt); 553 senderr(error); 554 } 555 if (!(rt->rt_flags & RTF_LLINFO)) 556 rt->rt_flags |= RTF_GATEWAY; 557 } 558 if (info.rti_ifa != NULL && 559 info.rti_ifa != rt->rt_ifa) { 560 IFAREF(info.rti_ifa); 561 rt->rt_ifa = info.rti_ifa; 562 rt->rt_ifp = info.rti_ifp; 563 } 564 /* Allow some flags to be toggled on change. */ 565 if (rtm->rtm_fmask & RTF_FMASK) 566 rt->rt_flags = (rt->rt_flags & 567 ~rtm->rtm_fmask) | 568 (rtm->rtm_flags & rtm->rtm_fmask); 569 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 570 &rt->rt_rmx); 571 rtm->rtm_index = rt->rt_ifp->if_index; 572 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 573 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 574 if (info.rti_info[RTAX_GENMASK]) 575 rt->rt_genmask = info.rti_info[RTAX_GENMASK]; 576 /* FALLTHROUGH */ 577 case RTM_LOCK: 578 /* We don't support locks anymore */ 579 break; 580 } 581 RT_UNLOCK(rt); 582 break; 583 584 default: 585 senderr(EOPNOTSUPP); 586 } 587 588 flush: 589 if (rtm) { 590 if (error) 591 rtm->rtm_errno = error; 592 else 593 rtm->rtm_flags |= RTF_DONE; 594 } 595 if (rt) /* XXX can this be true? */ 596 RTFREE(rt); 597 { 598 struct rawcb *rp = NULL; 599 /* 600 * Check to see if we don't want our own messages. 601 */ 602 if ((so->so_options & SO_USELOOPBACK) == 0) { 603 if (route_cb.any_count <= 1) { 604 if (rtm) 605 Free(rtm); 606 m_freem(m); 607 return (error); 608 } 609 /* There is another listener, so construct message */ 610 rp = sotorawcb(so); 611 } 612 if (rtm) { 613 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 614 if (m->m_pkthdr.len < rtm->rtm_msglen) { 615 m_freem(m); 616 m = NULL; 617 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 618 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 619 Free(rtm); 620 } 621 if (m) { 622 if (rp) { 623 /* 624 * XXX insure we don't get a copy by 625 * invalidating our protocol 626 */ 627 unsigned short family = rp->rcb_proto.sp_family; 628 rp->rcb_proto.sp_family = 0; 629 rt_dispatch(m, info.rti_info[RTAX_DST]); 630 rp->rcb_proto.sp_family = family; 631 } else 632 rt_dispatch(m, info.rti_info[RTAX_DST]); 633 } 634 } 635 return (error); 636 #undef sa_equal 637 } 638 639 static void 640 rt_setmetrics(u_long which, const struct rt_metrics *in, 641 struct rt_metrics_lite *out) 642 { 643 #define metric(f, e) if (which & (f)) out->e = in->e; 644 /* 645 * Only these are stored in the routing entry since introduction 646 * of tcp hostcache. The rest is ignored. 647 */ 648 metric(RTV_MTU, rmx_mtu); 649 /* Userland -> kernel timebase conversion. */ 650 if (which & RTV_EXPIRE) 651 out->rmx_expire = in->rmx_expire ? 652 in->rmx_expire - time_second + time_uptime : 0; 653 #undef metric 654 } 655 656 static void 657 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 658 { 659 #define metric(e) out->e = in->e; 660 bzero(out, sizeof(*out)); 661 metric(rmx_mtu); 662 /* Kernel -> userland timebase conversion. */ 663 out->rmx_expire = in->rmx_expire ? 664 in->rmx_expire - time_uptime + time_second : 0; 665 #undef metric 666 } 667 668 /* 669 * Extract the addresses of the passed sockaddrs. 670 * Do a little sanity checking so as to avoid bad memory references. 671 * This data is derived straight from userland. 672 */ 673 static int 674 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 675 { 676 struct sockaddr *sa; 677 int i; 678 679 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 680 if ((rtinfo->rti_addrs & (1 << i)) == 0) 681 continue; 682 sa = (struct sockaddr *)cp; 683 /* 684 * It won't fit. 685 */ 686 if (cp + sa->sa_len > cplim) 687 return (EINVAL); 688 /* 689 * there are no more.. quit now 690 * If there are more bits, they are in error. 691 * I've seen this. route(1) can evidently generate these. 692 * This causes kernel to core dump. 693 * for compatibility, If we see this, point to a safe address. 694 */ 695 if (sa->sa_len == 0) { 696 rtinfo->rti_info[i] = &sa_zero; 697 return (0); /* should be EINVAL but for compat */ 698 } 699 /* accept it */ 700 rtinfo->rti_info[i] = sa; 701 cp += SA_SIZE(sa); 702 } 703 return (0); 704 } 705 706 static struct mbuf * 707 rt_msg1(int type, struct rt_addrinfo *rtinfo) 708 { 709 struct rt_msghdr *rtm; 710 struct mbuf *m; 711 int i; 712 struct sockaddr *sa; 713 int len, dlen; 714 715 switch (type) { 716 717 case RTM_DELADDR: 718 case RTM_NEWADDR: 719 len = sizeof(struct ifa_msghdr); 720 break; 721 722 case RTM_DELMADDR: 723 case RTM_NEWMADDR: 724 len = sizeof(struct ifma_msghdr); 725 break; 726 727 case RTM_IFINFO: 728 len = sizeof(struct if_msghdr); 729 break; 730 731 case RTM_IFANNOUNCE: 732 case RTM_IEEE80211: 733 len = sizeof(struct if_announcemsghdr); 734 break; 735 736 default: 737 len = sizeof(struct rt_msghdr); 738 } 739 if (len > MCLBYTES) 740 panic("rt_msg1"); 741 m = m_gethdr(M_DONTWAIT, MT_DATA); 742 if (m && len > MHLEN) { 743 MCLGET(m, M_DONTWAIT); 744 if ((m->m_flags & M_EXT) == 0) { 745 m_free(m); 746 m = NULL; 747 } 748 } 749 if (m == NULL) 750 return (m); 751 m->m_pkthdr.len = m->m_len = len; 752 m->m_pkthdr.rcvif = NULL; 753 rtm = mtod(m, struct rt_msghdr *); 754 bzero((caddr_t)rtm, len); 755 for (i = 0; i < RTAX_MAX; i++) { 756 if ((sa = rtinfo->rti_info[i]) == NULL) 757 continue; 758 rtinfo->rti_addrs |= (1 << i); 759 dlen = SA_SIZE(sa); 760 m_copyback(m, len, dlen, (caddr_t)sa); 761 len += dlen; 762 } 763 if (m->m_pkthdr.len != len) { 764 m_freem(m); 765 return (NULL); 766 } 767 rtm->rtm_msglen = len; 768 rtm->rtm_version = RTM_VERSION; 769 rtm->rtm_type = type; 770 return (m); 771 } 772 773 static int 774 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 775 { 776 int i; 777 int len, dlen, second_time = 0; 778 caddr_t cp0; 779 780 rtinfo->rti_addrs = 0; 781 again: 782 switch (type) { 783 784 case RTM_DELADDR: 785 case RTM_NEWADDR: 786 len = sizeof(struct ifa_msghdr); 787 break; 788 789 case RTM_IFINFO: 790 len = sizeof(struct if_msghdr); 791 break; 792 793 case RTM_NEWMADDR: 794 len = sizeof(struct ifma_msghdr); 795 break; 796 797 default: 798 len = sizeof(struct rt_msghdr); 799 } 800 cp0 = cp; 801 if (cp0) 802 cp += len; 803 for (i = 0; i < RTAX_MAX; i++) { 804 struct sockaddr *sa; 805 806 if ((sa = rtinfo->rti_info[i]) == NULL) 807 continue; 808 rtinfo->rti_addrs |= (1 << i); 809 dlen = SA_SIZE(sa); 810 if (cp) { 811 bcopy((caddr_t)sa, cp, (unsigned)dlen); 812 cp += dlen; 813 } 814 len += dlen; 815 } 816 len = ALIGN(len); 817 if (cp == NULL && w != NULL && !second_time) { 818 struct walkarg *rw = w; 819 820 if (rw->w_req) { 821 if (rw->w_tmemsize < len) { 822 if (rw->w_tmem) 823 free(rw->w_tmem, M_RTABLE); 824 rw->w_tmem = (caddr_t) 825 malloc(len, M_RTABLE, M_NOWAIT); 826 if (rw->w_tmem) 827 rw->w_tmemsize = len; 828 } 829 if (rw->w_tmem) { 830 cp = rw->w_tmem; 831 second_time = 1; 832 goto again; 833 } 834 } 835 } 836 if (cp) { 837 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 838 839 rtm->rtm_version = RTM_VERSION; 840 rtm->rtm_type = type; 841 rtm->rtm_msglen = len; 842 } 843 return (len); 844 } 845 846 /* 847 * This routine is called to generate a message from the routing 848 * socket indicating that a redirect has occured, a routing lookup 849 * has failed, or that a protocol has detected timeouts to a particular 850 * destination. 851 */ 852 void 853 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 854 { 855 struct rt_msghdr *rtm; 856 struct mbuf *m; 857 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 858 859 if (route_cb.any_count == 0) 860 return; 861 m = rt_msg1(type, rtinfo); 862 if (m == NULL) 863 return; 864 rtm = mtod(m, struct rt_msghdr *); 865 rtm->rtm_flags = RTF_DONE | flags; 866 rtm->rtm_errno = error; 867 rtm->rtm_addrs = rtinfo->rti_addrs; 868 rt_dispatch(m, sa); 869 } 870 871 /* 872 * This routine is called to generate a message from the routing 873 * socket indicating that the status of a network interface has changed. 874 */ 875 void 876 rt_ifmsg(struct ifnet *ifp) 877 { 878 struct if_msghdr *ifm; 879 struct mbuf *m; 880 struct rt_addrinfo info; 881 882 if (route_cb.any_count == 0) 883 return; 884 bzero((caddr_t)&info, sizeof(info)); 885 m = rt_msg1(RTM_IFINFO, &info); 886 if (m == NULL) 887 return; 888 ifm = mtod(m, struct if_msghdr *); 889 ifm->ifm_index = ifp->if_index; 890 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 891 ifm->ifm_data = ifp->if_data; 892 ifm->ifm_addrs = 0; 893 rt_dispatch(m, NULL); 894 } 895 896 /* 897 * This is called to generate messages from the routing socket 898 * indicating a network interface has had addresses associated with it. 899 * if we ever reverse the logic and replace messages TO the routing 900 * socket indicate a request to configure interfaces, then it will 901 * be unnecessary as the routing socket will automatically generate 902 * copies of it. 903 */ 904 void 905 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 906 { 907 struct rt_addrinfo info; 908 struct sockaddr *sa = NULL; 909 int pass; 910 struct mbuf *m = NULL; 911 struct ifnet *ifp = ifa->ifa_ifp; 912 913 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 914 ("unexpected cmd %u", cmd)); 915 #ifdef SCTP 916 /* 917 * notify the SCTP stack 918 * this will only get called when an address is added/deleted 919 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 920 */ 921 sctp_addr_change(ifa, cmd); 922 #endif /* SCTP */ 923 if (route_cb.any_count == 0) 924 return; 925 for (pass = 1; pass < 3; pass++) { 926 bzero((caddr_t)&info, sizeof(info)); 927 if ((cmd == RTM_ADD && pass == 1) || 928 (cmd == RTM_DELETE && pass == 2)) { 929 struct ifa_msghdr *ifam; 930 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 931 932 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 933 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 934 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 935 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 936 if ((m = rt_msg1(ncmd, &info)) == NULL) 937 continue; 938 ifam = mtod(m, struct ifa_msghdr *); 939 ifam->ifam_index = ifp->if_index; 940 ifam->ifam_metric = ifa->ifa_metric; 941 ifam->ifam_flags = ifa->ifa_flags; 942 ifam->ifam_addrs = info.rti_addrs; 943 } 944 if ((cmd == RTM_ADD && pass == 2) || 945 (cmd == RTM_DELETE && pass == 1)) { 946 struct rt_msghdr *rtm; 947 948 if (rt == NULL) 949 continue; 950 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 951 info.rti_info[RTAX_DST] = sa = rt_key(rt); 952 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 953 if ((m = rt_msg1(cmd, &info)) == NULL) 954 continue; 955 rtm = mtod(m, struct rt_msghdr *); 956 rtm->rtm_index = ifp->if_index; 957 rtm->rtm_flags |= rt->rt_flags; 958 rtm->rtm_errno = error; 959 rtm->rtm_addrs = info.rti_addrs; 960 } 961 rt_dispatch(m, sa); 962 } 963 } 964 965 /* 966 * This is the analogue to the rt_newaddrmsg which performs the same 967 * function but for multicast group memberhips. This is easier since 968 * there is no route state to worry about. 969 */ 970 void 971 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 972 { 973 struct rt_addrinfo info; 974 struct mbuf *m = NULL; 975 struct ifnet *ifp = ifma->ifma_ifp; 976 struct ifma_msghdr *ifmam; 977 978 if (route_cb.any_count == 0) 979 return; 980 981 bzero((caddr_t)&info, sizeof(info)); 982 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 983 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 984 /* 985 * If a link-layer address is present, present it as a ``gateway'' 986 * (similarly to how ARP entries, e.g., are presented). 987 */ 988 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 989 m = rt_msg1(cmd, &info); 990 if (m == NULL) 991 return; 992 ifmam = mtod(m, struct ifma_msghdr *); 993 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 994 __func__)); 995 ifmam->ifmam_index = ifp->if_index; 996 ifmam->ifmam_addrs = info.rti_addrs; 997 rt_dispatch(m, ifma->ifma_addr); 998 } 999 1000 static struct mbuf * 1001 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1002 struct rt_addrinfo *info) 1003 { 1004 struct if_announcemsghdr *ifan; 1005 struct mbuf *m; 1006 1007 if (route_cb.any_count == 0) 1008 return NULL; 1009 bzero((caddr_t)info, sizeof(*info)); 1010 m = rt_msg1(type, info); 1011 if (m != NULL) { 1012 ifan = mtod(m, struct if_announcemsghdr *); 1013 ifan->ifan_index = ifp->if_index; 1014 strlcpy(ifan->ifan_name, ifp->if_xname, 1015 sizeof(ifan->ifan_name)); 1016 ifan->ifan_what = what; 1017 } 1018 return m; 1019 } 1020 1021 /* 1022 * This is called to generate routing socket messages indicating 1023 * IEEE80211 wireless events. 1024 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1025 */ 1026 void 1027 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1028 { 1029 struct mbuf *m; 1030 struct rt_addrinfo info; 1031 1032 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1033 if (m != NULL) { 1034 /* 1035 * Append the ieee80211 data. Try to stick it in the 1036 * mbuf containing the ifannounce msg; otherwise allocate 1037 * a new mbuf and append. 1038 * 1039 * NB: we assume m is a single mbuf. 1040 */ 1041 if (data_len > M_TRAILINGSPACE(m)) { 1042 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1043 if (n == NULL) { 1044 m_freem(m); 1045 return; 1046 } 1047 bcopy(data, mtod(n, void *), data_len); 1048 n->m_len = data_len; 1049 m->m_next = n; 1050 } else if (data_len > 0) { 1051 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1052 m->m_len += data_len; 1053 } 1054 if (m->m_flags & M_PKTHDR) 1055 m->m_pkthdr.len += data_len; 1056 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1057 rt_dispatch(m, NULL); 1058 } 1059 } 1060 1061 /* 1062 * This is called to generate routing socket messages indicating 1063 * network interface arrival and departure. 1064 */ 1065 void 1066 rt_ifannouncemsg(struct ifnet *ifp, int what) 1067 { 1068 struct mbuf *m; 1069 struct rt_addrinfo info; 1070 1071 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1072 if (m != NULL) 1073 rt_dispatch(m, NULL); 1074 } 1075 1076 static void 1077 rt_dispatch(struct mbuf *m, const struct sockaddr *sa) 1078 { 1079 struct m_tag *tag; 1080 1081 /* 1082 * Preserve the family from the sockaddr, if any, in an m_tag for 1083 * use when injecting the mbuf into the routing socket buffer from 1084 * the netisr. 1085 */ 1086 if (sa != NULL) { 1087 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1088 M_NOWAIT); 1089 if (tag == NULL) { 1090 m_freem(m); 1091 return; 1092 } 1093 *(unsigned short *)(tag + 1) = sa->sa_family; 1094 m_tag_prepend(m, tag); 1095 } 1096 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1097 } 1098 1099 /* 1100 * This is used in dumping the kernel table via sysctl(). 1101 */ 1102 static int 1103 sysctl_dumpentry(struct radix_node *rn, void *vw) 1104 { 1105 struct walkarg *w = vw; 1106 struct rtentry *rt = (struct rtentry *)rn; 1107 int error = 0, size; 1108 struct rt_addrinfo info; 1109 1110 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1111 return 0; 1112 bzero((caddr_t)&info, sizeof(info)); 1113 info.rti_info[RTAX_DST] = rt_key(rt); 1114 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1115 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1116 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 1117 if (rt->rt_ifp) { 1118 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1119 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1120 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1121 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1122 } 1123 size = rt_msg2(RTM_GET, &info, NULL, w); 1124 if (w->w_req && w->w_tmem) { 1125 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1126 1127 rtm->rtm_flags = rt->rt_flags; 1128 rtm->rtm_use = rt->rt_rmx.rmx_pksent; 1129 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1130 rtm->rtm_index = rt->rt_ifp->if_index; 1131 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1132 rtm->rtm_addrs = info.rti_addrs; 1133 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1134 return (error); 1135 } 1136 return (error); 1137 } 1138 1139 static int 1140 sysctl_iflist(int af, struct walkarg *w) 1141 { 1142 struct ifnet *ifp; 1143 struct ifaddr *ifa; 1144 struct rt_addrinfo info; 1145 int len, error = 0; 1146 1147 bzero((caddr_t)&info, sizeof(info)); 1148 IFNET_RLOCK(); 1149 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1150 if (w->w_arg && w->w_arg != ifp->if_index) 1151 continue; 1152 ifa = ifp->if_addr; 1153 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1154 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1155 info.rti_info[RTAX_IFP] = NULL; 1156 if (w->w_req && w->w_tmem) { 1157 struct if_msghdr *ifm; 1158 1159 ifm = (struct if_msghdr *)w->w_tmem; 1160 ifm->ifm_index = ifp->if_index; 1161 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1162 ifm->ifm_data = ifp->if_data; 1163 ifm->ifm_addrs = info.rti_addrs; 1164 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); 1165 if (error) 1166 goto done; 1167 } 1168 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1169 if (af && af != ifa->ifa_addr->sa_family) 1170 continue; 1171 if (jailed(curthread->td_ucred) && 1172 prison_if(curthread->td_ucred, ifa->ifa_addr)) 1173 continue; 1174 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1175 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1176 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1177 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1178 if (w->w_req && w->w_tmem) { 1179 struct ifa_msghdr *ifam; 1180 1181 ifam = (struct ifa_msghdr *)w->w_tmem; 1182 ifam->ifam_index = ifa->ifa_ifp->if_index; 1183 ifam->ifam_flags = ifa->ifa_flags; 1184 ifam->ifam_metric = ifa->ifa_metric; 1185 ifam->ifam_addrs = info.rti_addrs; 1186 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1187 if (error) 1188 goto done; 1189 } 1190 } 1191 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1192 info.rti_info[RTAX_BRD] = NULL; 1193 } 1194 done: 1195 IFNET_RUNLOCK(); 1196 return (error); 1197 } 1198 1199 int 1200 sysctl_ifmalist(int af, struct walkarg *w) 1201 { 1202 struct ifnet *ifp; 1203 struct ifmultiaddr *ifma; 1204 struct rt_addrinfo info; 1205 int len, error = 0; 1206 struct ifaddr *ifa; 1207 1208 bzero((caddr_t)&info, sizeof(info)); 1209 IFNET_RLOCK(); 1210 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1211 if (w->w_arg && w->w_arg != ifp->if_index) 1212 continue; 1213 ifa = ifp->if_addr; 1214 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1215 IF_ADDR_LOCK(ifp); 1216 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1217 if (af && af != ifma->ifma_addr->sa_family) 1218 continue; 1219 if (jailed(curproc->p_ucred) && 1220 prison_if(curproc->p_ucred, ifma->ifma_addr)) 1221 continue; 1222 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1223 info.rti_info[RTAX_GATEWAY] = 1224 (ifma->ifma_addr->sa_family != AF_LINK) ? 1225 ifma->ifma_lladdr : NULL; 1226 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1227 if (w->w_req && w->w_tmem) { 1228 struct ifma_msghdr *ifmam; 1229 1230 ifmam = (struct ifma_msghdr *)w->w_tmem; 1231 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1232 ifmam->ifmam_flags = 0; 1233 ifmam->ifmam_addrs = info.rti_addrs; 1234 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1235 if (error) { 1236 IF_ADDR_UNLOCK(ifp); 1237 goto done; 1238 } 1239 } 1240 } 1241 IF_ADDR_UNLOCK(ifp); 1242 } 1243 done: 1244 IFNET_RUNLOCK(); 1245 return (error); 1246 } 1247 1248 static int 1249 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1250 { 1251 int *name = (int *)arg1; 1252 u_int namelen = arg2; 1253 struct radix_node_head *rnh; 1254 int i, lim, error = EINVAL; 1255 u_char af; 1256 struct walkarg w; 1257 1258 name ++; 1259 namelen--; 1260 if (req->newptr) 1261 return (EPERM); 1262 if (namelen != 3) 1263 return ((namelen < 3) ? EISDIR : ENOTDIR); 1264 af = name[0]; 1265 if (af > AF_MAX) 1266 return (EINVAL); 1267 bzero(&w, sizeof(w)); 1268 w.w_op = name[1]; 1269 w.w_arg = name[2]; 1270 w.w_req = req; 1271 1272 error = sysctl_wire_old_buffer(req, 0); 1273 if (error) 1274 return (error); 1275 switch (w.w_op) { 1276 1277 case NET_RT_DUMP: 1278 case NET_RT_FLAGS: 1279 if (af == 0) { /* dump all tables */ 1280 i = 1; 1281 lim = AF_MAX; 1282 } else /* dump only one table */ 1283 i = lim = af; 1284 for (error = 0; error == 0 && i <= lim; i++) 1285 if ((rnh = rt_tables[curthread->td_proc->p_fibnum][i]) != NULL) { 1286 RADIX_NODE_HEAD_LOCK(rnh); 1287 error = rnh->rnh_walktree(rnh, 1288 sysctl_dumpentry, &w); 1289 RADIX_NODE_HEAD_UNLOCK(rnh); 1290 } else if (af != 0) 1291 error = EAFNOSUPPORT; 1292 break; 1293 1294 case NET_RT_IFLIST: 1295 error = sysctl_iflist(af, &w); 1296 break; 1297 1298 case NET_RT_IFMALIST: 1299 error = sysctl_ifmalist(af, &w); 1300 break; 1301 } 1302 if (w.w_tmem) 1303 free(w.w_tmem, M_RTABLE); 1304 return (error); 1305 } 1306 1307 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1308 1309 /* 1310 * Definitions of protocols supported in the ROUTE domain. 1311 */ 1312 1313 static struct domain routedomain; /* or at least forward */ 1314 1315 static struct protosw routesw[] = { 1316 { 1317 .pr_type = SOCK_RAW, 1318 .pr_domain = &routedomain, 1319 .pr_flags = PR_ATOMIC|PR_ADDR, 1320 .pr_output = route_output, 1321 .pr_ctlinput = raw_ctlinput, 1322 .pr_init = raw_init, 1323 .pr_usrreqs = &route_usrreqs 1324 } 1325 }; 1326 1327 static struct domain routedomain = { 1328 .dom_family = PF_ROUTE, 1329 .dom_name = "route", 1330 .dom_protosw = routesw, 1331 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1332 }; 1333 1334 DOMAIN_SET(route); 1335