1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_mpath.h" 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/jail.h> 40 #include <sys/kernel.h> 41 #include <sys/domain.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/rmlock.h> 49 #include <sys/rwlock.h> 50 #include <sys/signalvar.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/systm.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/if_llatbl.h> 60 #include <net/if_types.h> 61 #include <net/netisr.h> 62 #include <net/raw_cb.h> 63 #include <net/route.h> 64 #include <net/route_var.h> 65 #include <net/vnet.h> 66 67 #include <netinet/in.h> 68 #include <netinet/if_ether.h> 69 #include <netinet/ip_carp.h> 70 #ifdef INET6 71 #include <netinet6/ip6_var.h> 72 #include <netinet6/scope6_var.h> 73 #endif 74 75 #ifdef COMPAT_FREEBSD32 76 #include <sys/mount.h> 77 #include <compat/freebsd32/freebsd32.h> 78 79 struct if_msghdr32 { 80 uint16_t ifm_msglen; 81 uint8_t ifm_version; 82 uint8_t ifm_type; 83 int32_t ifm_addrs; 84 int32_t ifm_flags; 85 uint16_t ifm_index; 86 uint16_t _ifm_spare1; 87 struct if_data ifm_data; 88 }; 89 90 struct if_msghdrl32 { 91 uint16_t ifm_msglen; 92 uint8_t ifm_version; 93 uint8_t ifm_type; 94 int32_t ifm_addrs; 95 int32_t ifm_flags; 96 uint16_t ifm_index; 97 uint16_t _ifm_spare1; 98 uint16_t ifm_len; 99 uint16_t ifm_data_off; 100 uint32_t _ifm_spare2; 101 struct if_data ifm_data; 102 }; 103 104 struct ifa_msghdrl32 { 105 uint16_t ifam_msglen; 106 uint8_t ifam_version; 107 uint8_t ifam_type; 108 int32_t ifam_addrs; 109 int32_t ifam_flags; 110 uint16_t ifam_index; 111 uint16_t _ifam_spare1; 112 uint16_t ifam_len; 113 uint16_t ifam_data_off; 114 int32_t ifam_metric; 115 struct if_data ifam_data; 116 }; 117 118 #define SA_SIZE32(sa) \ 119 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 120 sizeof(int) : \ 121 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 122 123 #endif /* COMPAT_FREEBSD32 */ 124 125 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 126 127 /* NB: these are not modified */ 128 static struct sockaddr route_src = { 2, PF_ROUTE, }; 129 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 130 131 /* These are external hooks for CARP. */ 132 int (*carp_get_vhid_p)(struct ifaddr *); 133 134 /* 135 * Used by rtsock/raw_input callback code to decide whether to filter the update 136 * notification to a socket bound to a particular FIB. 137 */ 138 #define RTS_FILTER_FIB M_PROTO8 139 140 typedef struct { 141 int ip_count; /* attached w/ AF_INET */ 142 int ip6_count; /* attached w/ AF_INET6 */ 143 int any_count; /* total attached */ 144 } route_cb_t; 145 VNET_DEFINE_STATIC(route_cb_t, route_cb); 146 #define V_route_cb VNET(route_cb) 147 148 struct mtx rtsock_mtx; 149 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 150 151 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 152 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 153 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 154 155 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 156 157 struct walkarg { 158 int w_tmemsize; 159 int w_op, w_arg; 160 caddr_t w_tmem; 161 struct sysctl_req *w_req; 162 }; 163 164 static void rts_input(struct mbuf *m); 165 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 166 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 167 struct walkarg *w, int *plen); 168 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 169 struct rt_addrinfo *rtinfo); 170 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 171 static int sysctl_iflist(int af, struct walkarg *w); 172 static int sysctl_ifmalist(int af, struct walkarg *w); 173 static int route_output(struct mbuf *m, struct socket *so, ...); 174 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 175 static void rt_dispatch(struct mbuf *, sa_family_t); 176 static struct sockaddr *rtsock_fix_netmask(struct sockaddr *dst, 177 struct sockaddr *smask, struct sockaddr_storage *dmask); 178 179 static struct netisr_handler rtsock_nh = { 180 .nh_name = "rtsock", 181 .nh_handler = rts_input, 182 .nh_proto = NETISR_ROUTE, 183 .nh_policy = NETISR_POLICY_SOURCE, 184 }; 185 186 static int 187 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 188 { 189 int error, qlimit; 190 191 netisr_getqlimit(&rtsock_nh, &qlimit); 192 error = sysctl_handle_int(oidp, &qlimit, 0, req); 193 if (error || !req->newptr) 194 return (error); 195 if (qlimit < 1) 196 return (EINVAL); 197 return (netisr_setqlimit(&rtsock_nh, qlimit)); 198 } 199 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 200 0, 0, sysctl_route_netisr_maxqlen, "I", 201 "maximum routing socket dispatch queue length"); 202 203 static void 204 vnet_rts_init(void) 205 { 206 int tmp; 207 208 if (IS_DEFAULT_VNET(curvnet)) { 209 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 210 rtsock_nh.nh_qlimit = tmp; 211 netisr_register(&rtsock_nh); 212 } 213 #ifdef VIMAGE 214 else 215 netisr_register_vnet(&rtsock_nh); 216 #endif 217 } 218 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 219 vnet_rts_init, 0); 220 221 #ifdef VIMAGE 222 static void 223 vnet_rts_uninit(void) 224 { 225 226 netisr_unregister_vnet(&rtsock_nh); 227 } 228 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 229 vnet_rts_uninit, 0); 230 #endif 231 232 static int 233 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 234 struct rawcb *rp) 235 { 236 int fibnum; 237 238 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 239 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 240 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 241 242 /* No filtering requested. */ 243 if ((m->m_flags & RTS_FILTER_FIB) == 0) 244 return (0); 245 246 /* Check if it is a rts and the fib matches the one of the socket. */ 247 fibnum = M_GETFIB(m); 248 if (proto->sp_family != PF_ROUTE || 249 rp->rcb_socket == NULL || 250 rp->rcb_socket->so_fibnum == fibnum) 251 return (0); 252 253 /* Filtering requested and no match, the socket shall be skipped. */ 254 return (1); 255 } 256 257 static void 258 rts_input(struct mbuf *m) 259 { 260 struct sockproto route_proto; 261 unsigned short *family; 262 struct m_tag *tag; 263 264 route_proto.sp_family = PF_ROUTE; 265 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 266 if (tag != NULL) { 267 family = (unsigned short *)(tag + 1); 268 route_proto.sp_protocol = *family; 269 m_tag_delete(m, tag); 270 } else 271 route_proto.sp_protocol = 0; 272 273 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 274 } 275 276 /* 277 * It really doesn't make any sense at all for this code to share much 278 * with raw_usrreq.c, since its functionality is so restricted. XXX 279 */ 280 static void 281 rts_abort(struct socket *so) 282 { 283 284 raw_usrreqs.pru_abort(so); 285 } 286 287 static void 288 rts_close(struct socket *so) 289 { 290 291 raw_usrreqs.pru_close(so); 292 } 293 294 /* pru_accept is EOPNOTSUPP */ 295 296 static int 297 rts_attach(struct socket *so, int proto, struct thread *td) 298 { 299 struct rawcb *rp; 300 int error; 301 302 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 303 304 /* XXX */ 305 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 306 307 so->so_pcb = (caddr_t)rp; 308 so->so_fibnum = td->td_proc->p_fibnum; 309 error = raw_attach(so, proto); 310 rp = sotorawcb(so); 311 if (error) { 312 so->so_pcb = NULL; 313 free(rp, M_PCB); 314 return error; 315 } 316 RTSOCK_LOCK(); 317 switch(rp->rcb_proto.sp_protocol) { 318 case AF_INET: 319 V_route_cb.ip_count++; 320 break; 321 case AF_INET6: 322 V_route_cb.ip6_count++; 323 break; 324 } 325 V_route_cb.any_count++; 326 RTSOCK_UNLOCK(); 327 soisconnected(so); 328 so->so_options |= SO_USELOOPBACK; 329 return 0; 330 } 331 332 static int 333 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 334 { 335 336 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 337 } 338 339 static int 340 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 341 { 342 343 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 344 } 345 346 /* pru_connect2 is EOPNOTSUPP */ 347 /* pru_control is EOPNOTSUPP */ 348 349 static void 350 rts_detach(struct socket *so) 351 { 352 struct rawcb *rp = sotorawcb(so); 353 354 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 355 356 RTSOCK_LOCK(); 357 switch(rp->rcb_proto.sp_protocol) { 358 case AF_INET: 359 V_route_cb.ip_count--; 360 break; 361 case AF_INET6: 362 V_route_cb.ip6_count--; 363 break; 364 } 365 V_route_cb.any_count--; 366 RTSOCK_UNLOCK(); 367 raw_usrreqs.pru_detach(so); 368 } 369 370 static int 371 rts_disconnect(struct socket *so) 372 { 373 374 return (raw_usrreqs.pru_disconnect(so)); 375 } 376 377 /* pru_listen is EOPNOTSUPP */ 378 379 static int 380 rts_peeraddr(struct socket *so, struct sockaddr **nam) 381 { 382 383 return (raw_usrreqs.pru_peeraddr(so, nam)); 384 } 385 386 /* pru_rcvd is EOPNOTSUPP */ 387 /* pru_rcvoob is EOPNOTSUPP */ 388 389 static int 390 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 391 struct mbuf *control, struct thread *td) 392 { 393 394 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 395 } 396 397 /* pru_sense is null */ 398 399 static int 400 rts_shutdown(struct socket *so) 401 { 402 403 return (raw_usrreqs.pru_shutdown(so)); 404 } 405 406 static int 407 rts_sockaddr(struct socket *so, struct sockaddr **nam) 408 { 409 410 return (raw_usrreqs.pru_sockaddr(so, nam)); 411 } 412 413 static struct pr_usrreqs route_usrreqs = { 414 .pru_abort = rts_abort, 415 .pru_attach = rts_attach, 416 .pru_bind = rts_bind, 417 .pru_connect = rts_connect, 418 .pru_detach = rts_detach, 419 .pru_disconnect = rts_disconnect, 420 .pru_peeraddr = rts_peeraddr, 421 .pru_send = rts_send, 422 .pru_shutdown = rts_shutdown, 423 .pru_sockaddr = rts_sockaddr, 424 .pru_close = rts_close, 425 }; 426 427 #ifndef _SOCKADDR_UNION_DEFINED 428 #define _SOCKADDR_UNION_DEFINED 429 /* 430 * The union of all possible address formats we handle. 431 */ 432 union sockaddr_union { 433 struct sockaddr sa; 434 struct sockaddr_in sin; 435 struct sockaddr_in6 sin6; 436 }; 437 #endif /* _SOCKADDR_UNION_DEFINED */ 438 439 static int 440 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 441 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 442 { 443 #if defined(INET) || defined(INET6) 444 struct epoch_tracker et; 445 #endif 446 447 /* First, see if the returned address is part of the jail. */ 448 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 449 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 450 return (0); 451 } 452 453 switch (info->rti_info[RTAX_DST]->sa_family) { 454 #ifdef INET 455 case AF_INET: 456 { 457 struct in_addr ia; 458 struct ifaddr *ifa; 459 int found; 460 461 found = 0; 462 /* 463 * Try to find an address on the given outgoing interface 464 * that belongs to the jail. 465 */ 466 NET_EPOCH_ENTER(et); 467 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 468 struct sockaddr *sa; 469 sa = ifa->ifa_addr; 470 if (sa->sa_family != AF_INET) 471 continue; 472 ia = ((struct sockaddr_in *)sa)->sin_addr; 473 if (prison_check_ip4(cred, &ia) == 0) { 474 found = 1; 475 break; 476 } 477 } 478 NET_EPOCH_EXIT(et); 479 if (!found) { 480 /* 481 * As a last resort return the 'default' jail address. 482 */ 483 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 484 sin_addr; 485 if (prison_get_ip4(cred, &ia) != 0) 486 return (ESRCH); 487 } 488 bzero(&saun->sin, sizeof(struct sockaddr_in)); 489 saun->sin.sin_len = sizeof(struct sockaddr_in); 490 saun->sin.sin_family = AF_INET; 491 saun->sin.sin_addr.s_addr = ia.s_addr; 492 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 493 break; 494 } 495 #endif 496 #ifdef INET6 497 case AF_INET6: 498 { 499 struct in6_addr ia6; 500 struct ifaddr *ifa; 501 int found; 502 503 found = 0; 504 /* 505 * Try to find an address on the given outgoing interface 506 * that belongs to the jail. 507 */ 508 NET_EPOCH_ENTER(et); 509 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 510 struct sockaddr *sa; 511 sa = ifa->ifa_addr; 512 if (sa->sa_family != AF_INET6) 513 continue; 514 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 515 &ia6, sizeof(struct in6_addr)); 516 if (prison_check_ip6(cred, &ia6) == 0) { 517 found = 1; 518 break; 519 } 520 } 521 NET_EPOCH_EXIT(et); 522 if (!found) { 523 /* 524 * As a last resort return the 'default' jail address. 525 */ 526 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 527 sin6_addr; 528 if (prison_get_ip6(cred, &ia6) != 0) 529 return (ESRCH); 530 } 531 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 532 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 533 saun->sin6.sin6_family = AF_INET6; 534 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 535 if (sa6_recoverscope(&saun->sin6) != 0) 536 return (ESRCH); 537 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 538 break; 539 } 540 #endif 541 default: 542 return (ESRCH); 543 } 544 return (0); 545 } 546 547 /*ARGSUSED*/ 548 static int 549 route_output(struct mbuf *m, struct socket *so, ...) 550 { 551 RIB_RLOCK_TRACKER; 552 struct rt_msghdr *rtm = NULL; 553 struct rtentry *rt = NULL; 554 struct rib_head *rnh; 555 struct rt_addrinfo info; 556 struct sockaddr_storage ss; 557 #ifdef INET6 558 struct sockaddr_in6 *sin6; 559 int i, rti_need_deembed = 0; 560 #endif 561 int alloc_len = 0, len, error = 0, fibnum; 562 struct ifnet *ifp = NULL; 563 union sockaddr_union saun; 564 sa_family_t saf = AF_UNSPEC; 565 struct rawcb *rp = NULL; 566 struct walkarg w; 567 568 fibnum = so->so_fibnum; 569 570 #define senderr(e) { error = e; goto flush;} 571 if (m == NULL || ((m->m_len < sizeof(long)) && 572 (m = m_pullup(m, sizeof(long))) == NULL)) 573 return (ENOBUFS); 574 if ((m->m_flags & M_PKTHDR) == 0) 575 panic("route_output"); 576 len = m->m_pkthdr.len; 577 if (len < sizeof(*rtm) || 578 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 579 senderr(EINVAL); 580 581 /* 582 * Most of current messages are in range 200-240 bytes, 583 * minimize possible re-allocation on reply using larger size 584 * buffer aligned on 1k boundaty. 585 */ 586 alloc_len = roundup2(len, 1024); 587 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 588 senderr(ENOBUFS); 589 590 m_copydata(m, 0, len, (caddr_t)rtm); 591 bzero(&info, sizeof(info)); 592 bzero(&w, sizeof(w)); 593 594 if (rtm->rtm_version != RTM_VERSION) { 595 /* Do not touch message since format is unknown */ 596 free(rtm, M_TEMP); 597 rtm = NULL; 598 senderr(EPROTONOSUPPORT); 599 } 600 601 /* 602 * Starting from here, it is possible 603 * to alter original message and insert 604 * caller PID and error value. 605 */ 606 607 rtm->rtm_pid = curproc->p_pid; 608 info.rti_addrs = rtm->rtm_addrs; 609 610 info.rti_mflags = rtm->rtm_inits; 611 info.rti_rmx = &rtm->rtm_rmx; 612 613 /* 614 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 615 * link-local address because rtrequest requires addresses with 616 * embedded scope id. 617 */ 618 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) 619 senderr(EINVAL); 620 621 info.rti_flags = rtm->rtm_flags; 622 if (info.rti_info[RTAX_DST] == NULL || 623 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 624 (info.rti_info[RTAX_GATEWAY] != NULL && 625 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 626 senderr(EINVAL); 627 saf = info.rti_info[RTAX_DST]->sa_family; 628 /* 629 * Verify that the caller has the appropriate privilege; RTM_GET 630 * is the only operation the non-superuser is allowed. 631 */ 632 if (rtm->rtm_type != RTM_GET) { 633 error = priv_check(curthread, PRIV_NET_ROUTE); 634 if (error) 635 senderr(error); 636 } 637 638 /* 639 * The given gateway address may be an interface address. 640 * For example, issuing a "route change" command on a route 641 * entry that was created from a tunnel, and the gateway 642 * address given is the local end point. In this case the 643 * RTF_GATEWAY flag must be cleared or the destination will 644 * not be reachable even though there is no error message. 645 */ 646 if (info.rti_info[RTAX_GATEWAY] != NULL && 647 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 648 struct rt_addrinfo ginfo; 649 struct sockaddr *gdst; 650 651 bzero(&ginfo, sizeof(ginfo)); 652 bzero(&ss, sizeof(ss)); 653 ss.ss_len = sizeof(ss); 654 655 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 656 gdst = info.rti_info[RTAX_GATEWAY]; 657 658 /* 659 * A host route through the loopback interface is 660 * installed for each interface adddress. In pre 8.0 661 * releases the interface address of a PPP link type 662 * is not reachable locally. This behavior is fixed as 663 * part of the new L2/L3 redesign and rewrite work. The 664 * signature of this interface address route is the 665 * AF_LINK sa_family type of the rt_gateway, and the 666 * rt_ifp has the IFF_LOOPBACK flag set. 667 */ 668 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 669 if (ss.ss_family == AF_LINK && 670 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 671 info.rti_flags &= ~RTF_GATEWAY; 672 info.rti_flags |= RTF_GWFLAG_COMPAT; 673 } 674 rib_free_info(&ginfo); 675 } 676 } 677 678 switch (rtm->rtm_type) { 679 struct rtentry *saved_nrt; 680 681 case RTM_ADD: 682 case RTM_CHANGE: 683 if (rtm->rtm_type == RTM_ADD) { 684 if (info.rti_info[RTAX_GATEWAY] == NULL) 685 senderr(EINVAL); 686 } 687 saved_nrt = NULL; 688 689 /* support for new ARP code */ 690 if (info.rti_info[RTAX_GATEWAY] != NULL && 691 info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 692 (rtm->rtm_flags & RTF_LLDATA) != 0) { 693 error = lla_rt_output(rtm, &info); 694 #ifdef INET6 695 if (error == 0) 696 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 697 #endif 698 break; 699 } 700 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt, 701 fibnum); 702 if (error == 0 && saved_nrt != NULL) { 703 #ifdef INET6 704 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 705 #endif 706 RT_LOCK(saved_nrt); 707 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 708 RT_REMREF(saved_nrt); 709 RT_UNLOCK(saved_nrt); 710 } 711 break; 712 713 case RTM_DELETE: 714 saved_nrt = NULL; 715 /* support for new ARP code */ 716 if (info.rti_info[RTAX_GATEWAY] && 717 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 718 (rtm->rtm_flags & RTF_LLDATA) != 0) { 719 error = lla_rt_output(rtm, &info); 720 #ifdef INET6 721 if (error == 0) 722 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 723 #endif 724 break; 725 } 726 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum); 727 if (error == 0) { 728 RT_LOCK(saved_nrt); 729 rt = saved_nrt; 730 goto report; 731 } 732 #ifdef INET6 733 /* rt_msg2() will not be used when RTM_DELETE fails. */ 734 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 735 #endif 736 break; 737 738 case RTM_GET: 739 rnh = rt_tables_get_rnh(fibnum, saf); 740 if (rnh == NULL) 741 senderr(EAFNOSUPPORT); 742 743 RIB_RLOCK(rnh); 744 745 if (info.rti_info[RTAX_NETMASK] == NULL && 746 rtm->rtm_type == RTM_GET) { 747 /* 748 * Provide longest prefix match for 749 * address lookup (no mask). 750 * 'route -n get addr' 751 */ 752 rt = (struct rtentry *) rnh->rnh_matchaddr( 753 info.rti_info[RTAX_DST], &rnh->head); 754 } else 755 rt = (struct rtentry *) rnh->rnh_lookup( 756 info.rti_info[RTAX_DST], 757 info.rti_info[RTAX_NETMASK], &rnh->head); 758 759 if (rt == NULL) { 760 RIB_RUNLOCK(rnh); 761 senderr(ESRCH); 762 } 763 #ifdef RADIX_MPATH 764 /* 765 * for RTM_CHANGE/LOCK, if we got multipath routes, 766 * we require users to specify a matching RTAX_GATEWAY. 767 * 768 * for RTM_GET, gate is optional even with multipath. 769 * if gate == NULL the first match is returned. 770 * (no need to call rt_mpath_matchgate if gate == NULL) 771 */ 772 if (rt_mpath_capable(rnh) && 773 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 774 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 775 if (!rt) { 776 RIB_RUNLOCK(rnh); 777 senderr(ESRCH); 778 } 779 } 780 #endif 781 /* 782 * If performing proxied L2 entry insertion, and 783 * the actual PPP host entry is found, perform 784 * another search to retrieve the prefix route of 785 * the local end point of the PPP link. 786 */ 787 if (rtm->rtm_flags & RTF_ANNOUNCE) { 788 struct sockaddr laddr; 789 790 if (rt->rt_ifp != NULL && 791 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 792 struct epoch_tracker et; 793 struct ifaddr *ifa; 794 795 NET_EPOCH_ENTER(et); 796 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1, 797 RT_ALL_FIBS); 798 if (ifa != NULL) 799 rt_maskedcopy(ifa->ifa_addr, 800 &laddr, 801 ifa->ifa_netmask); 802 NET_EPOCH_EXIT(et); 803 } else 804 rt_maskedcopy(rt->rt_ifa->ifa_addr, 805 &laddr, 806 rt->rt_ifa->ifa_netmask); 807 /* 808 * refactor rt and no lock operation necessary 809 */ 810 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 811 &rnh->head); 812 if (rt == NULL) { 813 RIB_RUNLOCK(rnh); 814 senderr(ESRCH); 815 } 816 } 817 RT_LOCK(rt); 818 RT_ADDREF(rt); 819 RIB_RUNLOCK(rnh); 820 821 report: 822 RT_LOCK_ASSERT(rt); 823 if ((rt->rt_flags & RTF_HOST) == 0 824 ? jailed_without_vnet(curthread->td_ucred) 825 : prison_if(curthread->td_ucred, 826 rt_key(rt)) != 0) { 827 RT_UNLOCK(rt); 828 senderr(ESRCH); 829 } 830 info.rti_info[RTAX_DST] = rt_key(rt); 831 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 832 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 833 rt_mask(rt), &ss); 834 info.rti_info[RTAX_GENMASK] = 0; 835 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 836 ifp = rt->rt_ifp; 837 if (ifp) { 838 info.rti_info[RTAX_IFP] = 839 ifp->if_addr->ifa_addr; 840 error = rtm_get_jailed(&info, ifp, rt, 841 &saun, curthread->td_ucred); 842 if (error != 0) { 843 RT_UNLOCK(rt); 844 senderr(error); 845 } 846 if (ifp->if_flags & IFF_POINTOPOINT) 847 info.rti_info[RTAX_BRD] = 848 rt->rt_ifa->ifa_dstaddr; 849 rtm->rtm_index = ifp->if_index; 850 } else { 851 info.rti_info[RTAX_IFP] = NULL; 852 info.rti_info[RTAX_IFA] = NULL; 853 } 854 } else if ((ifp = rt->rt_ifp) != NULL) { 855 rtm->rtm_index = ifp->if_index; 856 } 857 858 /* Check if we need to realloc storage */ 859 rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len); 860 if (len > alloc_len) { 861 struct rt_msghdr *new_rtm; 862 new_rtm = malloc(len, M_TEMP, M_NOWAIT); 863 if (new_rtm == NULL) { 864 RT_UNLOCK(rt); 865 senderr(ENOBUFS); 866 } 867 bcopy(rtm, new_rtm, rtm->rtm_msglen); 868 free(rtm, M_TEMP); 869 rtm = new_rtm; 870 alloc_len = len; 871 } 872 873 w.w_tmem = (caddr_t)rtm; 874 w.w_tmemsize = alloc_len; 875 rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len); 876 877 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 878 rtm->rtm_flags = RTF_GATEWAY | 879 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 880 else 881 rtm->rtm_flags = rt->rt_flags; 882 rt_getmetrics(rt, &rtm->rtm_rmx); 883 rtm->rtm_addrs = info.rti_addrs; 884 885 RT_UNLOCK(rt); 886 break; 887 888 default: 889 senderr(EOPNOTSUPP); 890 } 891 892 flush: 893 if (rt != NULL) 894 RTFREE(rt); 895 /* 896 * Check to see if we don't want our own messages. 897 */ 898 if ((so->so_options & SO_USELOOPBACK) == 0) { 899 if (V_route_cb.any_count <= 1) { 900 if (rtm != NULL) 901 free(rtm, M_TEMP); 902 m_freem(m); 903 return (error); 904 } 905 /* There is another listener, so construct message */ 906 rp = sotorawcb(so); 907 } 908 909 if (rtm != NULL) { 910 #ifdef INET6 911 if (rti_need_deembed) { 912 /* sin6_scope_id is recovered before sending rtm. */ 913 sin6 = (struct sockaddr_in6 *)&ss; 914 for (i = 0; i < RTAX_MAX; i++) { 915 if (info.rti_info[i] == NULL) 916 continue; 917 if (info.rti_info[i]->sa_family != AF_INET6) 918 continue; 919 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 920 if (sa6_recoverscope(sin6) == 0) 921 bcopy(sin6, info.rti_info[i], 922 sizeof(*sin6)); 923 } 924 } 925 #endif 926 if (error != 0) 927 rtm->rtm_errno = error; 928 else 929 rtm->rtm_flags |= RTF_DONE; 930 931 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 932 if (m->m_pkthdr.len < rtm->rtm_msglen) { 933 m_freem(m); 934 m = NULL; 935 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 936 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 937 938 free(rtm, M_TEMP); 939 } 940 if (m != NULL) { 941 M_SETFIB(m, fibnum); 942 m->m_flags |= RTS_FILTER_FIB; 943 if (rp) { 944 /* 945 * XXX insure we don't get a copy by 946 * invalidating our protocol 947 */ 948 unsigned short family = rp->rcb_proto.sp_family; 949 rp->rcb_proto.sp_family = 0; 950 rt_dispatch(m, saf); 951 rp->rcb_proto.sp_family = family; 952 } else 953 rt_dispatch(m, saf); 954 } 955 956 return (error); 957 } 958 959 static void 960 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 961 { 962 963 bzero(out, sizeof(*out)); 964 out->rmx_mtu = rt->rt_mtu; 965 out->rmx_weight = rt->rt_weight; 966 out->rmx_pksent = counter_u64_fetch(rt->rt_pksent); 967 /* Kernel -> userland timebase conversion. */ 968 out->rmx_expire = rt->rt_expire ? 969 rt->rt_expire - time_uptime + time_second : 0; 970 } 971 972 /* 973 * Extract the addresses of the passed sockaddrs. 974 * Do a little sanity checking so as to avoid bad memory references. 975 * This data is derived straight from userland. 976 */ 977 static int 978 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 979 { 980 struct sockaddr *sa; 981 int i; 982 983 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 984 if ((rtinfo->rti_addrs & (1 << i)) == 0) 985 continue; 986 sa = (struct sockaddr *)cp; 987 /* 988 * It won't fit. 989 */ 990 if (cp + sa->sa_len > cplim) 991 return (EINVAL); 992 /* 993 * there are no more.. quit now 994 * If there are more bits, they are in error. 995 * I've seen this. route(1) can evidently generate these. 996 * This causes kernel to core dump. 997 * for compatibility, If we see this, point to a safe address. 998 */ 999 if (sa->sa_len == 0) { 1000 rtinfo->rti_info[i] = &sa_zero; 1001 return (0); /* should be EINVAL but for compat */ 1002 } 1003 /* accept it */ 1004 #ifdef INET6 1005 if (sa->sa_family == AF_INET6) 1006 sa6_embedscope((struct sockaddr_in6 *)sa, 1007 V_ip6_use_defzone); 1008 #endif 1009 rtinfo->rti_info[i] = sa; 1010 cp += SA_SIZE(sa); 1011 } 1012 return (0); 1013 } 1014 1015 /* 1016 * Fill in @dmask with valid netmask leaving original @smask 1017 * intact. Mostly used with radix netmasks. 1018 */ 1019 static struct sockaddr * 1020 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask, 1021 struct sockaddr_storage *dmask) 1022 { 1023 if (dst == NULL || smask == NULL) 1024 return (NULL); 1025 1026 memset(dmask, 0, dst->sa_len); 1027 memcpy(dmask, smask, smask->sa_len); 1028 dmask->ss_len = dst->sa_len; 1029 dmask->ss_family = dst->sa_family; 1030 1031 return ((struct sockaddr *)dmask); 1032 } 1033 1034 /* 1035 * Writes information related to @rtinfo object to newly-allocated mbuf. 1036 * Assumes MCLBYTES is enough to construct any message. 1037 * Used for OS notifications of vaious events (if/ifa announces,etc) 1038 * 1039 * Returns allocated mbuf or NULL on failure. 1040 */ 1041 static struct mbuf * 1042 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1043 { 1044 struct rt_msghdr *rtm; 1045 struct mbuf *m; 1046 int i; 1047 struct sockaddr *sa; 1048 #ifdef INET6 1049 struct sockaddr_storage ss; 1050 struct sockaddr_in6 *sin6; 1051 #endif 1052 int len, dlen; 1053 1054 switch (type) { 1055 1056 case RTM_DELADDR: 1057 case RTM_NEWADDR: 1058 len = sizeof(struct ifa_msghdr); 1059 break; 1060 1061 case RTM_DELMADDR: 1062 case RTM_NEWMADDR: 1063 len = sizeof(struct ifma_msghdr); 1064 break; 1065 1066 case RTM_IFINFO: 1067 len = sizeof(struct if_msghdr); 1068 break; 1069 1070 case RTM_IFANNOUNCE: 1071 case RTM_IEEE80211: 1072 len = sizeof(struct if_announcemsghdr); 1073 break; 1074 1075 default: 1076 len = sizeof(struct rt_msghdr); 1077 } 1078 1079 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1080 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1081 if (len > MHLEN) 1082 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1083 else 1084 m = m_gethdr(M_NOWAIT, MT_DATA); 1085 if (m == NULL) 1086 return (m); 1087 1088 m->m_pkthdr.len = m->m_len = len; 1089 rtm = mtod(m, struct rt_msghdr *); 1090 bzero((caddr_t)rtm, len); 1091 for (i = 0; i < RTAX_MAX; i++) { 1092 if ((sa = rtinfo->rti_info[i]) == NULL) 1093 continue; 1094 rtinfo->rti_addrs |= (1 << i); 1095 dlen = SA_SIZE(sa); 1096 #ifdef INET6 1097 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1098 sin6 = (struct sockaddr_in6 *)&ss; 1099 bcopy(sa, sin6, sizeof(*sin6)); 1100 if (sa6_recoverscope(sin6) == 0) 1101 sa = (struct sockaddr *)sin6; 1102 } 1103 #endif 1104 m_copyback(m, len, dlen, (caddr_t)sa); 1105 len += dlen; 1106 } 1107 if (m->m_pkthdr.len != len) { 1108 m_freem(m); 1109 return (NULL); 1110 } 1111 rtm->rtm_msglen = len; 1112 rtm->rtm_version = RTM_VERSION; 1113 rtm->rtm_type = type; 1114 return (m); 1115 } 1116 1117 /* 1118 * Writes information related to @rtinfo object to preallocated buffer. 1119 * Stores needed size in @plen. If @w is NULL, calculates size without 1120 * writing. 1121 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1122 * 1123 * Returns 0 on success. 1124 * 1125 */ 1126 static int 1127 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1128 { 1129 int i; 1130 int len, buflen = 0, dlen; 1131 caddr_t cp = NULL; 1132 struct rt_msghdr *rtm = NULL; 1133 #ifdef INET6 1134 struct sockaddr_storage ss; 1135 struct sockaddr_in6 *sin6; 1136 #endif 1137 #ifdef COMPAT_FREEBSD32 1138 bool compat32 = false; 1139 #endif 1140 1141 switch (type) { 1142 1143 case RTM_DELADDR: 1144 case RTM_NEWADDR: 1145 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1146 #ifdef COMPAT_FREEBSD32 1147 if (w->w_req->flags & SCTL_MASK32) { 1148 len = sizeof(struct ifa_msghdrl32); 1149 compat32 = true; 1150 } else 1151 #endif 1152 len = sizeof(struct ifa_msghdrl); 1153 } else 1154 len = sizeof(struct ifa_msghdr); 1155 break; 1156 1157 case RTM_IFINFO: 1158 #ifdef COMPAT_FREEBSD32 1159 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1160 if (w->w_op == NET_RT_IFLISTL) 1161 len = sizeof(struct if_msghdrl32); 1162 else 1163 len = sizeof(struct if_msghdr32); 1164 compat32 = true; 1165 break; 1166 } 1167 #endif 1168 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1169 len = sizeof(struct if_msghdrl); 1170 else 1171 len = sizeof(struct if_msghdr); 1172 break; 1173 1174 case RTM_NEWMADDR: 1175 len = sizeof(struct ifma_msghdr); 1176 break; 1177 1178 default: 1179 len = sizeof(struct rt_msghdr); 1180 } 1181 1182 if (w != NULL) { 1183 rtm = (struct rt_msghdr *)w->w_tmem; 1184 buflen = w->w_tmemsize - len; 1185 cp = (caddr_t)w->w_tmem + len; 1186 } 1187 1188 rtinfo->rti_addrs = 0; 1189 for (i = 0; i < RTAX_MAX; i++) { 1190 struct sockaddr *sa; 1191 1192 if ((sa = rtinfo->rti_info[i]) == NULL) 1193 continue; 1194 rtinfo->rti_addrs |= (1 << i); 1195 #ifdef COMPAT_FREEBSD32 1196 if (compat32) 1197 dlen = SA_SIZE32(sa); 1198 else 1199 #endif 1200 dlen = SA_SIZE(sa); 1201 if (cp != NULL && buflen >= dlen) { 1202 #ifdef INET6 1203 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1204 sin6 = (struct sockaddr_in6 *)&ss; 1205 bcopy(sa, sin6, sizeof(*sin6)); 1206 if (sa6_recoverscope(sin6) == 0) 1207 sa = (struct sockaddr *)sin6; 1208 } 1209 #endif 1210 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1211 cp += dlen; 1212 buflen -= dlen; 1213 } else if (cp != NULL) { 1214 /* 1215 * Buffer too small. Count needed size 1216 * and return with error. 1217 */ 1218 cp = NULL; 1219 } 1220 1221 len += dlen; 1222 } 1223 1224 if (cp != NULL) { 1225 dlen = ALIGN(len) - len; 1226 if (buflen < dlen) 1227 cp = NULL; 1228 else { 1229 bzero(cp, dlen); 1230 cp += dlen; 1231 buflen -= dlen; 1232 } 1233 } 1234 len = ALIGN(len); 1235 1236 if (cp != NULL) { 1237 /* fill header iff buffer is large enough */ 1238 rtm->rtm_version = RTM_VERSION; 1239 rtm->rtm_type = type; 1240 rtm->rtm_msglen = len; 1241 } 1242 1243 *plen = len; 1244 1245 if (w != NULL && cp == NULL) 1246 return (ENOBUFS); 1247 1248 return (0); 1249 } 1250 1251 /* 1252 * This routine is called to generate a message from the routing 1253 * socket indicating that a redirect has occurred, a routing lookup 1254 * has failed, or that a protocol has detected timeouts to a particular 1255 * destination. 1256 */ 1257 void 1258 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1259 int fibnum) 1260 { 1261 struct rt_msghdr *rtm; 1262 struct mbuf *m; 1263 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1264 1265 if (V_route_cb.any_count == 0) 1266 return; 1267 m = rtsock_msg_mbuf(type, rtinfo); 1268 if (m == NULL) 1269 return; 1270 1271 if (fibnum != RT_ALL_FIBS) { 1272 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1273 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1274 M_SETFIB(m, fibnum); 1275 m->m_flags |= RTS_FILTER_FIB; 1276 } 1277 1278 rtm = mtod(m, struct rt_msghdr *); 1279 rtm->rtm_flags = RTF_DONE | flags; 1280 rtm->rtm_errno = error; 1281 rtm->rtm_addrs = rtinfo->rti_addrs; 1282 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1283 } 1284 1285 void 1286 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1287 { 1288 1289 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1290 } 1291 1292 /* 1293 * This routine is called to generate a message from the routing 1294 * socket indicating that the status of a network interface has changed. 1295 */ 1296 void 1297 rt_ifmsg(struct ifnet *ifp) 1298 { 1299 struct if_msghdr *ifm; 1300 struct mbuf *m; 1301 struct rt_addrinfo info; 1302 1303 if (V_route_cb.any_count == 0) 1304 return; 1305 bzero((caddr_t)&info, sizeof(info)); 1306 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1307 if (m == NULL) 1308 return; 1309 ifm = mtod(m, struct if_msghdr *); 1310 ifm->ifm_index = ifp->if_index; 1311 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1312 if_data_copy(ifp, &ifm->ifm_data); 1313 ifm->ifm_addrs = 0; 1314 rt_dispatch(m, AF_UNSPEC); 1315 } 1316 1317 /* 1318 * Announce interface address arrival/withdraw. 1319 * Please do not call directly, use rt_addrmsg(). 1320 * Assume input data to be valid. 1321 * Returns 0 on success. 1322 */ 1323 int 1324 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1325 { 1326 struct rt_addrinfo info; 1327 struct sockaddr *sa; 1328 int ncmd; 1329 struct mbuf *m; 1330 struct ifa_msghdr *ifam; 1331 struct ifnet *ifp = ifa->ifa_ifp; 1332 struct sockaddr_storage ss; 1333 1334 if (V_route_cb.any_count == 0) 1335 return (0); 1336 1337 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1338 1339 bzero((caddr_t)&info, sizeof(info)); 1340 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1341 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1342 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1343 info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss); 1344 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1345 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1346 return (ENOBUFS); 1347 ifam = mtod(m, struct ifa_msghdr *); 1348 ifam->ifam_index = ifp->if_index; 1349 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1350 ifam->ifam_flags = ifa->ifa_flags; 1351 ifam->ifam_addrs = info.rti_addrs; 1352 1353 if (fibnum != RT_ALL_FIBS) { 1354 M_SETFIB(m, fibnum); 1355 m->m_flags |= RTS_FILTER_FIB; 1356 } 1357 1358 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1359 1360 return (0); 1361 } 1362 1363 /* 1364 * Announce route addition/removal. 1365 * Please do not call directly, use rt_routemsg(). 1366 * Note that @rt data MAY be inconsistent/invalid: 1367 * if some userland app sends us "invalid" route message (invalid mask, 1368 * no dst, wrong address families, etc...) we need to pass it back 1369 * to app (and any other rtsock consumers) with rtm_errno field set to 1370 * non-zero value. 1371 * 1372 * Returns 0 on success. 1373 */ 1374 int 1375 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1376 int fibnum) 1377 { 1378 struct rt_addrinfo info; 1379 struct sockaddr *sa; 1380 struct mbuf *m; 1381 struct rt_msghdr *rtm; 1382 struct sockaddr_storage ss; 1383 1384 if (V_route_cb.any_count == 0) 1385 return (0); 1386 1387 bzero((caddr_t)&info, sizeof(info)); 1388 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1389 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss); 1390 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1391 if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL) 1392 return (ENOBUFS); 1393 rtm = mtod(m, struct rt_msghdr *); 1394 rtm->rtm_index = ifp->if_index; 1395 rtm->rtm_flags |= rt->rt_flags; 1396 rtm->rtm_errno = error; 1397 rtm->rtm_addrs = info.rti_addrs; 1398 1399 if (fibnum != RT_ALL_FIBS) { 1400 M_SETFIB(m, fibnum); 1401 m->m_flags |= RTS_FILTER_FIB; 1402 } 1403 1404 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1405 1406 return (0); 1407 } 1408 1409 /* 1410 * This is the analogue to the rt_newaddrmsg which performs the same 1411 * function but for multicast group memberhips. This is easier since 1412 * there is no route state to worry about. 1413 */ 1414 void 1415 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1416 { 1417 struct rt_addrinfo info; 1418 struct mbuf *m = NULL; 1419 struct ifnet *ifp = ifma->ifma_ifp; 1420 struct ifma_msghdr *ifmam; 1421 1422 if (V_route_cb.any_count == 0) 1423 return; 1424 1425 bzero((caddr_t)&info, sizeof(info)); 1426 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1427 if (ifp && ifp->if_addr) 1428 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1429 else 1430 info.rti_info[RTAX_IFP] = NULL; 1431 /* 1432 * If a link-layer address is present, present it as a ``gateway'' 1433 * (similarly to how ARP entries, e.g., are presented). 1434 */ 1435 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1436 m = rtsock_msg_mbuf(cmd, &info); 1437 if (m == NULL) 1438 return; 1439 ifmam = mtod(m, struct ifma_msghdr *); 1440 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1441 __func__)); 1442 ifmam->ifmam_index = ifp->if_index; 1443 ifmam->ifmam_addrs = info.rti_addrs; 1444 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1445 } 1446 1447 static struct mbuf * 1448 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1449 struct rt_addrinfo *info) 1450 { 1451 struct if_announcemsghdr *ifan; 1452 struct mbuf *m; 1453 1454 if (V_route_cb.any_count == 0) 1455 return NULL; 1456 bzero((caddr_t)info, sizeof(*info)); 1457 m = rtsock_msg_mbuf(type, info); 1458 if (m != NULL) { 1459 ifan = mtod(m, struct if_announcemsghdr *); 1460 ifan->ifan_index = ifp->if_index; 1461 strlcpy(ifan->ifan_name, ifp->if_xname, 1462 sizeof(ifan->ifan_name)); 1463 ifan->ifan_what = what; 1464 } 1465 return m; 1466 } 1467 1468 /* 1469 * This is called to generate routing socket messages indicating 1470 * IEEE80211 wireless events. 1471 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1472 */ 1473 void 1474 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1475 { 1476 struct mbuf *m; 1477 struct rt_addrinfo info; 1478 1479 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1480 if (m != NULL) { 1481 /* 1482 * Append the ieee80211 data. Try to stick it in the 1483 * mbuf containing the ifannounce msg; otherwise allocate 1484 * a new mbuf and append. 1485 * 1486 * NB: we assume m is a single mbuf. 1487 */ 1488 if (data_len > M_TRAILINGSPACE(m)) { 1489 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1490 if (n == NULL) { 1491 m_freem(m); 1492 return; 1493 } 1494 bcopy(data, mtod(n, void *), data_len); 1495 n->m_len = data_len; 1496 m->m_next = n; 1497 } else if (data_len > 0) { 1498 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1499 m->m_len += data_len; 1500 } 1501 if (m->m_flags & M_PKTHDR) 1502 m->m_pkthdr.len += data_len; 1503 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1504 rt_dispatch(m, AF_UNSPEC); 1505 } 1506 } 1507 1508 /* 1509 * This is called to generate routing socket messages indicating 1510 * network interface arrival and departure. 1511 */ 1512 void 1513 rt_ifannouncemsg(struct ifnet *ifp, int what) 1514 { 1515 struct mbuf *m; 1516 struct rt_addrinfo info; 1517 1518 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1519 if (m != NULL) 1520 rt_dispatch(m, AF_UNSPEC); 1521 } 1522 1523 static void 1524 rt_dispatch(struct mbuf *m, sa_family_t saf) 1525 { 1526 struct m_tag *tag; 1527 1528 /* 1529 * Preserve the family from the sockaddr, if any, in an m_tag for 1530 * use when injecting the mbuf into the routing socket buffer from 1531 * the netisr. 1532 */ 1533 if (saf != AF_UNSPEC) { 1534 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1535 M_NOWAIT); 1536 if (tag == NULL) { 1537 m_freem(m); 1538 return; 1539 } 1540 *(unsigned short *)(tag + 1) = saf; 1541 m_tag_prepend(m, tag); 1542 } 1543 #ifdef VIMAGE 1544 if (V_loif) 1545 m->m_pkthdr.rcvif = V_loif; 1546 else { 1547 m_freem(m); 1548 return; 1549 } 1550 #endif 1551 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1552 } 1553 1554 /* 1555 * This is used in dumping the kernel table via sysctl(). 1556 */ 1557 static int 1558 sysctl_dumpentry(struct radix_node *rn, void *vw) 1559 { 1560 struct walkarg *w = vw; 1561 struct rtentry *rt = (struct rtentry *)rn; 1562 int error = 0, size; 1563 struct rt_addrinfo info; 1564 struct sockaddr_storage ss; 1565 1566 NET_EPOCH_ASSERT(); 1567 1568 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1569 return 0; 1570 if ((rt->rt_flags & RTF_HOST) == 0 1571 ? jailed_without_vnet(w->w_req->td->td_ucred) 1572 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1573 return (0); 1574 bzero((caddr_t)&info, sizeof(info)); 1575 info.rti_info[RTAX_DST] = rt_key(rt); 1576 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1577 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1578 rt_mask(rt), &ss); 1579 info.rti_info[RTAX_GENMASK] = 0; 1580 if (rt->rt_ifp && !(rt->rt_ifp->if_flags & IFF_DYING)) { 1581 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1582 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1583 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1584 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1585 } 1586 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1587 return (error); 1588 if (w->w_req && w->w_tmem) { 1589 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1590 1591 bzero(&rtm->rtm_index, 1592 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 1593 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1594 rtm->rtm_flags = RTF_GATEWAY | 1595 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1596 else 1597 rtm->rtm_flags = rt->rt_flags; 1598 rt_getmetrics(rt, &rtm->rtm_rmx); 1599 rtm->rtm_index = rt->rt_ifp->if_index; 1600 rtm->rtm_addrs = info.rti_addrs; 1601 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1602 return (error); 1603 } 1604 return (error); 1605 } 1606 1607 static int 1608 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1609 struct rt_addrinfo *info, struct walkarg *w, int len) 1610 { 1611 struct if_msghdrl *ifm; 1612 struct if_data *ifd; 1613 1614 ifm = (struct if_msghdrl *)w->w_tmem; 1615 1616 #ifdef COMPAT_FREEBSD32 1617 if (w->w_req->flags & SCTL_MASK32) { 1618 struct if_msghdrl32 *ifm32; 1619 1620 ifm32 = (struct if_msghdrl32 *)ifm; 1621 ifm32->ifm_addrs = info->rti_addrs; 1622 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1623 ifm32->ifm_index = ifp->if_index; 1624 ifm32->_ifm_spare1 = 0; 1625 ifm32->ifm_len = sizeof(*ifm32); 1626 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1627 ifm32->_ifm_spare2 = 0; 1628 ifd = &ifm32->ifm_data; 1629 } else 1630 #endif 1631 { 1632 ifm->ifm_addrs = info->rti_addrs; 1633 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1634 ifm->ifm_index = ifp->if_index; 1635 ifm->_ifm_spare1 = 0; 1636 ifm->ifm_len = sizeof(*ifm); 1637 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1638 ifm->_ifm_spare2 = 0; 1639 ifd = &ifm->ifm_data; 1640 } 1641 1642 memcpy(ifd, src_ifd, sizeof(*ifd)); 1643 1644 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1645 } 1646 1647 static int 1648 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 1649 struct rt_addrinfo *info, struct walkarg *w, int len) 1650 { 1651 struct if_msghdr *ifm; 1652 struct if_data *ifd; 1653 1654 ifm = (struct if_msghdr *)w->w_tmem; 1655 1656 #ifdef COMPAT_FREEBSD32 1657 if (w->w_req->flags & SCTL_MASK32) { 1658 struct if_msghdr32 *ifm32; 1659 1660 ifm32 = (struct if_msghdr32 *)ifm; 1661 ifm32->ifm_addrs = info->rti_addrs; 1662 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1663 ifm32->ifm_index = ifp->if_index; 1664 ifm32->_ifm_spare1 = 0; 1665 ifd = &ifm32->ifm_data; 1666 } else 1667 #endif 1668 { 1669 ifm->ifm_addrs = info->rti_addrs; 1670 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1671 ifm->ifm_index = ifp->if_index; 1672 ifm->_ifm_spare1 = 0; 1673 ifd = &ifm->ifm_data; 1674 } 1675 1676 memcpy(ifd, src_ifd, sizeof(*ifd)); 1677 1678 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1679 } 1680 1681 static int 1682 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1683 struct walkarg *w, int len) 1684 { 1685 struct ifa_msghdrl *ifam; 1686 struct if_data *ifd; 1687 1688 ifam = (struct ifa_msghdrl *)w->w_tmem; 1689 1690 #ifdef COMPAT_FREEBSD32 1691 if (w->w_req->flags & SCTL_MASK32) { 1692 struct ifa_msghdrl32 *ifam32; 1693 1694 ifam32 = (struct ifa_msghdrl32 *)ifam; 1695 ifam32->ifam_addrs = info->rti_addrs; 1696 ifam32->ifam_flags = ifa->ifa_flags; 1697 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1698 ifam32->_ifam_spare1 = 0; 1699 ifam32->ifam_len = sizeof(*ifam32); 1700 ifam32->ifam_data_off = 1701 offsetof(struct ifa_msghdrl32, ifam_data); 1702 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1703 ifd = &ifam32->ifam_data; 1704 } else 1705 #endif 1706 { 1707 ifam->ifam_addrs = info->rti_addrs; 1708 ifam->ifam_flags = ifa->ifa_flags; 1709 ifam->ifam_index = ifa->ifa_ifp->if_index; 1710 ifam->_ifam_spare1 = 0; 1711 ifam->ifam_len = sizeof(*ifam); 1712 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1713 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1714 ifd = &ifam->ifam_data; 1715 } 1716 1717 bzero(ifd, sizeof(*ifd)); 1718 ifd->ifi_datalen = sizeof(struct if_data); 1719 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1720 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1721 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1722 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1723 1724 /* Fixup if_data carp(4) vhid. */ 1725 if (carp_get_vhid_p != NULL) 1726 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1727 1728 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1729 } 1730 1731 static int 1732 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1733 struct walkarg *w, int len) 1734 { 1735 struct ifa_msghdr *ifam; 1736 1737 ifam = (struct ifa_msghdr *)w->w_tmem; 1738 ifam->ifam_addrs = info->rti_addrs; 1739 ifam->ifam_flags = ifa->ifa_flags; 1740 ifam->ifam_index = ifa->ifa_ifp->if_index; 1741 ifam->_ifam_spare1 = 0; 1742 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1743 1744 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1745 } 1746 1747 static int 1748 sysctl_iflist(int af, struct walkarg *w) 1749 { 1750 struct ifnet *ifp; 1751 struct ifaddr *ifa; 1752 struct if_data ifd; 1753 struct rt_addrinfo info; 1754 int len, error = 0; 1755 struct sockaddr_storage ss; 1756 struct epoch_tracker et; 1757 1758 bzero((caddr_t)&info, sizeof(info)); 1759 bzero(&ifd, sizeof(ifd)); 1760 NET_EPOCH_ENTER(et); 1761 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1762 if (w->w_arg && w->w_arg != ifp->if_index) 1763 continue; 1764 if_data_copy(ifp, &ifd); 1765 ifa = ifp->if_addr; 1766 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1767 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1768 if (error != 0) 1769 goto done; 1770 info.rti_info[RTAX_IFP] = NULL; 1771 if (w->w_req && w->w_tmem) { 1772 if (w->w_op == NET_RT_IFLISTL) 1773 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 1774 len); 1775 else 1776 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 1777 len); 1778 if (error) 1779 goto done; 1780 } 1781 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 1782 if (af && af != ifa->ifa_addr->sa_family) 1783 continue; 1784 if (prison_if(w->w_req->td->td_ucred, 1785 ifa->ifa_addr) != 0) 1786 continue; 1787 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1788 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1789 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1790 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1791 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1792 if (error != 0) 1793 goto done; 1794 if (w->w_req && w->w_tmem) { 1795 if (w->w_op == NET_RT_IFLISTL) 1796 error = sysctl_iflist_ifaml(ifa, &info, 1797 w, len); 1798 else 1799 error = sysctl_iflist_ifam(ifa, &info, 1800 w, len); 1801 if (error) 1802 goto done; 1803 } 1804 } 1805 info.rti_info[RTAX_IFA] = NULL; 1806 info.rti_info[RTAX_NETMASK] = NULL; 1807 info.rti_info[RTAX_BRD] = NULL; 1808 } 1809 done: 1810 NET_EPOCH_EXIT(et); 1811 return (error); 1812 } 1813 1814 static int 1815 sysctl_ifmalist(int af, struct walkarg *w) 1816 { 1817 struct rt_addrinfo info; 1818 struct epoch_tracker et; 1819 struct ifaddr *ifa; 1820 struct ifmultiaddr *ifma; 1821 struct ifnet *ifp; 1822 int error, len; 1823 1824 error = 0; 1825 bzero((caddr_t)&info, sizeof(info)); 1826 1827 NET_EPOCH_ENTER(et); 1828 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1829 if (w->w_arg && w->w_arg != ifp->if_index) 1830 continue; 1831 ifa = ifp->if_addr; 1832 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1833 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1834 if (af && af != ifma->ifma_addr->sa_family) 1835 continue; 1836 if (prison_if(w->w_req->td->td_ucred, 1837 ifma->ifma_addr) != 0) 1838 continue; 1839 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1840 info.rti_info[RTAX_GATEWAY] = 1841 (ifma->ifma_addr->sa_family != AF_LINK) ? 1842 ifma->ifma_lladdr : NULL; 1843 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1844 if (error != 0) 1845 break; 1846 if (w->w_req && w->w_tmem) { 1847 struct ifma_msghdr *ifmam; 1848 1849 ifmam = (struct ifma_msghdr *)w->w_tmem; 1850 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1851 ifmam->ifmam_flags = 0; 1852 ifmam->ifmam_addrs = info.rti_addrs; 1853 ifmam->_ifmam_spare1 = 0; 1854 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1855 if (error != 0) 1856 break; 1857 } 1858 } 1859 if (error != 0) 1860 break; 1861 } 1862 NET_EPOCH_EXIT(et); 1863 return (error); 1864 } 1865 1866 static int 1867 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1868 { 1869 RIB_RLOCK_TRACKER; 1870 int *name = (int *)arg1; 1871 u_int namelen = arg2; 1872 struct rib_head *rnh = NULL; /* silence compiler. */ 1873 int i, lim, error = EINVAL; 1874 int fib = 0; 1875 u_char af; 1876 struct walkarg w; 1877 1878 name ++; 1879 namelen--; 1880 if (req->newptr) 1881 return (EPERM); 1882 if (name[1] == NET_RT_DUMP) { 1883 if (namelen == 3) 1884 fib = req->td->td_proc->p_fibnum; 1885 else if (namelen == 4) 1886 fib = (name[3] == RT_ALL_FIBS) ? 1887 req->td->td_proc->p_fibnum : name[3]; 1888 else 1889 return ((namelen < 3) ? EISDIR : ENOTDIR); 1890 if (fib < 0 || fib >= rt_numfibs) 1891 return (EINVAL); 1892 } else if (namelen != 3) 1893 return ((namelen < 3) ? EISDIR : ENOTDIR); 1894 af = name[0]; 1895 if (af > AF_MAX) 1896 return (EINVAL); 1897 bzero(&w, sizeof(w)); 1898 w.w_op = name[1]; 1899 w.w_arg = name[2]; 1900 w.w_req = req; 1901 1902 error = sysctl_wire_old_buffer(req, 0); 1903 if (error) 1904 return (error); 1905 1906 /* 1907 * Allocate reply buffer in advance. 1908 * All rtsock messages has maximum length of u_short. 1909 */ 1910 w.w_tmemsize = 65536; 1911 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 1912 1913 switch (w.w_op) { 1914 1915 case NET_RT_DUMP: 1916 case NET_RT_FLAGS: 1917 if (af == 0) { /* dump all tables */ 1918 i = 1; 1919 lim = AF_MAX; 1920 } else /* dump only one table */ 1921 i = lim = af; 1922 1923 /* 1924 * take care of llinfo entries, the caller must 1925 * specify an AF 1926 */ 1927 if (w.w_op == NET_RT_FLAGS && 1928 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1929 if (af != 0) 1930 error = lltable_sysctl_dumparp(af, w.w_req); 1931 else 1932 error = EINVAL; 1933 break; 1934 } 1935 /* 1936 * take care of routing entries 1937 */ 1938 for (error = 0; error == 0 && i <= lim; i++) { 1939 rnh = rt_tables_get_rnh(fib, i); 1940 if (rnh != NULL) { 1941 struct epoch_tracker et; 1942 1943 RIB_RLOCK(rnh); 1944 NET_EPOCH_ENTER(et); 1945 error = rnh->rnh_walktree(&rnh->head, 1946 sysctl_dumpentry, &w); 1947 NET_EPOCH_EXIT(et); 1948 RIB_RUNLOCK(rnh); 1949 } else if (af != 0) 1950 error = EAFNOSUPPORT; 1951 } 1952 break; 1953 1954 case NET_RT_IFLIST: 1955 case NET_RT_IFLISTL: 1956 error = sysctl_iflist(af, &w); 1957 break; 1958 1959 case NET_RT_IFMALIST: 1960 error = sysctl_ifmalist(af, &w); 1961 break; 1962 } 1963 1964 free(w.w_tmem, M_TEMP); 1965 return (error); 1966 } 1967 1968 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1969 1970 /* 1971 * Definitions of protocols supported in the ROUTE domain. 1972 */ 1973 1974 static struct domain routedomain; /* or at least forward */ 1975 1976 static struct protosw routesw[] = { 1977 { 1978 .pr_type = SOCK_RAW, 1979 .pr_domain = &routedomain, 1980 .pr_flags = PR_ATOMIC|PR_ADDR, 1981 .pr_output = route_output, 1982 .pr_ctlinput = raw_ctlinput, 1983 .pr_init = raw_init, 1984 .pr_usrreqs = &route_usrreqs 1985 } 1986 }; 1987 1988 static struct domain routedomain = { 1989 .dom_family = PF_ROUTE, 1990 .dom_name = "route", 1991 .dom_protosw = routesw, 1992 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 1993 }; 1994 1995 VNET_DOMAIN_SET(route); 1996