xref: /freebsd/sys/net/rtsock.c (revision 652a9748855320619e075c4e83aef2f5294412d2)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
32  * $FreeBSD$
33  */
34 #include "opt_ddb.h"
35 #include "opt_mpath.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 
39 #include <sys/param.h>
40 #include <sys/jail.h>
41 #include <sys/kernel.h>
42 #include <sys/domain.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/rmlock.h>
50 #include <sys/rwlock.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 
57 #ifdef DDB
58 #include <ddb/ddb.h>
59 #include <ddb/db_lex.h>
60 #endif
61 
62 #include <net/if.h>
63 #include <net/if_var.h>
64 #include <net/if_dl.h>
65 #include <net/if_llatbl.h>
66 #include <net/if_types.h>
67 #include <net/netisr.h>
68 #include <net/raw_cb.h>
69 #include <net/route.h>
70 #include <net/route_var.h>
71 #include <net/vnet.h>
72 
73 #include <netinet/in.h>
74 #include <netinet/if_ether.h>
75 #include <netinet/ip_carp.h>
76 #ifdef INET6
77 #include <netinet6/ip6_var.h>
78 #include <netinet6/scope6_var.h>
79 #endif
80 
81 #ifdef COMPAT_FREEBSD32
82 #include <sys/mount.h>
83 #include <compat/freebsd32/freebsd32.h>
84 
85 struct if_msghdr32 {
86 	uint16_t ifm_msglen;
87 	uint8_t	ifm_version;
88 	uint8_t	ifm_type;
89 	int32_t	ifm_addrs;
90 	int32_t	ifm_flags;
91 	uint16_t ifm_index;
92 	uint16_t _ifm_spare1;
93 	struct	if_data ifm_data;
94 };
95 
96 struct if_msghdrl32 {
97 	uint16_t ifm_msglen;
98 	uint8_t	ifm_version;
99 	uint8_t	ifm_type;
100 	int32_t	ifm_addrs;
101 	int32_t	ifm_flags;
102 	uint16_t ifm_index;
103 	uint16_t _ifm_spare1;
104 	uint16_t ifm_len;
105 	uint16_t ifm_data_off;
106 	uint32_t _ifm_spare2;
107 	struct	if_data ifm_data;
108 };
109 
110 struct ifa_msghdrl32 {
111 	uint16_t ifam_msglen;
112 	uint8_t	ifam_version;
113 	uint8_t	ifam_type;
114 	int32_t	ifam_addrs;
115 	int32_t	ifam_flags;
116 	uint16_t ifam_index;
117 	uint16_t _ifam_spare1;
118 	uint16_t ifam_len;
119 	uint16_t ifam_data_off;
120 	int32_t	ifam_metric;
121 	struct	if_data ifam_data;
122 };
123 
124 #define SA_SIZE32(sa)						\
125     (  (((struct sockaddr *)(sa))->sa_len == 0) ?		\
126 	sizeof(int)		:				\
127 	1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
128 
129 #endif /* COMPAT_FREEBSD32 */
130 
131 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
132 
133 /* NB: these are not modified */
134 static struct	sockaddr route_src = { 2, PF_ROUTE, };
135 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
136 
137 /* These are external hooks for CARP. */
138 int	(*carp_get_vhid_p)(struct ifaddr *);
139 
140 /*
141  * Used by rtsock/raw_input callback code to decide whether to filter the update
142  * notification to a socket bound to a particular FIB.
143  */
144 #define	RTS_FILTER_FIB	M_PROTO8
145 
146 typedef struct {
147 	int	ip_count;	/* attached w/ AF_INET */
148 	int	ip6_count;	/* attached w/ AF_INET6 */
149 	int	any_count;	/* total attached */
150 } route_cb_t;
151 VNET_DEFINE_STATIC(route_cb_t, route_cb);
152 #define	V_route_cb VNET(route_cb)
153 
154 struct mtx rtsock_mtx;
155 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
156 
157 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
158 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
159 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
160 
161 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
162     "");
163 
164 struct walkarg {
165 	int	w_tmemsize;
166 	int	w_op, w_arg;
167 	caddr_t	w_tmem;
168 	struct sysctl_req *w_req;
169 };
170 
171 static void	rts_input(struct mbuf *m);
172 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
173 static int	rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
174 			struct walkarg *w, int *plen);
175 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
176 			struct rt_addrinfo *rtinfo);
177 static int	sysctl_dumpentry(struct radix_node *rn, void *vw);
178 static int	sysctl_iflist(int af, struct walkarg *w);
179 static int	sysctl_ifmalist(int af, struct walkarg *w);
180 static int	route_output(struct mbuf *m, struct socket *so, ...);
181 static void	rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out);
182 static void	rt_dispatch(struct mbuf *, sa_family_t);
183 static struct sockaddr	*rtsock_fix_netmask(struct sockaddr *dst,
184 			struct sockaddr *smask, struct sockaddr_storage *dmask);
185 static int	handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
186 			struct rt_msghdr *rtm, struct rtentry **ret_nrt);
187 static int	update_rtm_from_rte(struct rt_addrinfo *info,
188 			struct rt_msghdr **prtm, int alloc_len,
189 			struct rtentry *rt);
190 static void	send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
191 			struct mbuf *m, sa_family_t saf, u_int fibnum,
192 			int rtm_errno);
193 static int	can_export_rte(struct ucred *td_ucred, const struct rtentry *rt);
194 
195 static struct netisr_handler rtsock_nh = {
196 	.nh_name = "rtsock",
197 	.nh_handler = rts_input,
198 	.nh_proto = NETISR_ROUTE,
199 	.nh_policy = NETISR_POLICY_SOURCE,
200 };
201 
202 static int
203 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
204 {
205 	int error, qlimit;
206 
207 	netisr_getqlimit(&rtsock_nh, &qlimit);
208 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
209         if (error || !req->newptr)
210                 return (error);
211 	if (qlimit < 1)
212 		return (EINVAL);
213 	return (netisr_setqlimit(&rtsock_nh, qlimit));
214 }
215 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen,
216     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
217     0, 0, sysctl_route_netisr_maxqlen, "I",
218     "maximum routing socket dispatch queue length");
219 
220 static void
221 vnet_rts_init(void)
222 {
223 	int tmp;
224 
225 	if (IS_DEFAULT_VNET(curvnet)) {
226 		if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
227 			rtsock_nh.nh_qlimit = tmp;
228 		netisr_register(&rtsock_nh);
229 	}
230 #ifdef VIMAGE
231 	 else
232 		netisr_register_vnet(&rtsock_nh);
233 #endif
234 }
235 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
236     vnet_rts_init, 0);
237 
238 #ifdef VIMAGE
239 static void
240 vnet_rts_uninit(void)
241 {
242 
243 	netisr_unregister_vnet(&rtsock_nh);
244 }
245 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
246     vnet_rts_uninit, 0);
247 #endif
248 
249 static int
250 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
251     struct rawcb *rp)
252 {
253 	int fibnum;
254 
255 	KASSERT(m != NULL, ("%s: m is NULL", __func__));
256 	KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
257 	KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
258 
259 	/* No filtering requested. */
260 	if ((m->m_flags & RTS_FILTER_FIB) == 0)
261 		return (0);
262 
263 	/* Check if it is a rts and the fib matches the one of the socket. */
264 	fibnum = M_GETFIB(m);
265 	if (proto->sp_family != PF_ROUTE ||
266 	    rp->rcb_socket == NULL ||
267 	    rp->rcb_socket->so_fibnum == fibnum)
268 		return (0);
269 
270 	/* Filtering requested and no match, the socket shall be skipped. */
271 	return (1);
272 }
273 
274 static void
275 rts_input(struct mbuf *m)
276 {
277 	struct sockproto route_proto;
278 	unsigned short *family;
279 	struct m_tag *tag;
280 
281 	route_proto.sp_family = PF_ROUTE;
282 	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
283 	if (tag != NULL) {
284 		family = (unsigned short *)(tag + 1);
285 		route_proto.sp_protocol = *family;
286 		m_tag_delete(m, tag);
287 	} else
288 		route_proto.sp_protocol = 0;
289 
290 	raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
291 }
292 
293 /*
294  * It really doesn't make any sense at all for this code to share much
295  * with raw_usrreq.c, since its functionality is so restricted.  XXX
296  */
297 static void
298 rts_abort(struct socket *so)
299 {
300 
301 	raw_usrreqs.pru_abort(so);
302 }
303 
304 static void
305 rts_close(struct socket *so)
306 {
307 
308 	raw_usrreqs.pru_close(so);
309 }
310 
311 /* pru_accept is EOPNOTSUPP */
312 
313 static int
314 rts_attach(struct socket *so, int proto, struct thread *td)
315 {
316 	struct rawcb *rp;
317 	int error;
318 
319 	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
320 
321 	/* XXX */
322 	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
323 
324 	so->so_pcb = (caddr_t)rp;
325 	so->so_fibnum = td->td_proc->p_fibnum;
326 	error = raw_attach(so, proto);
327 	rp = sotorawcb(so);
328 	if (error) {
329 		so->so_pcb = NULL;
330 		free(rp, M_PCB);
331 		return error;
332 	}
333 	RTSOCK_LOCK();
334 	switch(rp->rcb_proto.sp_protocol) {
335 	case AF_INET:
336 		V_route_cb.ip_count++;
337 		break;
338 	case AF_INET6:
339 		V_route_cb.ip6_count++;
340 		break;
341 	}
342 	V_route_cb.any_count++;
343 	RTSOCK_UNLOCK();
344 	soisconnected(so);
345 	so->so_options |= SO_USELOOPBACK;
346 	return 0;
347 }
348 
349 static int
350 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
351 {
352 
353 	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
354 }
355 
356 static int
357 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
358 {
359 
360 	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
361 }
362 
363 /* pru_connect2 is EOPNOTSUPP */
364 /* pru_control is EOPNOTSUPP */
365 
366 static void
367 rts_detach(struct socket *so)
368 {
369 	struct rawcb *rp = sotorawcb(so);
370 
371 	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
372 
373 	RTSOCK_LOCK();
374 	switch(rp->rcb_proto.sp_protocol) {
375 	case AF_INET:
376 		V_route_cb.ip_count--;
377 		break;
378 	case AF_INET6:
379 		V_route_cb.ip6_count--;
380 		break;
381 	}
382 	V_route_cb.any_count--;
383 	RTSOCK_UNLOCK();
384 	raw_usrreqs.pru_detach(so);
385 }
386 
387 static int
388 rts_disconnect(struct socket *so)
389 {
390 
391 	return (raw_usrreqs.pru_disconnect(so));
392 }
393 
394 /* pru_listen is EOPNOTSUPP */
395 
396 static int
397 rts_peeraddr(struct socket *so, struct sockaddr **nam)
398 {
399 
400 	return (raw_usrreqs.pru_peeraddr(so, nam));
401 }
402 
403 /* pru_rcvd is EOPNOTSUPP */
404 /* pru_rcvoob is EOPNOTSUPP */
405 
406 static int
407 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
408 	 struct mbuf *control, struct thread *td)
409 {
410 
411 	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
412 }
413 
414 /* pru_sense is null */
415 
416 static int
417 rts_shutdown(struct socket *so)
418 {
419 
420 	return (raw_usrreqs.pru_shutdown(so));
421 }
422 
423 static int
424 rts_sockaddr(struct socket *so, struct sockaddr **nam)
425 {
426 
427 	return (raw_usrreqs.pru_sockaddr(so, nam));
428 }
429 
430 static struct pr_usrreqs route_usrreqs = {
431 	.pru_abort =		rts_abort,
432 	.pru_attach =		rts_attach,
433 	.pru_bind =		rts_bind,
434 	.pru_connect =		rts_connect,
435 	.pru_detach =		rts_detach,
436 	.pru_disconnect =	rts_disconnect,
437 	.pru_peeraddr =		rts_peeraddr,
438 	.pru_send =		rts_send,
439 	.pru_shutdown =		rts_shutdown,
440 	.pru_sockaddr =		rts_sockaddr,
441 	.pru_close =		rts_close,
442 };
443 
444 #ifndef _SOCKADDR_UNION_DEFINED
445 #define	_SOCKADDR_UNION_DEFINED
446 /*
447  * The union of all possible address formats we handle.
448  */
449 union sockaddr_union {
450 	struct sockaddr		sa;
451 	struct sockaddr_in	sin;
452 	struct sockaddr_in6	sin6;
453 };
454 #endif /* _SOCKADDR_UNION_DEFINED */
455 
456 static int
457 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
458     struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
459 {
460 #if defined(INET) || defined(INET6)
461 	struct epoch_tracker et;
462 #endif
463 
464 	/* First, see if the returned address is part of the jail. */
465 	if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
466 		info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
467 		return (0);
468 	}
469 
470 	switch (info->rti_info[RTAX_DST]->sa_family) {
471 #ifdef INET
472 	case AF_INET:
473 	{
474 		struct in_addr ia;
475 		struct ifaddr *ifa;
476 		int found;
477 
478 		found = 0;
479 		/*
480 		 * Try to find an address on the given outgoing interface
481 		 * that belongs to the jail.
482 		 */
483 		NET_EPOCH_ENTER(et);
484 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
485 			struct sockaddr *sa;
486 			sa = ifa->ifa_addr;
487 			if (sa->sa_family != AF_INET)
488 				continue;
489 			ia = ((struct sockaddr_in *)sa)->sin_addr;
490 			if (prison_check_ip4(cred, &ia) == 0) {
491 				found = 1;
492 				break;
493 			}
494 		}
495 		NET_EPOCH_EXIT(et);
496 		if (!found) {
497 			/*
498 			 * As a last resort return the 'default' jail address.
499 			 */
500 			ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->
501 			    sin_addr;
502 			if (prison_get_ip4(cred, &ia) != 0)
503 				return (ESRCH);
504 		}
505 		bzero(&saun->sin, sizeof(struct sockaddr_in));
506 		saun->sin.sin_len = sizeof(struct sockaddr_in);
507 		saun->sin.sin_family = AF_INET;
508 		saun->sin.sin_addr.s_addr = ia.s_addr;
509 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
510 		break;
511 	}
512 #endif
513 #ifdef INET6
514 	case AF_INET6:
515 	{
516 		struct in6_addr ia6;
517 		struct ifaddr *ifa;
518 		int found;
519 
520 		found = 0;
521 		/*
522 		 * Try to find an address on the given outgoing interface
523 		 * that belongs to the jail.
524 		 */
525 		NET_EPOCH_ENTER(et);
526 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
527 			struct sockaddr *sa;
528 			sa = ifa->ifa_addr;
529 			if (sa->sa_family != AF_INET6)
530 				continue;
531 			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
532 			    &ia6, sizeof(struct in6_addr));
533 			if (prison_check_ip6(cred, &ia6) == 0) {
534 				found = 1;
535 				break;
536 			}
537 		}
538 		NET_EPOCH_EXIT(et);
539 		if (!found) {
540 			/*
541 			 * As a last resort return the 'default' jail address.
542 			 */
543 			ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->
544 			    sin6_addr;
545 			if (prison_get_ip6(cred, &ia6) != 0)
546 				return (ESRCH);
547 		}
548 		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
549 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
550 		saun->sin6.sin6_family = AF_INET6;
551 		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
552 		if (sa6_recoverscope(&saun->sin6) != 0)
553 			return (ESRCH);
554 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
555 		break;
556 	}
557 #endif
558 	default:
559 		return (ESRCH);
560 	}
561 	return (0);
562 }
563 
564 /*
565  * Fills in @info based on userland-provided @rtm message.
566  *
567  * Returns 0 on success.
568  */
569 static int
570 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info)
571 {
572 	int error;
573 	sa_family_t saf;
574 
575 	rtm->rtm_pid = curproc->p_pid;
576 	info->rti_addrs = rtm->rtm_addrs;
577 
578 	info->rti_mflags = rtm->rtm_inits;
579 	info->rti_rmx = &rtm->rtm_rmx;
580 
581 	/*
582 	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
583 	 * link-local address because rtrequest requires addresses with
584 	 * embedded scope id.
585 	 */
586 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
587 		return (EINVAL);
588 
589 	if (rtm->rtm_flags & RTF_RNH_LOCKED)
590 		return (EINVAL);
591 	info->rti_flags = rtm->rtm_flags;
592 	if (info->rti_info[RTAX_DST] == NULL ||
593 	    info->rti_info[RTAX_DST]->sa_family >= AF_MAX ||
594 	    (info->rti_info[RTAX_GATEWAY] != NULL &&
595 	     info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
596 		return (EINVAL);
597 	saf = info->rti_info[RTAX_DST]->sa_family;
598 	/*
599 	 * Verify that the caller has the appropriate privilege; RTM_GET
600 	 * is the only operation the non-superuser is allowed.
601 	 */
602 	if (rtm->rtm_type != RTM_GET) {
603 		error = priv_check(curthread, PRIV_NET_ROUTE);
604 		if (error != 0)
605 			return (error);
606 	}
607 
608 	/*
609 	 * The given gateway address may be an interface address.
610 	 * For example, issuing a "route change" command on a route
611 	 * entry that was created from a tunnel, and the gateway
612 	 * address given is the local end point. In this case the
613 	 * RTF_GATEWAY flag must be cleared or the destination will
614 	 * not be reachable even though there is no error message.
615 	 */
616 	if (info->rti_info[RTAX_GATEWAY] != NULL &&
617 	    info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
618 		struct rt_addrinfo ginfo;
619 		struct sockaddr *gdst;
620 		struct sockaddr_storage ss;
621 
622 		bzero(&ginfo, sizeof(ginfo));
623 		bzero(&ss, sizeof(ss));
624 		ss.ss_len = sizeof(ss);
625 
626 		ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
627 		gdst = info->rti_info[RTAX_GATEWAY];
628 
629 		/*
630 		 * A host route through the loopback interface is
631 		 * installed for each interface adddress. In pre 8.0
632 		 * releases the interface address of a PPP link type
633 		 * is not reachable locally. This behavior is fixed as
634 		 * part of the new L2/L3 redesign and rewrite work. The
635 		 * signature of this interface address route is the
636 		 * AF_LINK sa_family type of the rt_gateway, and the
637 		 * rt_ifp has the IFF_LOOPBACK flag set.
638 		 */
639 		if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
640 			if (ss.ss_family == AF_LINK &&
641 			    ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
642 				info->rti_flags &= ~RTF_GATEWAY;
643 				info->rti_flags |= RTF_GWFLAG_COMPAT;
644 			}
645 			rib_free_info(&ginfo);
646 		}
647 	}
648 
649 	return (0);
650 }
651 
652 /*
653  * Handles RTM_GET message from routing socket, returning matching rt.
654  *
655  * Returns:
656  * 0 on success, with locked and referenced matching rt in @rt_nrt
657  * errno of failure
658  */
659 static int
660 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
661     struct rt_msghdr *rtm, struct rtentry **ret_nrt)
662 {
663 	RIB_RLOCK_TRACKER;
664 	struct rtentry *rt;
665 	struct rib_head *rnh;
666 	sa_family_t saf;
667 
668 	saf = info->rti_info[RTAX_DST]->sa_family;
669 
670 	rnh = rt_tables_get_rnh(fibnum, saf);
671 	if (rnh == NULL)
672 		return (EAFNOSUPPORT);
673 
674 	RIB_RLOCK(rnh);
675 
676 	if (info->rti_info[RTAX_NETMASK] == NULL) {
677 		/*
678 		 * Provide longest prefix match for
679 		 * address lookup (no mask).
680 		 * 'route -n get addr'
681 		 */
682 		rt = (struct rtentry *) rnh->rnh_matchaddr(
683 		    info->rti_info[RTAX_DST], &rnh->head);
684 	} else
685 		rt = (struct rtentry *) rnh->rnh_lookup(
686 		    info->rti_info[RTAX_DST],
687 		    info->rti_info[RTAX_NETMASK], &rnh->head);
688 
689 	if (rt == NULL) {
690 		RIB_RUNLOCK(rnh);
691 		return (ESRCH);
692 	}
693 #ifdef RADIX_MPATH
694 	/*
695 	 * for RTM_GET, gate is optional even with multipath.
696 	 * if gate == NULL the first match is returned.
697 	 * (no need to call rt_mpath_matchgate if gate == NULL)
698 	 */
699 	if (rt_mpath_capable(rnh) && info->rti_info[RTAX_GATEWAY]) {
700 		rt = rt_mpath_matchgate(rt, info->rti_info[RTAX_GATEWAY]);
701 		if (!rt) {
702 			RIB_RUNLOCK(rnh);
703 			return (ESRCH);
704 		}
705 	}
706 #endif
707 	/*
708 	 * If performing proxied L2 entry insertion, and
709 	 * the actual PPP host entry is found, perform
710 	 * another search to retrieve the prefix route of
711 	 * the local end point of the PPP link.
712 	 */
713 	if (rtm->rtm_flags & RTF_ANNOUNCE) {
714 		struct sockaddr laddr;
715 
716 		if (rt->rt_ifp != NULL &&
717 		    rt->rt_ifp->if_type == IFT_PROPVIRTUAL) {
718 			struct epoch_tracker et;
719 			struct ifaddr *ifa;
720 
721 			NET_EPOCH_ENTER(et);
722 			ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
723 					RT_ALL_FIBS);
724 			NET_EPOCH_EXIT(et);
725 			if (ifa != NULL)
726 				rt_maskedcopy(ifa->ifa_addr,
727 					      &laddr,
728 					      ifa->ifa_netmask);
729 		} else
730 			rt_maskedcopy(rt->rt_ifa->ifa_addr,
731 				      &laddr,
732 				      rt->rt_ifa->ifa_netmask);
733 		/*
734 		 * refactor rt and no lock operation necessary
735 		 */
736 		rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
737 		    &rnh->head);
738 		if (rt == NULL) {
739 			RIB_RUNLOCK(rnh);
740 			return (ESRCH);
741 		}
742 	}
743 	RT_LOCK(rt);
744 	RT_ADDREF(rt);
745 	RIB_RUNLOCK(rnh);
746 
747 	*ret_nrt = rt;
748 
749 	return (0);
750 }
751 
752 /*
753  * Update sockaddrs, flags, etc in @prtm based on @rt data.
754  * Assumes @rt is locked.
755  * rtm can be reallocated.
756  *
757  * Returns 0 on success, along with pointer to (potentially reallocated)
758  *  rtm.
759  *
760  */
761 static int
762 update_rtm_from_rte(struct rt_addrinfo *info, struct rt_msghdr **prtm,
763     int alloc_len, struct rtentry *rt)
764 {
765 	struct sockaddr_storage netmask_ss;
766 	struct walkarg w;
767 	union sockaddr_union saun;
768 	struct rt_msghdr *rtm, *orig_rtm = NULL;
769 	struct ifnet *ifp;
770 	int error, len;
771 
772 	RT_LOCK_ASSERT(rt);
773 
774 	rtm = *prtm;
775 
776 	info->rti_info[RTAX_DST] = rt_key(rt);
777 	info->rti_info[RTAX_GATEWAY] = rt->rt_gateway;
778 	info->rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
779 	    rt_mask(rt), &netmask_ss);
780 	info->rti_info[RTAX_GENMASK] = 0;
781 	ifp = rt->rt_ifp;
782 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
783 		if (ifp) {
784 			info->rti_info[RTAX_IFP] =
785 			    ifp->if_addr->ifa_addr;
786 			error = rtm_get_jailed(info, ifp, rt,
787 			    &saun, curthread->td_ucred);
788 			if (error != 0)
789 				return (error);
790 			if (ifp->if_flags & IFF_POINTOPOINT)
791 				info->rti_info[RTAX_BRD] =
792 				    rt->rt_ifa->ifa_dstaddr;
793 			rtm->rtm_index = ifp->if_index;
794 		} else {
795 			info->rti_info[RTAX_IFP] = NULL;
796 			info->rti_info[RTAX_IFA] = NULL;
797 		}
798 	} else if (ifp != NULL)
799 		rtm->rtm_index = ifp->if_index;
800 
801 	/* Check if we need to realloc storage */
802 	rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
803 	if (len > alloc_len) {
804 		struct rt_msghdr *tmp_rtm;
805 
806 		tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
807 		if (tmp_rtm == NULL)
808 			return (ENOBUFS);
809 		bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
810 		orig_rtm = rtm;
811 		rtm = tmp_rtm;
812 		alloc_len = len;
813 
814 		/*
815 		 * Delay freeing original rtm as info contains
816 		 * data referencing it.
817 		 */
818 	}
819 
820 	w.w_tmem = (caddr_t)rtm;
821 	w.w_tmemsize = alloc_len;
822 	rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
823 
824 	if (rt->rt_flags & RTF_GWFLAG_COMPAT)
825 		rtm->rtm_flags = RTF_GATEWAY |
826 			(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
827 	else
828 		rtm->rtm_flags = rt->rt_flags;
829 	rt_getmetrics(rt, &rtm->rtm_rmx);
830 	rtm->rtm_addrs = info->rti_addrs;
831 
832 	if (orig_rtm != NULL)
833 		free(orig_rtm, M_TEMP);
834 	*prtm = rtm;
835 
836 	return (0);
837 }
838 
839 /*ARGSUSED*/
840 static int
841 route_output(struct mbuf *m, struct socket *so, ...)
842 {
843 	struct rt_msghdr *rtm = NULL;
844 	struct rtentry *rt = NULL;
845 	struct rt_addrinfo info;
846 	struct epoch_tracker et;
847 #ifdef INET6
848 	struct sockaddr_storage ss;
849 	struct sockaddr_in6 *sin6;
850 	int i, rti_need_deembed = 0;
851 #endif
852 	int alloc_len = 0, len, error = 0, fibnum;
853 	sa_family_t saf = AF_UNSPEC;
854 	struct walkarg w;
855 
856 	fibnum = so->so_fibnum;
857 
858 #define senderr(e) { error = e; goto flush;}
859 	if (m == NULL || ((m->m_len < sizeof(long)) &&
860 		       (m = m_pullup(m, sizeof(long))) == NULL))
861 		return (ENOBUFS);
862 	if ((m->m_flags & M_PKTHDR) == 0)
863 		panic("route_output");
864 	NET_EPOCH_ENTER(et);
865 	len = m->m_pkthdr.len;
866 	if (len < sizeof(*rtm) ||
867 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
868 		senderr(EINVAL);
869 
870 	/*
871 	 * Most of current messages are in range 200-240 bytes,
872 	 * minimize possible re-allocation on reply using larger size
873 	 * buffer aligned on 1k boundaty.
874 	 */
875 	alloc_len = roundup2(len, 1024);
876 	if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL)
877 		senderr(ENOBUFS);
878 
879 	m_copydata(m, 0, len, (caddr_t)rtm);
880 	bzero(&info, sizeof(info));
881 	bzero(&w, sizeof(w));
882 
883 	if (rtm->rtm_version != RTM_VERSION) {
884 		/* Do not touch message since format is unknown */
885 		free(rtm, M_TEMP);
886 		rtm = NULL;
887 		senderr(EPROTONOSUPPORT);
888 	}
889 
890 	/*
891 	 * Starting from here, it is possible
892 	 * to alter original message and insert
893 	 * caller PID and error value.
894 	 */
895 
896 	if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) {
897 		senderr(error);
898 	}
899 
900 	saf = info.rti_info[RTAX_DST]->sa_family;
901 
902 	/* support for new ARP code */
903 	if (rtm->rtm_flags & RTF_LLDATA) {
904 		error = lla_rt_output(rtm, &info);
905 #ifdef INET6
906 		if (error == 0)
907 			rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
908 #endif
909 		goto flush;
910 	}
911 
912 	switch (rtm->rtm_type) {
913 		struct rtentry *saved_nrt;
914 
915 	case RTM_ADD:
916 	case RTM_CHANGE:
917 		if (rtm->rtm_type == RTM_ADD) {
918 			if (info.rti_info[RTAX_GATEWAY] == NULL)
919 				senderr(EINVAL);
920 		}
921 		saved_nrt = NULL;
922 		error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt,
923 		    fibnum);
924 		if (error == 0 && saved_nrt != NULL) {
925 #ifdef INET6
926 			rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
927 #endif
928 			RT_LOCK(saved_nrt);
929 			rtm->rtm_index = saved_nrt->rt_ifp->if_index;
930 			RT_REMREF(saved_nrt);
931 			RT_UNLOCK(saved_nrt);
932 		}
933 		break;
934 
935 	case RTM_DELETE:
936 		saved_nrt = NULL;
937 		error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum);
938 		if (error == 0) {
939 			RT_LOCK(saved_nrt);
940 			rt = saved_nrt;
941 			goto report;
942 		}
943 #ifdef INET6
944 		/* rt_msg2() will not be used when RTM_DELETE fails. */
945 		rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
946 #endif
947 		break;
948 
949 	case RTM_GET:
950 		error = handle_rtm_get(&info, fibnum, rtm, &rt);
951 		if (error != 0)
952 			senderr(error);
953 
954 report:
955 		RT_LOCK_ASSERT(rt);
956 		if (!can_export_rte(curthread->td_ucred, rt)) {
957 			RT_UNLOCK(rt);
958 			senderr(ESRCH);
959 		}
960 		error = update_rtm_from_rte(&info, &rtm, alloc_len, rt);
961 		/*
962 		 * Note that some sockaddr pointers may have changed to
963 		 * point to memory outsize @rtm. Some may be pointing
964 		 * to the on-stack variables.
965 		 * Given that, any pointer in @info CANNOT BE USED.
966 		 */
967 
968 		/*
969 		 * scopeid deembedding has been performed while
970 		 * writing updated rtm in rtsock_msg_buffer().
971 		 * With that in mind, skip deembedding procedure below.
972 		 */
973 #ifdef INET6
974 		rti_need_deembed = 0;
975 #endif
976 		RT_UNLOCK(rt);
977 		if (error != 0)
978 			senderr(error);
979 		break;
980 
981 	default:
982 		senderr(EOPNOTSUPP);
983 	}
984 
985 flush:
986 	NET_EPOCH_EXIT(et);
987 	if (rt != NULL)
988 		RTFREE(rt);
989 
990 #ifdef INET6
991 	if (rtm != NULL) {
992 		if (rti_need_deembed) {
993 			/* sin6_scope_id is recovered before sending rtm. */
994 			sin6 = (struct sockaddr_in6 *)&ss;
995 			for (i = 0; i < RTAX_MAX; i++) {
996 				if (info.rti_info[i] == NULL)
997 					continue;
998 				if (info.rti_info[i]->sa_family != AF_INET6)
999 					continue;
1000 				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
1001 				if (sa6_recoverscope(sin6) == 0)
1002 					bcopy(sin6, info.rti_info[i],
1003 						    sizeof(*sin6));
1004 			}
1005 		}
1006 	}
1007 #endif
1008 	send_rtm_reply(so, rtm, m, saf, fibnum, error);
1009 
1010 	return (error);
1011 }
1012 
1013 /*
1014  * Sends the prepared reply message in @rtm to all rtsock clients.
1015  * Frees @m and @rtm.
1016  *
1017  */
1018 static void
1019 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
1020     sa_family_t saf, u_int fibnum, int rtm_errno)
1021 {
1022 	struct rawcb *rp = NULL;
1023 
1024 	/*
1025 	 * Check to see if we don't want our own messages.
1026 	 */
1027 	if ((so->so_options & SO_USELOOPBACK) == 0) {
1028 		if (V_route_cb.any_count <= 1) {
1029 			if (rtm != NULL)
1030 				free(rtm, M_TEMP);
1031 			m_freem(m);
1032 			return;
1033 		}
1034 		/* There is another listener, so construct message */
1035 		rp = sotorawcb(so);
1036 	}
1037 
1038 	if (rtm != NULL) {
1039 		if (rtm_errno!= 0)
1040 			rtm->rtm_errno = rtm_errno;
1041 		else
1042 			rtm->rtm_flags |= RTF_DONE;
1043 
1044 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
1045 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
1046 			m_freem(m);
1047 			m = NULL;
1048 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
1049 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1050 
1051 		free(rtm, M_TEMP);
1052 	}
1053 	if (m != NULL) {
1054 		M_SETFIB(m, fibnum);
1055 		m->m_flags |= RTS_FILTER_FIB;
1056 		if (rp) {
1057 			/*
1058 			 * XXX insure we don't get a copy by
1059 			 * invalidating our protocol
1060 			 */
1061 			unsigned short family = rp->rcb_proto.sp_family;
1062 			rp->rcb_proto.sp_family = 0;
1063 			rt_dispatch(m, saf);
1064 			rp->rcb_proto.sp_family = family;
1065 		} else
1066 			rt_dispatch(m, saf);
1067 	}
1068 }
1069 
1070 
1071 static void
1072 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out)
1073 {
1074 
1075 	bzero(out, sizeof(*out));
1076 	out->rmx_mtu = rt->rt_mtu;
1077 	out->rmx_weight = rt->rt_weight;
1078 	out->rmx_pksent = counter_u64_fetch(rt->rt_pksent);
1079 	/* Kernel -> userland timebase conversion. */
1080 	out->rmx_expire = rt->rt_expire ?
1081 	    rt->rt_expire - time_uptime + time_second : 0;
1082 }
1083 
1084 /*
1085  * Extract the addresses of the passed sockaddrs.
1086  * Do a little sanity checking so as to avoid bad memory references.
1087  * This data is derived straight from userland.
1088  */
1089 static int
1090 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1091 {
1092 	struct sockaddr *sa;
1093 	int i;
1094 
1095 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1096 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
1097 			continue;
1098 		sa = (struct sockaddr *)cp;
1099 		/*
1100 		 * It won't fit.
1101 		 */
1102 		if (cp + sa->sa_len > cplim)
1103 			return (EINVAL);
1104 		/*
1105 		 * there are no more.. quit now
1106 		 * If there are more bits, they are in error.
1107 		 * I've seen this. route(1) can evidently generate these.
1108 		 * This causes kernel to core dump.
1109 		 * for compatibility, If we see this, point to a safe address.
1110 		 */
1111 		if (sa->sa_len == 0) {
1112 			rtinfo->rti_info[i] = &sa_zero;
1113 			return (0); /* should be EINVAL but for compat */
1114 		}
1115 		/* accept it */
1116 #ifdef INET6
1117 		if (sa->sa_family == AF_INET6)
1118 			sa6_embedscope((struct sockaddr_in6 *)sa,
1119 			    V_ip6_use_defzone);
1120 #endif
1121 		rtinfo->rti_info[i] = sa;
1122 		cp += SA_SIZE(sa);
1123 	}
1124 	return (0);
1125 }
1126 
1127 /*
1128  * Fill in @dmask with valid netmask leaving original @smask
1129  * intact. Mostly used with radix netmasks.
1130  */
1131 static struct sockaddr *
1132 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask,
1133     struct sockaddr_storage *dmask)
1134 {
1135 	if (dst == NULL || smask == NULL)
1136 		return (NULL);
1137 
1138 	memset(dmask, 0, dst->sa_len);
1139 	memcpy(dmask, smask, smask->sa_len);
1140 	dmask->ss_len = dst->sa_len;
1141 	dmask->ss_family = dst->sa_family;
1142 
1143 	return ((struct sockaddr *)dmask);
1144 }
1145 
1146 /*
1147  * Writes information related to @rtinfo object to newly-allocated mbuf.
1148  * Assumes MCLBYTES is enough to construct any message.
1149  * Used for OS notifications of vaious events (if/ifa announces,etc)
1150  *
1151  * Returns allocated mbuf or NULL on failure.
1152  */
1153 static struct mbuf *
1154 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1155 {
1156 	struct rt_msghdr *rtm;
1157 	struct mbuf *m;
1158 	int i;
1159 	struct sockaddr *sa;
1160 #ifdef INET6
1161 	struct sockaddr_storage ss;
1162 	struct sockaddr_in6 *sin6;
1163 #endif
1164 	int len, dlen;
1165 
1166 	switch (type) {
1167 
1168 	case RTM_DELADDR:
1169 	case RTM_NEWADDR:
1170 		len = sizeof(struct ifa_msghdr);
1171 		break;
1172 
1173 	case RTM_DELMADDR:
1174 	case RTM_NEWMADDR:
1175 		len = sizeof(struct ifma_msghdr);
1176 		break;
1177 
1178 	case RTM_IFINFO:
1179 		len = sizeof(struct if_msghdr);
1180 		break;
1181 
1182 	case RTM_IFANNOUNCE:
1183 	case RTM_IEEE80211:
1184 		len = sizeof(struct if_announcemsghdr);
1185 		break;
1186 
1187 	default:
1188 		len = sizeof(struct rt_msghdr);
1189 	}
1190 
1191 	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
1192 	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1193 	if (len > MHLEN)
1194 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1195 	else
1196 		m = m_gethdr(M_NOWAIT, MT_DATA);
1197 	if (m == NULL)
1198 		return (m);
1199 
1200 	m->m_pkthdr.len = m->m_len = len;
1201 	rtm = mtod(m, struct rt_msghdr *);
1202 	bzero((caddr_t)rtm, len);
1203 	for (i = 0; i < RTAX_MAX; i++) {
1204 		if ((sa = rtinfo->rti_info[i]) == NULL)
1205 			continue;
1206 		rtinfo->rti_addrs |= (1 << i);
1207 		dlen = SA_SIZE(sa);
1208 #ifdef INET6
1209 		if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1210 			sin6 = (struct sockaddr_in6 *)&ss;
1211 			bcopy(sa, sin6, sizeof(*sin6));
1212 			if (sa6_recoverscope(sin6) == 0)
1213 				sa = (struct sockaddr *)sin6;
1214 		}
1215 #endif
1216 		m_copyback(m, len, dlen, (caddr_t)sa);
1217 		len += dlen;
1218 	}
1219 	if (m->m_pkthdr.len != len) {
1220 		m_freem(m);
1221 		return (NULL);
1222 	}
1223 	rtm->rtm_msglen = len;
1224 	rtm->rtm_version = RTM_VERSION;
1225 	rtm->rtm_type = type;
1226 	return (m);
1227 }
1228 
1229 /*
1230  * Writes information related to @rtinfo object to preallocated buffer.
1231  * Stores needed size in @plen. If @w is NULL, calculates size without
1232  * writing.
1233  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1234  *
1235  * Returns 0 on success.
1236  *
1237  */
1238 static int
1239 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1240 {
1241 	int i;
1242 	int len, buflen = 0, dlen;
1243 	caddr_t cp = NULL;
1244 	struct rt_msghdr *rtm = NULL;
1245 #ifdef INET6
1246 	struct sockaddr_storage ss;
1247 	struct sockaddr_in6 *sin6;
1248 #endif
1249 #ifdef COMPAT_FREEBSD32
1250 	bool compat32 = false;
1251 #endif
1252 
1253 	switch (type) {
1254 
1255 	case RTM_DELADDR:
1256 	case RTM_NEWADDR:
1257 		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1258 #ifdef COMPAT_FREEBSD32
1259 			if (w->w_req->flags & SCTL_MASK32) {
1260 				len = sizeof(struct ifa_msghdrl32);
1261 				compat32 = true;
1262 			} else
1263 #endif
1264 				len = sizeof(struct ifa_msghdrl);
1265 		} else
1266 			len = sizeof(struct ifa_msghdr);
1267 		break;
1268 
1269 	case RTM_IFINFO:
1270 #ifdef COMPAT_FREEBSD32
1271 		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1272 			if (w->w_op == NET_RT_IFLISTL)
1273 				len = sizeof(struct if_msghdrl32);
1274 			else
1275 				len = sizeof(struct if_msghdr32);
1276 			compat32 = true;
1277 			break;
1278 		}
1279 #endif
1280 		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1281 			len = sizeof(struct if_msghdrl);
1282 		else
1283 			len = sizeof(struct if_msghdr);
1284 		break;
1285 
1286 	case RTM_NEWMADDR:
1287 		len = sizeof(struct ifma_msghdr);
1288 		break;
1289 
1290 	default:
1291 		len = sizeof(struct rt_msghdr);
1292 	}
1293 
1294 	if (w != NULL) {
1295 		rtm = (struct rt_msghdr *)w->w_tmem;
1296 		buflen = w->w_tmemsize - len;
1297 		cp = (caddr_t)w->w_tmem + len;
1298 	}
1299 
1300 	rtinfo->rti_addrs = 0;
1301 	for (i = 0; i < RTAX_MAX; i++) {
1302 		struct sockaddr *sa;
1303 
1304 		if ((sa = rtinfo->rti_info[i]) == NULL)
1305 			continue;
1306 		rtinfo->rti_addrs |= (1 << i);
1307 #ifdef COMPAT_FREEBSD32
1308 		if (compat32)
1309 			dlen = SA_SIZE32(sa);
1310 		else
1311 #endif
1312 			dlen = SA_SIZE(sa);
1313 		if (cp != NULL && buflen >= dlen) {
1314 #ifdef INET6
1315 			if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1316 				sin6 = (struct sockaddr_in6 *)&ss;
1317 				bcopy(sa, sin6, sizeof(*sin6));
1318 				if (sa6_recoverscope(sin6) == 0)
1319 					sa = (struct sockaddr *)sin6;
1320 			}
1321 #endif
1322 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1323 			cp += dlen;
1324 			buflen -= dlen;
1325 		} else if (cp != NULL) {
1326 			/*
1327 			 * Buffer too small. Count needed size
1328 			 * and return with error.
1329 			 */
1330 			cp = NULL;
1331 		}
1332 
1333 		len += dlen;
1334 	}
1335 
1336 	if (cp != NULL) {
1337 		dlen = ALIGN(len) - len;
1338 		if (buflen < dlen)
1339 			cp = NULL;
1340 		else {
1341 			bzero(cp, dlen);
1342 			cp += dlen;
1343 			buflen -= dlen;
1344 		}
1345 	}
1346 	len = ALIGN(len);
1347 
1348 	if (cp != NULL) {
1349 		/* fill header iff buffer is large enough */
1350 		rtm->rtm_version = RTM_VERSION;
1351 		rtm->rtm_type = type;
1352 		rtm->rtm_msglen = len;
1353 	}
1354 
1355 	*plen = len;
1356 
1357 	if (w != NULL && cp == NULL)
1358 		return (ENOBUFS);
1359 
1360 	return (0);
1361 }
1362 
1363 /*
1364  * This routine is called to generate a message from the routing
1365  * socket indicating that a redirect has occurred, a routing lookup
1366  * has failed, or that a protocol has detected timeouts to a particular
1367  * destination.
1368  */
1369 void
1370 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1371     int fibnum)
1372 {
1373 	struct rt_msghdr *rtm;
1374 	struct mbuf *m;
1375 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1376 
1377 	if (V_route_cb.any_count == 0)
1378 		return;
1379 	m = rtsock_msg_mbuf(type, rtinfo);
1380 	if (m == NULL)
1381 		return;
1382 
1383 	if (fibnum != RT_ALL_FIBS) {
1384 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1385 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1386 		M_SETFIB(m, fibnum);
1387 		m->m_flags |= RTS_FILTER_FIB;
1388 	}
1389 
1390 	rtm = mtod(m, struct rt_msghdr *);
1391 	rtm->rtm_flags = RTF_DONE | flags;
1392 	rtm->rtm_errno = error;
1393 	rtm->rtm_addrs = rtinfo->rti_addrs;
1394 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1395 }
1396 
1397 void
1398 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1399 {
1400 
1401 	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1402 }
1403 
1404 /*
1405  * This routine is called to generate a message from the routing
1406  * socket indicating that the status of a network interface has changed.
1407  */
1408 void
1409 rt_ifmsg(struct ifnet *ifp)
1410 {
1411 	struct if_msghdr *ifm;
1412 	struct mbuf *m;
1413 	struct rt_addrinfo info;
1414 
1415 	if (V_route_cb.any_count == 0)
1416 		return;
1417 	bzero((caddr_t)&info, sizeof(info));
1418 	m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1419 	if (m == NULL)
1420 		return;
1421 	ifm = mtod(m, struct if_msghdr *);
1422 	ifm->ifm_index = ifp->if_index;
1423 	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1424 	if_data_copy(ifp, &ifm->ifm_data);
1425 	ifm->ifm_addrs = 0;
1426 	rt_dispatch(m, AF_UNSPEC);
1427 }
1428 
1429 /*
1430  * Announce interface address arrival/withdraw.
1431  * Please do not call directly, use rt_addrmsg().
1432  * Assume input data to be valid.
1433  * Returns 0 on success.
1434  */
1435 int
1436 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1437 {
1438 	struct rt_addrinfo info;
1439 	struct sockaddr *sa;
1440 	int ncmd;
1441 	struct mbuf *m;
1442 	struct ifa_msghdr *ifam;
1443 	struct ifnet *ifp = ifa->ifa_ifp;
1444 	struct sockaddr_storage ss;
1445 
1446 	if (V_route_cb.any_count == 0)
1447 		return (0);
1448 
1449 	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1450 
1451 	bzero((caddr_t)&info, sizeof(info));
1452 	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1453 	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1454 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1455 	    info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
1456 	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1457 	if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1458 		return (ENOBUFS);
1459 	ifam = mtod(m, struct ifa_msghdr *);
1460 	ifam->ifam_index = ifp->if_index;
1461 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1462 	ifam->ifam_flags = ifa->ifa_flags;
1463 	ifam->ifam_addrs = info.rti_addrs;
1464 
1465 	if (fibnum != RT_ALL_FIBS) {
1466 		M_SETFIB(m, fibnum);
1467 		m->m_flags |= RTS_FILTER_FIB;
1468 	}
1469 
1470 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1471 
1472 	return (0);
1473 }
1474 
1475 /*
1476  * Announce route addition/removal to rtsock based on @rt data.
1477  * Callers are advives to use rt_routemsg() instead of using this
1478  *  function directly.
1479  * Assume @rt data is consistent.
1480  *
1481  * Returns 0 on success.
1482  */
1483 int
1484 rtsock_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs,
1485     int fibnum)
1486 {
1487 	struct sockaddr_storage ss;
1488 	struct rt_addrinfo info;
1489 
1490 	if (V_route_cb.any_count == 0)
1491 		return (0);
1492 
1493 	bzero((caddr_t)&info, sizeof(info));
1494 	info.rti_info[RTAX_DST] = rt_key(rt);
1495 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), rt_mask(rt), &ss);
1496 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1497 	info.rti_flags = rt->rt_flags;
1498 	info.rti_ifp = ifp;
1499 
1500 	return (rtsock_routemsg_info(cmd, &info, fibnum));
1501 }
1502 
1503 int
1504 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
1505 {
1506 	struct rt_msghdr *rtm;
1507 	struct sockaddr *sa;
1508 	struct mbuf *m;
1509 
1510 	if (V_route_cb.any_count == 0)
1511 		return (0);
1512 
1513 	if (info->rti_flags & RTF_HOST)
1514 		info->rti_info[RTAX_NETMASK] = NULL;
1515 
1516 	m = rtsock_msg_mbuf(cmd, info);
1517 	if (m == NULL)
1518 		return (ENOBUFS);
1519 
1520 	if (fibnum != RT_ALL_FIBS) {
1521 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1522 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1523 		M_SETFIB(m, fibnum);
1524 		m->m_flags |= RTS_FILTER_FIB;
1525 	}
1526 
1527 	rtm = mtod(m, struct rt_msghdr *);
1528 	rtm->rtm_addrs = info->rti_addrs;
1529 	if (info->rti_ifp != NULL)
1530 		rtm->rtm_index = info->rti_ifp->if_index;
1531 	/* Add RTF_DONE to indicate command 'completion' required by API */
1532 	info->rti_flags |= RTF_DONE;
1533 	/* Reported routes has to be up */
1534 	if (cmd == RTM_ADD || cmd == RTM_CHANGE)
1535 		info->rti_flags |= RTF_UP;
1536 	rtm->rtm_flags = info->rti_flags;
1537 
1538 	sa = info->rti_info[RTAX_DST];
1539 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1540 
1541 	return (0);
1542 }
1543 
1544 /*
1545  * This is the analogue to the rt_newaddrmsg which performs the same
1546  * function but for multicast group memberhips.  This is easier since
1547  * there is no route state to worry about.
1548  */
1549 void
1550 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1551 {
1552 	struct rt_addrinfo info;
1553 	struct mbuf *m = NULL;
1554 	struct ifnet *ifp = ifma->ifma_ifp;
1555 	struct ifma_msghdr *ifmam;
1556 
1557 	if (V_route_cb.any_count == 0)
1558 		return;
1559 
1560 	bzero((caddr_t)&info, sizeof(info));
1561 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1562 	if (ifp && ifp->if_addr)
1563 		info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1564 	else
1565 		info.rti_info[RTAX_IFP] = NULL;
1566 	/*
1567 	 * If a link-layer address is present, present it as a ``gateway''
1568 	 * (similarly to how ARP entries, e.g., are presented).
1569 	 */
1570 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1571 	m = rtsock_msg_mbuf(cmd, &info);
1572 	if (m == NULL)
1573 		return;
1574 	ifmam = mtod(m, struct ifma_msghdr *);
1575 	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1576 	    __func__));
1577 	ifmam->ifmam_index = ifp->if_index;
1578 	ifmam->ifmam_addrs = info.rti_addrs;
1579 	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1580 }
1581 
1582 static struct mbuf *
1583 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1584 	struct rt_addrinfo *info)
1585 {
1586 	struct if_announcemsghdr *ifan;
1587 	struct mbuf *m;
1588 
1589 	if (V_route_cb.any_count == 0)
1590 		return NULL;
1591 	bzero((caddr_t)info, sizeof(*info));
1592 	m = rtsock_msg_mbuf(type, info);
1593 	if (m != NULL) {
1594 		ifan = mtod(m, struct if_announcemsghdr *);
1595 		ifan->ifan_index = ifp->if_index;
1596 		strlcpy(ifan->ifan_name, ifp->if_xname,
1597 			sizeof(ifan->ifan_name));
1598 		ifan->ifan_what = what;
1599 	}
1600 	return m;
1601 }
1602 
1603 /*
1604  * This is called to generate routing socket messages indicating
1605  * IEEE80211 wireless events.
1606  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1607  */
1608 void
1609 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1610 {
1611 	struct mbuf *m;
1612 	struct rt_addrinfo info;
1613 
1614 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1615 	if (m != NULL) {
1616 		/*
1617 		 * Append the ieee80211 data.  Try to stick it in the
1618 		 * mbuf containing the ifannounce msg; otherwise allocate
1619 		 * a new mbuf and append.
1620 		 *
1621 		 * NB: we assume m is a single mbuf.
1622 		 */
1623 		if (data_len > M_TRAILINGSPACE(m)) {
1624 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1625 			if (n == NULL) {
1626 				m_freem(m);
1627 				return;
1628 			}
1629 			bcopy(data, mtod(n, void *), data_len);
1630 			n->m_len = data_len;
1631 			m->m_next = n;
1632 		} else if (data_len > 0) {
1633 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1634 			m->m_len += data_len;
1635 		}
1636 		if (m->m_flags & M_PKTHDR)
1637 			m->m_pkthdr.len += data_len;
1638 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1639 		rt_dispatch(m, AF_UNSPEC);
1640 	}
1641 }
1642 
1643 /*
1644  * This is called to generate routing socket messages indicating
1645  * network interface arrival and departure.
1646  */
1647 void
1648 rt_ifannouncemsg(struct ifnet *ifp, int what)
1649 {
1650 	struct mbuf *m;
1651 	struct rt_addrinfo info;
1652 
1653 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1654 	if (m != NULL)
1655 		rt_dispatch(m, AF_UNSPEC);
1656 }
1657 
1658 static void
1659 rt_dispatch(struct mbuf *m, sa_family_t saf)
1660 {
1661 	struct m_tag *tag;
1662 
1663 	/*
1664 	 * Preserve the family from the sockaddr, if any, in an m_tag for
1665 	 * use when injecting the mbuf into the routing socket buffer from
1666 	 * the netisr.
1667 	 */
1668 	if (saf != AF_UNSPEC) {
1669 		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1670 		    M_NOWAIT);
1671 		if (tag == NULL) {
1672 			m_freem(m);
1673 			return;
1674 		}
1675 		*(unsigned short *)(tag + 1) = saf;
1676 		m_tag_prepend(m, tag);
1677 	}
1678 #ifdef VIMAGE
1679 	if (V_loif)
1680 		m->m_pkthdr.rcvif = V_loif;
1681 	else {
1682 		m_freem(m);
1683 		return;
1684 	}
1685 #endif
1686 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
1687 }
1688 
1689 /*
1690  * Checks if rte can be exported v.r.t jails/vnets.
1691  *
1692  * Returns 1 if it can, 0 otherwise.
1693  */
1694 static int
1695 can_export_rte(struct ucred *td_ucred, const struct rtentry *rt)
1696 {
1697 
1698 	if ((rt->rt_flags & RTF_HOST) == 0
1699 	    ? jailed_without_vnet(td_ucred)
1700 	    : prison_if(td_ucred, rt_key_const(rt)) != 0)
1701 		return (0);
1702 	return (1);
1703 }
1704 
1705 /*
1706  * This is used in dumping the kernel table via sysctl().
1707  */
1708 static int
1709 sysctl_dumpentry(struct radix_node *rn, void *vw)
1710 {
1711 	struct walkarg *w = vw;
1712 	struct rtentry *rt = (struct rtentry *)rn;
1713 	int error = 0, size;
1714 	struct rt_addrinfo info;
1715 	struct sockaddr_storage ss;
1716 
1717 	NET_EPOCH_ASSERT();
1718 
1719 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1720 		return 0;
1721 	if (!can_export_rte(w->w_req->td->td_ucred, rt))
1722 		return (0);
1723 	bzero((caddr_t)&info, sizeof(info));
1724 	info.rti_info[RTAX_DST] = rt_key(rt);
1725 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1726 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
1727 	    rt_mask(rt), &ss);
1728 	info.rti_info[RTAX_GENMASK] = 0;
1729 	if (rt->rt_ifp && !(rt->rt_ifp->if_flags & IFF_DYING)) {
1730 		info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1731 		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1732 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1733 			info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1734 	}
1735 	if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
1736 		return (error);
1737 	if (w->w_req && w->w_tmem) {
1738 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1739 
1740 		bzero(&rtm->rtm_index,
1741 		    sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
1742 		if (rt->rt_flags & RTF_GWFLAG_COMPAT)
1743 			rtm->rtm_flags = RTF_GATEWAY |
1744 				(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
1745 		else
1746 			rtm->rtm_flags = rt->rt_flags;
1747 		rt_getmetrics(rt, &rtm->rtm_rmx);
1748 		rtm->rtm_index = rt->rt_ifp->if_index;
1749 		rtm->rtm_addrs = info.rti_addrs;
1750 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1751 		return (error);
1752 	}
1753 	return (error);
1754 }
1755 
1756 static int
1757 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
1758     struct rt_addrinfo *info, struct walkarg *w, int len)
1759 {
1760 	struct if_msghdrl *ifm;
1761 	struct if_data *ifd;
1762 
1763 	ifm = (struct if_msghdrl *)w->w_tmem;
1764 
1765 #ifdef COMPAT_FREEBSD32
1766 	if (w->w_req->flags & SCTL_MASK32) {
1767 		struct if_msghdrl32 *ifm32;
1768 
1769 		ifm32 = (struct if_msghdrl32 *)ifm;
1770 		ifm32->ifm_addrs = info->rti_addrs;
1771 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1772 		ifm32->ifm_index = ifp->if_index;
1773 		ifm32->_ifm_spare1 = 0;
1774 		ifm32->ifm_len = sizeof(*ifm32);
1775 		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1776 		ifm32->_ifm_spare2 = 0;
1777 		ifd = &ifm32->ifm_data;
1778 	} else
1779 #endif
1780 	{
1781 		ifm->ifm_addrs = info->rti_addrs;
1782 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1783 		ifm->ifm_index = ifp->if_index;
1784 		ifm->_ifm_spare1 = 0;
1785 		ifm->ifm_len = sizeof(*ifm);
1786 		ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1787 		ifm->_ifm_spare2 = 0;
1788 		ifd = &ifm->ifm_data;
1789 	}
1790 
1791 	memcpy(ifd, src_ifd, sizeof(*ifd));
1792 
1793 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1794 }
1795 
1796 static int
1797 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
1798     struct rt_addrinfo *info, struct walkarg *w, int len)
1799 {
1800 	struct if_msghdr *ifm;
1801 	struct if_data *ifd;
1802 
1803 	ifm = (struct if_msghdr *)w->w_tmem;
1804 
1805 #ifdef COMPAT_FREEBSD32
1806 	if (w->w_req->flags & SCTL_MASK32) {
1807 		struct if_msghdr32 *ifm32;
1808 
1809 		ifm32 = (struct if_msghdr32 *)ifm;
1810 		ifm32->ifm_addrs = info->rti_addrs;
1811 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1812 		ifm32->ifm_index = ifp->if_index;
1813 		ifm32->_ifm_spare1 = 0;
1814 		ifd = &ifm32->ifm_data;
1815 	} else
1816 #endif
1817 	{
1818 		ifm->ifm_addrs = info->rti_addrs;
1819 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1820 		ifm->ifm_index = ifp->if_index;
1821 		ifm->_ifm_spare1 = 0;
1822 		ifd = &ifm->ifm_data;
1823 	}
1824 
1825 	memcpy(ifd, src_ifd, sizeof(*ifd));
1826 
1827 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1828 }
1829 
1830 static int
1831 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1832     struct walkarg *w, int len)
1833 {
1834 	struct ifa_msghdrl *ifam;
1835 	struct if_data *ifd;
1836 
1837 	ifam = (struct ifa_msghdrl *)w->w_tmem;
1838 
1839 #ifdef COMPAT_FREEBSD32
1840 	if (w->w_req->flags & SCTL_MASK32) {
1841 		struct ifa_msghdrl32 *ifam32;
1842 
1843 		ifam32 = (struct ifa_msghdrl32 *)ifam;
1844 		ifam32->ifam_addrs = info->rti_addrs;
1845 		ifam32->ifam_flags = ifa->ifa_flags;
1846 		ifam32->ifam_index = ifa->ifa_ifp->if_index;
1847 		ifam32->_ifam_spare1 = 0;
1848 		ifam32->ifam_len = sizeof(*ifam32);
1849 		ifam32->ifam_data_off =
1850 		    offsetof(struct ifa_msghdrl32, ifam_data);
1851 		ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
1852 		ifd = &ifam32->ifam_data;
1853 	} else
1854 #endif
1855 	{
1856 		ifam->ifam_addrs = info->rti_addrs;
1857 		ifam->ifam_flags = ifa->ifa_flags;
1858 		ifam->ifam_index = ifa->ifa_ifp->if_index;
1859 		ifam->_ifam_spare1 = 0;
1860 		ifam->ifam_len = sizeof(*ifam);
1861 		ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
1862 		ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1863 		ifd = &ifam->ifam_data;
1864 	}
1865 
1866 	bzero(ifd, sizeof(*ifd));
1867 	ifd->ifi_datalen = sizeof(struct if_data);
1868 	ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
1869 	ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
1870 	ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
1871 	ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
1872 
1873 	/* Fixup if_data carp(4) vhid. */
1874 	if (carp_get_vhid_p != NULL)
1875 		ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
1876 
1877 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1878 }
1879 
1880 static int
1881 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
1882     struct walkarg *w, int len)
1883 {
1884 	struct ifa_msghdr *ifam;
1885 
1886 	ifam = (struct ifa_msghdr *)w->w_tmem;
1887 	ifam->ifam_addrs = info->rti_addrs;
1888 	ifam->ifam_flags = ifa->ifa_flags;
1889 	ifam->ifam_index = ifa->ifa_ifp->if_index;
1890 	ifam->_ifam_spare1 = 0;
1891 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1892 
1893 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1894 }
1895 
1896 static int
1897 sysctl_iflist(int af, struct walkarg *w)
1898 {
1899 	struct ifnet *ifp;
1900 	struct ifaddr *ifa;
1901 	struct if_data ifd;
1902 	struct rt_addrinfo info;
1903 	int len, error = 0;
1904 	struct sockaddr_storage ss;
1905 
1906 	bzero((caddr_t)&info, sizeof(info));
1907 	bzero(&ifd, sizeof(ifd));
1908 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1909 		if (w->w_arg && w->w_arg != ifp->if_index)
1910 			continue;
1911 		if_data_copy(ifp, &ifd);
1912 		ifa = ifp->if_addr;
1913 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1914 		error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
1915 		if (error != 0)
1916 			goto done;
1917 		info.rti_info[RTAX_IFP] = NULL;
1918 		if (w->w_req && w->w_tmem) {
1919 			if (w->w_op == NET_RT_IFLISTL)
1920 				error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
1921 				    len);
1922 			else
1923 				error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
1924 				    len);
1925 			if (error)
1926 				goto done;
1927 		}
1928 		while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
1929 			if (af && af != ifa->ifa_addr->sa_family)
1930 				continue;
1931 			if (prison_if(w->w_req->td->td_ucred,
1932 			    ifa->ifa_addr) != 0)
1933 				continue;
1934 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1935 			info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1936 			    ifa->ifa_addr, ifa->ifa_netmask, &ss);
1937 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1938 			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
1939 			if (error != 0)
1940 				goto done;
1941 			if (w->w_req && w->w_tmem) {
1942 				if (w->w_op == NET_RT_IFLISTL)
1943 					error = sysctl_iflist_ifaml(ifa, &info,
1944 					    w, len);
1945 				else
1946 					error = sysctl_iflist_ifam(ifa, &info,
1947 					    w, len);
1948 				if (error)
1949 					goto done;
1950 			}
1951 		}
1952 		info.rti_info[RTAX_IFA] = NULL;
1953 		info.rti_info[RTAX_NETMASK] = NULL;
1954 		info.rti_info[RTAX_BRD] = NULL;
1955 	}
1956 done:
1957 	return (error);
1958 }
1959 
1960 static int
1961 sysctl_ifmalist(int af, struct walkarg *w)
1962 {
1963 	struct rt_addrinfo info;
1964 	struct ifaddr *ifa;
1965 	struct ifmultiaddr *ifma;
1966 	struct ifnet *ifp;
1967 	int error, len;
1968 
1969 	NET_EPOCH_ASSERT();
1970 
1971 	error = 0;
1972 	bzero((caddr_t)&info, sizeof(info));
1973 
1974 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1975 		if (w->w_arg && w->w_arg != ifp->if_index)
1976 			continue;
1977 		ifa = ifp->if_addr;
1978 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1979 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1980 			if (af && af != ifma->ifma_addr->sa_family)
1981 				continue;
1982 			if (prison_if(w->w_req->td->td_ucred,
1983 			    ifma->ifma_addr) != 0)
1984 				continue;
1985 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1986 			info.rti_info[RTAX_GATEWAY] =
1987 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
1988 			    ifma->ifma_lladdr : NULL;
1989 			error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
1990 			if (error != 0)
1991 				break;
1992 			if (w->w_req && w->w_tmem) {
1993 				struct ifma_msghdr *ifmam;
1994 
1995 				ifmam = (struct ifma_msghdr *)w->w_tmem;
1996 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1997 				ifmam->ifmam_flags = 0;
1998 				ifmam->ifmam_addrs = info.rti_addrs;
1999 				ifmam->_ifmam_spare1 = 0;
2000 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
2001 				if (error != 0)
2002 					break;
2003 			}
2004 		}
2005 		if (error != 0)
2006 			break;
2007 	}
2008 	return (error);
2009 }
2010 
2011 static int
2012 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
2013 {
2014 	RIB_RLOCK_TRACKER;
2015 	struct epoch_tracker et;
2016 	int	*name = (int *)arg1;
2017 	u_int	namelen = arg2;
2018 	struct rib_head *rnh = NULL; /* silence compiler. */
2019 	int	i, lim, error = EINVAL;
2020 	int	fib = 0;
2021 	u_char	af;
2022 	struct	walkarg w;
2023 
2024 	name ++;
2025 	namelen--;
2026 	if (req->newptr)
2027 		return (EPERM);
2028 	if (name[1] == NET_RT_DUMP) {
2029 		if (namelen == 3)
2030 			fib = req->td->td_proc->p_fibnum;
2031 		else if (namelen == 4)
2032 			fib = (name[3] == RT_ALL_FIBS) ?
2033 			    req->td->td_proc->p_fibnum : name[3];
2034 		else
2035 			return ((namelen < 3) ? EISDIR : ENOTDIR);
2036 		if (fib < 0 || fib >= rt_numfibs)
2037 			return (EINVAL);
2038 	} else if (namelen != 3)
2039 		return ((namelen < 3) ? EISDIR : ENOTDIR);
2040 	af = name[0];
2041 	if (af > AF_MAX)
2042 		return (EINVAL);
2043 	bzero(&w, sizeof(w));
2044 	w.w_op = name[1];
2045 	w.w_arg = name[2];
2046 	w.w_req = req;
2047 
2048 	error = sysctl_wire_old_buffer(req, 0);
2049 	if (error)
2050 		return (error);
2051 
2052 	/*
2053 	 * Allocate reply buffer in advance.
2054 	 * All rtsock messages has maximum length of u_short.
2055 	 */
2056 	w.w_tmemsize = 65536;
2057 	w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
2058 
2059 	NET_EPOCH_ENTER(et);
2060 	switch (w.w_op) {
2061 	case NET_RT_DUMP:
2062 	case NET_RT_FLAGS:
2063 		if (af == 0) {			/* dump all tables */
2064 			i = 1;
2065 			lim = AF_MAX;
2066 		} else				/* dump only one table */
2067 			i = lim = af;
2068 
2069 		/*
2070 		 * take care of llinfo entries, the caller must
2071 		 * specify an AF
2072 		 */
2073 		if (w.w_op == NET_RT_FLAGS &&
2074 		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
2075 			if (af != 0)
2076 				error = lltable_sysctl_dumparp(af, w.w_req);
2077 			else
2078 				error = EINVAL;
2079 			break;
2080 		}
2081 		/*
2082 		 * take care of routing entries
2083 		 */
2084 		for (error = 0; error == 0 && i <= lim; i++) {
2085 			rnh = rt_tables_get_rnh(fib, i);
2086 			if (rnh != NULL) {
2087 				RIB_RLOCK(rnh);
2088 			    	error = rnh->rnh_walktree(&rnh->head,
2089 				    sysctl_dumpentry, &w);
2090 				RIB_RUNLOCK(rnh);
2091 			} else if (af != 0)
2092 				error = EAFNOSUPPORT;
2093 		}
2094 		break;
2095 
2096 	case NET_RT_IFLIST:
2097 	case NET_RT_IFLISTL:
2098 		error = sysctl_iflist(af, &w);
2099 		break;
2100 
2101 	case NET_RT_IFMALIST:
2102 		error = sysctl_ifmalist(af, &w);
2103 		break;
2104 	}
2105 	NET_EPOCH_EXIT(et);
2106 
2107 	free(w.w_tmem, M_TEMP);
2108 	return (error);
2109 }
2110 
2111 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
2112     sysctl_rtsock, "Return route tables and interface/address lists");
2113 
2114 /*
2115  * Definitions of protocols supported in the ROUTE domain.
2116  */
2117 
2118 static struct domain routedomain;		/* or at least forward */
2119 
2120 static struct protosw routesw[] = {
2121 {
2122 	.pr_type =		SOCK_RAW,
2123 	.pr_domain =		&routedomain,
2124 	.pr_flags =		PR_ATOMIC|PR_ADDR,
2125 	.pr_output =		route_output,
2126 	.pr_ctlinput =		raw_ctlinput,
2127 	.pr_init =		raw_init,
2128 	.pr_usrreqs =		&route_usrreqs
2129 }
2130 };
2131 
2132 static struct domain routedomain = {
2133 	.dom_family =		PF_ROUTE,
2134 	.dom_name =		 "route",
2135 	.dom_protosw =		routesw,
2136 	.dom_protoswNPROTOSW =	&routesw[nitems(routesw)]
2137 };
2138 
2139 VNET_DOMAIN_SET(route);
2140 
2141 #ifdef DDB
2142 /*
2143  * Unfortunately, RTF_ values are expressed as raw masks rather than powers of
2144  * 2, so we cannot use them as nice C99 initializer indices below.
2145  */
2146 static const char * const rtf_flag_strings[] = {
2147 	"UP",
2148 	"GATEWAY",
2149 	"HOST",
2150 	"REJECT",
2151 	"DYNAMIC",
2152 	"MODIFIED",
2153 	"DONE",
2154 	"UNUSED_0x80",
2155 	"UNUSED_0x100",
2156 	"XRESOLVE",
2157 	"LLDATA",
2158 	"STATIC",
2159 	"BLACKHOLE",
2160 	"UNUSED_0x2000",
2161 	"PROTO2",
2162 	"PROTO1",
2163 	"UNUSED_0x10000",
2164 	"UNUSED_0x20000",
2165 	"PROTO3",
2166 	"FIXEDMTU",
2167 	"PINNED",
2168 	"LOCAL",
2169 	"BROADCAST",
2170 	"MULTICAST",
2171 	/* Big gap. */
2172 	[28] = "STICKY",
2173 	[30] = "RNH_LOCKED",
2174 	[31] = "GWFLAG_COMPAT",
2175 };
2176 
2177 static const char * __pure
2178 rt_flag_name(unsigned idx)
2179 {
2180 	if (idx >= nitems(rtf_flag_strings))
2181 		return ("INVALID_FLAG");
2182 	if (rtf_flag_strings[idx] == NULL)
2183 		return ("UNKNOWN");
2184 	return (rtf_flag_strings[idx]);
2185 }
2186 
2187 static void
2188 rt_dumpaddr_ddb(const char *name, const struct sockaddr *sa)
2189 {
2190 	char buf[INET6_ADDRSTRLEN], *res;
2191 
2192 	res = NULL;
2193 	if (sa == NULL)
2194 		res = "NULL";
2195 	else if (sa->sa_family == AF_INET) {
2196 		res = inet_ntop(AF_INET,
2197 		    &((const struct sockaddr_in *)sa)->sin_addr,
2198 		    buf, sizeof(buf));
2199 	} else if (sa->sa_family == AF_INET6) {
2200 		res = inet_ntop(AF_INET6,
2201 		    &((const struct sockaddr_in6 *)sa)->sin6_addr,
2202 		    buf, sizeof(buf));
2203 	} else if (sa->sa_family == AF_LINK) {
2204 		res = "on link";
2205 	}
2206 
2207 	if (res != NULL) {
2208 		db_printf("%s <%s> ", name, res);
2209 		return;
2210 	}
2211 
2212 	db_printf("%s <af:%d> ", name, sa->sa_family);
2213 }
2214 
2215 static int
2216 rt_dumpentry_ddb(struct radix_node *rn, void *arg __unused)
2217 {
2218 	struct sockaddr_storage ss;
2219 	struct rtentry *rt;
2220 	int flags, idx;
2221 
2222 	/* If RNTORT is important, put it in a header. */
2223 	rt = (void *)rn;
2224 
2225 	rt_dumpaddr_ddb("dst", rt_key(rt));
2226 	rt_dumpaddr_ddb("gateway", rt->rt_gateway);
2227 	rt_dumpaddr_ddb("netmask", rtsock_fix_netmask(rt_key(rt), rt_mask(rt),
2228 	    &ss));
2229 	if (rt->rt_ifp != NULL && (rt->rt_ifp->if_flags & IFF_DYING) == 0) {
2230 		rt_dumpaddr_ddb("ifp", rt->rt_ifp->if_addr->ifa_addr);
2231 		rt_dumpaddr_ddb("ifa", rt->rt_ifa->ifa_addr);
2232 	}
2233 
2234 	db_printf("flags ");
2235 	flags = rt->rt_flags;
2236 	if (flags == 0)
2237 		db_printf("none");
2238 
2239 	while ((idx = ffs(flags)) > 0) {
2240 		idx--;
2241 
2242 		if (flags != rt->rt_flags)
2243 			db_printf(",");
2244 		db_printf("%s", rt_flag_name(idx));
2245 
2246 		flags &= ~(1ul << idx);
2247 	}
2248 
2249 	db_printf("\n");
2250 	return (0);
2251 }
2252 
2253 DB_SHOW_COMMAND(routetable, db_show_routetable_cmd)
2254 {
2255 	struct rib_head *rnh;
2256 	int error, i, lim;
2257 
2258 	if (have_addr)
2259 		i = lim = addr;
2260 	else {
2261 		i = 1;
2262 		lim = AF_MAX;
2263 	}
2264 
2265 	for (; i <= lim; i++) {
2266 		rnh = rt_tables_get_rnh(0, i);
2267 		if (rnh == NULL) {
2268 			if (have_addr) {
2269 				db_printf("%s: AF %d not supported?\n",
2270 				    __func__, i);
2271 				break;
2272 			}
2273 			continue;
2274 		}
2275 
2276 		if (!have_addr && i > 1)
2277 			db_printf("\n");
2278 
2279 		db_printf("Route table for AF %d%s%s%s:\n", i,
2280 		    (i == AF_INET || i == AF_INET6) ? " (" : "",
2281 		    (i == AF_INET) ? "INET" : (i == AF_INET6) ? "INET6" : "",
2282 		    (i == AF_INET || i == AF_INET6) ? ")" : "");
2283 
2284 		error = rnh->rnh_walktree(&rnh->head, rt_dumpentry_ddb, NULL);
2285 		if (error != 0)
2286 			db_printf("%s: walktree(%d): %d\n", __func__, i,
2287 			    error);
2288 	}
2289 }
2290 
2291 _DB_FUNC(_show, route, db_show_route_cmd, db_show_table, CS_OWN, NULL)
2292 {
2293 	char buf[INET6_ADDRSTRLEN], *bp;
2294 	const void *dst_addrp;
2295 	struct sockaddr *dstp;
2296 	struct rtentry *rt;
2297 	union {
2298 		struct sockaddr_in dest_sin;
2299 		struct sockaddr_in6 dest_sin6;
2300 	} u;
2301 	uint16_t hextets[8];
2302 	unsigned i, tets;
2303 	int t, af, exp, tokflags;
2304 
2305 	/*
2306 	 * Undecoded address family.  No double-colon expansion seen yet.
2307 	 */
2308 	af = -1;
2309 	exp = -1;
2310 	/* Assume INET6 to start; we can work back if guess was wrong. */
2311 	tokflags = DRT_WSPACE | DRT_HEX | DRT_HEXADECIMAL;
2312 
2313 	/*
2314 	 * db_command has lexed 'show route' for us.
2315 	 */
2316 	t = db_read_token_flags(tokflags);
2317 	if (t == tWSPACE)
2318 		t = db_read_token_flags(tokflags);
2319 
2320 	/*
2321 	 * tEOL: Just 'show route' isn't a valid mode.
2322 	 * tMINUS: It's either '-h' or some invalid option.  Regardless, usage.
2323 	 */
2324 	if (t == tEOL || t == tMINUS)
2325 		goto usage;
2326 
2327 	db_unread_token(t);
2328 
2329 	tets = nitems(hextets);
2330 
2331 	/*
2332 	 * Each loop iteration, we expect to read one octet (v4) or hextet
2333 	 * (v6), followed by an appropriate field separator ('.' or ':' or
2334 	 * '::').
2335 	 *
2336 	 * At the start of each loop, we're looking for a number (octet or
2337 	 * hextet).
2338 	 *
2339 	 * INET6 addresses have a special case where they may begin with '::'.
2340 	 */
2341 	for (i = 0; i < tets; i++) {
2342 		t = db_read_token_flags(tokflags);
2343 
2344 		if (t == tCOLONCOLON) {
2345 			/* INET6 with leading '::' or invalid. */
2346 			if (i != 0) {
2347 				db_printf("Parse error: unexpected extra "
2348 				    "colons.\n");
2349 				goto exit;
2350 			}
2351 
2352 			af = AF_INET6;
2353 			exp = i;
2354 			hextets[i] = 0;
2355 			continue;
2356 		} else if (t == tNUMBER) {
2357 			/*
2358 			 * Lexer separates out '-' as tMINUS, but make the
2359 			 * assumption explicit here.
2360 			 */
2361 			MPASS(db_tok_number >= 0);
2362 
2363 			if (af == AF_INET && db_tok_number > UINT8_MAX) {
2364 				db_printf("Not a valid v4 octet: %ld\n",
2365 				    (long)db_tok_number);
2366 				goto exit;
2367 			}
2368 			hextets[i] = db_tok_number;
2369 		} else if (t == tEOL) {
2370 			/*
2371 			 * We can only detect the end of an IPv6 address in
2372 			 * compact representation with EOL.
2373 			 */
2374 			if (af != AF_INET6 || exp < 0) {
2375 				db_printf("Parse failed.  Got unexpected EOF "
2376 				    "when the address is not a compact-"
2377 				    "representation IPv6 address.\n");
2378 				goto exit;
2379 			}
2380 			break;
2381 		} else {
2382 			db_printf("Parse failed.  Unexpected token %d.\n", t);
2383 			goto exit;
2384 		}
2385 
2386 		/* Next, look for a separator, if appropriate. */
2387 		if (i == tets - 1)
2388 			continue;
2389 
2390 		t = db_read_token_flags(tokflags);
2391 		if (af < 0) {
2392 			if (t == tCOLON) {
2393 				af = AF_INET6;
2394 				continue;
2395 			}
2396 			if (t == tCOLONCOLON) {
2397 				af = AF_INET6;
2398 				i++;
2399 				hextets[i] = 0;
2400 				exp = i;
2401 				continue;
2402 			}
2403 			if (t == tDOT) {
2404 				unsigned hn, dn;
2405 
2406 				af = AF_INET;
2407 				/* Need to fixup the first parsed number. */
2408 				if (hextets[0] > 0x255 ||
2409 				    (hextets[0] & 0xf0) > 0x90 ||
2410 				    (hextets[0] & 0xf) > 9) {
2411 					db_printf("Not a valid v4 octet: %x\n",
2412 					    hextets[0]);
2413 					goto exit;
2414 				}
2415 
2416 				hn = hextets[0];
2417 				dn = (hn >> 8) * 100 +
2418 				    ((hn >> 4) & 0xf) * 10 +
2419 				    (hn & 0xf);
2420 
2421 				hextets[0] = dn;
2422 
2423 				/* Switch to decimal for remaining octets. */
2424 				tokflags &= ~DRT_RADIX_MASK;
2425 				tokflags |= DRT_DECIMAL;
2426 
2427 				tets = 4;
2428 				continue;
2429 			}
2430 
2431 			db_printf("Parse error.  Unexpected token %d.\n", t);
2432 			goto exit;
2433 		} else if (af == AF_INET) {
2434 			if (t == tDOT)
2435 				continue;
2436 			db_printf("Expected '.' (%d) between octets but got "
2437 			    "(%d).\n", tDOT, t);
2438 			goto exit;
2439 
2440 		} else if (af == AF_INET6) {
2441 			if (t == tCOLON)
2442 				continue;
2443 			if (t == tCOLONCOLON) {
2444 				if (exp < 0) {
2445 					i++;
2446 					hextets[i] = 0;
2447 					exp = i;
2448 					continue;
2449 				}
2450 				db_printf("Got bogus second '::' in v6 "
2451 				    "address.\n");
2452 				goto exit;
2453 			}
2454 			if (t == tEOL) {
2455 				/*
2456 				 * Handle in the earlier part of the loop
2457 				 * because we need to handle trailing :: too.
2458 				 */
2459 				db_unread_token(t);
2460 				continue;
2461 			}
2462 
2463 			db_printf("Expected ':' (%d) or '::' (%d) between "
2464 			    "hextets but got (%d).\n", tCOLON, tCOLONCOLON, t);
2465 			goto exit;
2466 		}
2467 	}
2468 
2469 	/* Check for trailing garbage. */
2470 	if (i == tets) {
2471 		t = db_read_token_flags(tokflags);
2472 		if (t != tEOL) {
2473 			db_printf("Got unexpected garbage after address "
2474 			    "(%d).\n", t);
2475 			goto exit;
2476 		}
2477 	}
2478 
2479 	/*
2480 	 * Need to expand compact INET6 addresses.
2481 	 *
2482 	 * Technically '::' for a single ':0:' is MUST NOT but just in case,
2483 	 * don't bother expanding that form (exp >= 0 && i == tets case).
2484 	 */
2485 	if (af == AF_INET6 && exp >= 0 && i < tets) {
2486 		if (exp + 1 < i) {
2487 			memmove(&hextets[exp + 1 + (nitems(hextets) - i)],
2488 			    &hextets[exp + 1],
2489 			    (i - (exp + 1)) * sizeof(hextets[0]));
2490 		}
2491 		memset(&hextets[exp + 1], 0, (nitems(hextets) - i) *
2492 		    sizeof(hextets[0]));
2493 	}
2494 
2495 	memset(&u, 0, sizeof(u));
2496 	if (af == AF_INET) {
2497 		u.dest_sin.sin_family = AF_INET;
2498 		u.dest_sin.sin_len = sizeof(u.dest_sin);
2499 		u.dest_sin.sin_addr.s_addr = htonl(
2500 		    ((uint32_t)hextets[0] << 24) |
2501 		    ((uint32_t)hextets[1] << 16) |
2502 		    ((uint32_t)hextets[2] << 8) |
2503 		    (uint32_t)hextets[3]);
2504 		dstp = (void *)&u.dest_sin;
2505 		dst_addrp = &u.dest_sin.sin_addr;
2506 	} else if (af == AF_INET6) {
2507 		u.dest_sin6.sin6_family = AF_INET6;
2508 		u.dest_sin6.sin6_len = sizeof(u.dest_sin6);
2509 		for (i = 0; i < nitems(hextets); i++)
2510 			u.dest_sin6.sin6_addr.s6_addr16[i] = htons(hextets[i]);
2511 		dstp = (void *)&u.dest_sin6;
2512 		dst_addrp = &u.dest_sin6.sin6_addr;
2513 	} else {
2514 		MPASS(false);
2515 		/* UNREACHABLE */
2516 		/* Appease Clang false positive: */
2517 		dstp = NULL;
2518 	}
2519 
2520 	bp = inet_ntop(af, dst_addrp, buf, sizeof(buf));
2521 	if (bp != NULL)
2522 		db_printf("Looking up route to destination '%s'\n", bp);
2523 
2524 	CURVNET_SET(vnet0);
2525 	rt = rtalloc1(dstp, 0, RTF_RNH_LOCKED);
2526 	CURVNET_RESTORE();
2527 
2528 	if (rt == NULL) {
2529 		db_printf("Could not get route for that server.\n");
2530 		return;
2531 	}
2532 
2533 	rt_dumpentry_ddb((void *)rt, NULL);
2534 	RTFREE_LOCKED(rt);
2535 
2536 	return;
2537 usage:
2538 	db_printf("Usage: 'show route <address>'\n"
2539 	    "  Currently accepts only dotted-decimal INET or colon-separated\n"
2540 	    "  hextet INET6 addresses.\n");
2541 exit:
2542 	db_skip_to_eol();
2543 }
2544 #endif
2545