1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_compat.h" 35 #include "opt_mpath.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/domain.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/rwlock.h> 50 #include <sys/signalvar.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/systm.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/if_llatbl.h> 60 #include <net/if_types.h> 61 #include <net/netisr.h> 62 #include <net/raw_cb.h> 63 #include <net/route.h> 64 #include <net/route_var.h> 65 #include <net/vnet.h> 66 67 #include <netinet/in.h> 68 #include <netinet/if_ether.h> 69 #include <netinet/ip_carp.h> 70 #ifdef INET6 71 #include <netinet6/ip6_var.h> 72 #include <netinet6/scope6_var.h> 73 #endif 74 75 #ifdef COMPAT_FREEBSD32 76 #include <sys/mount.h> 77 #include <compat/freebsd32/freebsd32.h> 78 79 struct if_msghdr32 { 80 uint16_t ifm_msglen; 81 uint8_t ifm_version; 82 uint8_t ifm_type; 83 int32_t ifm_addrs; 84 int32_t ifm_flags; 85 uint16_t ifm_index; 86 struct if_data ifm_data; 87 }; 88 89 struct if_msghdrl32 { 90 uint16_t ifm_msglen; 91 uint8_t ifm_version; 92 uint8_t ifm_type; 93 int32_t ifm_addrs; 94 int32_t ifm_flags; 95 uint16_t ifm_index; 96 uint16_t _ifm_spare1; 97 uint16_t ifm_len; 98 uint16_t ifm_data_off; 99 struct if_data ifm_data; 100 }; 101 102 struct ifa_msghdrl32 { 103 uint16_t ifam_msglen; 104 uint8_t ifam_version; 105 uint8_t ifam_type; 106 int32_t ifam_addrs; 107 int32_t ifam_flags; 108 uint16_t ifam_index; 109 uint16_t _ifam_spare1; 110 uint16_t ifam_len; 111 uint16_t ifam_data_off; 112 int32_t ifam_metric; 113 struct if_data ifam_data; 114 }; 115 #endif /* COMPAT_FREEBSD32 */ 116 117 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 118 119 /* NB: these are not modified */ 120 static struct sockaddr route_src = { 2, PF_ROUTE, }; 121 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 122 123 /* These are external hooks for CARP. */ 124 int (*carp_get_vhid_p)(struct ifaddr *); 125 126 /* 127 * Used by rtsock/raw_input callback code to decide whether to filter the update 128 * notification to a socket bound to a particular FIB. 129 */ 130 #define RTS_FILTER_FIB M_PROTO8 131 132 typedef struct { 133 int ip_count; /* attached w/ AF_INET */ 134 int ip6_count; /* attached w/ AF_INET6 */ 135 int any_count; /* total attached */ 136 } route_cb_t; 137 static VNET_DEFINE(route_cb_t, route_cb); 138 #define V_route_cb VNET(route_cb) 139 140 struct mtx rtsock_mtx; 141 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 142 143 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 144 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 145 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 146 147 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 148 149 struct walkarg { 150 int w_tmemsize; 151 int w_op, w_arg; 152 caddr_t w_tmem; 153 struct sysctl_req *w_req; 154 }; 155 156 static void rts_input(struct mbuf *m); 157 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 158 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 159 struct walkarg *w, int *plen); 160 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 161 struct rt_addrinfo *rtinfo); 162 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 163 static int sysctl_iflist(int af, struct walkarg *w); 164 static int sysctl_ifmalist(int af, struct walkarg *w); 165 static int route_output(struct mbuf *m, struct socket *so, ...); 166 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 167 static void rt_dispatch(struct mbuf *, sa_family_t); 168 static struct sockaddr *rtsock_fix_netmask(struct sockaddr *dst, 169 struct sockaddr *smask, struct sockaddr_storage *dmask); 170 171 static struct netisr_handler rtsock_nh = { 172 .nh_name = "rtsock", 173 .nh_handler = rts_input, 174 .nh_proto = NETISR_ROUTE, 175 .nh_policy = NETISR_POLICY_SOURCE, 176 }; 177 178 static int 179 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 180 { 181 int error, qlimit; 182 183 netisr_getqlimit(&rtsock_nh, &qlimit); 184 error = sysctl_handle_int(oidp, &qlimit, 0, req); 185 if (error || !req->newptr) 186 return (error); 187 if (qlimit < 1) 188 return (EINVAL); 189 return (netisr_setqlimit(&rtsock_nh, qlimit)); 190 } 191 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 192 0, 0, sysctl_route_netisr_maxqlen, "I", 193 "maximum routing socket dispatch queue length"); 194 195 static void 196 vnet_rts_init(void) 197 { 198 int tmp; 199 200 if (IS_DEFAULT_VNET(curvnet)) { 201 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 202 rtsock_nh.nh_qlimit = tmp; 203 netisr_register(&rtsock_nh); 204 } 205 #ifdef VIMAGE 206 else 207 netisr_register_vnet(&rtsock_nh); 208 #endif 209 } 210 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 211 vnet_rts_init, 0); 212 213 #ifdef VIMAGE 214 static void 215 vnet_rts_uninit(void) 216 { 217 218 netisr_unregister_vnet(&rtsock_nh); 219 } 220 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 221 vnet_rts_uninit, 0); 222 #endif 223 224 static int 225 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 226 struct rawcb *rp) 227 { 228 int fibnum; 229 230 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 231 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 232 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 233 234 /* No filtering requested. */ 235 if ((m->m_flags & RTS_FILTER_FIB) == 0) 236 return (0); 237 238 /* Check if it is a rts and the fib matches the one of the socket. */ 239 fibnum = M_GETFIB(m); 240 if (proto->sp_family != PF_ROUTE || 241 rp->rcb_socket == NULL || 242 rp->rcb_socket->so_fibnum == fibnum) 243 return (0); 244 245 /* Filtering requested and no match, the socket shall be skipped. */ 246 return (1); 247 } 248 249 static void 250 rts_input(struct mbuf *m) 251 { 252 struct sockproto route_proto; 253 unsigned short *family; 254 struct m_tag *tag; 255 256 route_proto.sp_family = PF_ROUTE; 257 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 258 if (tag != NULL) { 259 family = (unsigned short *)(tag + 1); 260 route_proto.sp_protocol = *family; 261 m_tag_delete(m, tag); 262 } else 263 route_proto.sp_protocol = 0; 264 265 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 266 } 267 268 /* 269 * It really doesn't make any sense at all for this code to share much 270 * with raw_usrreq.c, since its functionality is so restricted. XXX 271 */ 272 static void 273 rts_abort(struct socket *so) 274 { 275 276 raw_usrreqs.pru_abort(so); 277 } 278 279 static void 280 rts_close(struct socket *so) 281 { 282 283 raw_usrreqs.pru_close(so); 284 } 285 286 /* pru_accept is EOPNOTSUPP */ 287 288 static int 289 rts_attach(struct socket *so, int proto, struct thread *td) 290 { 291 struct rawcb *rp; 292 int error; 293 294 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 295 296 /* XXX */ 297 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 298 299 so->so_pcb = (caddr_t)rp; 300 so->so_fibnum = td->td_proc->p_fibnum; 301 error = raw_attach(so, proto); 302 rp = sotorawcb(so); 303 if (error) { 304 so->so_pcb = NULL; 305 free(rp, M_PCB); 306 return error; 307 } 308 RTSOCK_LOCK(); 309 switch(rp->rcb_proto.sp_protocol) { 310 case AF_INET: 311 V_route_cb.ip_count++; 312 break; 313 case AF_INET6: 314 V_route_cb.ip6_count++; 315 break; 316 } 317 V_route_cb.any_count++; 318 RTSOCK_UNLOCK(); 319 soisconnected(so); 320 so->so_options |= SO_USELOOPBACK; 321 return 0; 322 } 323 324 static int 325 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 326 { 327 328 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 329 } 330 331 static int 332 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 333 { 334 335 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 336 } 337 338 /* pru_connect2 is EOPNOTSUPP */ 339 /* pru_control is EOPNOTSUPP */ 340 341 static void 342 rts_detach(struct socket *so) 343 { 344 struct rawcb *rp = sotorawcb(so); 345 346 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 347 348 RTSOCK_LOCK(); 349 switch(rp->rcb_proto.sp_protocol) { 350 case AF_INET: 351 V_route_cb.ip_count--; 352 break; 353 case AF_INET6: 354 V_route_cb.ip6_count--; 355 break; 356 } 357 V_route_cb.any_count--; 358 RTSOCK_UNLOCK(); 359 raw_usrreqs.pru_detach(so); 360 } 361 362 static int 363 rts_disconnect(struct socket *so) 364 { 365 366 return (raw_usrreqs.pru_disconnect(so)); 367 } 368 369 /* pru_listen is EOPNOTSUPP */ 370 371 static int 372 rts_peeraddr(struct socket *so, struct sockaddr **nam) 373 { 374 375 return (raw_usrreqs.pru_peeraddr(so, nam)); 376 } 377 378 /* pru_rcvd is EOPNOTSUPP */ 379 /* pru_rcvoob is EOPNOTSUPP */ 380 381 static int 382 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 383 struct mbuf *control, struct thread *td) 384 { 385 386 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 387 } 388 389 /* pru_sense is null */ 390 391 static int 392 rts_shutdown(struct socket *so) 393 { 394 395 return (raw_usrreqs.pru_shutdown(so)); 396 } 397 398 static int 399 rts_sockaddr(struct socket *so, struct sockaddr **nam) 400 { 401 402 return (raw_usrreqs.pru_sockaddr(so, nam)); 403 } 404 405 static struct pr_usrreqs route_usrreqs = { 406 .pru_abort = rts_abort, 407 .pru_attach = rts_attach, 408 .pru_bind = rts_bind, 409 .pru_connect = rts_connect, 410 .pru_detach = rts_detach, 411 .pru_disconnect = rts_disconnect, 412 .pru_peeraddr = rts_peeraddr, 413 .pru_send = rts_send, 414 .pru_shutdown = rts_shutdown, 415 .pru_sockaddr = rts_sockaddr, 416 .pru_close = rts_close, 417 }; 418 419 #ifndef _SOCKADDR_UNION_DEFINED 420 #define _SOCKADDR_UNION_DEFINED 421 /* 422 * The union of all possible address formats we handle. 423 */ 424 union sockaddr_union { 425 struct sockaddr sa; 426 struct sockaddr_in sin; 427 struct sockaddr_in6 sin6; 428 }; 429 #endif /* _SOCKADDR_UNION_DEFINED */ 430 431 static int 432 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 433 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 434 { 435 436 /* First, see if the returned address is part of the jail. */ 437 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 438 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 439 return (0); 440 } 441 442 switch (info->rti_info[RTAX_DST]->sa_family) { 443 #ifdef INET 444 case AF_INET: 445 { 446 struct in_addr ia; 447 struct ifaddr *ifa; 448 int found; 449 450 found = 0; 451 /* 452 * Try to find an address on the given outgoing interface 453 * that belongs to the jail. 454 */ 455 IF_ADDR_RLOCK(ifp); 456 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 457 struct sockaddr *sa; 458 sa = ifa->ifa_addr; 459 if (sa->sa_family != AF_INET) 460 continue; 461 ia = ((struct sockaddr_in *)sa)->sin_addr; 462 if (prison_check_ip4(cred, &ia) == 0) { 463 found = 1; 464 break; 465 } 466 } 467 IF_ADDR_RUNLOCK(ifp); 468 if (!found) { 469 /* 470 * As a last resort return the 'default' jail address. 471 */ 472 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 473 sin_addr; 474 if (prison_get_ip4(cred, &ia) != 0) 475 return (ESRCH); 476 } 477 bzero(&saun->sin, sizeof(struct sockaddr_in)); 478 saun->sin.sin_len = sizeof(struct sockaddr_in); 479 saun->sin.sin_family = AF_INET; 480 saun->sin.sin_addr.s_addr = ia.s_addr; 481 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 482 break; 483 } 484 #endif 485 #ifdef INET6 486 case AF_INET6: 487 { 488 struct in6_addr ia6; 489 struct ifaddr *ifa; 490 int found; 491 492 found = 0; 493 /* 494 * Try to find an address on the given outgoing interface 495 * that belongs to the jail. 496 */ 497 IF_ADDR_RLOCK(ifp); 498 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 499 struct sockaddr *sa; 500 sa = ifa->ifa_addr; 501 if (sa->sa_family != AF_INET6) 502 continue; 503 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 504 &ia6, sizeof(struct in6_addr)); 505 if (prison_check_ip6(cred, &ia6) == 0) { 506 found = 1; 507 break; 508 } 509 } 510 IF_ADDR_RUNLOCK(ifp); 511 if (!found) { 512 /* 513 * As a last resort return the 'default' jail address. 514 */ 515 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 516 sin6_addr; 517 if (prison_get_ip6(cred, &ia6) != 0) 518 return (ESRCH); 519 } 520 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 521 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 522 saun->sin6.sin6_family = AF_INET6; 523 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 524 if (sa6_recoverscope(&saun->sin6) != 0) 525 return (ESRCH); 526 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 527 break; 528 } 529 #endif 530 default: 531 return (ESRCH); 532 } 533 return (0); 534 } 535 536 /*ARGSUSED*/ 537 static int 538 route_output(struct mbuf *m, struct socket *so, ...) 539 { 540 struct rt_msghdr *rtm = NULL; 541 struct rtentry *rt = NULL; 542 struct rib_head *rnh; 543 struct rt_addrinfo info; 544 struct sockaddr_storage ss; 545 #ifdef INET6 546 struct sockaddr_in6 *sin6; 547 int i, rti_need_deembed = 0; 548 #endif 549 int alloc_len = 0, len, error = 0, fibnum; 550 struct ifnet *ifp = NULL; 551 union sockaddr_union saun; 552 sa_family_t saf = AF_UNSPEC; 553 struct rawcb *rp = NULL; 554 struct walkarg w; 555 556 fibnum = so->so_fibnum; 557 558 #define senderr(e) { error = e; goto flush;} 559 if (m == NULL || ((m->m_len < sizeof(long)) && 560 (m = m_pullup(m, sizeof(long))) == NULL)) 561 return (ENOBUFS); 562 if ((m->m_flags & M_PKTHDR) == 0) 563 panic("route_output"); 564 len = m->m_pkthdr.len; 565 if (len < sizeof(*rtm) || 566 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 567 senderr(EINVAL); 568 569 /* 570 * Most of current messages are in range 200-240 bytes, 571 * minimize possible re-allocation on reply using larger size 572 * buffer aligned on 1k boundaty. 573 */ 574 alloc_len = roundup2(len, 1024); 575 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 576 senderr(ENOBUFS); 577 578 m_copydata(m, 0, len, (caddr_t)rtm); 579 bzero(&info, sizeof(info)); 580 bzero(&w, sizeof(w)); 581 582 if (rtm->rtm_version != RTM_VERSION) { 583 /* Do not touch message since format is unknown */ 584 free(rtm, M_TEMP); 585 rtm = NULL; 586 senderr(EPROTONOSUPPORT); 587 } 588 589 /* 590 * Starting from here, it is possible 591 * to alter original message and insert 592 * caller PID and error value. 593 */ 594 595 rtm->rtm_pid = curproc->p_pid; 596 info.rti_addrs = rtm->rtm_addrs; 597 598 info.rti_mflags = rtm->rtm_inits; 599 info.rti_rmx = &rtm->rtm_rmx; 600 601 /* 602 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 603 * link-local address because rtrequest requires addresses with 604 * embedded scope id. 605 */ 606 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) 607 senderr(EINVAL); 608 609 info.rti_flags = rtm->rtm_flags; 610 if (info.rti_info[RTAX_DST] == NULL || 611 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 612 (info.rti_info[RTAX_GATEWAY] != NULL && 613 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 614 senderr(EINVAL); 615 saf = info.rti_info[RTAX_DST]->sa_family; 616 /* 617 * Verify that the caller has the appropriate privilege; RTM_GET 618 * is the only operation the non-superuser is allowed. 619 */ 620 if (rtm->rtm_type != RTM_GET) { 621 error = priv_check(curthread, PRIV_NET_ROUTE); 622 if (error) 623 senderr(error); 624 } 625 626 /* 627 * The given gateway address may be an interface address. 628 * For example, issuing a "route change" command on a route 629 * entry that was created from a tunnel, and the gateway 630 * address given is the local end point. In this case the 631 * RTF_GATEWAY flag must be cleared or the destination will 632 * not be reachable even though there is no error message. 633 */ 634 if (info.rti_info[RTAX_GATEWAY] != NULL && 635 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 636 struct rt_addrinfo ginfo; 637 struct sockaddr *gdst; 638 639 bzero(&ginfo, sizeof(ginfo)); 640 bzero(&ss, sizeof(ss)); 641 ss.ss_len = sizeof(ss); 642 643 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 644 gdst = info.rti_info[RTAX_GATEWAY]; 645 646 /* 647 * A host route through the loopback interface is 648 * installed for each interface adddress. In pre 8.0 649 * releases the interface address of a PPP link type 650 * is not reachable locally. This behavior is fixed as 651 * part of the new L2/L3 redesign and rewrite work. The 652 * signature of this interface address route is the 653 * AF_LINK sa_family type of the rt_gateway, and the 654 * rt_ifp has the IFF_LOOPBACK flag set. 655 */ 656 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 657 if (ss.ss_family == AF_LINK && 658 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 659 info.rti_flags &= ~RTF_GATEWAY; 660 info.rti_flags |= RTF_GWFLAG_COMPAT; 661 } 662 rib_free_info(&ginfo); 663 } 664 } 665 666 switch (rtm->rtm_type) { 667 struct rtentry *saved_nrt; 668 669 case RTM_ADD: 670 case RTM_CHANGE: 671 if (info.rti_info[RTAX_GATEWAY] == NULL) 672 senderr(EINVAL); 673 saved_nrt = NULL; 674 675 /* support for new ARP code */ 676 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 677 (rtm->rtm_flags & RTF_LLDATA) != 0) { 678 error = lla_rt_output(rtm, &info); 679 #ifdef INET6 680 if (error == 0) 681 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 682 #endif 683 break; 684 } 685 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt, 686 fibnum); 687 if (error == 0 && saved_nrt != NULL) { 688 #ifdef INET6 689 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 690 #endif 691 RT_LOCK(saved_nrt); 692 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 693 RT_REMREF(saved_nrt); 694 RT_UNLOCK(saved_nrt); 695 } 696 break; 697 698 case RTM_DELETE: 699 saved_nrt = NULL; 700 /* support for new ARP code */ 701 if (info.rti_info[RTAX_GATEWAY] && 702 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 703 (rtm->rtm_flags & RTF_LLDATA) != 0) { 704 error = lla_rt_output(rtm, &info); 705 #ifdef INET6 706 if (error == 0) 707 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 708 #endif 709 break; 710 } 711 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum); 712 if (error == 0) { 713 RT_LOCK(saved_nrt); 714 rt = saved_nrt; 715 goto report; 716 } 717 #ifdef INET6 718 /* rt_msg2() will not be used when RTM_DELETE fails. */ 719 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 720 #endif 721 break; 722 723 case RTM_GET: 724 rnh = rt_tables_get_rnh(fibnum, saf); 725 if (rnh == NULL) 726 senderr(EAFNOSUPPORT); 727 728 RIB_RLOCK(rnh); 729 730 if (info.rti_info[RTAX_NETMASK] == NULL && 731 rtm->rtm_type == RTM_GET) { 732 /* 733 * Provide longest prefix match for 734 * address lookup (no mask). 735 * 'route -n get addr' 736 */ 737 rt = (struct rtentry *) rnh->rnh_matchaddr( 738 info.rti_info[RTAX_DST], &rnh->head); 739 } else 740 rt = (struct rtentry *) rnh->rnh_lookup( 741 info.rti_info[RTAX_DST], 742 info.rti_info[RTAX_NETMASK], &rnh->head); 743 744 if (rt == NULL) { 745 RIB_RUNLOCK(rnh); 746 senderr(ESRCH); 747 } 748 #ifdef RADIX_MPATH 749 /* 750 * for RTM_CHANGE/LOCK, if we got multipath routes, 751 * we require users to specify a matching RTAX_GATEWAY. 752 * 753 * for RTM_GET, gate is optional even with multipath. 754 * if gate == NULL the first match is returned. 755 * (no need to call rt_mpath_matchgate if gate == NULL) 756 */ 757 if (rt_mpath_capable(rnh) && 758 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 759 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 760 if (!rt) { 761 RIB_RUNLOCK(rnh); 762 senderr(ESRCH); 763 } 764 } 765 #endif 766 /* 767 * If performing proxied L2 entry insertion, and 768 * the actual PPP host entry is found, perform 769 * another search to retrieve the prefix route of 770 * the local end point of the PPP link. 771 */ 772 if (rtm->rtm_flags & RTF_ANNOUNCE) { 773 struct sockaddr laddr; 774 775 if (rt->rt_ifp != NULL && 776 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 777 struct ifaddr *ifa; 778 779 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1, 780 RT_ALL_FIBS); 781 if (ifa != NULL) 782 rt_maskedcopy(ifa->ifa_addr, 783 &laddr, 784 ifa->ifa_netmask); 785 } else 786 rt_maskedcopy(rt->rt_ifa->ifa_addr, 787 &laddr, 788 rt->rt_ifa->ifa_netmask); 789 /* 790 * refactor rt and no lock operation necessary 791 */ 792 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 793 &rnh->head); 794 if (rt == NULL) { 795 RIB_RUNLOCK(rnh); 796 senderr(ESRCH); 797 } 798 } 799 RT_LOCK(rt); 800 RT_ADDREF(rt); 801 RIB_RUNLOCK(rnh); 802 803 report: 804 RT_LOCK_ASSERT(rt); 805 if ((rt->rt_flags & RTF_HOST) == 0 806 ? jailed_without_vnet(curthread->td_ucred) 807 : prison_if(curthread->td_ucred, 808 rt_key(rt)) != 0) { 809 RT_UNLOCK(rt); 810 senderr(ESRCH); 811 } 812 info.rti_info[RTAX_DST] = rt_key(rt); 813 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 814 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 815 rt_mask(rt), &ss); 816 info.rti_info[RTAX_GENMASK] = 0; 817 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 818 ifp = rt->rt_ifp; 819 if (ifp) { 820 info.rti_info[RTAX_IFP] = 821 ifp->if_addr->ifa_addr; 822 error = rtm_get_jailed(&info, ifp, rt, 823 &saun, curthread->td_ucred); 824 if (error != 0) { 825 RT_UNLOCK(rt); 826 senderr(error); 827 } 828 if (ifp->if_flags & IFF_POINTOPOINT) 829 info.rti_info[RTAX_BRD] = 830 rt->rt_ifa->ifa_dstaddr; 831 rtm->rtm_index = ifp->if_index; 832 } else { 833 info.rti_info[RTAX_IFP] = NULL; 834 info.rti_info[RTAX_IFA] = NULL; 835 } 836 } else if ((ifp = rt->rt_ifp) != NULL) { 837 rtm->rtm_index = ifp->if_index; 838 } 839 840 /* Check if we need to realloc storage */ 841 rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len); 842 if (len > alloc_len) { 843 struct rt_msghdr *new_rtm; 844 new_rtm = malloc(len, M_TEMP, M_NOWAIT); 845 if (new_rtm == NULL) { 846 RT_UNLOCK(rt); 847 senderr(ENOBUFS); 848 } 849 bcopy(rtm, new_rtm, rtm->rtm_msglen); 850 free(rtm, M_TEMP); 851 rtm = new_rtm; 852 alloc_len = len; 853 } 854 855 w.w_tmem = (caddr_t)rtm; 856 w.w_tmemsize = alloc_len; 857 rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len); 858 859 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 860 rtm->rtm_flags = RTF_GATEWAY | 861 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 862 else 863 rtm->rtm_flags = rt->rt_flags; 864 rt_getmetrics(rt, &rtm->rtm_rmx); 865 rtm->rtm_addrs = info.rti_addrs; 866 867 RT_UNLOCK(rt); 868 break; 869 870 default: 871 senderr(EOPNOTSUPP); 872 } 873 874 flush: 875 if (rt != NULL) 876 RTFREE(rt); 877 /* 878 * Check to see if we don't want our own messages. 879 */ 880 if ((so->so_options & SO_USELOOPBACK) == 0) { 881 if (V_route_cb.any_count <= 1) { 882 if (rtm != NULL) 883 free(rtm, M_TEMP); 884 m_freem(m); 885 return (error); 886 } 887 /* There is another listener, so construct message */ 888 rp = sotorawcb(so); 889 } 890 891 if (rtm != NULL) { 892 #ifdef INET6 893 if (rti_need_deembed) { 894 /* sin6_scope_id is recovered before sending rtm. */ 895 sin6 = (struct sockaddr_in6 *)&ss; 896 for (i = 0; i < RTAX_MAX; i++) { 897 if (info.rti_info[i] == NULL) 898 continue; 899 if (info.rti_info[i]->sa_family != AF_INET6) 900 continue; 901 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 902 if (sa6_recoverscope(sin6) == 0) 903 bcopy(sin6, info.rti_info[i], 904 sizeof(*sin6)); 905 } 906 } 907 #endif 908 if (error != 0) 909 rtm->rtm_errno = error; 910 else 911 rtm->rtm_flags |= RTF_DONE; 912 913 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 914 if (m->m_pkthdr.len < rtm->rtm_msglen) { 915 m_freem(m); 916 m = NULL; 917 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 918 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 919 920 free(rtm, M_TEMP); 921 } 922 if (m != NULL) { 923 M_SETFIB(m, fibnum); 924 m->m_flags |= RTS_FILTER_FIB; 925 if (rp) { 926 /* 927 * XXX insure we don't get a copy by 928 * invalidating our protocol 929 */ 930 unsigned short family = rp->rcb_proto.sp_family; 931 rp->rcb_proto.sp_family = 0; 932 rt_dispatch(m, saf); 933 rp->rcb_proto.sp_family = family; 934 } else 935 rt_dispatch(m, saf); 936 } 937 938 return (error); 939 } 940 941 static void 942 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 943 { 944 945 bzero(out, sizeof(*out)); 946 out->rmx_mtu = rt->rt_mtu; 947 out->rmx_weight = rt->rt_weight; 948 out->rmx_pksent = counter_u64_fetch(rt->rt_pksent); 949 /* Kernel -> userland timebase conversion. */ 950 out->rmx_expire = rt->rt_expire ? 951 rt->rt_expire - time_uptime + time_second : 0; 952 } 953 954 /* 955 * Extract the addresses of the passed sockaddrs. 956 * Do a little sanity checking so as to avoid bad memory references. 957 * This data is derived straight from userland. 958 */ 959 static int 960 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 961 { 962 struct sockaddr *sa; 963 int i; 964 965 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 966 if ((rtinfo->rti_addrs & (1 << i)) == 0) 967 continue; 968 sa = (struct sockaddr *)cp; 969 /* 970 * It won't fit. 971 */ 972 if (cp + sa->sa_len > cplim) 973 return (EINVAL); 974 /* 975 * there are no more.. quit now 976 * If there are more bits, they are in error. 977 * I've seen this. route(1) can evidently generate these. 978 * This causes kernel to core dump. 979 * for compatibility, If we see this, point to a safe address. 980 */ 981 if (sa->sa_len == 0) { 982 rtinfo->rti_info[i] = &sa_zero; 983 return (0); /* should be EINVAL but for compat */ 984 } 985 /* accept it */ 986 #ifdef INET6 987 if (sa->sa_family == AF_INET6) 988 sa6_embedscope((struct sockaddr_in6 *)sa, 989 V_ip6_use_defzone); 990 #endif 991 rtinfo->rti_info[i] = sa; 992 cp += SA_SIZE(sa); 993 } 994 return (0); 995 } 996 997 /* 998 * Fill in @dmask with valid netmask leaving original @smask 999 * intact. Mostly used with radix netmasks. 1000 */ 1001 static struct sockaddr * 1002 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask, 1003 struct sockaddr_storage *dmask) 1004 { 1005 if (dst == NULL || smask == NULL) 1006 return (NULL); 1007 1008 memset(dmask, 0, dst->sa_len); 1009 memcpy(dmask, smask, smask->sa_len); 1010 dmask->ss_len = dst->sa_len; 1011 dmask->ss_family = dst->sa_family; 1012 1013 return ((struct sockaddr *)dmask); 1014 } 1015 1016 /* 1017 * Writes information related to @rtinfo object to newly-allocated mbuf. 1018 * Assumes MCLBYTES is enough to construct any message. 1019 * Used for OS notifications of vaious events (if/ifa announces,etc) 1020 * 1021 * Returns allocated mbuf or NULL on failure. 1022 */ 1023 static struct mbuf * 1024 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1025 { 1026 struct rt_msghdr *rtm; 1027 struct mbuf *m; 1028 int i; 1029 struct sockaddr *sa; 1030 #ifdef INET6 1031 struct sockaddr_storage ss; 1032 struct sockaddr_in6 *sin6; 1033 #endif 1034 int len, dlen; 1035 1036 switch (type) { 1037 1038 case RTM_DELADDR: 1039 case RTM_NEWADDR: 1040 len = sizeof(struct ifa_msghdr); 1041 break; 1042 1043 case RTM_DELMADDR: 1044 case RTM_NEWMADDR: 1045 len = sizeof(struct ifma_msghdr); 1046 break; 1047 1048 case RTM_IFINFO: 1049 len = sizeof(struct if_msghdr); 1050 break; 1051 1052 case RTM_IFANNOUNCE: 1053 case RTM_IEEE80211: 1054 len = sizeof(struct if_announcemsghdr); 1055 break; 1056 1057 default: 1058 len = sizeof(struct rt_msghdr); 1059 } 1060 1061 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1062 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1063 if (len > MHLEN) 1064 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1065 else 1066 m = m_gethdr(M_NOWAIT, MT_DATA); 1067 if (m == NULL) 1068 return (m); 1069 1070 m->m_pkthdr.len = m->m_len = len; 1071 rtm = mtod(m, struct rt_msghdr *); 1072 bzero((caddr_t)rtm, len); 1073 for (i = 0; i < RTAX_MAX; i++) { 1074 if ((sa = rtinfo->rti_info[i]) == NULL) 1075 continue; 1076 rtinfo->rti_addrs |= (1 << i); 1077 dlen = SA_SIZE(sa); 1078 #ifdef INET6 1079 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1080 sin6 = (struct sockaddr_in6 *)&ss; 1081 bcopy(sa, sin6, sizeof(*sin6)); 1082 if (sa6_recoverscope(sin6) == 0) 1083 sa = (struct sockaddr *)sin6; 1084 } 1085 #endif 1086 m_copyback(m, len, dlen, (caddr_t)sa); 1087 len += dlen; 1088 } 1089 if (m->m_pkthdr.len != len) { 1090 m_freem(m); 1091 return (NULL); 1092 } 1093 rtm->rtm_msglen = len; 1094 rtm->rtm_version = RTM_VERSION; 1095 rtm->rtm_type = type; 1096 return (m); 1097 } 1098 1099 /* 1100 * Writes information related to @rtinfo object to preallocated buffer. 1101 * Stores needed size in @plen. If @w is NULL, calculates size without 1102 * writing. 1103 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1104 * 1105 * Returns 0 on success. 1106 * 1107 */ 1108 static int 1109 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1110 { 1111 int i; 1112 int len, buflen = 0, dlen; 1113 caddr_t cp = NULL; 1114 struct rt_msghdr *rtm = NULL; 1115 #ifdef INET6 1116 struct sockaddr_storage ss; 1117 struct sockaddr_in6 *sin6; 1118 #endif 1119 1120 switch (type) { 1121 1122 case RTM_DELADDR: 1123 case RTM_NEWADDR: 1124 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1125 #ifdef COMPAT_FREEBSD32 1126 if (w->w_req->flags & SCTL_MASK32) 1127 len = sizeof(struct ifa_msghdrl32); 1128 else 1129 #endif 1130 len = sizeof(struct ifa_msghdrl); 1131 } else 1132 len = sizeof(struct ifa_msghdr); 1133 break; 1134 1135 case RTM_IFINFO: 1136 #ifdef COMPAT_FREEBSD32 1137 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1138 if (w->w_op == NET_RT_IFLISTL) 1139 len = sizeof(struct if_msghdrl32); 1140 else 1141 len = sizeof(struct if_msghdr32); 1142 break; 1143 } 1144 #endif 1145 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1146 len = sizeof(struct if_msghdrl); 1147 else 1148 len = sizeof(struct if_msghdr); 1149 break; 1150 1151 case RTM_NEWMADDR: 1152 len = sizeof(struct ifma_msghdr); 1153 break; 1154 1155 default: 1156 len = sizeof(struct rt_msghdr); 1157 } 1158 1159 if (w != NULL) { 1160 rtm = (struct rt_msghdr *)w->w_tmem; 1161 buflen = w->w_tmemsize - len; 1162 cp = (caddr_t)w->w_tmem + len; 1163 } 1164 1165 rtinfo->rti_addrs = 0; 1166 for (i = 0; i < RTAX_MAX; i++) { 1167 struct sockaddr *sa; 1168 1169 if ((sa = rtinfo->rti_info[i]) == NULL) 1170 continue; 1171 rtinfo->rti_addrs |= (1 << i); 1172 dlen = SA_SIZE(sa); 1173 if (cp != NULL && buflen >= dlen) { 1174 #ifdef INET6 1175 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1176 sin6 = (struct sockaddr_in6 *)&ss; 1177 bcopy(sa, sin6, sizeof(*sin6)); 1178 if (sa6_recoverscope(sin6) == 0) 1179 sa = (struct sockaddr *)sin6; 1180 } 1181 #endif 1182 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1183 cp += dlen; 1184 buflen -= dlen; 1185 } else if (cp != NULL) { 1186 /* 1187 * Buffer too small. Count needed size 1188 * and return with error. 1189 */ 1190 cp = NULL; 1191 } 1192 1193 len += dlen; 1194 } 1195 1196 if (cp != NULL) { 1197 dlen = ALIGN(len) - len; 1198 if (buflen < dlen) 1199 cp = NULL; 1200 else 1201 buflen -= dlen; 1202 } 1203 len = ALIGN(len); 1204 1205 if (cp != NULL) { 1206 /* fill header iff buffer is large enough */ 1207 rtm->rtm_version = RTM_VERSION; 1208 rtm->rtm_type = type; 1209 rtm->rtm_msglen = len; 1210 } 1211 1212 *plen = len; 1213 1214 if (w != NULL && cp == NULL) 1215 return (ENOBUFS); 1216 1217 return (0); 1218 } 1219 1220 /* 1221 * This routine is called to generate a message from the routing 1222 * socket indicating that a redirect has occurred, a routing lookup 1223 * has failed, or that a protocol has detected timeouts to a particular 1224 * destination. 1225 */ 1226 void 1227 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1228 int fibnum) 1229 { 1230 struct rt_msghdr *rtm; 1231 struct mbuf *m; 1232 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1233 1234 if (V_route_cb.any_count == 0) 1235 return; 1236 m = rtsock_msg_mbuf(type, rtinfo); 1237 if (m == NULL) 1238 return; 1239 1240 if (fibnum != RT_ALL_FIBS) { 1241 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1242 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1243 M_SETFIB(m, fibnum); 1244 m->m_flags |= RTS_FILTER_FIB; 1245 } 1246 1247 rtm = mtod(m, struct rt_msghdr *); 1248 rtm->rtm_flags = RTF_DONE | flags; 1249 rtm->rtm_errno = error; 1250 rtm->rtm_addrs = rtinfo->rti_addrs; 1251 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1252 } 1253 1254 void 1255 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1256 { 1257 1258 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1259 } 1260 1261 /* 1262 * This routine is called to generate a message from the routing 1263 * socket indicating that the status of a network interface has changed. 1264 */ 1265 void 1266 rt_ifmsg(struct ifnet *ifp) 1267 { 1268 struct if_msghdr *ifm; 1269 struct mbuf *m; 1270 struct rt_addrinfo info; 1271 1272 if (V_route_cb.any_count == 0) 1273 return; 1274 bzero((caddr_t)&info, sizeof(info)); 1275 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1276 if (m == NULL) 1277 return; 1278 ifm = mtod(m, struct if_msghdr *); 1279 ifm->ifm_index = ifp->if_index; 1280 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1281 if_data_copy(ifp, &ifm->ifm_data); 1282 ifm->ifm_addrs = 0; 1283 rt_dispatch(m, AF_UNSPEC); 1284 } 1285 1286 /* 1287 * Announce interface address arrival/withdraw. 1288 * Please do not call directly, use rt_addrmsg(). 1289 * Assume input data to be valid. 1290 * Returns 0 on success. 1291 */ 1292 int 1293 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1294 { 1295 struct rt_addrinfo info; 1296 struct sockaddr *sa; 1297 int ncmd; 1298 struct mbuf *m; 1299 struct ifa_msghdr *ifam; 1300 struct ifnet *ifp = ifa->ifa_ifp; 1301 struct sockaddr_storage ss; 1302 1303 if (V_route_cb.any_count == 0) 1304 return (0); 1305 1306 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1307 1308 bzero((caddr_t)&info, sizeof(info)); 1309 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1310 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1311 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1312 info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss); 1313 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1314 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1315 return (ENOBUFS); 1316 ifam = mtod(m, struct ifa_msghdr *); 1317 ifam->ifam_index = ifp->if_index; 1318 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1319 ifam->ifam_flags = ifa->ifa_flags; 1320 ifam->ifam_addrs = info.rti_addrs; 1321 1322 if (fibnum != RT_ALL_FIBS) { 1323 M_SETFIB(m, fibnum); 1324 m->m_flags |= RTS_FILTER_FIB; 1325 } 1326 1327 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1328 1329 return (0); 1330 } 1331 1332 /* 1333 * Announce route addition/removal. 1334 * Please do not call directly, use rt_routemsg(). 1335 * Note that @rt data MAY be inconsistent/invalid: 1336 * if some userland app sends us "invalid" route message (invalid mask, 1337 * no dst, wrong address families, etc...) we need to pass it back 1338 * to app (and any other rtsock consumers) with rtm_errno field set to 1339 * non-zero value. 1340 * 1341 * Returns 0 on success. 1342 */ 1343 int 1344 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1345 int fibnum) 1346 { 1347 struct rt_addrinfo info; 1348 struct sockaddr *sa; 1349 struct mbuf *m; 1350 struct rt_msghdr *rtm; 1351 struct sockaddr_storage ss; 1352 1353 if (V_route_cb.any_count == 0) 1354 return (0); 1355 1356 bzero((caddr_t)&info, sizeof(info)); 1357 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1358 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss); 1359 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1360 if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL) 1361 return (ENOBUFS); 1362 rtm = mtod(m, struct rt_msghdr *); 1363 rtm->rtm_index = ifp->if_index; 1364 rtm->rtm_flags |= rt->rt_flags; 1365 rtm->rtm_errno = error; 1366 rtm->rtm_addrs = info.rti_addrs; 1367 1368 if (fibnum != RT_ALL_FIBS) { 1369 M_SETFIB(m, fibnum); 1370 m->m_flags |= RTS_FILTER_FIB; 1371 } 1372 1373 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1374 1375 return (0); 1376 } 1377 1378 /* 1379 * This is the analogue to the rt_newaddrmsg which performs the same 1380 * function but for multicast group memberhips. This is easier since 1381 * there is no route state to worry about. 1382 */ 1383 void 1384 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1385 { 1386 struct rt_addrinfo info; 1387 struct mbuf *m = NULL; 1388 struct ifnet *ifp = ifma->ifma_ifp; 1389 struct ifma_msghdr *ifmam; 1390 1391 if (V_route_cb.any_count == 0) 1392 return; 1393 1394 bzero((caddr_t)&info, sizeof(info)); 1395 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1396 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1397 /* 1398 * If a link-layer address is present, present it as a ``gateway'' 1399 * (similarly to how ARP entries, e.g., are presented). 1400 */ 1401 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1402 m = rtsock_msg_mbuf(cmd, &info); 1403 if (m == NULL) 1404 return; 1405 ifmam = mtod(m, struct ifma_msghdr *); 1406 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1407 __func__)); 1408 ifmam->ifmam_index = ifp->if_index; 1409 ifmam->ifmam_addrs = info.rti_addrs; 1410 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1411 } 1412 1413 static struct mbuf * 1414 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1415 struct rt_addrinfo *info) 1416 { 1417 struct if_announcemsghdr *ifan; 1418 struct mbuf *m; 1419 1420 if (V_route_cb.any_count == 0) 1421 return NULL; 1422 bzero((caddr_t)info, sizeof(*info)); 1423 m = rtsock_msg_mbuf(type, info); 1424 if (m != NULL) { 1425 ifan = mtod(m, struct if_announcemsghdr *); 1426 ifan->ifan_index = ifp->if_index; 1427 strlcpy(ifan->ifan_name, ifp->if_xname, 1428 sizeof(ifan->ifan_name)); 1429 ifan->ifan_what = what; 1430 } 1431 return m; 1432 } 1433 1434 /* 1435 * This is called to generate routing socket messages indicating 1436 * IEEE80211 wireless events. 1437 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1438 */ 1439 void 1440 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1441 { 1442 struct mbuf *m; 1443 struct rt_addrinfo info; 1444 1445 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1446 if (m != NULL) { 1447 /* 1448 * Append the ieee80211 data. Try to stick it in the 1449 * mbuf containing the ifannounce msg; otherwise allocate 1450 * a new mbuf and append. 1451 * 1452 * NB: we assume m is a single mbuf. 1453 */ 1454 if (data_len > M_TRAILINGSPACE(m)) { 1455 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1456 if (n == NULL) { 1457 m_freem(m); 1458 return; 1459 } 1460 bcopy(data, mtod(n, void *), data_len); 1461 n->m_len = data_len; 1462 m->m_next = n; 1463 } else if (data_len > 0) { 1464 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1465 m->m_len += data_len; 1466 } 1467 if (m->m_flags & M_PKTHDR) 1468 m->m_pkthdr.len += data_len; 1469 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1470 rt_dispatch(m, AF_UNSPEC); 1471 } 1472 } 1473 1474 /* 1475 * This is called to generate routing socket messages indicating 1476 * network interface arrival and departure. 1477 */ 1478 void 1479 rt_ifannouncemsg(struct ifnet *ifp, int what) 1480 { 1481 struct mbuf *m; 1482 struct rt_addrinfo info; 1483 1484 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1485 if (m != NULL) 1486 rt_dispatch(m, AF_UNSPEC); 1487 } 1488 1489 static void 1490 rt_dispatch(struct mbuf *m, sa_family_t saf) 1491 { 1492 struct m_tag *tag; 1493 1494 /* 1495 * Preserve the family from the sockaddr, if any, in an m_tag for 1496 * use when injecting the mbuf into the routing socket buffer from 1497 * the netisr. 1498 */ 1499 if (saf != AF_UNSPEC) { 1500 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1501 M_NOWAIT); 1502 if (tag == NULL) { 1503 m_freem(m); 1504 return; 1505 } 1506 *(unsigned short *)(tag + 1) = saf; 1507 m_tag_prepend(m, tag); 1508 } 1509 #ifdef VIMAGE 1510 if (V_loif) 1511 m->m_pkthdr.rcvif = V_loif; 1512 else { 1513 m_freem(m); 1514 return; 1515 } 1516 #endif 1517 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1518 } 1519 1520 /* 1521 * This is used in dumping the kernel table via sysctl(). 1522 */ 1523 static int 1524 sysctl_dumpentry(struct radix_node *rn, void *vw) 1525 { 1526 struct walkarg *w = vw; 1527 struct rtentry *rt = (struct rtentry *)rn; 1528 int error = 0, size; 1529 struct rt_addrinfo info; 1530 struct sockaddr_storage ss; 1531 1532 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1533 return 0; 1534 if ((rt->rt_flags & RTF_HOST) == 0 1535 ? jailed_without_vnet(w->w_req->td->td_ucred) 1536 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1537 return (0); 1538 bzero((caddr_t)&info, sizeof(info)); 1539 info.rti_info[RTAX_DST] = rt_key(rt); 1540 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1541 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1542 rt_mask(rt), &ss); 1543 info.rti_info[RTAX_GENMASK] = 0; 1544 if (rt->rt_ifp) { 1545 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1546 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1547 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1548 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1549 } 1550 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1551 return (error); 1552 if (w->w_req && w->w_tmem) { 1553 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1554 1555 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1556 rtm->rtm_flags = RTF_GATEWAY | 1557 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1558 else 1559 rtm->rtm_flags = rt->rt_flags; 1560 rt_getmetrics(rt, &rtm->rtm_rmx); 1561 rtm->rtm_index = rt->rt_ifp->if_index; 1562 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1563 rtm->rtm_addrs = info.rti_addrs; 1564 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1565 return (error); 1566 } 1567 return (error); 1568 } 1569 1570 static int 1571 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1572 struct rt_addrinfo *info, struct walkarg *w, int len) 1573 { 1574 struct if_msghdrl *ifm; 1575 struct if_data *ifd; 1576 1577 ifm = (struct if_msghdrl *)w->w_tmem; 1578 1579 #ifdef COMPAT_FREEBSD32 1580 if (w->w_req->flags & SCTL_MASK32) { 1581 struct if_msghdrl32 *ifm32; 1582 1583 ifm32 = (struct if_msghdrl32 *)ifm; 1584 ifm32->ifm_addrs = info->rti_addrs; 1585 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1586 ifm32->ifm_index = ifp->if_index; 1587 ifm32->_ifm_spare1 = 0; 1588 ifm32->ifm_len = sizeof(*ifm32); 1589 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1590 ifd = &ifm32->ifm_data; 1591 } else 1592 #endif 1593 { 1594 ifm->ifm_addrs = info->rti_addrs; 1595 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1596 ifm->ifm_index = ifp->if_index; 1597 ifm->_ifm_spare1 = 0; 1598 ifm->ifm_len = sizeof(*ifm); 1599 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1600 ifd = &ifm->ifm_data; 1601 } 1602 1603 memcpy(ifd, src_ifd, sizeof(*ifd)); 1604 1605 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1606 } 1607 1608 static int 1609 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 1610 struct rt_addrinfo *info, struct walkarg *w, int len) 1611 { 1612 struct if_msghdr *ifm; 1613 struct if_data *ifd; 1614 1615 ifm = (struct if_msghdr *)w->w_tmem; 1616 1617 #ifdef COMPAT_FREEBSD32 1618 if (w->w_req->flags & SCTL_MASK32) { 1619 struct if_msghdr32 *ifm32; 1620 1621 ifm32 = (struct if_msghdr32 *)ifm; 1622 ifm32->ifm_addrs = info->rti_addrs; 1623 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1624 ifm32->ifm_index = ifp->if_index; 1625 ifd = &ifm32->ifm_data; 1626 } else 1627 #endif 1628 { 1629 ifm->ifm_addrs = info->rti_addrs; 1630 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1631 ifm->ifm_index = ifp->if_index; 1632 ifd = &ifm->ifm_data; 1633 } 1634 1635 memcpy(ifd, src_ifd, sizeof(*ifd)); 1636 1637 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1638 } 1639 1640 static int 1641 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1642 struct walkarg *w, int len) 1643 { 1644 struct ifa_msghdrl *ifam; 1645 struct if_data *ifd; 1646 1647 ifam = (struct ifa_msghdrl *)w->w_tmem; 1648 1649 #ifdef COMPAT_FREEBSD32 1650 if (w->w_req->flags & SCTL_MASK32) { 1651 struct ifa_msghdrl32 *ifam32; 1652 1653 ifam32 = (struct ifa_msghdrl32 *)ifam; 1654 ifam32->ifam_addrs = info->rti_addrs; 1655 ifam32->ifam_flags = ifa->ifa_flags; 1656 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1657 ifam32->_ifam_spare1 = 0; 1658 ifam32->ifam_len = sizeof(*ifam32); 1659 ifam32->ifam_data_off = 1660 offsetof(struct ifa_msghdrl32, ifam_data); 1661 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1662 ifd = &ifam32->ifam_data; 1663 } else 1664 #endif 1665 { 1666 ifam->ifam_addrs = info->rti_addrs; 1667 ifam->ifam_flags = ifa->ifa_flags; 1668 ifam->ifam_index = ifa->ifa_ifp->if_index; 1669 ifam->_ifam_spare1 = 0; 1670 ifam->ifam_len = sizeof(*ifam); 1671 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1672 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1673 ifd = &ifam->ifam_data; 1674 } 1675 1676 bzero(ifd, sizeof(*ifd)); 1677 ifd->ifi_datalen = sizeof(struct if_data); 1678 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1679 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1680 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1681 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1682 1683 /* Fixup if_data carp(4) vhid. */ 1684 if (carp_get_vhid_p != NULL) 1685 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1686 1687 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1688 } 1689 1690 static int 1691 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1692 struct walkarg *w, int len) 1693 { 1694 struct ifa_msghdr *ifam; 1695 1696 ifam = (struct ifa_msghdr *)w->w_tmem; 1697 ifam->ifam_addrs = info->rti_addrs; 1698 ifam->ifam_flags = ifa->ifa_flags; 1699 ifam->ifam_index = ifa->ifa_ifp->if_index; 1700 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1701 1702 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1703 } 1704 1705 static int 1706 sysctl_iflist(int af, struct walkarg *w) 1707 { 1708 struct ifnet *ifp; 1709 struct ifaddr *ifa; 1710 struct if_data ifd; 1711 struct rt_addrinfo info; 1712 int len, error = 0; 1713 struct sockaddr_storage ss; 1714 1715 bzero((caddr_t)&info, sizeof(info)); 1716 bzero(&ifd, sizeof(ifd)); 1717 IFNET_RLOCK_NOSLEEP(); 1718 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1719 if (w->w_arg && w->w_arg != ifp->if_index) 1720 continue; 1721 if_data_copy(ifp, &ifd); 1722 IF_ADDR_RLOCK(ifp); 1723 ifa = ifp->if_addr; 1724 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1725 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1726 if (error != 0) 1727 goto done; 1728 info.rti_info[RTAX_IFP] = NULL; 1729 if (w->w_req && w->w_tmem) { 1730 if (w->w_op == NET_RT_IFLISTL) 1731 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 1732 len); 1733 else 1734 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 1735 len); 1736 if (error) 1737 goto done; 1738 } 1739 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1740 if (af && af != ifa->ifa_addr->sa_family) 1741 continue; 1742 if (prison_if(w->w_req->td->td_ucred, 1743 ifa->ifa_addr) != 0) 1744 continue; 1745 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1746 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1747 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1748 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1749 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1750 if (error != 0) 1751 goto done; 1752 if (w->w_req && w->w_tmem) { 1753 if (w->w_op == NET_RT_IFLISTL) 1754 error = sysctl_iflist_ifaml(ifa, &info, 1755 w, len); 1756 else 1757 error = sysctl_iflist_ifam(ifa, &info, 1758 w, len); 1759 if (error) 1760 goto done; 1761 } 1762 } 1763 IF_ADDR_RUNLOCK(ifp); 1764 info.rti_info[RTAX_IFA] = NULL; 1765 info.rti_info[RTAX_NETMASK] = NULL; 1766 info.rti_info[RTAX_BRD] = NULL; 1767 } 1768 done: 1769 if (ifp != NULL) 1770 IF_ADDR_RUNLOCK(ifp); 1771 IFNET_RUNLOCK_NOSLEEP(); 1772 return (error); 1773 } 1774 1775 static int 1776 sysctl_ifmalist(int af, struct walkarg *w) 1777 { 1778 struct rt_addrinfo info; 1779 struct ifaddr *ifa; 1780 struct ifmultiaddr *ifma; 1781 struct ifnet *ifp; 1782 int error, len; 1783 1784 error = 0; 1785 bzero((caddr_t)&info, sizeof(info)); 1786 1787 IFNET_RLOCK_NOSLEEP(); 1788 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1789 if (w->w_arg && w->w_arg != ifp->if_index) 1790 continue; 1791 ifa = ifp->if_addr; 1792 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1793 IF_ADDR_RLOCK(ifp); 1794 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1795 if (af && af != ifma->ifma_addr->sa_family) 1796 continue; 1797 if (prison_if(w->w_req->td->td_ucred, 1798 ifma->ifma_addr) != 0) 1799 continue; 1800 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1801 info.rti_info[RTAX_GATEWAY] = 1802 (ifma->ifma_addr->sa_family != AF_LINK) ? 1803 ifma->ifma_lladdr : NULL; 1804 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1805 if (error != 0) 1806 break; 1807 if (w->w_req && w->w_tmem) { 1808 struct ifma_msghdr *ifmam; 1809 1810 ifmam = (struct ifma_msghdr *)w->w_tmem; 1811 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1812 ifmam->ifmam_flags = 0; 1813 ifmam->ifmam_addrs = info.rti_addrs; 1814 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1815 if (error != 0) 1816 break; 1817 } 1818 } 1819 IF_ADDR_RUNLOCK(ifp); 1820 if (error != 0) 1821 break; 1822 } 1823 IFNET_RUNLOCK_NOSLEEP(); 1824 return (error); 1825 } 1826 1827 static int 1828 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1829 { 1830 int *name = (int *)arg1; 1831 u_int namelen = arg2; 1832 struct rib_head *rnh = NULL; /* silence compiler. */ 1833 int i, lim, error = EINVAL; 1834 int fib = 0; 1835 u_char af; 1836 struct walkarg w; 1837 1838 name ++; 1839 namelen--; 1840 if (req->newptr) 1841 return (EPERM); 1842 if (name[1] == NET_RT_DUMP) { 1843 if (namelen == 3) 1844 fib = req->td->td_proc->p_fibnum; 1845 else if (namelen == 4) 1846 fib = (name[3] == RT_ALL_FIBS) ? 1847 req->td->td_proc->p_fibnum : name[3]; 1848 else 1849 return ((namelen < 3) ? EISDIR : ENOTDIR); 1850 if (fib < 0 || fib >= rt_numfibs) 1851 return (EINVAL); 1852 } else if (namelen != 3) 1853 return ((namelen < 3) ? EISDIR : ENOTDIR); 1854 af = name[0]; 1855 if (af > AF_MAX) 1856 return (EINVAL); 1857 bzero(&w, sizeof(w)); 1858 w.w_op = name[1]; 1859 w.w_arg = name[2]; 1860 w.w_req = req; 1861 1862 error = sysctl_wire_old_buffer(req, 0); 1863 if (error) 1864 return (error); 1865 1866 /* 1867 * Allocate reply buffer in advance. 1868 * All rtsock messages has maximum length of u_short. 1869 */ 1870 w.w_tmemsize = 65536; 1871 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 1872 1873 switch (w.w_op) { 1874 1875 case NET_RT_DUMP: 1876 case NET_RT_FLAGS: 1877 if (af == 0) { /* dump all tables */ 1878 i = 1; 1879 lim = AF_MAX; 1880 } else /* dump only one table */ 1881 i = lim = af; 1882 1883 /* 1884 * take care of llinfo entries, the caller must 1885 * specify an AF 1886 */ 1887 if (w.w_op == NET_RT_FLAGS && 1888 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1889 if (af != 0) 1890 error = lltable_sysctl_dumparp(af, w.w_req); 1891 else 1892 error = EINVAL; 1893 break; 1894 } 1895 /* 1896 * take care of routing entries 1897 */ 1898 for (error = 0; error == 0 && i <= lim; i++) { 1899 rnh = rt_tables_get_rnh(fib, i); 1900 if (rnh != NULL) { 1901 RIB_RLOCK(rnh); 1902 error = rnh->rnh_walktree(&rnh->head, 1903 sysctl_dumpentry, &w); 1904 RIB_RUNLOCK(rnh); 1905 } else if (af != 0) 1906 error = EAFNOSUPPORT; 1907 } 1908 break; 1909 1910 case NET_RT_IFLIST: 1911 case NET_RT_IFLISTL: 1912 error = sysctl_iflist(af, &w); 1913 break; 1914 1915 case NET_RT_IFMALIST: 1916 error = sysctl_ifmalist(af, &w); 1917 break; 1918 } 1919 1920 free(w.w_tmem, M_TEMP); 1921 return (error); 1922 } 1923 1924 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1925 1926 /* 1927 * Definitions of protocols supported in the ROUTE domain. 1928 */ 1929 1930 static struct domain routedomain; /* or at least forward */ 1931 1932 static struct protosw routesw[] = { 1933 { 1934 .pr_type = SOCK_RAW, 1935 .pr_domain = &routedomain, 1936 .pr_flags = PR_ATOMIC|PR_ADDR, 1937 .pr_output = route_output, 1938 .pr_ctlinput = raw_ctlinput, 1939 .pr_init = raw_init, 1940 .pr_usrreqs = &route_usrreqs 1941 } 1942 }; 1943 1944 static struct domain routedomain = { 1945 .dom_family = PF_ROUTE, 1946 .dom_name = "route", 1947 .dom_protosw = routesw, 1948 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 1949 }; 1950 1951 VNET_DOMAIN_SET(route); 1952