xref: /freebsd/sys/net/rtsock.c (revision 5e53a4f90f82c4345f277dd87cc9292f26e04a29)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
32  * $FreeBSD$
33  */
34 #include "opt_compat.h"
35 #include "opt_mpath.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 
39 #include <sys/param.h>
40 #include <sys/jail.h>
41 #include <sys/kernel.h>
42 #include <sys/domain.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/rwlock.h>
50 #include <sys/signalvar.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 
56 #include <net/if.h>
57 #include <net/if_var.h>
58 #include <net/if_dl.h>
59 #include <net/if_llatbl.h>
60 #include <net/if_types.h>
61 #include <net/netisr.h>
62 #include <net/raw_cb.h>
63 #include <net/route.h>
64 #include <net/route_var.h>
65 #include <net/vnet.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/if_ether.h>
69 #include <netinet/ip_carp.h>
70 #ifdef INET6
71 #include <netinet6/ip6_var.h>
72 #include <netinet6/scope6_var.h>
73 #endif
74 
75 #ifdef COMPAT_FREEBSD32
76 #include <sys/mount.h>
77 #include <compat/freebsd32/freebsd32.h>
78 
79 struct if_msghdr32 {
80 	uint16_t ifm_msglen;
81 	uint8_t	ifm_version;
82 	uint8_t	ifm_type;
83 	int32_t	ifm_addrs;
84 	int32_t	ifm_flags;
85 	uint16_t ifm_index;
86 	struct	if_data ifm_data;
87 };
88 
89 struct if_msghdrl32 {
90 	uint16_t ifm_msglen;
91 	uint8_t	ifm_version;
92 	uint8_t	ifm_type;
93 	int32_t	ifm_addrs;
94 	int32_t	ifm_flags;
95 	uint16_t ifm_index;
96 	uint16_t _ifm_spare1;
97 	uint16_t ifm_len;
98 	uint16_t ifm_data_off;
99 	struct	if_data ifm_data;
100 };
101 
102 struct ifa_msghdrl32 {
103 	uint16_t ifam_msglen;
104 	uint8_t	ifam_version;
105 	uint8_t	ifam_type;
106 	int32_t	ifam_addrs;
107 	int32_t	ifam_flags;
108 	uint16_t ifam_index;
109 	uint16_t _ifam_spare1;
110 	uint16_t ifam_len;
111 	uint16_t ifam_data_off;
112 	int32_t	ifam_metric;
113 	struct	if_data ifam_data;
114 };
115 #endif /* COMPAT_FREEBSD32 */
116 
117 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
118 
119 /* NB: these are not modified */
120 static struct	sockaddr route_src = { 2, PF_ROUTE, };
121 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
122 
123 /* These are external hooks for CARP. */
124 int	(*carp_get_vhid_p)(struct ifaddr *);
125 
126 /*
127  * Used by rtsock/raw_input callback code to decide whether to filter the update
128  * notification to a socket bound to a particular FIB.
129  */
130 #define	RTS_FILTER_FIB	M_PROTO8
131 
132 typedef struct {
133 	int	ip_count;	/* attached w/ AF_INET */
134 	int	ip6_count;	/* attached w/ AF_INET6 */
135 	int	any_count;	/* total attached */
136 } route_cb_t;
137 static VNET_DEFINE(route_cb_t, route_cb);
138 #define	V_route_cb VNET(route_cb)
139 
140 struct mtx rtsock_mtx;
141 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
142 
143 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
144 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
145 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
146 
147 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
148 
149 struct walkarg {
150 	int	w_tmemsize;
151 	int	w_op, w_arg;
152 	caddr_t	w_tmem;
153 	struct sysctl_req *w_req;
154 };
155 
156 static void	rts_input(struct mbuf *m);
157 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
158 static int	rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
159 			struct walkarg *w, int *plen);
160 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
161 			struct rt_addrinfo *rtinfo);
162 static int	sysctl_dumpentry(struct radix_node *rn, void *vw);
163 static int	sysctl_iflist(int af, struct walkarg *w);
164 static int	sysctl_ifmalist(int af, struct walkarg *w);
165 static int	route_output(struct mbuf *m, struct socket *so, ...);
166 static void	rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out);
167 static void	rt_dispatch(struct mbuf *, sa_family_t);
168 static struct sockaddr	*rtsock_fix_netmask(struct sockaddr *dst,
169 			struct sockaddr *smask, struct sockaddr_storage *dmask);
170 
171 static struct netisr_handler rtsock_nh = {
172 	.nh_name = "rtsock",
173 	.nh_handler = rts_input,
174 	.nh_proto = NETISR_ROUTE,
175 	.nh_policy = NETISR_POLICY_SOURCE,
176 };
177 
178 static int
179 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
180 {
181 	int error, qlimit;
182 
183 	netisr_getqlimit(&rtsock_nh, &qlimit);
184 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
185         if (error || !req->newptr)
186                 return (error);
187 	if (qlimit < 1)
188 		return (EINVAL);
189 	return (netisr_setqlimit(&rtsock_nh, qlimit));
190 }
191 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW,
192     0, 0, sysctl_route_netisr_maxqlen, "I",
193     "maximum routing socket dispatch queue length");
194 
195 static void
196 vnet_rts_init(void)
197 {
198 	int tmp;
199 
200 	if (IS_DEFAULT_VNET(curvnet)) {
201 		if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
202 			rtsock_nh.nh_qlimit = tmp;
203 		netisr_register(&rtsock_nh);
204 	}
205 #ifdef VIMAGE
206 	 else
207 		netisr_register_vnet(&rtsock_nh);
208 #endif
209 }
210 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
211     vnet_rts_init, 0);
212 
213 #ifdef VIMAGE
214 static void
215 vnet_rts_uninit(void)
216 {
217 
218 	netisr_unregister_vnet(&rtsock_nh);
219 }
220 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
221     vnet_rts_uninit, 0);
222 #endif
223 
224 static int
225 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
226     struct rawcb *rp)
227 {
228 	int fibnum;
229 
230 	KASSERT(m != NULL, ("%s: m is NULL", __func__));
231 	KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
232 	KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
233 
234 	/* No filtering requested. */
235 	if ((m->m_flags & RTS_FILTER_FIB) == 0)
236 		return (0);
237 
238 	/* Check if it is a rts and the fib matches the one of the socket. */
239 	fibnum = M_GETFIB(m);
240 	if (proto->sp_family != PF_ROUTE ||
241 	    rp->rcb_socket == NULL ||
242 	    rp->rcb_socket->so_fibnum == fibnum)
243 		return (0);
244 
245 	/* Filtering requested and no match, the socket shall be skipped. */
246 	return (1);
247 }
248 
249 static void
250 rts_input(struct mbuf *m)
251 {
252 	struct sockproto route_proto;
253 	unsigned short *family;
254 	struct m_tag *tag;
255 
256 	route_proto.sp_family = PF_ROUTE;
257 	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
258 	if (tag != NULL) {
259 		family = (unsigned short *)(tag + 1);
260 		route_proto.sp_protocol = *family;
261 		m_tag_delete(m, tag);
262 	} else
263 		route_proto.sp_protocol = 0;
264 
265 	raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
266 }
267 
268 /*
269  * It really doesn't make any sense at all for this code to share much
270  * with raw_usrreq.c, since its functionality is so restricted.  XXX
271  */
272 static void
273 rts_abort(struct socket *so)
274 {
275 
276 	raw_usrreqs.pru_abort(so);
277 }
278 
279 static void
280 rts_close(struct socket *so)
281 {
282 
283 	raw_usrreqs.pru_close(so);
284 }
285 
286 /* pru_accept is EOPNOTSUPP */
287 
288 static int
289 rts_attach(struct socket *so, int proto, struct thread *td)
290 {
291 	struct rawcb *rp;
292 	int error;
293 
294 	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
295 
296 	/* XXX */
297 	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
298 
299 	so->so_pcb = (caddr_t)rp;
300 	so->so_fibnum = td->td_proc->p_fibnum;
301 	error = raw_attach(so, proto);
302 	rp = sotorawcb(so);
303 	if (error) {
304 		so->so_pcb = NULL;
305 		free(rp, M_PCB);
306 		return error;
307 	}
308 	RTSOCK_LOCK();
309 	switch(rp->rcb_proto.sp_protocol) {
310 	case AF_INET:
311 		V_route_cb.ip_count++;
312 		break;
313 	case AF_INET6:
314 		V_route_cb.ip6_count++;
315 		break;
316 	}
317 	V_route_cb.any_count++;
318 	RTSOCK_UNLOCK();
319 	soisconnected(so);
320 	so->so_options |= SO_USELOOPBACK;
321 	return 0;
322 }
323 
324 static int
325 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
326 {
327 
328 	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
329 }
330 
331 static int
332 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
333 {
334 
335 	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
336 }
337 
338 /* pru_connect2 is EOPNOTSUPP */
339 /* pru_control is EOPNOTSUPP */
340 
341 static void
342 rts_detach(struct socket *so)
343 {
344 	struct rawcb *rp = sotorawcb(so);
345 
346 	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
347 
348 	RTSOCK_LOCK();
349 	switch(rp->rcb_proto.sp_protocol) {
350 	case AF_INET:
351 		V_route_cb.ip_count--;
352 		break;
353 	case AF_INET6:
354 		V_route_cb.ip6_count--;
355 		break;
356 	}
357 	V_route_cb.any_count--;
358 	RTSOCK_UNLOCK();
359 	raw_usrreqs.pru_detach(so);
360 }
361 
362 static int
363 rts_disconnect(struct socket *so)
364 {
365 
366 	return (raw_usrreqs.pru_disconnect(so));
367 }
368 
369 /* pru_listen is EOPNOTSUPP */
370 
371 static int
372 rts_peeraddr(struct socket *so, struct sockaddr **nam)
373 {
374 
375 	return (raw_usrreqs.pru_peeraddr(so, nam));
376 }
377 
378 /* pru_rcvd is EOPNOTSUPP */
379 /* pru_rcvoob is EOPNOTSUPP */
380 
381 static int
382 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
383 	 struct mbuf *control, struct thread *td)
384 {
385 
386 	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
387 }
388 
389 /* pru_sense is null */
390 
391 static int
392 rts_shutdown(struct socket *so)
393 {
394 
395 	return (raw_usrreqs.pru_shutdown(so));
396 }
397 
398 static int
399 rts_sockaddr(struct socket *so, struct sockaddr **nam)
400 {
401 
402 	return (raw_usrreqs.pru_sockaddr(so, nam));
403 }
404 
405 static struct pr_usrreqs route_usrreqs = {
406 	.pru_abort =		rts_abort,
407 	.pru_attach =		rts_attach,
408 	.pru_bind =		rts_bind,
409 	.pru_connect =		rts_connect,
410 	.pru_detach =		rts_detach,
411 	.pru_disconnect =	rts_disconnect,
412 	.pru_peeraddr =		rts_peeraddr,
413 	.pru_send =		rts_send,
414 	.pru_shutdown =		rts_shutdown,
415 	.pru_sockaddr =		rts_sockaddr,
416 	.pru_close =		rts_close,
417 };
418 
419 #ifndef _SOCKADDR_UNION_DEFINED
420 #define	_SOCKADDR_UNION_DEFINED
421 /*
422  * The union of all possible address formats we handle.
423  */
424 union sockaddr_union {
425 	struct sockaddr		sa;
426 	struct sockaddr_in	sin;
427 	struct sockaddr_in6	sin6;
428 };
429 #endif /* _SOCKADDR_UNION_DEFINED */
430 
431 static int
432 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
433     struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
434 {
435 
436 	/* First, see if the returned address is part of the jail. */
437 	if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
438 		info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
439 		return (0);
440 	}
441 
442 	switch (info->rti_info[RTAX_DST]->sa_family) {
443 #ifdef INET
444 	case AF_INET:
445 	{
446 		struct in_addr ia;
447 		struct ifaddr *ifa;
448 		int found;
449 
450 		found = 0;
451 		/*
452 		 * Try to find an address on the given outgoing interface
453 		 * that belongs to the jail.
454 		 */
455 		IF_ADDR_RLOCK(ifp);
456 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
457 			struct sockaddr *sa;
458 			sa = ifa->ifa_addr;
459 			if (sa->sa_family != AF_INET)
460 				continue;
461 			ia = ((struct sockaddr_in *)sa)->sin_addr;
462 			if (prison_check_ip4(cred, &ia) == 0) {
463 				found = 1;
464 				break;
465 			}
466 		}
467 		IF_ADDR_RUNLOCK(ifp);
468 		if (!found) {
469 			/*
470 			 * As a last resort return the 'default' jail address.
471 			 */
472 			ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->
473 			    sin_addr;
474 			if (prison_get_ip4(cred, &ia) != 0)
475 				return (ESRCH);
476 		}
477 		bzero(&saun->sin, sizeof(struct sockaddr_in));
478 		saun->sin.sin_len = sizeof(struct sockaddr_in);
479 		saun->sin.sin_family = AF_INET;
480 		saun->sin.sin_addr.s_addr = ia.s_addr;
481 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
482 		break;
483 	}
484 #endif
485 #ifdef INET6
486 	case AF_INET6:
487 	{
488 		struct in6_addr ia6;
489 		struct ifaddr *ifa;
490 		int found;
491 
492 		found = 0;
493 		/*
494 		 * Try to find an address on the given outgoing interface
495 		 * that belongs to the jail.
496 		 */
497 		IF_ADDR_RLOCK(ifp);
498 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
499 			struct sockaddr *sa;
500 			sa = ifa->ifa_addr;
501 			if (sa->sa_family != AF_INET6)
502 				continue;
503 			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
504 			    &ia6, sizeof(struct in6_addr));
505 			if (prison_check_ip6(cred, &ia6) == 0) {
506 				found = 1;
507 				break;
508 			}
509 		}
510 		IF_ADDR_RUNLOCK(ifp);
511 		if (!found) {
512 			/*
513 			 * As a last resort return the 'default' jail address.
514 			 */
515 			ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->
516 			    sin6_addr;
517 			if (prison_get_ip6(cred, &ia6) != 0)
518 				return (ESRCH);
519 		}
520 		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
521 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
522 		saun->sin6.sin6_family = AF_INET6;
523 		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
524 		if (sa6_recoverscope(&saun->sin6) != 0)
525 			return (ESRCH);
526 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
527 		break;
528 	}
529 #endif
530 	default:
531 		return (ESRCH);
532 	}
533 	return (0);
534 }
535 
536 /*ARGSUSED*/
537 static int
538 route_output(struct mbuf *m, struct socket *so, ...)
539 {
540 	struct rt_msghdr *rtm = NULL;
541 	struct rtentry *rt = NULL;
542 	struct rib_head *rnh;
543 	struct rt_addrinfo info;
544 	struct sockaddr_storage ss;
545 #ifdef INET6
546 	struct sockaddr_in6 *sin6;
547 	int i, rti_need_deembed = 0;
548 #endif
549 	int alloc_len = 0, len, error = 0, fibnum;
550 	struct ifnet *ifp = NULL;
551 	union sockaddr_union saun;
552 	sa_family_t saf = AF_UNSPEC;
553 	struct rawcb *rp = NULL;
554 	struct walkarg w;
555 
556 	fibnum = so->so_fibnum;
557 
558 #define senderr(e) { error = e; goto flush;}
559 	if (m == NULL || ((m->m_len < sizeof(long)) &&
560 		       (m = m_pullup(m, sizeof(long))) == NULL))
561 		return (ENOBUFS);
562 	if ((m->m_flags & M_PKTHDR) == 0)
563 		panic("route_output");
564 	len = m->m_pkthdr.len;
565 	if (len < sizeof(*rtm) ||
566 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
567 		senderr(EINVAL);
568 
569 	/*
570 	 * Most of current messages are in range 200-240 bytes,
571 	 * minimize possible re-allocation on reply using larger size
572 	 * buffer aligned on 1k boundaty.
573 	 */
574 	alloc_len = roundup2(len, 1024);
575 	if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL)
576 		senderr(ENOBUFS);
577 
578 	m_copydata(m, 0, len, (caddr_t)rtm);
579 	bzero(&info, sizeof(info));
580 	bzero(&w, sizeof(w));
581 
582 	if (rtm->rtm_version != RTM_VERSION) {
583 		/* Do not touch message since format is unknown */
584 		free(rtm, M_TEMP);
585 		rtm = NULL;
586 		senderr(EPROTONOSUPPORT);
587 	}
588 
589 	/*
590 	 * Starting from here, it is possible
591 	 * to alter original message and insert
592 	 * caller PID and error value.
593 	 */
594 
595 	rtm->rtm_pid = curproc->p_pid;
596 	info.rti_addrs = rtm->rtm_addrs;
597 
598 	info.rti_mflags = rtm->rtm_inits;
599 	info.rti_rmx = &rtm->rtm_rmx;
600 
601 	/*
602 	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
603 	 * link-local address because rtrequest requires addresses with
604 	 * embedded scope id.
605 	 */
606 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info))
607 		senderr(EINVAL);
608 
609 	info.rti_flags = rtm->rtm_flags;
610 	if (info.rti_info[RTAX_DST] == NULL ||
611 	    info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
612 	    (info.rti_info[RTAX_GATEWAY] != NULL &&
613 	     info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
614 		senderr(EINVAL);
615 	saf = info.rti_info[RTAX_DST]->sa_family;
616 	/*
617 	 * Verify that the caller has the appropriate privilege; RTM_GET
618 	 * is the only operation the non-superuser is allowed.
619 	 */
620 	if (rtm->rtm_type != RTM_GET) {
621 		error = priv_check(curthread, PRIV_NET_ROUTE);
622 		if (error)
623 			senderr(error);
624 	}
625 
626 	/*
627 	 * The given gateway address may be an interface address.
628 	 * For example, issuing a "route change" command on a route
629 	 * entry that was created from a tunnel, and the gateway
630 	 * address given is the local end point. In this case the
631 	 * RTF_GATEWAY flag must be cleared or the destination will
632 	 * not be reachable even though there is no error message.
633 	 */
634 	if (info.rti_info[RTAX_GATEWAY] != NULL &&
635 	    info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
636 		struct rt_addrinfo ginfo;
637 		struct sockaddr *gdst;
638 
639 		bzero(&ginfo, sizeof(ginfo));
640 		bzero(&ss, sizeof(ss));
641 		ss.ss_len = sizeof(ss);
642 
643 		ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
644 		gdst = info.rti_info[RTAX_GATEWAY];
645 
646 		/*
647 		 * A host route through the loopback interface is
648 		 * installed for each interface adddress. In pre 8.0
649 		 * releases the interface address of a PPP link type
650 		 * is not reachable locally. This behavior is fixed as
651 		 * part of the new L2/L3 redesign and rewrite work. The
652 		 * signature of this interface address route is the
653 		 * AF_LINK sa_family type of the rt_gateway, and the
654 		 * rt_ifp has the IFF_LOOPBACK flag set.
655 		 */
656 		if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
657 			if (ss.ss_family == AF_LINK &&
658 			    ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
659 				info.rti_flags &= ~RTF_GATEWAY;
660 				info.rti_flags |= RTF_GWFLAG_COMPAT;
661 			}
662 			rib_free_info(&ginfo);
663 		}
664 	}
665 
666 	switch (rtm->rtm_type) {
667 		struct rtentry *saved_nrt;
668 
669 	case RTM_ADD:
670 	case RTM_CHANGE:
671 		if (info.rti_info[RTAX_GATEWAY] == NULL)
672 			senderr(EINVAL);
673 		saved_nrt = NULL;
674 
675 		/* support for new ARP code */
676 		if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK &&
677 		    (rtm->rtm_flags & RTF_LLDATA) != 0) {
678 			error = lla_rt_output(rtm, &info);
679 #ifdef INET6
680 			if (error == 0)
681 				rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
682 #endif
683 			break;
684 		}
685 		error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt,
686 		    fibnum);
687 		if (error == 0 && saved_nrt != NULL) {
688 #ifdef INET6
689 			rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
690 #endif
691 			RT_LOCK(saved_nrt);
692 			rtm->rtm_index = saved_nrt->rt_ifp->if_index;
693 			RT_REMREF(saved_nrt);
694 			RT_UNLOCK(saved_nrt);
695 		}
696 		break;
697 
698 	case RTM_DELETE:
699 		saved_nrt = NULL;
700 		/* support for new ARP code */
701 		if (info.rti_info[RTAX_GATEWAY] &&
702 		    (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) &&
703 		    (rtm->rtm_flags & RTF_LLDATA) != 0) {
704 			error = lla_rt_output(rtm, &info);
705 #ifdef INET6
706 			if (error == 0)
707 				rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
708 #endif
709 			break;
710 		}
711 		error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum);
712 		if (error == 0) {
713 			RT_LOCK(saved_nrt);
714 			rt = saved_nrt;
715 			goto report;
716 		}
717 #ifdef INET6
718 		/* rt_msg2() will not be used when RTM_DELETE fails. */
719 		rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
720 #endif
721 		break;
722 
723 	case RTM_GET:
724 		rnh = rt_tables_get_rnh(fibnum, saf);
725 		if (rnh == NULL)
726 			senderr(EAFNOSUPPORT);
727 
728 		RIB_RLOCK(rnh);
729 
730 		if (info.rti_info[RTAX_NETMASK] == NULL &&
731 		    rtm->rtm_type == RTM_GET) {
732 			/*
733 			 * Provide longest prefix match for
734 			 * address lookup (no mask).
735 			 * 'route -n get addr'
736 			 */
737 			rt = (struct rtentry *) rnh->rnh_matchaddr(
738 			    info.rti_info[RTAX_DST], &rnh->head);
739 		} else
740 			rt = (struct rtentry *) rnh->rnh_lookup(
741 			    info.rti_info[RTAX_DST],
742 			    info.rti_info[RTAX_NETMASK], &rnh->head);
743 
744 		if (rt == NULL) {
745 			RIB_RUNLOCK(rnh);
746 			senderr(ESRCH);
747 		}
748 #ifdef RADIX_MPATH
749 		/*
750 		 * for RTM_CHANGE/LOCK, if we got multipath routes,
751 		 * we require users to specify a matching RTAX_GATEWAY.
752 		 *
753 		 * for RTM_GET, gate is optional even with multipath.
754 		 * if gate == NULL the first match is returned.
755 		 * (no need to call rt_mpath_matchgate if gate == NULL)
756 		 */
757 		if (rt_mpath_capable(rnh) &&
758 		    (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) {
759 			rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]);
760 			if (!rt) {
761 				RIB_RUNLOCK(rnh);
762 				senderr(ESRCH);
763 			}
764 		}
765 #endif
766 		/*
767 		 * If performing proxied L2 entry insertion, and
768 		 * the actual PPP host entry is found, perform
769 		 * another search to retrieve the prefix route of
770 		 * the local end point of the PPP link.
771 		 */
772 		if (rtm->rtm_flags & RTF_ANNOUNCE) {
773 			struct sockaddr laddr;
774 
775 			if (rt->rt_ifp != NULL &&
776 			    rt->rt_ifp->if_type == IFT_PROPVIRTUAL) {
777 				struct ifaddr *ifa;
778 
779 				ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1,
780 						RT_ALL_FIBS);
781 				if (ifa != NULL)
782 					rt_maskedcopy(ifa->ifa_addr,
783 						      &laddr,
784 						      ifa->ifa_netmask);
785 			} else
786 				rt_maskedcopy(rt->rt_ifa->ifa_addr,
787 					      &laddr,
788 					      rt->rt_ifa->ifa_netmask);
789 			/*
790 			 * refactor rt and no lock operation necessary
791 			 */
792 			rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
793 			    &rnh->head);
794 			if (rt == NULL) {
795 				RIB_RUNLOCK(rnh);
796 				senderr(ESRCH);
797 			}
798 		}
799 		RT_LOCK(rt);
800 		RT_ADDREF(rt);
801 		RIB_RUNLOCK(rnh);
802 
803 report:
804 		RT_LOCK_ASSERT(rt);
805 		if ((rt->rt_flags & RTF_HOST) == 0
806 		    ? jailed_without_vnet(curthread->td_ucred)
807 		    : prison_if(curthread->td_ucred,
808 		    rt_key(rt)) != 0) {
809 			RT_UNLOCK(rt);
810 			senderr(ESRCH);
811 		}
812 		info.rti_info[RTAX_DST] = rt_key(rt);
813 		info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
814 		info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
815 		    rt_mask(rt), &ss);
816 		info.rti_info[RTAX_GENMASK] = 0;
817 		if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
818 			ifp = rt->rt_ifp;
819 			if (ifp) {
820 				info.rti_info[RTAX_IFP] =
821 				    ifp->if_addr->ifa_addr;
822 				error = rtm_get_jailed(&info, ifp, rt,
823 				    &saun, curthread->td_ucred);
824 				if (error != 0) {
825 					RT_UNLOCK(rt);
826 					senderr(error);
827 				}
828 				if (ifp->if_flags & IFF_POINTOPOINT)
829 					info.rti_info[RTAX_BRD] =
830 					    rt->rt_ifa->ifa_dstaddr;
831 				rtm->rtm_index = ifp->if_index;
832 			} else {
833 				info.rti_info[RTAX_IFP] = NULL;
834 				info.rti_info[RTAX_IFA] = NULL;
835 			}
836 		} else if ((ifp = rt->rt_ifp) != NULL) {
837 			rtm->rtm_index = ifp->if_index;
838 		}
839 
840 		/* Check if we need to realloc storage */
841 		rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len);
842 		if (len > alloc_len) {
843 			struct rt_msghdr *new_rtm;
844 			new_rtm = malloc(len, M_TEMP, M_NOWAIT);
845 			if (new_rtm == NULL) {
846 				RT_UNLOCK(rt);
847 				senderr(ENOBUFS);
848 			}
849 			bcopy(rtm, new_rtm, rtm->rtm_msglen);
850 			free(rtm, M_TEMP);
851 			rtm = new_rtm;
852 			alloc_len = len;
853 		}
854 
855 		w.w_tmem = (caddr_t)rtm;
856 		w.w_tmemsize = alloc_len;
857 		rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len);
858 
859 		if (rt->rt_flags & RTF_GWFLAG_COMPAT)
860 			rtm->rtm_flags = RTF_GATEWAY |
861 				(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
862 		else
863 			rtm->rtm_flags = rt->rt_flags;
864 		rt_getmetrics(rt, &rtm->rtm_rmx);
865 		rtm->rtm_addrs = info.rti_addrs;
866 
867 		RT_UNLOCK(rt);
868 		break;
869 
870 	default:
871 		senderr(EOPNOTSUPP);
872 	}
873 
874 flush:
875 	if (rt != NULL)
876 		RTFREE(rt);
877 	/*
878 	 * Check to see if we don't want our own messages.
879 	 */
880 	if ((so->so_options & SO_USELOOPBACK) == 0) {
881 		if (V_route_cb.any_count <= 1) {
882 			if (rtm != NULL)
883 				free(rtm, M_TEMP);
884 			m_freem(m);
885 			return (error);
886 		}
887 		/* There is another listener, so construct message */
888 		rp = sotorawcb(so);
889 	}
890 
891 	if (rtm != NULL) {
892 #ifdef INET6
893 		if (rti_need_deembed) {
894 			/* sin6_scope_id is recovered before sending rtm. */
895 			sin6 = (struct sockaddr_in6 *)&ss;
896 			for (i = 0; i < RTAX_MAX; i++) {
897 				if (info.rti_info[i] == NULL)
898 					continue;
899 				if (info.rti_info[i]->sa_family != AF_INET6)
900 					continue;
901 				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
902 				if (sa6_recoverscope(sin6) == 0)
903 					bcopy(sin6, info.rti_info[i],
904 						    sizeof(*sin6));
905 			}
906 		}
907 #endif
908 		if (error != 0)
909 			rtm->rtm_errno = error;
910 		else
911 			rtm->rtm_flags |= RTF_DONE;
912 
913 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
914 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
915 			m_freem(m);
916 			m = NULL;
917 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
918 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
919 
920 		free(rtm, M_TEMP);
921 	}
922 	if (m != NULL) {
923 		M_SETFIB(m, fibnum);
924 		m->m_flags |= RTS_FILTER_FIB;
925 		if (rp) {
926 			/*
927 			 * XXX insure we don't get a copy by
928 			 * invalidating our protocol
929 			 */
930 			unsigned short family = rp->rcb_proto.sp_family;
931 			rp->rcb_proto.sp_family = 0;
932 			rt_dispatch(m, saf);
933 			rp->rcb_proto.sp_family = family;
934 		} else
935 			rt_dispatch(m, saf);
936 	}
937 
938 	return (error);
939 }
940 
941 static void
942 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out)
943 {
944 
945 	bzero(out, sizeof(*out));
946 	out->rmx_mtu = rt->rt_mtu;
947 	out->rmx_weight = rt->rt_weight;
948 	out->rmx_pksent = counter_u64_fetch(rt->rt_pksent);
949 	/* Kernel -> userland timebase conversion. */
950 	out->rmx_expire = rt->rt_expire ?
951 	    rt->rt_expire - time_uptime + time_second : 0;
952 }
953 
954 /*
955  * Extract the addresses of the passed sockaddrs.
956  * Do a little sanity checking so as to avoid bad memory references.
957  * This data is derived straight from userland.
958  */
959 static int
960 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
961 {
962 	struct sockaddr *sa;
963 	int i;
964 
965 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
966 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
967 			continue;
968 		sa = (struct sockaddr *)cp;
969 		/*
970 		 * It won't fit.
971 		 */
972 		if (cp + sa->sa_len > cplim)
973 			return (EINVAL);
974 		/*
975 		 * there are no more.. quit now
976 		 * If there are more bits, they are in error.
977 		 * I've seen this. route(1) can evidently generate these.
978 		 * This causes kernel to core dump.
979 		 * for compatibility, If we see this, point to a safe address.
980 		 */
981 		if (sa->sa_len == 0) {
982 			rtinfo->rti_info[i] = &sa_zero;
983 			return (0); /* should be EINVAL but for compat */
984 		}
985 		/* accept it */
986 #ifdef INET6
987 		if (sa->sa_family == AF_INET6)
988 			sa6_embedscope((struct sockaddr_in6 *)sa,
989 			    V_ip6_use_defzone);
990 #endif
991 		rtinfo->rti_info[i] = sa;
992 		cp += SA_SIZE(sa);
993 	}
994 	return (0);
995 }
996 
997 /*
998  * Fill in @dmask with valid netmask leaving original @smask
999  * intact. Mostly used with radix netmasks.
1000  */
1001 static struct sockaddr *
1002 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask,
1003     struct sockaddr_storage *dmask)
1004 {
1005 	if (dst == NULL || smask == NULL)
1006 		return (NULL);
1007 
1008 	memset(dmask, 0, dst->sa_len);
1009 	memcpy(dmask, smask, smask->sa_len);
1010 	dmask->ss_len = dst->sa_len;
1011 	dmask->ss_family = dst->sa_family;
1012 
1013 	return ((struct sockaddr *)dmask);
1014 }
1015 
1016 /*
1017  * Writes information related to @rtinfo object to newly-allocated mbuf.
1018  * Assumes MCLBYTES is enough to construct any message.
1019  * Used for OS notifications of vaious events (if/ifa announces,etc)
1020  *
1021  * Returns allocated mbuf or NULL on failure.
1022  */
1023 static struct mbuf *
1024 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1025 {
1026 	struct rt_msghdr *rtm;
1027 	struct mbuf *m;
1028 	int i;
1029 	struct sockaddr *sa;
1030 #ifdef INET6
1031 	struct sockaddr_storage ss;
1032 	struct sockaddr_in6 *sin6;
1033 #endif
1034 	int len, dlen;
1035 
1036 	switch (type) {
1037 
1038 	case RTM_DELADDR:
1039 	case RTM_NEWADDR:
1040 		len = sizeof(struct ifa_msghdr);
1041 		break;
1042 
1043 	case RTM_DELMADDR:
1044 	case RTM_NEWMADDR:
1045 		len = sizeof(struct ifma_msghdr);
1046 		break;
1047 
1048 	case RTM_IFINFO:
1049 		len = sizeof(struct if_msghdr);
1050 		break;
1051 
1052 	case RTM_IFANNOUNCE:
1053 	case RTM_IEEE80211:
1054 		len = sizeof(struct if_announcemsghdr);
1055 		break;
1056 
1057 	default:
1058 		len = sizeof(struct rt_msghdr);
1059 	}
1060 
1061 	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
1062 	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1063 	if (len > MHLEN)
1064 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1065 	else
1066 		m = m_gethdr(M_NOWAIT, MT_DATA);
1067 	if (m == NULL)
1068 		return (m);
1069 
1070 	m->m_pkthdr.len = m->m_len = len;
1071 	rtm = mtod(m, struct rt_msghdr *);
1072 	bzero((caddr_t)rtm, len);
1073 	for (i = 0; i < RTAX_MAX; i++) {
1074 		if ((sa = rtinfo->rti_info[i]) == NULL)
1075 			continue;
1076 		rtinfo->rti_addrs |= (1 << i);
1077 		dlen = SA_SIZE(sa);
1078 #ifdef INET6
1079 		if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1080 			sin6 = (struct sockaddr_in6 *)&ss;
1081 			bcopy(sa, sin6, sizeof(*sin6));
1082 			if (sa6_recoverscope(sin6) == 0)
1083 				sa = (struct sockaddr *)sin6;
1084 		}
1085 #endif
1086 		m_copyback(m, len, dlen, (caddr_t)sa);
1087 		len += dlen;
1088 	}
1089 	if (m->m_pkthdr.len != len) {
1090 		m_freem(m);
1091 		return (NULL);
1092 	}
1093 	rtm->rtm_msglen = len;
1094 	rtm->rtm_version = RTM_VERSION;
1095 	rtm->rtm_type = type;
1096 	return (m);
1097 }
1098 
1099 /*
1100  * Writes information related to @rtinfo object to preallocated buffer.
1101  * Stores needed size in @plen. If @w is NULL, calculates size without
1102  * writing.
1103  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1104  *
1105  * Returns 0 on success.
1106  *
1107  */
1108 static int
1109 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1110 {
1111 	int i;
1112 	int len, buflen = 0, dlen;
1113 	caddr_t cp = NULL;
1114 	struct rt_msghdr *rtm = NULL;
1115 #ifdef INET6
1116 	struct sockaddr_storage ss;
1117 	struct sockaddr_in6 *sin6;
1118 #endif
1119 
1120 	switch (type) {
1121 
1122 	case RTM_DELADDR:
1123 	case RTM_NEWADDR:
1124 		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1125 #ifdef COMPAT_FREEBSD32
1126 			if (w->w_req->flags & SCTL_MASK32)
1127 				len = sizeof(struct ifa_msghdrl32);
1128 			else
1129 #endif
1130 				len = sizeof(struct ifa_msghdrl);
1131 		} else
1132 			len = sizeof(struct ifa_msghdr);
1133 		break;
1134 
1135 	case RTM_IFINFO:
1136 #ifdef COMPAT_FREEBSD32
1137 		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1138 			if (w->w_op == NET_RT_IFLISTL)
1139 				len = sizeof(struct if_msghdrl32);
1140 			else
1141 				len = sizeof(struct if_msghdr32);
1142 			break;
1143 		}
1144 #endif
1145 		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1146 			len = sizeof(struct if_msghdrl);
1147 		else
1148 			len = sizeof(struct if_msghdr);
1149 		break;
1150 
1151 	case RTM_NEWMADDR:
1152 		len = sizeof(struct ifma_msghdr);
1153 		break;
1154 
1155 	default:
1156 		len = sizeof(struct rt_msghdr);
1157 	}
1158 
1159 	if (w != NULL) {
1160 		rtm = (struct rt_msghdr *)w->w_tmem;
1161 		buflen = w->w_tmemsize - len;
1162 		cp = (caddr_t)w->w_tmem + len;
1163 	}
1164 
1165 	rtinfo->rti_addrs = 0;
1166 	for (i = 0; i < RTAX_MAX; i++) {
1167 		struct sockaddr *sa;
1168 
1169 		if ((sa = rtinfo->rti_info[i]) == NULL)
1170 			continue;
1171 		rtinfo->rti_addrs |= (1 << i);
1172 		dlen = SA_SIZE(sa);
1173 		if (cp != NULL && buflen >= dlen) {
1174 #ifdef INET6
1175 			if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1176 				sin6 = (struct sockaddr_in6 *)&ss;
1177 				bcopy(sa, sin6, sizeof(*sin6));
1178 				if (sa6_recoverscope(sin6) == 0)
1179 					sa = (struct sockaddr *)sin6;
1180 			}
1181 #endif
1182 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1183 			cp += dlen;
1184 			buflen -= dlen;
1185 		} else if (cp != NULL) {
1186 			/*
1187 			 * Buffer too small. Count needed size
1188 			 * and return with error.
1189 			 */
1190 			cp = NULL;
1191 		}
1192 
1193 		len += dlen;
1194 	}
1195 
1196 	if (cp != NULL) {
1197 		dlen = ALIGN(len) - len;
1198 		if (buflen < dlen)
1199 			cp = NULL;
1200 		else
1201 			buflen -= dlen;
1202 	}
1203 	len = ALIGN(len);
1204 
1205 	if (cp != NULL) {
1206 		/* fill header iff buffer is large enough */
1207 		rtm->rtm_version = RTM_VERSION;
1208 		rtm->rtm_type = type;
1209 		rtm->rtm_msglen = len;
1210 	}
1211 
1212 	*plen = len;
1213 
1214 	if (w != NULL && cp == NULL)
1215 		return (ENOBUFS);
1216 
1217 	return (0);
1218 }
1219 
1220 /*
1221  * This routine is called to generate a message from the routing
1222  * socket indicating that a redirect has occurred, a routing lookup
1223  * has failed, or that a protocol has detected timeouts to a particular
1224  * destination.
1225  */
1226 void
1227 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1228     int fibnum)
1229 {
1230 	struct rt_msghdr *rtm;
1231 	struct mbuf *m;
1232 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1233 
1234 	if (V_route_cb.any_count == 0)
1235 		return;
1236 	m = rtsock_msg_mbuf(type, rtinfo);
1237 	if (m == NULL)
1238 		return;
1239 
1240 	if (fibnum != RT_ALL_FIBS) {
1241 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1242 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1243 		M_SETFIB(m, fibnum);
1244 		m->m_flags |= RTS_FILTER_FIB;
1245 	}
1246 
1247 	rtm = mtod(m, struct rt_msghdr *);
1248 	rtm->rtm_flags = RTF_DONE | flags;
1249 	rtm->rtm_errno = error;
1250 	rtm->rtm_addrs = rtinfo->rti_addrs;
1251 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1252 }
1253 
1254 void
1255 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1256 {
1257 
1258 	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1259 }
1260 
1261 /*
1262  * This routine is called to generate a message from the routing
1263  * socket indicating that the status of a network interface has changed.
1264  */
1265 void
1266 rt_ifmsg(struct ifnet *ifp)
1267 {
1268 	struct if_msghdr *ifm;
1269 	struct mbuf *m;
1270 	struct rt_addrinfo info;
1271 
1272 	if (V_route_cb.any_count == 0)
1273 		return;
1274 	bzero((caddr_t)&info, sizeof(info));
1275 	m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1276 	if (m == NULL)
1277 		return;
1278 	ifm = mtod(m, struct if_msghdr *);
1279 	ifm->ifm_index = ifp->if_index;
1280 	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1281 	if_data_copy(ifp, &ifm->ifm_data);
1282 	ifm->ifm_addrs = 0;
1283 	rt_dispatch(m, AF_UNSPEC);
1284 }
1285 
1286 /*
1287  * Announce interface address arrival/withdraw.
1288  * Please do not call directly, use rt_addrmsg().
1289  * Assume input data to be valid.
1290  * Returns 0 on success.
1291  */
1292 int
1293 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1294 {
1295 	struct rt_addrinfo info;
1296 	struct sockaddr *sa;
1297 	int ncmd;
1298 	struct mbuf *m;
1299 	struct ifa_msghdr *ifam;
1300 	struct ifnet *ifp = ifa->ifa_ifp;
1301 	struct sockaddr_storage ss;
1302 
1303 	if (V_route_cb.any_count == 0)
1304 		return (0);
1305 
1306 	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1307 
1308 	bzero((caddr_t)&info, sizeof(info));
1309 	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1310 	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1311 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1312 	    info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss);
1313 	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1314 	if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1315 		return (ENOBUFS);
1316 	ifam = mtod(m, struct ifa_msghdr *);
1317 	ifam->ifam_index = ifp->if_index;
1318 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1319 	ifam->ifam_flags = ifa->ifa_flags;
1320 	ifam->ifam_addrs = info.rti_addrs;
1321 
1322 	if (fibnum != RT_ALL_FIBS) {
1323 		M_SETFIB(m, fibnum);
1324 		m->m_flags |= RTS_FILTER_FIB;
1325 	}
1326 
1327 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1328 
1329 	return (0);
1330 }
1331 
1332 /*
1333  * Announce route addition/removal.
1334  * Please do not call directly, use rt_routemsg().
1335  * Note that @rt data MAY be inconsistent/invalid:
1336  * if some userland app sends us "invalid" route message (invalid mask,
1337  * no dst, wrong address families, etc...) we need to pass it back
1338  * to app (and any other rtsock consumers) with rtm_errno field set to
1339  * non-zero value.
1340  *
1341  * Returns 0 on success.
1342  */
1343 int
1344 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt,
1345     int fibnum)
1346 {
1347 	struct rt_addrinfo info;
1348 	struct sockaddr *sa;
1349 	struct mbuf *m;
1350 	struct rt_msghdr *rtm;
1351 	struct sockaddr_storage ss;
1352 
1353 	if (V_route_cb.any_count == 0)
1354 		return (0);
1355 
1356 	bzero((caddr_t)&info, sizeof(info));
1357 	info.rti_info[RTAX_DST] = sa = rt_key(rt);
1358 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss);
1359 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1360 	if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL)
1361 		return (ENOBUFS);
1362 	rtm = mtod(m, struct rt_msghdr *);
1363 	rtm->rtm_index = ifp->if_index;
1364 	rtm->rtm_flags |= rt->rt_flags;
1365 	rtm->rtm_errno = error;
1366 	rtm->rtm_addrs = info.rti_addrs;
1367 
1368 	if (fibnum != RT_ALL_FIBS) {
1369 		M_SETFIB(m, fibnum);
1370 		m->m_flags |= RTS_FILTER_FIB;
1371 	}
1372 
1373 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1374 
1375 	return (0);
1376 }
1377 
1378 /*
1379  * This is the analogue to the rt_newaddrmsg which performs the same
1380  * function but for multicast group memberhips.  This is easier since
1381  * there is no route state to worry about.
1382  */
1383 void
1384 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1385 {
1386 	struct rt_addrinfo info;
1387 	struct mbuf *m = NULL;
1388 	struct ifnet *ifp = ifma->ifma_ifp;
1389 	struct ifma_msghdr *ifmam;
1390 
1391 	if (V_route_cb.any_count == 0)
1392 		return;
1393 
1394 	bzero((caddr_t)&info, sizeof(info));
1395 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1396 	info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL;
1397 	/*
1398 	 * If a link-layer address is present, present it as a ``gateway''
1399 	 * (similarly to how ARP entries, e.g., are presented).
1400 	 */
1401 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1402 	m = rtsock_msg_mbuf(cmd, &info);
1403 	if (m == NULL)
1404 		return;
1405 	ifmam = mtod(m, struct ifma_msghdr *);
1406 	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1407 	    __func__));
1408 	ifmam->ifmam_index = ifp->if_index;
1409 	ifmam->ifmam_addrs = info.rti_addrs;
1410 	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1411 }
1412 
1413 static struct mbuf *
1414 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1415 	struct rt_addrinfo *info)
1416 {
1417 	struct if_announcemsghdr *ifan;
1418 	struct mbuf *m;
1419 
1420 	if (V_route_cb.any_count == 0)
1421 		return NULL;
1422 	bzero((caddr_t)info, sizeof(*info));
1423 	m = rtsock_msg_mbuf(type, info);
1424 	if (m != NULL) {
1425 		ifan = mtod(m, struct if_announcemsghdr *);
1426 		ifan->ifan_index = ifp->if_index;
1427 		strlcpy(ifan->ifan_name, ifp->if_xname,
1428 			sizeof(ifan->ifan_name));
1429 		ifan->ifan_what = what;
1430 	}
1431 	return m;
1432 }
1433 
1434 /*
1435  * This is called to generate routing socket messages indicating
1436  * IEEE80211 wireless events.
1437  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1438  */
1439 void
1440 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1441 {
1442 	struct mbuf *m;
1443 	struct rt_addrinfo info;
1444 
1445 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1446 	if (m != NULL) {
1447 		/*
1448 		 * Append the ieee80211 data.  Try to stick it in the
1449 		 * mbuf containing the ifannounce msg; otherwise allocate
1450 		 * a new mbuf and append.
1451 		 *
1452 		 * NB: we assume m is a single mbuf.
1453 		 */
1454 		if (data_len > M_TRAILINGSPACE(m)) {
1455 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1456 			if (n == NULL) {
1457 				m_freem(m);
1458 				return;
1459 			}
1460 			bcopy(data, mtod(n, void *), data_len);
1461 			n->m_len = data_len;
1462 			m->m_next = n;
1463 		} else if (data_len > 0) {
1464 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1465 			m->m_len += data_len;
1466 		}
1467 		if (m->m_flags & M_PKTHDR)
1468 			m->m_pkthdr.len += data_len;
1469 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1470 		rt_dispatch(m, AF_UNSPEC);
1471 	}
1472 }
1473 
1474 /*
1475  * This is called to generate routing socket messages indicating
1476  * network interface arrival and departure.
1477  */
1478 void
1479 rt_ifannouncemsg(struct ifnet *ifp, int what)
1480 {
1481 	struct mbuf *m;
1482 	struct rt_addrinfo info;
1483 
1484 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1485 	if (m != NULL)
1486 		rt_dispatch(m, AF_UNSPEC);
1487 }
1488 
1489 static void
1490 rt_dispatch(struct mbuf *m, sa_family_t saf)
1491 {
1492 	struct m_tag *tag;
1493 
1494 	/*
1495 	 * Preserve the family from the sockaddr, if any, in an m_tag for
1496 	 * use when injecting the mbuf into the routing socket buffer from
1497 	 * the netisr.
1498 	 */
1499 	if (saf != AF_UNSPEC) {
1500 		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1501 		    M_NOWAIT);
1502 		if (tag == NULL) {
1503 			m_freem(m);
1504 			return;
1505 		}
1506 		*(unsigned short *)(tag + 1) = saf;
1507 		m_tag_prepend(m, tag);
1508 	}
1509 #ifdef VIMAGE
1510 	if (V_loif)
1511 		m->m_pkthdr.rcvif = V_loif;
1512 	else {
1513 		m_freem(m);
1514 		return;
1515 	}
1516 #endif
1517 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
1518 }
1519 
1520 /*
1521  * This is used in dumping the kernel table via sysctl().
1522  */
1523 static int
1524 sysctl_dumpentry(struct radix_node *rn, void *vw)
1525 {
1526 	struct walkarg *w = vw;
1527 	struct rtentry *rt = (struct rtentry *)rn;
1528 	int error = 0, size;
1529 	struct rt_addrinfo info;
1530 	struct sockaddr_storage ss;
1531 
1532 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1533 		return 0;
1534 	if ((rt->rt_flags & RTF_HOST) == 0
1535 	    ? jailed_without_vnet(w->w_req->td->td_ucred)
1536 	    : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0)
1537 		return (0);
1538 	bzero((caddr_t)&info, sizeof(info));
1539 	info.rti_info[RTAX_DST] = rt_key(rt);
1540 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1541 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
1542 	    rt_mask(rt), &ss);
1543 	info.rti_info[RTAX_GENMASK] = 0;
1544 	if (rt->rt_ifp) {
1545 		info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1546 		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1547 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1548 			info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1549 	}
1550 	if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
1551 		return (error);
1552 	if (w->w_req && w->w_tmem) {
1553 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1554 
1555 		if (rt->rt_flags & RTF_GWFLAG_COMPAT)
1556 			rtm->rtm_flags = RTF_GATEWAY |
1557 				(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
1558 		else
1559 			rtm->rtm_flags = rt->rt_flags;
1560 		rt_getmetrics(rt, &rtm->rtm_rmx);
1561 		rtm->rtm_index = rt->rt_ifp->if_index;
1562 		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1563 		rtm->rtm_addrs = info.rti_addrs;
1564 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1565 		return (error);
1566 	}
1567 	return (error);
1568 }
1569 
1570 static int
1571 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
1572     struct rt_addrinfo *info, struct walkarg *w, int len)
1573 {
1574 	struct if_msghdrl *ifm;
1575 	struct if_data *ifd;
1576 
1577 	ifm = (struct if_msghdrl *)w->w_tmem;
1578 
1579 #ifdef COMPAT_FREEBSD32
1580 	if (w->w_req->flags & SCTL_MASK32) {
1581 		struct if_msghdrl32 *ifm32;
1582 
1583 		ifm32 = (struct if_msghdrl32 *)ifm;
1584 		ifm32->ifm_addrs = info->rti_addrs;
1585 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1586 		ifm32->ifm_index = ifp->if_index;
1587 		ifm32->_ifm_spare1 = 0;
1588 		ifm32->ifm_len = sizeof(*ifm32);
1589 		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1590 		ifd = &ifm32->ifm_data;
1591 	} else
1592 #endif
1593 	{
1594 		ifm->ifm_addrs = info->rti_addrs;
1595 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1596 		ifm->ifm_index = ifp->if_index;
1597 		ifm->_ifm_spare1 = 0;
1598 		ifm->ifm_len = sizeof(*ifm);
1599 		ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1600 		ifd = &ifm->ifm_data;
1601 	}
1602 
1603 	memcpy(ifd, src_ifd, sizeof(*ifd));
1604 
1605 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1606 }
1607 
1608 static int
1609 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
1610     struct rt_addrinfo *info, struct walkarg *w, int len)
1611 {
1612 	struct if_msghdr *ifm;
1613 	struct if_data *ifd;
1614 
1615 	ifm = (struct if_msghdr *)w->w_tmem;
1616 
1617 #ifdef COMPAT_FREEBSD32
1618 	if (w->w_req->flags & SCTL_MASK32) {
1619 		struct if_msghdr32 *ifm32;
1620 
1621 		ifm32 = (struct if_msghdr32 *)ifm;
1622 		ifm32->ifm_addrs = info->rti_addrs;
1623 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1624 		ifm32->ifm_index = ifp->if_index;
1625 		ifd = &ifm32->ifm_data;
1626 	} else
1627 #endif
1628 	{
1629 		ifm->ifm_addrs = info->rti_addrs;
1630 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1631 		ifm->ifm_index = ifp->if_index;
1632 		ifd = &ifm->ifm_data;
1633 	}
1634 
1635 	memcpy(ifd, src_ifd, sizeof(*ifd));
1636 
1637 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1638 }
1639 
1640 static int
1641 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1642     struct walkarg *w, int len)
1643 {
1644 	struct ifa_msghdrl *ifam;
1645 	struct if_data *ifd;
1646 
1647 	ifam = (struct ifa_msghdrl *)w->w_tmem;
1648 
1649 #ifdef COMPAT_FREEBSD32
1650 	if (w->w_req->flags & SCTL_MASK32) {
1651 		struct ifa_msghdrl32 *ifam32;
1652 
1653 		ifam32 = (struct ifa_msghdrl32 *)ifam;
1654 		ifam32->ifam_addrs = info->rti_addrs;
1655 		ifam32->ifam_flags = ifa->ifa_flags;
1656 		ifam32->ifam_index = ifa->ifa_ifp->if_index;
1657 		ifam32->_ifam_spare1 = 0;
1658 		ifam32->ifam_len = sizeof(*ifam32);
1659 		ifam32->ifam_data_off =
1660 		    offsetof(struct ifa_msghdrl32, ifam_data);
1661 		ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
1662 		ifd = &ifam32->ifam_data;
1663 	} else
1664 #endif
1665 	{
1666 		ifam->ifam_addrs = info->rti_addrs;
1667 		ifam->ifam_flags = ifa->ifa_flags;
1668 		ifam->ifam_index = ifa->ifa_ifp->if_index;
1669 		ifam->_ifam_spare1 = 0;
1670 		ifam->ifam_len = sizeof(*ifam);
1671 		ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
1672 		ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1673 		ifd = &ifam->ifam_data;
1674 	}
1675 
1676 	bzero(ifd, sizeof(*ifd));
1677 	ifd->ifi_datalen = sizeof(struct if_data);
1678 	ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
1679 	ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
1680 	ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
1681 	ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
1682 
1683 	/* Fixup if_data carp(4) vhid. */
1684 	if (carp_get_vhid_p != NULL)
1685 		ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
1686 
1687 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1688 }
1689 
1690 static int
1691 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
1692     struct walkarg *w, int len)
1693 {
1694 	struct ifa_msghdr *ifam;
1695 
1696 	ifam = (struct ifa_msghdr *)w->w_tmem;
1697 	ifam->ifam_addrs = info->rti_addrs;
1698 	ifam->ifam_flags = ifa->ifa_flags;
1699 	ifam->ifam_index = ifa->ifa_ifp->if_index;
1700 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1701 
1702 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1703 }
1704 
1705 static int
1706 sysctl_iflist(int af, struct walkarg *w)
1707 {
1708 	struct ifnet *ifp;
1709 	struct ifaddr *ifa;
1710 	struct if_data ifd;
1711 	struct rt_addrinfo info;
1712 	int len, error = 0;
1713 	struct sockaddr_storage ss;
1714 
1715 	bzero((caddr_t)&info, sizeof(info));
1716 	bzero(&ifd, sizeof(ifd));
1717 	IFNET_RLOCK_NOSLEEP();
1718 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1719 		if (w->w_arg && w->w_arg != ifp->if_index)
1720 			continue;
1721 		if_data_copy(ifp, &ifd);
1722 		IF_ADDR_RLOCK(ifp);
1723 		ifa = ifp->if_addr;
1724 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1725 		error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
1726 		if (error != 0)
1727 			goto done;
1728 		info.rti_info[RTAX_IFP] = NULL;
1729 		if (w->w_req && w->w_tmem) {
1730 			if (w->w_op == NET_RT_IFLISTL)
1731 				error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
1732 				    len);
1733 			else
1734 				error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
1735 				    len);
1736 			if (error)
1737 				goto done;
1738 		}
1739 		while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
1740 			if (af && af != ifa->ifa_addr->sa_family)
1741 				continue;
1742 			if (prison_if(w->w_req->td->td_ucred,
1743 			    ifa->ifa_addr) != 0)
1744 				continue;
1745 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1746 			info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1747 			    ifa->ifa_addr, ifa->ifa_netmask, &ss);
1748 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1749 			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
1750 			if (error != 0)
1751 				goto done;
1752 			if (w->w_req && w->w_tmem) {
1753 				if (w->w_op == NET_RT_IFLISTL)
1754 					error = sysctl_iflist_ifaml(ifa, &info,
1755 					    w, len);
1756 				else
1757 					error = sysctl_iflist_ifam(ifa, &info,
1758 					    w, len);
1759 				if (error)
1760 					goto done;
1761 			}
1762 		}
1763 		IF_ADDR_RUNLOCK(ifp);
1764 		info.rti_info[RTAX_IFA] = NULL;
1765 		info.rti_info[RTAX_NETMASK] = NULL;
1766 		info.rti_info[RTAX_BRD] = NULL;
1767 	}
1768 done:
1769 	if (ifp != NULL)
1770 		IF_ADDR_RUNLOCK(ifp);
1771 	IFNET_RUNLOCK_NOSLEEP();
1772 	return (error);
1773 }
1774 
1775 static int
1776 sysctl_ifmalist(int af, struct walkarg *w)
1777 {
1778 	struct rt_addrinfo info;
1779 	struct ifaddr *ifa;
1780 	struct ifmultiaddr *ifma;
1781 	struct ifnet *ifp;
1782 	int error, len;
1783 
1784 	error = 0;
1785 	bzero((caddr_t)&info, sizeof(info));
1786 
1787 	IFNET_RLOCK_NOSLEEP();
1788 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1789 		if (w->w_arg && w->w_arg != ifp->if_index)
1790 			continue;
1791 		ifa = ifp->if_addr;
1792 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1793 		IF_ADDR_RLOCK(ifp);
1794 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1795 			if (af && af != ifma->ifma_addr->sa_family)
1796 				continue;
1797 			if (prison_if(w->w_req->td->td_ucred,
1798 			    ifma->ifma_addr) != 0)
1799 				continue;
1800 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1801 			info.rti_info[RTAX_GATEWAY] =
1802 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
1803 			    ifma->ifma_lladdr : NULL;
1804 			error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
1805 			if (error != 0)
1806 				break;
1807 			if (w->w_req && w->w_tmem) {
1808 				struct ifma_msghdr *ifmam;
1809 
1810 				ifmam = (struct ifma_msghdr *)w->w_tmem;
1811 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1812 				ifmam->ifmam_flags = 0;
1813 				ifmam->ifmam_addrs = info.rti_addrs;
1814 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1815 				if (error != 0)
1816 					break;
1817 			}
1818 		}
1819 		IF_ADDR_RUNLOCK(ifp);
1820 		if (error != 0)
1821 			break;
1822 	}
1823 	IFNET_RUNLOCK_NOSLEEP();
1824 	return (error);
1825 }
1826 
1827 static int
1828 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1829 {
1830 	int	*name = (int *)arg1;
1831 	u_int	namelen = arg2;
1832 	struct rib_head *rnh = NULL; /* silence compiler. */
1833 	int	i, lim, error = EINVAL;
1834 	int	fib = 0;
1835 	u_char	af;
1836 	struct	walkarg w;
1837 
1838 	name ++;
1839 	namelen--;
1840 	if (req->newptr)
1841 		return (EPERM);
1842 	if (name[1] == NET_RT_DUMP) {
1843 		if (namelen == 3)
1844 			fib = req->td->td_proc->p_fibnum;
1845 		else if (namelen == 4)
1846 			fib = (name[3] == RT_ALL_FIBS) ?
1847 			    req->td->td_proc->p_fibnum : name[3];
1848 		else
1849 			return ((namelen < 3) ? EISDIR : ENOTDIR);
1850 		if (fib < 0 || fib >= rt_numfibs)
1851 			return (EINVAL);
1852 	} else if (namelen != 3)
1853 		return ((namelen < 3) ? EISDIR : ENOTDIR);
1854 	af = name[0];
1855 	if (af > AF_MAX)
1856 		return (EINVAL);
1857 	bzero(&w, sizeof(w));
1858 	w.w_op = name[1];
1859 	w.w_arg = name[2];
1860 	w.w_req = req;
1861 
1862 	error = sysctl_wire_old_buffer(req, 0);
1863 	if (error)
1864 		return (error);
1865 
1866 	/*
1867 	 * Allocate reply buffer in advance.
1868 	 * All rtsock messages has maximum length of u_short.
1869 	 */
1870 	w.w_tmemsize = 65536;
1871 	w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
1872 
1873 	switch (w.w_op) {
1874 
1875 	case NET_RT_DUMP:
1876 	case NET_RT_FLAGS:
1877 		if (af == 0) {			/* dump all tables */
1878 			i = 1;
1879 			lim = AF_MAX;
1880 		} else				/* dump only one table */
1881 			i = lim = af;
1882 
1883 		/*
1884 		 * take care of llinfo entries, the caller must
1885 		 * specify an AF
1886 		 */
1887 		if (w.w_op == NET_RT_FLAGS &&
1888 		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
1889 			if (af != 0)
1890 				error = lltable_sysctl_dumparp(af, w.w_req);
1891 			else
1892 				error = EINVAL;
1893 			break;
1894 		}
1895 		/*
1896 		 * take care of routing entries
1897 		 */
1898 		for (error = 0; error == 0 && i <= lim; i++) {
1899 			rnh = rt_tables_get_rnh(fib, i);
1900 			if (rnh != NULL) {
1901 				RIB_RLOCK(rnh);
1902 			    	error = rnh->rnh_walktree(&rnh->head,
1903 				    sysctl_dumpentry, &w);
1904 				RIB_RUNLOCK(rnh);
1905 			} else if (af != 0)
1906 				error = EAFNOSUPPORT;
1907 		}
1908 		break;
1909 
1910 	case NET_RT_IFLIST:
1911 	case NET_RT_IFLISTL:
1912 		error = sysctl_iflist(af, &w);
1913 		break;
1914 
1915 	case NET_RT_IFMALIST:
1916 		error = sysctl_ifmalist(af, &w);
1917 		break;
1918 	}
1919 
1920 	free(w.w_tmem, M_TEMP);
1921 	return (error);
1922 }
1923 
1924 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1925 
1926 /*
1927  * Definitions of protocols supported in the ROUTE domain.
1928  */
1929 
1930 static struct domain routedomain;		/* or at least forward */
1931 
1932 static struct protosw routesw[] = {
1933 {
1934 	.pr_type =		SOCK_RAW,
1935 	.pr_domain =		&routedomain,
1936 	.pr_flags =		PR_ATOMIC|PR_ADDR,
1937 	.pr_output =		route_output,
1938 	.pr_ctlinput =		raw_ctlinput,
1939 	.pr_init =		raw_init,
1940 	.pr_usrreqs =		&route_usrreqs
1941 }
1942 };
1943 
1944 static struct domain routedomain = {
1945 	.dom_family =		PF_ROUTE,
1946 	.dom_name =		 "route",
1947 	.dom_protosw =		routesw,
1948 	.dom_protoswNPROTOSW =	&routesw[nitems(routesw)]
1949 };
1950 
1951 VNET_DOMAIN_SET(route);
1952