1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 #include "opt_ddb.h" 32 #include "opt_route.h" 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 36 #include <sys/param.h> 37 #include <sys/jail.h> 38 #include <sys/kernel.h> 39 #include <sys/eventhandler.h> 40 #include <sys/domain.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/rmlock.h> 48 #include <sys/rwlock.h> 49 #include <sys/signalvar.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <net/if.h> 56 #include <net/if_var.h> 57 #include <net/if_private.h> 58 #include <net/if_dl.h> 59 #include <net/if_llatbl.h> 60 #include <net/if_types.h> 61 #include <net/netisr.h> 62 #include <net/route.h> 63 #include <net/route/route_ctl.h> 64 #include <net/route/route_var.h> 65 #include <net/vnet.h> 66 67 #include <netinet/in.h> 68 #include <netinet/if_ether.h> 69 #include <netinet/ip_carp.h> 70 #ifdef INET6 71 #include <netinet6/in6_var.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/scope6_var.h> 74 #endif 75 #include <net/route/nhop.h> 76 77 #define DEBUG_MOD_NAME rtsock 78 #define DEBUG_MAX_LEVEL LOG_DEBUG 79 #include <net/route/route_debug.h> 80 _DECLARE_DEBUG(LOG_INFO); 81 82 #ifdef COMPAT_FREEBSD32 83 #include <sys/mount.h> 84 #include <compat/freebsd32/freebsd32.h> 85 86 struct if_msghdr32 { 87 uint16_t ifm_msglen; 88 uint8_t ifm_version; 89 uint8_t ifm_type; 90 int32_t ifm_addrs; 91 int32_t ifm_flags; 92 uint16_t ifm_index; 93 uint16_t _ifm_spare1; 94 struct if_data ifm_data; 95 }; 96 97 struct if_msghdrl32 { 98 uint16_t ifm_msglen; 99 uint8_t ifm_version; 100 uint8_t ifm_type; 101 int32_t ifm_addrs; 102 int32_t ifm_flags; 103 uint16_t ifm_index; 104 uint16_t _ifm_spare1; 105 uint16_t ifm_len; 106 uint16_t ifm_data_off; 107 uint32_t _ifm_spare2; 108 struct if_data ifm_data; 109 }; 110 111 struct ifa_msghdrl32 { 112 uint16_t ifam_msglen; 113 uint8_t ifam_version; 114 uint8_t ifam_type; 115 int32_t ifam_addrs; 116 int32_t ifam_flags; 117 uint16_t ifam_index; 118 uint16_t _ifam_spare1; 119 uint16_t ifam_len; 120 uint16_t ifam_data_off; 121 int32_t ifam_metric; 122 struct if_data ifam_data; 123 }; 124 125 #define SA_SIZE32(sa) \ 126 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 127 sizeof(int) : \ 128 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 129 130 #endif /* COMPAT_FREEBSD32 */ 131 132 struct linear_buffer { 133 char *base; /* Base allocated memory pointer */ 134 uint32_t offset; /* Currently used offset */ 135 uint32_t size; /* Total buffer size */ 136 }; 137 #define SCRATCH_BUFFER_SIZE 1024 138 139 #define RTS_PID_LOG(_l, _fmt, ...) RT_LOG_##_l(_l, "PID %d: " _fmt, curproc ? curproc->p_pid : 0, ## __VA_ARGS__) 140 141 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 142 143 /* NB: these are not modified */ 144 static struct sockaddr route_src = { 2, PF_ROUTE, }; 145 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 146 147 /* These are external hooks for CARP. */ 148 int (*carp_get_vhid_p)(struct ifaddr *); 149 150 /* 151 * Used by rtsock callback code to decide whether to filter the update 152 * notification to a socket bound to a particular FIB. 153 */ 154 #define RTS_FILTER_FIB M_PROTO8 155 /* 156 * Used to store address family of the notification. 157 */ 158 #define m_rtsock_family m_pkthdr.PH_loc.eight[0] 159 160 struct rcb { 161 LIST_ENTRY(rcb) list; 162 struct socket *rcb_socket; 163 sa_family_t rcb_family; 164 }; 165 166 typedef struct { 167 LIST_HEAD(, rcb) cblist; 168 int ip_count; /* attached w/ AF_INET */ 169 int ip6_count; /* attached w/ AF_INET6 */ 170 int any_count; /* total attached */ 171 } route_cb_t; 172 VNET_DEFINE_STATIC(route_cb_t, route_cb); 173 #define V_route_cb VNET(route_cb) 174 175 struct mtx rtsock_mtx; 176 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 177 178 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 179 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 180 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 181 182 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 183 184 struct walkarg { 185 int family; 186 int w_tmemsize; 187 int w_op, w_arg; 188 caddr_t w_tmem; 189 struct sysctl_req *w_req; 190 struct sockaddr *dst; 191 struct sockaddr *mask; 192 }; 193 194 static void rts_input(struct mbuf *m); 195 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 196 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 197 struct walkarg *w, int *plen); 198 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 199 struct rt_addrinfo *rtinfo); 200 static int cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb); 201 static int sysctl_dumpentry(struct rtentry *rt, void *vw); 202 static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, 203 uint32_t weight, struct walkarg *w); 204 static int sysctl_iflist(int af, struct walkarg *w); 205 static int sysctl_ifmalist(int af, struct walkarg *w); 206 static void rt_getmetrics(const struct rtentry *rt, 207 const struct nhop_object *nh, struct rt_metrics *out); 208 static void rt_dispatch(struct mbuf *, sa_family_t); 209 static void rt_ifannouncemsg(struct ifnet *ifp, int what); 210 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 211 struct rt_msghdr *rtm, struct rib_cmd_info *rc); 212 static int update_rtm_from_rc(struct rt_addrinfo *info, 213 struct rt_msghdr **prtm, int alloc_len, 214 struct rib_cmd_info *rc, struct nhop_object *nh); 215 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 216 struct mbuf *m, sa_family_t saf, u_int fibnum, 217 int rtm_errno); 218 static void rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc); 219 static void rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask); 220 221 static struct netisr_handler rtsock_nh = { 222 .nh_name = "rtsock", 223 .nh_handler = rts_input, 224 .nh_proto = NETISR_ROUTE, 225 .nh_policy = NETISR_POLICY_SOURCE, 226 }; 227 228 static int 229 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 230 { 231 int error, qlimit; 232 233 netisr_getqlimit(&rtsock_nh, &qlimit); 234 error = sysctl_handle_int(oidp, &qlimit, 0, req); 235 if (error || !req->newptr) 236 return (error); 237 if (qlimit < 1) 238 return (EINVAL); 239 return (netisr_setqlimit(&rtsock_nh, qlimit)); 240 } 241 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 242 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 243 0, 0, sysctl_route_netisr_maxqlen, "I", 244 "maximum routing socket dispatch queue length"); 245 246 static void 247 vnet_rts_init(void) 248 { 249 int tmp; 250 251 if (IS_DEFAULT_VNET(curvnet)) { 252 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 253 rtsock_nh.nh_qlimit = tmp; 254 netisr_register(&rtsock_nh); 255 } 256 #ifdef VIMAGE 257 else 258 netisr_register_vnet(&rtsock_nh); 259 #endif 260 } 261 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 262 vnet_rts_init, 0); 263 264 #ifdef VIMAGE 265 static void 266 vnet_rts_uninit(void) 267 { 268 269 netisr_unregister_vnet(&rtsock_nh); 270 } 271 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 272 vnet_rts_uninit, 0); 273 #endif 274 275 static void 276 report_route_event(const struct rib_cmd_info *rc, void *_cbdata) 277 { 278 uint32_t fibnum = (uint32_t)(uintptr_t)_cbdata; 279 struct nhop_object *nh; 280 281 nh = rc->rc_cmd == RTM_DELETE ? rc->rc_nh_old : rc->rc_nh_new; 282 rt_routemsg(rc->rc_cmd, rc->rc_rt, nh, fibnum); 283 } 284 285 static void 286 rts_handle_route_event(uint32_t fibnum, const struct rib_cmd_info *rc) 287 { 288 #ifdef ROUTE_MPATH 289 if ((rc->rc_nh_new && NH_IS_NHGRP(rc->rc_nh_new)) || 290 (rc->rc_nh_old && NH_IS_NHGRP(rc->rc_nh_old))) { 291 rib_decompose_notification(rc, report_route_event, 292 (void *)(uintptr_t)fibnum); 293 } else 294 #endif 295 report_route_event(rc, (void *)(uintptr_t)fibnum); 296 } 297 static struct rtbridge rtsbridge = { 298 .route_f = rts_handle_route_event, 299 .ifmsg_f = rtsock_ifmsg, 300 }; 301 static struct rtbridge *rtsbridge_orig_p; 302 303 static void 304 rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc) 305 { 306 netlink_callback_p->route_f(fibnum, rc); 307 } 308 309 static void 310 rtsock_init(void) 311 { 312 rtsbridge_orig_p = rtsock_callback_p; 313 rtsock_callback_p = &rtsbridge; 314 } 315 SYSINIT(rtsock_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rtsock_init, NULL); 316 317 static void 318 rts_handle_ifnet_arrival(void *arg __unused, struct ifnet *ifp) 319 { 320 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 321 } 322 EVENTHANDLER_DEFINE(ifnet_arrival_event, rts_handle_ifnet_arrival, NULL, 0); 323 324 static void 325 rts_handle_ifnet_departure(void *arg __unused, struct ifnet *ifp) 326 { 327 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 328 } 329 EVENTHANDLER_DEFINE(ifnet_departure_event, rts_handle_ifnet_departure, NULL, 0); 330 331 static void 332 rts_append_data(struct socket *so, struct mbuf *m) 333 { 334 335 if (sbappendaddr(&so->so_rcv, &route_src, m, NULL) == 0) { 336 soroverflow(so); 337 m_freem(m); 338 } else 339 sorwakeup(so); 340 } 341 342 static void 343 rts_input(struct mbuf *m) 344 { 345 struct rcb *rcb; 346 struct socket *last; 347 348 last = NULL; 349 RTSOCK_LOCK(); 350 LIST_FOREACH(rcb, &V_route_cb.cblist, list) { 351 if (rcb->rcb_family != AF_UNSPEC && 352 rcb->rcb_family != m->m_rtsock_family) 353 continue; 354 if ((m->m_flags & RTS_FILTER_FIB) && 355 M_GETFIB(m) != rcb->rcb_socket->so_fibnum) 356 continue; 357 if (last != NULL) { 358 struct mbuf *n; 359 360 n = m_copym(m, 0, M_COPYALL, M_NOWAIT); 361 if (n != NULL) 362 rts_append_data(last, n); 363 } 364 last = rcb->rcb_socket; 365 } 366 if (last != NULL) 367 rts_append_data(last, m); 368 else 369 m_freem(m); 370 RTSOCK_UNLOCK(); 371 } 372 373 static void 374 rts_close(struct socket *so) 375 { 376 377 soisdisconnected(so); 378 } 379 380 static SYSCTL_NODE(_net, OID_AUTO, rtsock, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 381 "Routing socket infrastructure"); 382 static u_long rts_sendspace = 8192; 383 SYSCTL_ULONG(_net_rtsock, OID_AUTO, sendspace, CTLFLAG_RW, &rts_sendspace, 0, 384 "Default routing socket send space"); 385 static u_long rts_recvspace = 8192; 386 SYSCTL_ULONG(_net_rtsock, OID_AUTO, recvspace, CTLFLAG_RW, &rts_recvspace, 0, 387 "Default routing socket receive space"); 388 389 static int 390 rts_attach(struct socket *so, int proto, struct thread *td) 391 { 392 struct rcb *rcb; 393 int error; 394 395 error = soreserve(so, rts_sendspace, rts_recvspace); 396 if (error) 397 return (error); 398 399 rcb = malloc(sizeof(*rcb), M_PCB, M_WAITOK); 400 rcb->rcb_socket = so; 401 rcb->rcb_family = proto; 402 403 so->so_pcb = rcb; 404 so->so_fibnum = td->td_proc->p_fibnum; 405 so->so_options |= SO_USELOOPBACK; 406 407 RTSOCK_LOCK(); 408 LIST_INSERT_HEAD(&V_route_cb.cblist, rcb, list); 409 switch (proto) { 410 case AF_INET: 411 V_route_cb.ip_count++; 412 break; 413 case AF_INET6: 414 V_route_cb.ip6_count++; 415 break; 416 } 417 V_route_cb.any_count++; 418 RTSOCK_UNLOCK(); 419 soisconnected(so); 420 421 return (0); 422 } 423 424 static void 425 rts_detach(struct socket *so) 426 { 427 struct rcb *rcb = so->so_pcb; 428 429 RTSOCK_LOCK(); 430 LIST_REMOVE(rcb, list); 431 switch(rcb->rcb_family) { 432 case AF_INET: 433 V_route_cb.ip_count--; 434 break; 435 case AF_INET6: 436 V_route_cb.ip6_count--; 437 break; 438 } 439 V_route_cb.any_count--; 440 RTSOCK_UNLOCK(); 441 free(rcb, M_PCB); 442 so->so_pcb = NULL; 443 } 444 445 static int 446 rts_disconnect(struct socket *so) 447 { 448 449 return (ENOTCONN); 450 } 451 452 static int 453 rts_shutdown(struct socket *so, enum shutdown_how how) 454 { 455 /* 456 * Note: route socket marks itself as connected through its lifetime. 457 */ 458 switch (how) { 459 case SHUT_RD: 460 sorflush(so); 461 break; 462 case SHUT_RDWR: 463 sorflush(so); 464 /* FALLTHROUGH */ 465 case SHUT_WR: 466 socantsendmore(so); 467 } 468 469 return (0); 470 } 471 472 #ifndef _SOCKADDR_UNION_DEFINED 473 #define _SOCKADDR_UNION_DEFINED 474 /* 475 * The union of all possible address formats we handle. 476 */ 477 union sockaddr_union { 478 struct sockaddr sa; 479 struct sockaddr_in sin; 480 struct sockaddr_in6 sin6; 481 }; 482 #endif /* _SOCKADDR_UNION_DEFINED */ 483 484 static int 485 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 486 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 487 { 488 #if defined(INET) || defined(INET6) 489 struct epoch_tracker et; 490 #endif 491 492 /* First, see if the returned address is part of the jail. */ 493 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 494 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 495 return (0); 496 } 497 498 switch (info->rti_info[RTAX_DST]->sa_family) { 499 #ifdef INET 500 case AF_INET: 501 { 502 struct in_addr ia; 503 struct ifaddr *ifa; 504 int found; 505 506 found = 0; 507 /* 508 * Try to find an address on the given outgoing interface 509 * that belongs to the jail. 510 */ 511 NET_EPOCH_ENTER(et); 512 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 513 struct sockaddr *sa; 514 sa = ifa->ifa_addr; 515 if (sa->sa_family != AF_INET) 516 continue; 517 ia = ((struct sockaddr_in *)sa)->sin_addr; 518 if (prison_check_ip4(cred, &ia) == 0) { 519 found = 1; 520 break; 521 } 522 } 523 NET_EPOCH_EXIT(et); 524 if (!found) { 525 /* 526 * As a last resort return the 'default' jail address. 527 */ 528 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 529 sin_addr; 530 if (prison_get_ip4(cred, &ia) != 0) 531 return (ESRCH); 532 } 533 bzero(&saun->sin, sizeof(struct sockaddr_in)); 534 saun->sin.sin_len = sizeof(struct sockaddr_in); 535 saun->sin.sin_family = AF_INET; 536 saun->sin.sin_addr.s_addr = ia.s_addr; 537 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 538 break; 539 } 540 #endif 541 #ifdef INET6 542 case AF_INET6: 543 { 544 struct in6_addr ia6; 545 struct ifaddr *ifa; 546 int found; 547 548 found = 0; 549 /* 550 * Try to find an address on the given outgoing interface 551 * that belongs to the jail. 552 */ 553 NET_EPOCH_ENTER(et); 554 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 555 struct sockaddr *sa; 556 sa = ifa->ifa_addr; 557 if (sa->sa_family != AF_INET6) 558 continue; 559 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 560 &ia6, sizeof(struct in6_addr)); 561 if (prison_check_ip6(cred, &ia6) == 0) { 562 found = 1; 563 break; 564 } 565 } 566 NET_EPOCH_EXIT(et); 567 if (!found) { 568 /* 569 * As a last resort return the 'default' jail address. 570 */ 571 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 572 sin6_addr; 573 if (prison_get_ip6(cred, &ia6) != 0) 574 return (ESRCH); 575 } 576 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 577 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 578 saun->sin6.sin6_family = AF_INET6; 579 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 580 if (sa6_recoverscope(&saun->sin6) != 0) 581 return (ESRCH); 582 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 583 break; 584 } 585 #endif 586 default: 587 return (ESRCH); 588 } 589 return (0); 590 } 591 592 static int 593 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun) 594 { 595 struct ifaddr *ifa; 596 sa_family_t saf; 597 598 if (V_loif == NULL) { 599 RTS_PID_LOG(LOG_INFO, "Unable to add blackhole/reject nhop without loopback"); 600 return (ENOTSUP); 601 } 602 info->rti_ifp = V_loif; 603 604 saf = info->rti_info[RTAX_DST]->sa_family; 605 606 CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) { 607 if (ifa->ifa_addr->sa_family == saf) { 608 info->rti_ifa = ifa; 609 break; 610 } 611 } 612 if (info->rti_ifa == NULL) { 613 RTS_PID_LOG(LOG_INFO, "Unable to find ifa for blackhole/reject nhop"); 614 return (ENOTSUP); 615 } 616 617 bzero(saun, sizeof(union sockaddr_union)); 618 switch (saf) { 619 #ifdef INET 620 case AF_INET: 621 saun->sin.sin_family = AF_INET; 622 saun->sin.sin_len = sizeof(struct sockaddr_in); 623 saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); 624 break; 625 #endif 626 #ifdef INET6 627 case AF_INET6: 628 saun->sin6.sin6_family = AF_INET6; 629 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 630 saun->sin6.sin6_addr = in6addr_loopback; 631 break; 632 #endif 633 default: 634 RTS_PID_LOG(LOG_INFO, "unsupported family: %d", saf); 635 return (ENOTSUP); 636 } 637 info->rti_info[RTAX_GATEWAY] = &saun->sa; 638 info->rti_flags |= RTF_GATEWAY; 639 640 return (0); 641 } 642 643 /* 644 * Fills in @info based on userland-provided @rtm message. 645 * 646 * Returns 0 on success. 647 */ 648 static int 649 fill_addrinfo(struct rt_msghdr *rtm, int len, struct linear_buffer *lb, u_int fibnum, 650 struct rt_addrinfo *info) 651 { 652 int error; 653 654 rtm->rtm_pid = curproc->p_pid; 655 info->rti_addrs = rtm->rtm_addrs; 656 657 info->rti_mflags = rtm->rtm_inits; 658 info->rti_rmx = &rtm->rtm_rmx; 659 660 /* 661 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 662 * link-local address because rtrequest requires addresses with 663 * embedded scope id. 664 */ 665 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 666 return (EINVAL); 667 668 info->rti_flags = rtm->rtm_flags; 669 error = cleanup_xaddrs(info, lb); 670 if (error != 0) 671 return (error); 672 /* 673 * Verify that the caller has the appropriate privilege; RTM_GET 674 * is the only operation the non-superuser is allowed. 675 */ 676 if (rtm->rtm_type != RTM_GET) { 677 error = priv_check(curthread, PRIV_NET_ROUTE); 678 if (error != 0) 679 return (error); 680 } 681 682 /* 683 * The given gateway address may be an interface address. 684 * For example, issuing a "route change" command on a route 685 * entry that was created from a tunnel, and the gateway 686 * address given is the local end point. In this case the 687 * RTF_GATEWAY flag must be cleared or the destination will 688 * not be reachable even though there is no error message. 689 */ 690 if (info->rti_info[RTAX_GATEWAY] != NULL && 691 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 692 struct nhop_object *nh; 693 694 /* 695 * A host route through the loopback interface is 696 * installed for each interface address. In pre 8.0 697 * releases the interface address of a PPP link type 698 * is not reachable locally. This behavior is fixed as 699 * part of the new L2/L3 redesign and rewrite work. The 700 * signature of this interface address route is the 701 * AF_LINK sa_family type of the gateway, and the 702 * rt_ifp has the IFF_LOOPBACK flag set. 703 */ 704 nh = rib_lookup(fibnum, info->rti_info[RTAX_GATEWAY], NHR_NONE, 0); 705 if (nh != NULL && nh->gw_sa.sa_family == AF_LINK && 706 nh->nh_ifp->if_flags & IFF_LOOPBACK) { 707 info->rti_flags &= ~RTF_GATEWAY; 708 info->rti_flags |= RTF_GWFLAG_COMPAT; 709 } 710 } 711 712 return (0); 713 } 714 715 static struct nhop_object * 716 select_nhop(struct nhop_object *nh, const struct sockaddr *gw) 717 { 718 if (!NH_IS_NHGRP(nh)) 719 return (nh); 720 #ifdef ROUTE_MPATH 721 const struct weightened_nhop *wn; 722 uint32_t num_nhops; 723 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 724 if (gw == NULL) 725 return (wn[0].nh); 726 for (int i = 0; i < num_nhops; i++) { 727 if (match_nhop_gw(wn[i].nh, gw)) 728 return (wn[i].nh); 729 } 730 #endif 731 return (NULL); 732 } 733 734 /* 735 * Handles RTM_GET message from routing socket, returning matching rt. 736 * 737 * Returns: 738 * 0 on success, with locked and referenced matching rt in @rt_nrt 739 * errno of failure 740 */ 741 static int 742 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 743 struct rt_msghdr *rtm, struct rib_cmd_info *rc) 744 { 745 RIB_RLOCK_TRACKER; 746 struct rib_head *rnh; 747 struct nhop_object *nh; 748 sa_family_t saf; 749 750 saf = info->rti_info[RTAX_DST]->sa_family; 751 752 rnh = rt_tables_get_rnh(fibnum, saf); 753 if (rnh == NULL) 754 return (EAFNOSUPPORT); 755 756 RIB_RLOCK(rnh); 757 758 /* 759 * By (implicit) convention host route (one without netmask) 760 * means longest-prefix-match request and the route with netmask 761 * means exact-match lookup. 762 * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128 763 * prefixes, use original data to check for the netmask presence. 764 */ 765 if ((rtm->rtm_addrs & RTA_NETMASK) == 0) { 766 /* 767 * Provide longest prefix match for 768 * address lookup (no mask). 769 * 'route -n get addr' 770 */ 771 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( 772 info->rti_info[RTAX_DST], &rnh->head); 773 } else 774 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( 775 info->rti_info[RTAX_DST], 776 info->rti_info[RTAX_NETMASK], &rnh->head); 777 778 if (rc->rc_rt == NULL) { 779 RIB_RUNLOCK(rnh); 780 return (ESRCH); 781 } 782 783 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 784 if (nh == NULL) { 785 RIB_RUNLOCK(rnh); 786 return (ESRCH); 787 } 788 /* 789 * If performing proxied L2 entry insertion, and 790 * the actual PPP host entry is found, perform 791 * another search to retrieve the prefix route of 792 * the local end point of the PPP link. 793 * TODO: move this logic to userland. 794 */ 795 if (rtm->rtm_flags & RTF_ANNOUNCE) { 796 struct sockaddr_storage laddr; 797 798 if (nh->nh_ifp != NULL && 799 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 800 struct ifaddr *ifa; 801 802 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 803 RT_ALL_FIBS); 804 if (ifa != NULL) 805 rt_maskedcopy(ifa->ifa_addr, 806 (struct sockaddr *)&laddr, 807 ifa->ifa_netmask); 808 } else 809 rt_maskedcopy(nh->nh_ifa->ifa_addr, 810 (struct sockaddr *)&laddr, 811 nh->nh_ifa->ifa_netmask); 812 /* 813 * refactor rt and no lock operation necessary 814 */ 815 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr( 816 (struct sockaddr *)&laddr, &rnh->head); 817 if (rc->rc_rt == NULL) { 818 RIB_RUNLOCK(rnh); 819 return (ESRCH); 820 } 821 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 822 if (nh == NULL) { 823 RIB_RUNLOCK(rnh); 824 return (ESRCH); 825 } 826 } 827 rc->rc_nh_new = nh; 828 rc->rc_nh_weight = rc->rc_rt->rt_weight; 829 RIB_RUNLOCK(rnh); 830 831 return (0); 832 } 833 834 static void 835 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask) 836 { 837 #ifdef INET 838 if (family == AF_INET) { 839 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 840 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 841 842 bzero(dst4, sizeof(struct sockaddr_in)); 843 bzero(mask4, sizeof(struct sockaddr_in)); 844 845 dst4->sin_family = AF_INET; 846 dst4->sin_len = sizeof(struct sockaddr_in); 847 mask4->sin_family = AF_INET; 848 mask4->sin_len = sizeof(struct sockaddr_in); 849 } 850 #endif 851 #ifdef INET6 852 if (family == AF_INET6) { 853 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 854 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 855 856 bzero(dst6, sizeof(struct sockaddr_in6)); 857 bzero(mask6, sizeof(struct sockaddr_in6)); 858 859 dst6->sin6_family = AF_INET6; 860 dst6->sin6_len = sizeof(struct sockaddr_in6); 861 mask6->sin6_family = AF_INET6; 862 mask6->sin6_len = sizeof(struct sockaddr_in6); 863 } 864 #endif 865 } 866 867 static void 868 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst, 869 struct sockaddr *mask) 870 { 871 #ifdef INET 872 if (dst->sa_family == AF_INET) { 873 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 874 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 875 uint32_t scopeid = 0; 876 rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr, 877 &scopeid); 878 return; 879 } 880 #endif 881 #ifdef INET6 882 if (dst->sa_family == AF_INET6) { 883 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 884 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 885 uint32_t scopeid = 0; 886 rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr, 887 &mask6->sin6_addr, &scopeid); 888 dst6->sin6_scope_id = scopeid; 889 return; 890 } 891 #endif 892 } 893 894 static int 895 update_rtm_from_info(struct rt_addrinfo *info, struct rt_msghdr **prtm, 896 int alloc_len) 897 { 898 struct rt_msghdr *rtm, *orig_rtm = NULL; 899 struct walkarg w; 900 int len; 901 902 rtm = *prtm; 903 /* Check if we need to realloc storage */ 904 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 905 if (len > alloc_len) { 906 struct rt_msghdr *tmp_rtm; 907 908 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 909 if (tmp_rtm == NULL) 910 return (ENOBUFS); 911 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 912 orig_rtm = rtm; 913 rtm = tmp_rtm; 914 alloc_len = len; 915 916 /* 917 * Delay freeing original rtm as info contains 918 * data referencing it. 919 */ 920 } 921 922 w.w_tmem = (caddr_t)rtm; 923 w.w_tmemsize = alloc_len; 924 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 925 rtm->rtm_addrs = info->rti_addrs; 926 927 if (orig_rtm != NULL) 928 free(orig_rtm, M_TEMP); 929 *prtm = rtm; 930 return (0); 931 } 932 933 934 /* 935 * Update sockaddrs, flags, etc in @prtm based on @rc data. 936 * rtm can be reallocated. 937 * 938 * Returns 0 on success, along with pointer to (potentially reallocated) 939 * rtm. 940 * 941 */ 942 static int 943 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, 944 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) 945 { 946 union sockaddr_union saun; 947 struct rt_msghdr *rtm; 948 struct ifnet *ifp; 949 int error; 950 951 rtm = *prtm; 952 union sockaddr_union sa_dst, sa_mask; 953 int family = info->rti_info[RTAX_DST]->sa_family; 954 init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa); 955 export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa); 956 957 info->rti_info[RTAX_DST] = &sa_dst.sa; 958 info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa; 959 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 960 info->rti_info[RTAX_GENMASK] = 0; 961 ifp = nh->nh_ifp; 962 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 963 if (ifp) { 964 info->rti_info[RTAX_IFP] = 965 ifp->if_addr->ifa_addr; 966 error = rtm_get_jailed(info, ifp, nh, 967 &saun, curthread->td_ucred); 968 if (error != 0) 969 return (error); 970 if (ifp->if_flags & IFF_POINTOPOINT) 971 info->rti_info[RTAX_BRD] = 972 nh->nh_ifa->ifa_dstaddr; 973 rtm->rtm_index = ifp->if_index; 974 } else { 975 info->rti_info[RTAX_IFP] = NULL; 976 info->rti_info[RTAX_IFA] = NULL; 977 } 978 } else if (ifp != NULL) 979 rtm->rtm_index = ifp->if_index; 980 981 if ((error = update_rtm_from_info(info, prtm, alloc_len)) != 0) 982 return (error); 983 984 rtm = *prtm; 985 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); 986 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 987 rtm->rtm_flags = RTF_GATEWAY | 988 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 989 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); 990 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; 991 992 return (0); 993 } 994 995 #ifdef ROUTE_MPATH 996 static void 997 save_del_notification(const struct rib_cmd_info *rc, void *_cbdata) 998 { 999 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 1000 1001 if (rc->rc_cmd == RTM_DELETE) 1002 *rc_new = *rc; 1003 } 1004 1005 static void 1006 save_add_notification(const struct rib_cmd_info *rc, void *_cbdata) 1007 { 1008 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 1009 1010 if (rc->rc_cmd == RTM_ADD) 1011 *rc_new = *rc; 1012 } 1013 #endif 1014 1015 #if defined(INET6) || defined(INET) 1016 static struct sockaddr * 1017 alloc_sockaddr_aligned(struct linear_buffer *lb, int len) 1018 { 1019 len = roundup2(len, sizeof(uint64_t)); 1020 if (lb->offset + len > lb->size) 1021 return (NULL); 1022 struct sockaddr *sa = (struct sockaddr *)(lb->base + lb->offset); 1023 lb->offset += len; 1024 return (sa); 1025 } 1026 #endif 1027 1028 static int 1029 rts_send(struct socket *so, int flags, struct mbuf *m, 1030 struct sockaddr *nam, struct mbuf *control, struct thread *td) 1031 { 1032 struct rt_msghdr *rtm = NULL; 1033 struct rt_addrinfo info; 1034 struct epoch_tracker et; 1035 #ifdef INET6 1036 struct sockaddr_storage ss; 1037 struct sockaddr_in6 *sin6; 1038 int i, rti_need_deembed = 0; 1039 #endif 1040 int alloc_len = 0, len, error = 0, fibnum; 1041 sa_family_t saf = AF_UNSPEC; 1042 struct rib_cmd_info rc; 1043 struct nhop_object *nh; 1044 1045 if ((flags & PRUS_OOB) || control != NULL) { 1046 m_freem(m); 1047 if (control != NULL) 1048 m_freem(control); 1049 return (EOPNOTSUPP); 1050 } 1051 1052 fibnum = so->so_fibnum; 1053 #define senderr(e) { error = e; goto flush;} 1054 if (m == NULL || ((m->m_len < sizeof(long)) && 1055 (m = m_pullup(m, sizeof(long))) == NULL)) 1056 return (ENOBUFS); 1057 if ((m->m_flags & M_PKTHDR) == 0) 1058 panic("route_output"); 1059 NET_EPOCH_ENTER(et); 1060 len = m->m_pkthdr.len; 1061 if (len < sizeof(*rtm) || 1062 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 1063 senderr(EINVAL); 1064 1065 /* 1066 * Most of current messages are in range 200-240 bytes, 1067 * minimize possible re-allocation on reply using larger size 1068 * buffer aligned on 1k boundaty. 1069 */ 1070 alloc_len = roundup2(len, 1024); 1071 int total_len = alloc_len + SCRATCH_BUFFER_SIZE; 1072 if ((rtm = malloc(total_len, M_TEMP, M_NOWAIT)) == NULL) 1073 senderr(ENOBUFS); 1074 1075 m_copydata(m, 0, len, (caddr_t)rtm); 1076 bzero(&info, sizeof(info)); 1077 nh = NULL; 1078 struct linear_buffer lb = { 1079 .base = (char *)rtm + alloc_len, 1080 .size = SCRATCH_BUFFER_SIZE, 1081 }; 1082 1083 if (rtm->rtm_version != RTM_VERSION) { 1084 /* Do not touch message since format is unknown */ 1085 free(rtm, M_TEMP); 1086 rtm = NULL; 1087 senderr(EPROTONOSUPPORT); 1088 } 1089 1090 /* 1091 * Starting from here, it is possible 1092 * to alter original message and insert 1093 * caller PID and error value. 1094 */ 1095 1096 if ((error = fill_addrinfo(rtm, len, &lb, fibnum, &info)) != 0) { 1097 senderr(error); 1098 } 1099 /* fill_addringo() embeds scope into IPv6 addresses */ 1100 #ifdef INET6 1101 rti_need_deembed = 1; 1102 #endif 1103 1104 saf = info.rti_info[RTAX_DST]->sa_family; 1105 1106 /* support for new ARP code */ 1107 if (rtm->rtm_flags & RTF_LLDATA) { 1108 error = lla_rt_output(rtm, &info); 1109 goto flush; 1110 } 1111 1112 union sockaddr_union gw_saun; 1113 int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT); 1114 if (blackhole_flags != 0) { 1115 if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT)) 1116 error = fill_blackholeinfo(&info, &gw_saun); 1117 else { 1118 RTS_PID_LOG(LOG_DEBUG, "both BLACKHOLE and REJECT flags specifiied"); 1119 error = EINVAL; 1120 } 1121 if (error != 0) 1122 senderr(error); 1123 } 1124 1125 switch (rtm->rtm_type) { 1126 case RTM_ADD: 1127 case RTM_CHANGE: 1128 if (rtm->rtm_type == RTM_ADD) { 1129 if (info.rti_info[RTAX_GATEWAY] == NULL) { 1130 RTS_PID_LOG(LOG_DEBUG, "RTM_ADD w/o gateway"); 1131 senderr(EINVAL); 1132 } 1133 } 1134 error = rib_action(fibnum, rtm->rtm_type, &info, &rc); 1135 if (error == 0) { 1136 rtsock_notify_event(fibnum, &rc); 1137 #ifdef ROUTE_MPATH 1138 if (NH_IS_NHGRP(rc.rc_nh_new) || 1139 (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) { 1140 struct rib_cmd_info rc_simple = {}; 1141 rib_decompose_notification(&rc, 1142 save_add_notification, (void *)&rc_simple); 1143 rc = rc_simple; 1144 } 1145 #endif 1146 /* nh MAY be empty if RTM_CHANGE request is no-op */ 1147 nh = rc.rc_nh_new; 1148 if (nh != NULL) { 1149 rtm->rtm_index = nh->nh_ifp->if_index; 1150 rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh); 1151 } 1152 } 1153 break; 1154 1155 case RTM_DELETE: 1156 error = rib_action(fibnum, RTM_DELETE, &info, &rc); 1157 if (error == 0) { 1158 rtsock_notify_event(fibnum, &rc); 1159 #ifdef ROUTE_MPATH 1160 if (NH_IS_NHGRP(rc.rc_nh_old) || 1161 (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) { 1162 struct rib_cmd_info rc_simple = {}; 1163 rib_decompose_notification(&rc, 1164 save_del_notification, (void *)&rc_simple); 1165 rc = rc_simple; 1166 } 1167 #endif 1168 nh = rc.rc_nh_old; 1169 } 1170 break; 1171 1172 case RTM_GET: 1173 error = handle_rtm_get(&info, fibnum, rtm, &rc); 1174 if (error != 0) 1175 senderr(error); 1176 nh = rc.rc_nh_new; 1177 1178 if (!rt_is_exportable(rc.rc_rt, curthread->td_ucred)) 1179 senderr(ESRCH); 1180 break; 1181 1182 default: 1183 senderr(EOPNOTSUPP); 1184 } 1185 1186 if (error == 0 && nh != NULL) { 1187 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); 1188 /* 1189 * Note that some sockaddr pointers may have changed to 1190 * point to memory outsize @rtm. Some may be pointing 1191 * to the on-stack variables. 1192 * Given that, any pointer in @info CANNOT BE USED. 1193 */ 1194 1195 /* 1196 * scopeid deembedding has been performed while 1197 * writing updated rtm in rtsock_msg_buffer(). 1198 * With that in mind, skip deembedding procedure below. 1199 */ 1200 #ifdef INET6 1201 rti_need_deembed = 0; 1202 #endif 1203 } 1204 1205 flush: 1206 NET_EPOCH_EXIT(et); 1207 1208 #ifdef INET6 1209 if (rtm != NULL) { 1210 if (rti_need_deembed) { 1211 /* sin6_scope_id is recovered before sending rtm. */ 1212 sin6 = (struct sockaddr_in6 *)&ss; 1213 for (i = 0; i < RTAX_MAX; i++) { 1214 if (info.rti_info[i] == NULL) 1215 continue; 1216 if (info.rti_info[i]->sa_family != AF_INET6) 1217 continue; 1218 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 1219 if (sa6_recoverscope(sin6) == 0) 1220 bcopy(sin6, info.rti_info[i], 1221 sizeof(*sin6)); 1222 } 1223 if (update_rtm_from_info(&info, &rtm, alloc_len) != 0) { 1224 if (error != 0) 1225 error = ENOBUFS; 1226 } 1227 } 1228 } 1229 #endif 1230 send_rtm_reply(so, rtm, m, saf, fibnum, error); 1231 1232 return (error); 1233 } 1234 1235 /* 1236 * Sends the prepared reply message in @rtm to all rtsock clients. 1237 * Frees @m and @rtm. 1238 * 1239 */ 1240 static void 1241 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1242 sa_family_t saf, u_int fibnum, int rtm_errno) 1243 { 1244 struct rcb *rcb = NULL; 1245 1246 /* 1247 * Check to see if we don't want our own messages. 1248 */ 1249 if ((so->so_options & SO_USELOOPBACK) == 0) { 1250 if (V_route_cb.any_count <= 1) { 1251 if (rtm != NULL) 1252 free(rtm, M_TEMP); 1253 m_freem(m); 1254 return; 1255 } 1256 /* There is another listener, so construct message */ 1257 rcb = so->so_pcb; 1258 } 1259 1260 if (rtm != NULL) { 1261 if (rtm_errno!= 0) 1262 rtm->rtm_errno = rtm_errno; 1263 else 1264 rtm->rtm_flags |= RTF_DONE; 1265 1266 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1267 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1268 m_freem(m); 1269 m = NULL; 1270 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1271 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1272 1273 free(rtm, M_TEMP); 1274 } 1275 if (m != NULL) { 1276 M_SETFIB(m, fibnum); 1277 m->m_flags |= RTS_FILTER_FIB; 1278 if (rcb) { 1279 /* 1280 * XXX insure we don't get a copy by 1281 * invalidating our protocol 1282 */ 1283 sa_family_t family = rcb->rcb_family; 1284 rcb->rcb_family = AF_UNSPEC; 1285 rt_dispatch(m, saf); 1286 rcb->rcb_family = family; 1287 } else 1288 rt_dispatch(m, saf); 1289 } 1290 } 1291 1292 static void 1293 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, 1294 struct rt_metrics *out) 1295 { 1296 1297 bzero(out, sizeof(*out)); 1298 out->rmx_mtu = nh->nh_mtu; 1299 out->rmx_weight = rt->rt_weight; 1300 out->rmx_nhidx = nhop_get_idx(nh); 1301 /* Kernel -> userland timebase conversion. */ 1302 out->rmx_expire = nhop_get_expire(nh) ? 1303 nhop_get_expire(nh) - time_uptime + time_second : 0; 1304 } 1305 1306 /* 1307 * Extract the addresses of the passed sockaddrs. 1308 * Do a little sanity checking so as to avoid bad memory references. 1309 * This data is derived straight from userland. 1310 */ 1311 static int 1312 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1313 { 1314 struct sockaddr *sa; 1315 int i; 1316 1317 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1318 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1319 continue; 1320 sa = (struct sockaddr *)cp; 1321 /* 1322 * It won't fit. 1323 */ 1324 if (cp + sa->sa_len > cplim) { 1325 RTS_PID_LOG(LOG_DEBUG, "sa_len too big for sa type %d", i); 1326 return (EINVAL); 1327 } 1328 /* 1329 * there are no more.. quit now 1330 * If there are more bits, they are in error. 1331 * I've seen this. route(1) can evidently generate these. 1332 * This causes kernel to core dump. 1333 * for compatibility, If we see this, point to a safe address. 1334 */ 1335 if (sa->sa_len == 0) { 1336 rtinfo->rti_info[i] = &sa_zero; 1337 return (0); /* should be EINVAL but for compat */ 1338 } 1339 /* accept it */ 1340 #ifdef INET6 1341 if (sa->sa_family == AF_INET6) 1342 sa6_embedscope((struct sockaddr_in6 *)sa, 1343 V_ip6_use_defzone); 1344 #endif 1345 rtinfo->rti_info[i] = sa; 1346 cp += SA_SIZE(sa); 1347 } 1348 return (0); 1349 } 1350 1351 #ifdef INET 1352 static inline void 1353 fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr) 1354 { 1355 1356 const struct sockaddr_in nsin = { 1357 .sin_family = AF_INET, 1358 .sin_len = sizeof(struct sockaddr_in), 1359 .sin_addr = addr, 1360 }; 1361 *sin = nsin; 1362 } 1363 #endif 1364 1365 #ifdef INET6 1366 static inline void 1367 fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6, 1368 uint32_t scopeid) 1369 { 1370 1371 const struct sockaddr_in6 nsin6 = { 1372 .sin6_family = AF_INET6, 1373 .sin6_len = sizeof(struct sockaddr_in6), 1374 .sin6_addr = *addr6, 1375 .sin6_scope_id = scopeid, 1376 }; 1377 *sin6 = nsin6; 1378 } 1379 #endif 1380 1381 #if defined(INET6) || defined(INET) 1382 /* 1383 * Checks if gateway is suitable for lltable operations. 1384 * Lltable code requires AF_LINK gateway with ifindex 1385 * and mac address specified. 1386 * Returns 0 on success. 1387 */ 1388 static int 1389 cleanup_xaddrs_lladdr(struct rt_addrinfo *info) 1390 { 1391 struct sockaddr_dl *sdl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY]; 1392 1393 if (sdl->sdl_family != AF_LINK) 1394 return (EINVAL); 1395 1396 if (sdl->sdl_index == 0) { 1397 RTS_PID_LOG(LOG_DEBUG, "AF_LINK gateway w/o ifindex"); 1398 return (EINVAL); 1399 } 1400 1401 if (offsetof(struct sockaddr_dl, sdl_data) + sdl->sdl_nlen + sdl->sdl_alen > sdl->sdl_len) { 1402 RTS_PID_LOG(LOG_DEBUG, "AF_LINK gw: sdl_nlen/sdl_alen too large"); 1403 return (EINVAL); 1404 } 1405 1406 return (0); 1407 } 1408 1409 static int 1410 cleanup_xaddrs_gateway(struct rt_addrinfo *info, struct linear_buffer *lb) 1411 { 1412 struct sockaddr *gw = info->rti_info[RTAX_GATEWAY]; 1413 struct sockaddr *sa; 1414 1415 if (info->rti_flags & RTF_LLDATA) 1416 return (cleanup_xaddrs_lladdr(info)); 1417 1418 switch (gw->sa_family) { 1419 #ifdef INET 1420 case AF_INET: 1421 { 1422 struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw; 1423 1424 /* Ensure reads do not go beyoud SA boundary */ 1425 if (SA_SIZE(gw) < offsetof(struct sockaddr_in, sin_zero)) { 1426 RTS_PID_LOG(LOG_DEBUG, "gateway sin_len too small: %d", 1427 gw->sa_len); 1428 return (EINVAL); 1429 } 1430 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_in)); 1431 if (sa == NULL) 1432 return (ENOBUFS); 1433 fill_sockaddr_inet((struct sockaddr_in *)sa, gw_sin->sin_addr); 1434 info->rti_info[RTAX_GATEWAY] = sa; 1435 } 1436 break; 1437 #endif 1438 #ifdef INET6 1439 case AF_INET6: 1440 { 1441 struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw; 1442 if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) { 1443 RTS_PID_LOG(LOG_DEBUG, "gateway sin6_len too small: %d", 1444 gw->sa_len); 1445 return (EINVAL); 1446 } 1447 fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0); 1448 break; 1449 } 1450 #endif 1451 case AF_LINK: 1452 { 1453 struct sockaddr_dl *gw_sdl; 1454 1455 size_t sdl_min_len = offsetof(struct sockaddr_dl, sdl_data); 1456 gw_sdl = (struct sockaddr_dl *)gw; 1457 if (gw_sdl->sdl_len < sdl_min_len) { 1458 RTS_PID_LOG(LOG_DEBUG, "gateway sdl_len too small: %d", 1459 gw_sdl->sdl_len); 1460 return (EINVAL); 1461 } 1462 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_dl_short)); 1463 if (sa == NULL) 1464 return (ENOBUFS); 1465 1466 const struct sockaddr_dl_short sdl = { 1467 .sdl_family = AF_LINK, 1468 .sdl_len = sizeof(struct sockaddr_dl_short), 1469 .sdl_index = gw_sdl->sdl_index, 1470 }; 1471 *((struct sockaddr_dl_short *)sa) = sdl; 1472 info->rti_info[RTAX_GATEWAY] = sa; 1473 break; 1474 } 1475 } 1476 1477 return (0); 1478 } 1479 #endif 1480 1481 static void 1482 remove_netmask(struct rt_addrinfo *info) 1483 { 1484 info->rti_info[RTAX_NETMASK] = NULL; 1485 info->rti_flags |= RTF_HOST; 1486 info->rti_addrs &= ~RTA_NETMASK; 1487 } 1488 1489 #ifdef INET 1490 static int 1491 cleanup_xaddrs_inet(struct rt_addrinfo *info, struct linear_buffer *lb) 1492 { 1493 struct sockaddr_in *dst_sa, *mask_sa; 1494 const int sa_len = sizeof(struct sockaddr_in); 1495 struct in_addr dst, mask; 1496 1497 /* Check & fixup dst/netmask combination first */ 1498 dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST]; 1499 mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK]; 1500 1501 /* Ensure reads do not go beyound the buffer size */ 1502 if (SA_SIZE(dst_sa) < offsetof(struct sockaddr_in, sin_zero)) { 1503 RTS_PID_LOG(LOG_DEBUG, "prefix dst sin_len too small: %d", 1504 dst_sa->sin_len); 1505 return (EINVAL); 1506 } 1507 1508 if ((mask_sa != NULL) && mask_sa->sin_len < sizeof(struct sockaddr_in)) { 1509 /* 1510 * Some older routing software encode mask length into the 1511 * sin_len, thus resulting in "truncated" sockaddr. 1512 */ 1513 int len = mask_sa->sin_len - offsetof(struct sockaddr_in, sin_addr); 1514 if (len >= 0) { 1515 mask.s_addr = 0; 1516 if (len > sizeof(struct in_addr)) 1517 len = sizeof(struct in_addr); 1518 memcpy(&mask, &mask_sa->sin_addr, len); 1519 } else { 1520 RTS_PID_LOG(LOG_DEBUG, "prefix mask sin_len too small: %d", 1521 mask_sa->sin_len); 1522 return (EINVAL); 1523 } 1524 } else 1525 mask.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST; 1526 1527 dst.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr)); 1528 1529 /* Construct new "clean" dst/mask sockaddresses */ 1530 if ((dst_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1531 return (ENOBUFS); 1532 fill_sockaddr_inet(dst_sa, dst); 1533 info->rti_info[RTAX_DST] = (struct sockaddr *)dst_sa; 1534 1535 if (mask.s_addr != INADDR_BROADCAST) { 1536 if ((mask_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1537 return (ENOBUFS); 1538 fill_sockaddr_inet(mask_sa, mask); 1539 info->rti_info[RTAX_NETMASK] = (struct sockaddr *)mask_sa; 1540 info->rti_flags &= ~RTF_HOST; 1541 } else 1542 remove_netmask(info); 1543 1544 /* Check gateway */ 1545 if (info->rti_info[RTAX_GATEWAY] != NULL) 1546 return (cleanup_xaddrs_gateway(info, lb)); 1547 1548 return (0); 1549 } 1550 #endif 1551 1552 #ifdef INET6 1553 static int 1554 cleanup_xaddrs_inet6(struct rt_addrinfo *info, struct linear_buffer *lb) 1555 { 1556 struct sockaddr *sa; 1557 struct sockaddr_in6 *dst_sa, *mask_sa; 1558 struct in6_addr mask, *dst; 1559 const int sa_len = sizeof(struct sockaddr_in6); 1560 1561 /* Check & fixup dst/netmask combination first */ 1562 dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST]; 1563 mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK]; 1564 1565 if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1566 RTS_PID_LOG(LOG_DEBUG, "prefix dst sin6_len too small: %d", 1567 dst_sa->sin6_len); 1568 return (EINVAL); 1569 } 1570 1571 if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1572 /* 1573 * Some older routing software encode mask length into the 1574 * sin6_len, thus resulting in "truncated" sockaddr. 1575 */ 1576 int len = mask_sa->sin6_len - offsetof(struct sockaddr_in6, sin6_addr); 1577 if (len >= 0) { 1578 bzero(&mask, sizeof(mask)); 1579 if (len > sizeof(struct in6_addr)) 1580 len = sizeof(struct in6_addr); 1581 memcpy(&mask, &mask_sa->sin6_addr, len); 1582 } else { 1583 RTS_PID_LOG(LOG_DEBUG, "rtsock: prefix mask sin6_len too small: %d", 1584 mask_sa->sin6_len); 1585 return (EINVAL); 1586 } 1587 } else 1588 mask = mask_sa ? mask_sa->sin6_addr : in6mask128; 1589 1590 dst = &dst_sa->sin6_addr; 1591 IN6_MASK_ADDR(dst, &mask); 1592 1593 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1594 return (ENOBUFS); 1595 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, dst, 0); 1596 info->rti_info[RTAX_DST] = sa; 1597 1598 if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) { 1599 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1600 return (ENOBUFS); 1601 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, &mask, 0); 1602 info->rti_info[RTAX_NETMASK] = sa; 1603 info->rti_flags &= ~RTF_HOST; 1604 } else 1605 remove_netmask(info); 1606 1607 /* Check gateway */ 1608 if (info->rti_info[RTAX_GATEWAY] != NULL) 1609 return (cleanup_xaddrs_gateway(info, lb)); 1610 1611 return (0); 1612 } 1613 #endif 1614 1615 static int 1616 cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb) 1617 { 1618 int error = EAFNOSUPPORT; 1619 1620 if (info->rti_info[RTAX_DST] == NULL) { 1621 RTS_PID_LOG(LOG_DEBUG, "prefix dst is not set"); 1622 return (EINVAL); 1623 } 1624 1625 if (info->rti_flags & RTF_LLDATA) { 1626 /* 1627 * arp(8)/ndp(8) sends RTA_NETMASK for the associated 1628 * prefix along with the actual address in RTA_DST. 1629 * Remove netmask to avoid unnecessary address masking. 1630 */ 1631 remove_netmask(info); 1632 } 1633 1634 switch (info->rti_info[RTAX_DST]->sa_family) { 1635 #ifdef INET 1636 case AF_INET: 1637 error = cleanup_xaddrs_inet(info, lb); 1638 break; 1639 #endif 1640 #ifdef INET6 1641 case AF_INET6: 1642 error = cleanup_xaddrs_inet6(info, lb); 1643 break; 1644 #endif 1645 } 1646 1647 return (error); 1648 } 1649 1650 /* 1651 * Fill in @dmask with valid netmask leaving original @smask 1652 * intact. Mostly used with radix netmasks. 1653 */ 1654 struct sockaddr * 1655 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1656 struct sockaddr_storage *dmask) 1657 { 1658 if (dst == NULL || smask == NULL) 1659 return (NULL); 1660 1661 memset(dmask, 0, dst->sa_len); 1662 memcpy(dmask, smask, smask->sa_len); 1663 dmask->ss_len = dst->sa_len; 1664 dmask->ss_family = dst->sa_family; 1665 1666 return ((struct sockaddr *)dmask); 1667 } 1668 1669 /* 1670 * Writes information related to @rtinfo object to newly-allocated mbuf. 1671 * Assumes MCLBYTES is enough to construct any message. 1672 * Used for OS notifications of vaious events (if/ifa announces,etc) 1673 * 1674 * Returns allocated mbuf or NULL on failure. 1675 */ 1676 static struct mbuf * 1677 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1678 { 1679 struct sockaddr_storage ss; 1680 struct rt_msghdr *rtm; 1681 struct mbuf *m; 1682 int i; 1683 struct sockaddr *sa; 1684 #ifdef INET6 1685 struct sockaddr_in6 *sin6; 1686 #endif 1687 int len, dlen; 1688 1689 switch (type) { 1690 case RTM_DELADDR: 1691 case RTM_NEWADDR: 1692 len = sizeof(struct ifa_msghdr); 1693 break; 1694 1695 case RTM_DELMADDR: 1696 case RTM_NEWMADDR: 1697 len = sizeof(struct ifma_msghdr); 1698 break; 1699 1700 case RTM_IFINFO: 1701 len = sizeof(struct if_msghdr); 1702 break; 1703 1704 case RTM_IFANNOUNCE: 1705 case RTM_IEEE80211: 1706 len = sizeof(struct if_announcemsghdr); 1707 break; 1708 1709 default: 1710 len = sizeof(struct rt_msghdr); 1711 } 1712 1713 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1714 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1715 if (len > MHLEN) 1716 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1717 else 1718 m = m_gethdr(M_NOWAIT, MT_DATA); 1719 if (m == NULL) 1720 return (m); 1721 1722 m->m_pkthdr.len = m->m_len = len; 1723 rtm = mtod(m, struct rt_msghdr *); 1724 bzero((caddr_t)rtm, len); 1725 for (i = 0; i < RTAX_MAX; i++) { 1726 if ((sa = rtinfo->rti_info[i]) == NULL) 1727 continue; 1728 rtinfo->rti_addrs |= (1 << i); 1729 1730 dlen = SA_SIZE(sa); 1731 KASSERT(dlen <= sizeof(ss), 1732 ("%s: sockaddr size overflow", __func__)); 1733 bzero(&ss, sizeof(ss)); 1734 bcopy(sa, &ss, sa->sa_len); 1735 sa = (struct sockaddr *)&ss; 1736 #ifdef INET6 1737 if (sa->sa_family == AF_INET6) { 1738 sin6 = (struct sockaddr_in6 *)sa; 1739 (void)sa6_recoverscope(sin6); 1740 } 1741 #endif 1742 m_copyback(m, len, dlen, (caddr_t)sa); 1743 len += dlen; 1744 } 1745 if (m->m_pkthdr.len != len) { 1746 m_freem(m); 1747 return (NULL); 1748 } 1749 rtm->rtm_msglen = len; 1750 rtm->rtm_version = RTM_VERSION; 1751 rtm->rtm_type = type; 1752 return (m); 1753 } 1754 1755 /* 1756 * Writes information related to @rtinfo object to preallocated buffer. 1757 * Stores needed size in @plen. If @w is NULL, calculates size without 1758 * writing. 1759 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1760 * 1761 * Returns 0 on success. 1762 * 1763 */ 1764 static int 1765 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1766 { 1767 struct sockaddr_storage ss; 1768 int len, buflen = 0, dlen, i; 1769 caddr_t cp = NULL; 1770 struct rt_msghdr *rtm = NULL; 1771 #ifdef INET6 1772 struct sockaddr_in6 *sin6; 1773 #endif 1774 #ifdef COMPAT_FREEBSD32 1775 bool compat32 = false; 1776 #endif 1777 1778 switch (type) { 1779 case RTM_DELADDR: 1780 case RTM_NEWADDR: 1781 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1782 #ifdef COMPAT_FREEBSD32 1783 if (w->w_req->flags & SCTL_MASK32) { 1784 len = sizeof(struct ifa_msghdrl32); 1785 compat32 = true; 1786 } else 1787 #endif 1788 len = sizeof(struct ifa_msghdrl); 1789 } else 1790 len = sizeof(struct ifa_msghdr); 1791 break; 1792 1793 case RTM_IFINFO: 1794 #ifdef COMPAT_FREEBSD32 1795 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1796 if (w->w_op == NET_RT_IFLISTL) 1797 len = sizeof(struct if_msghdrl32); 1798 else 1799 len = sizeof(struct if_msghdr32); 1800 compat32 = true; 1801 break; 1802 } 1803 #endif 1804 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1805 len = sizeof(struct if_msghdrl); 1806 else 1807 len = sizeof(struct if_msghdr); 1808 break; 1809 1810 case RTM_NEWMADDR: 1811 len = sizeof(struct ifma_msghdr); 1812 break; 1813 1814 default: 1815 len = sizeof(struct rt_msghdr); 1816 } 1817 1818 if (w != NULL) { 1819 rtm = (struct rt_msghdr *)w->w_tmem; 1820 buflen = w->w_tmemsize - len; 1821 cp = (caddr_t)w->w_tmem + len; 1822 } 1823 1824 rtinfo->rti_addrs = 0; 1825 for (i = 0; i < RTAX_MAX; i++) { 1826 struct sockaddr *sa; 1827 1828 if ((sa = rtinfo->rti_info[i]) == NULL) 1829 continue; 1830 rtinfo->rti_addrs |= (1 << i); 1831 #ifdef COMPAT_FREEBSD32 1832 if (compat32) 1833 dlen = SA_SIZE32(sa); 1834 else 1835 #endif 1836 dlen = SA_SIZE(sa); 1837 if (cp != NULL && buflen >= dlen) { 1838 KASSERT(dlen <= sizeof(ss), 1839 ("%s: sockaddr size overflow", __func__)); 1840 bzero(&ss, sizeof(ss)); 1841 bcopy(sa, &ss, sa->sa_len); 1842 sa = (struct sockaddr *)&ss; 1843 #ifdef INET6 1844 if (sa->sa_family == AF_INET6) { 1845 sin6 = (struct sockaddr_in6 *)sa; 1846 (void)sa6_recoverscope(sin6); 1847 } 1848 #endif 1849 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1850 cp += dlen; 1851 buflen -= dlen; 1852 } else if (cp != NULL) { 1853 /* 1854 * Buffer too small. Count needed size 1855 * and return with error. 1856 */ 1857 cp = NULL; 1858 } 1859 1860 len += dlen; 1861 } 1862 1863 if (cp != NULL) { 1864 dlen = ALIGN(len) - len; 1865 if (buflen < dlen) 1866 cp = NULL; 1867 else { 1868 bzero(cp, dlen); 1869 cp += dlen; 1870 buflen -= dlen; 1871 } 1872 } 1873 len = ALIGN(len); 1874 1875 if (cp != NULL) { 1876 /* fill header iff buffer is large enough */ 1877 rtm->rtm_version = RTM_VERSION; 1878 rtm->rtm_type = type; 1879 rtm->rtm_msglen = len; 1880 } 1881 1882 *plen = len; 1883 1884 if (w != NULL && cp == NULL) 1885 return (ENOBUFS); 1886 1887 return (0); 1888 } 1889 1890 /* 1891 * This routine is called to generate a message from the routing 1892 * socket indicating that a redirect has occurred, a routing lookup 1893 * has failed, or that a protocol has detected timeouts to a particular 1894 * destination. 1895 */ 1896 void 1897 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1898 int fibnum) 1899 { 1900 struct rt_msghdr *rtm; 1901 struct mbuf *m; 1902 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1903 1904 if (V_route_cb.any_count == 0) 1905 return; 1906 m = rtsock_msg_mbuf(type, rtinfo); 1907 if (m == NULL) 1908 return; 1909 1910 if (fibnum != RT_ALL_FIBS) { 1911 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1912 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1913 M_SETFIB(m, fibnum); 1914 m->m_flags |= RTS_FILTER_FIB; 1915 } 1916 1917 rtm = mtod(m, struct rt_msghdr *); 1918 rtm->rtm_flags = RTF_DONE | flags; 1919 rtm->rtm_errno = error; 1920 rtm->rtm_addrs = rtinfo->rti_addrs; 1921 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1922 } 1923 1924 void 1925 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1926 { 1927 1928 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1929 } 1930 1931 /* 1932 * This routine is called to generate a message from the routing 1933 * socket indicating that the status of a network interface has changed. 1934 */ 1935 static void 1936 rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask __unused) 1937 { 1938 struct if_msghdr *ifm; 1939 struct mbuf *m; 1940 struct rt_addrinfo info; 1941 1942 if (V_route_cb.any_count == 0) 1943 return; 1944 bzero((caddr_t)&info, sizeof(info)); 1945 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1946 if (m == NULL) 1947 return; 1948 ifm = mtod(m, struct if_msghdr *); 1949 ifm->ifm_index = ifp->if_index; 1950 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1951 if_data_copy(ifp, &ifm->ifm_data); 1952 ifm->ifm_addrs = 0; 1953 rt_dispatch(m, AF_UNSPEC); 1954 } 1955 1956 /* 1957 * Announce interface address arrival/withdraw. 1958 * Please do not call directly, use rt_addrmsg(). 1959 * Assume input data to be valid. 1960 * Returns 0 on success. 1961 */ 1962 int 1963 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1964 { 1965 struct rt_addrinfo info; 1966 struct sockaddr *sa; 1967 int ncmd; 1968 struct mbuf *m; 1969 struct ifa_msghdr *ifam; 1970 struct ifnet *ifp = ifa->ifa_ifp; 1971 struct sockaddr_storage ss; 1972 1973 if (V_route_cb.any_count == 0) 1974 return (0); 1975 1976 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1977 1978 bzero((caddr_t)&info, sizeof(info)); 1979 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1980 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1981 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1982 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 1983 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1984 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1985 return (ENOBUFS); 1986 ifam = mtod(m, struct ifa_msghdr *); 1987 ifam->ifam_index = ifp->if_index; 1988 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1989 ifam->ifam_flags = ifa->ifa_flags; 1990 ifam->ifam_addrs = info.rti_addrs; 1991 1992 if (fibnum != RT_ALL_FIBS) { 1993 M_SETFIB(m, fibnum); 1994 m->m_flags |= RTS_FILTER_FIB; 1995 } 1996 1997 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1998 1999 return (0); 2000 } 2001 2002 /* 2003 * Announce route addition/removal to rtsock based on @rt data. 2004 * Callers are advives to use rt_routemsg() instead of using this 2005 * function directly. 2006 * Assume @rt data is consistent. 2007 * 2008 * Returns 0 on success. 2009 */ 2010 int 2011 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh, 2012 int fibnum) 2013 { 2014 union sockaddr_union dst, mask; 2015 struct rt_addrinfo info; 2016 2017 if (V_route_cb.any_count == 0) 2018 return (0); 2019 2020 int family = rt_get_family(rt); 2021 init_sockaddrs_family(family, &dst.sa, &mask.sa); 2022 export_rtaddrs(rt, &dst.sa, &mask.sa); 2023 2024 bzero((caddr_t)&info, sizeof(info)); 2025 info.rti_info[RTAX_DST] = &dst.sa; 2026 info.rti_info[RTAX_NETMASK] = &mask.sa; 2027 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2028 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); 2029 info.rti_ifp = nh->nh_ifp; 2030 2031 return (rtsock_routemsg_info(cmd, &info, fibnum)); 2032 } 2033 2034 int 2035 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 2036 { 2037 struct rt_msghdr *rtm; 2038 struct sockaddr *sa; 2039 struct mbuf *m; 2040 2041 if (V_route_cb.any_count == 0) 2042 return (0); 2043 2044 if (info->rti_flags & RTF_HOST) 2045 info->rti_info[RTAX_NETMASK] = NULL; 2046 2047 m = rtsock_msg_mbuf(cmd, info); 2048 if (m == NULL) 2049 return (ENOBUFS); 2050 2051 if (fibnum != RT_ALL_FIBS) { 2052 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 2053 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 2054 M_SETFIB(m, fibnum); 2055 m->m_flags |= RTS_FILTER_FIB; 2056 } 2057 2058 rtm = mtod(m, struct rt_msghdr *); 2059 rtm->rtm_addrs = info->rti_addrs; 2060 if (info->rti_ifp != NULL) 2061 rtm->rtm_index = info->rti_ifp->if_index; 2062 /* Add RTF_DONE to indicate command 'completion' required by API */ 2063 info->rti_flags |= RTF_DONE; 2064 /* Reported routes has to be up */ 2065 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 2066 info->rti_flags |= RTF_UP; 2067 rtm->rtm_flags = info->rti_flags; 2068 2069 sa = info->rti_info[RTAX_DST]; 2070 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 2071 2072 return (0); 2073 } 2074 2075 /* 2076 * This is the analogue to the rt_newaddrmsg which performs the same 2077 * function but for multicast group memberhips. This is easier since 2078 * there is no route state to worry about. 2079 */ 2080 void 2081 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 2082 { 2083 struct rt_addrinfo info; 2084 struct mbuf *m = NULL; 2085 struct ifnet *ifp = ifma->ifma_ifp; 2086 struct ifma_msghdr *ifmam; 2087 2088 if (V_route_cb.any_count == 0) 2089 return; 2090 2091 bzero((caddr_t)&info, sizeof(info)); 2092 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2093 if (ifp && ifp->if_addr) 2094 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 2095 else 2096 info.rti_info[RTAX_IFP] = NULL; 2097 /* 2098 * If a link-layer address is present, present it as a ``gateway'' 2099 * (similarly to how ARP entries, e.g., are presented). 2100 */ 2101 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 2102 m = rtsock_msg_mbuf(cmd, &info); 2103 if (m == NULL) 2104 return; 2105 ifmam = mtod(m, struct ifma_msghdr *); 2106 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 2107 __func__)); 2108 ifmam->ifmam_index = ifp->if_index; 2109 ifmam->ifmam_addrs = info.rti_addrs; 2110 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 2111 } 2112 2113 static struct mbuf * 2114 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 2115 struct rt_addrinfo *info) 2116 { 2117 struct if_announcemsghdr *ifan; 2118 struct mbuf *m; 2119 2120 if (V_route_cb.any_count == 0) 2121 return NULL; 2122 bzero((caddr_t)info, sizeof(*info)); 2123 m = rtsock_msg_mbuf(type, info); 2124 if (m != NULL) { 2125 ifan = mtod(m, struct if_announcemsghdr *); 2126 ifan->ifan_index = ifp->if_index; 2127 strlcpy(ifan->ifan_name, ifp->if_xname, 2128 sizeof(ifan->ifan_name)); 2129 ifan->ifan_what = what; 2130 } 2131 return m; 2132 } 2133 2134 /* 2135 * This is called to generate routing socket messages indicating 2136 * IEEE80211 wireless events. 2137 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 2138 */ 2139 void 2140 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 2141 { 2142 struct mbuf *m; 2143 struct rt_addrinfo info; 2144 2145 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 2146 if (m != NULL) { 2147 /* 2148 * Append the ieee80211 data. Try to stick it in the 2149 * mbuf containing the ifannounce msg; otherwise allocate 2150 * a new mbuf and append. 2151 * 2152 * NB: we assume m is a single mbuf. 2153 */ 2154 if (data_len > M_TRAILINGSPACE(m)) { 2155 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 2156 if (n == NULL) { 2157 m_freem(m); 2158 return; 2159 } 2160 bcopy(data, mtod(n, void *), data_len); 2161 n->m_len = data_len; 2162 m->m_next = n; 2163 } else if (data_len > 0) { 2164 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 2165 m->m_len += data_len; 2166 } 2167 if (m->m_flags & M_PKTHDR) 2168 m->m_pkthdr.len += data_len; 2169 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 2170 rt_dispatch(m, AF_UNSPEC); 2171 } 2172 } 2173 2174 /* 2175 * This is called to generate routing socket messages indicating 2176 * network interface arrival and departure. 2177 */ 2178 static void 2179 rt_ifannouncemsg(struct ifnet *ifp, int what) 2180 { 2181 struct mbuf *m; 2182 struct rt_addrinfo info; 2183 2184 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 2185 if (m != NULL) 2186 rt_dispatch(m, AF_UNSPEC); 2187 } 2188 2189 static void 2190 rt_dispatch(struct mbuf *m, sa_family_t saf) 2191 { 2192 2193 M_ASSERTPKTHDR(m); 2194 2195 m->m_rtsock_family = saf; 2196 if (V_loif) 2197 m->m_pkthdr.rcvif = V_loif; 2198 else { 2199 m_freem(m); 2200 return; 2201 } 2202 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 2203 } 2204 2205 /* 2206 * This is used in dumping the kernel table via sysctl(). 2207 */ 2208 static int 2209 sysctl_dumpentry(struct rtentry *rt, void *vw) 2210 { 2211 struct walkarg *w = vw; 2212 struct nhop_object *nh; 2213 2214 NET_EPOCH_ASSERT(); 2215 2216 if (!rt_is_exportable(rt, w->w_req->td->td_ucred)) 2217 return (0); 2218 2219 export_rtaddrs(rt, w->dst, w->mask); 2220 nh = rt_get_raw_nhop(rt); 2221 #ifdef ROUTE_MPATH 2222 if (NH_IS_NHGRP(nh)) { 2223 const struct weightened_nhop *wn; 2224 uint32_t num_nhops; 2225 int error; 2226 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 2227 for (int i = 0; i < num_nhops; i++) { 2228 error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w); 2229 if (error != 0) 2230 return (error); 2231 } 2232 } else 2233 #endif 2234 sysctl_dumpnhop(rt, nh, rt->rt_weight, w); 2235 2236 return (0); 2237 } 2238 2239 2240 static int 2241 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, 2242 struct walkarg *w) 2243 { 2244 struct rt_addrinfo info; 2245 int error = 0, size; 2246 uint32_t rtflags; 2247 2248 rtflags = nhop_get_rtflags(nh); 2249 2250 if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg)) 2251 return (0); 2252 2253 bzero((caddr_t)&info, sizeof(info)); 2254 info.rti_info[RTAX_DST] = w->dst; 2255 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2256 info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask; 2257 info.rti_info[RTAX_GENMASK] = 0; 2258 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 2259 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 2260 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 2261 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 2262 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 2263 } 2264 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 2265 return (error); 2266 if (w->w_req && w->w_tmem) { 2267 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 2268 2269 bzero(&rtm->rtm_index, 2270 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 2271 2272 /* 2273 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags) 2274 * and RTF_UP (if entry is linked, which is always true here). 2275 * Given that, use nhop rtflags & add RTF_UP. 2276 */ 2277 rtm->rtm_flags = rtflags | RTF_UP; 2278 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 2279 rtm->rtm_flags = RTF_GATEWAY | 2280 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 2281 rt_getmetrics(rt, nh, &rtm->rtm_rmx); 2282 rtm->rtm_rmx.rmx_weight = weight; 2283 rtm->rtm_index = nh->nh_ifp->if_index; 2284 rtm->rtm_addrs = info.rti_addrs; 2285 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 2286 return (error); 2287 } 2288 return (error); 2289 } 2290 2291 static int 2292 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 2293 struct rt_addrinfo *info, struct walkarg *w, int len) 2294 { 2295 struct if_msghdrl *ifm; 2296 struct if_data *ifd; 2297 2298 ifm = (struct if_msghdrl *)w->w_tmem; 2299 2300 #ifdef COMPAT_FREEBSD32 2301 if (w->w_req->flags & SCTL_MASK32) { 2302 struct if_msghdrl32 *ifm32; 2303 2304 ifm32 = (struct if_msghdrl32 *)ifm; 2305 ifm32->ifm_addrs = info->rti_addrs; 2306 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2307 ifm32->ifm_index = ifp->if_index; 2308 ifm32->_ifm_spare1 = 0; 2309 ifm32->ifm_len = sizeof(*ifm32); 2310 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 2311 ifm32->_ifm_spare2 = 0; 2312 ifd = &ifm32->ifm_data; 2313 } else 2314 #endif 2315 { 2316 ifm->ifm_addrs = info->rti_addrs; 2317 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2318 ifm->ifm_index = ifp->if_index; 2319 ifm->_ifm_spare1 = 0; 2320 ifm->ifm_len = sizeof(*ifm); 2321 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 2322 ifm->_ifm_spare2 = 0; 2323 ifd = &ifm->ifm_data; 2324 } 2325 2326 memcpy(ifd, src_ifd, sizeof(*ifd)); 2327 2328 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2329 } 2330 2331 static int 2332 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 2333 struct rt_addrinfo *info, struct walkarg *w, int len) 2334 { 2335 struct if_msghdr *ifm; 2336 struct if_data *ifd; 2337 2338 ifm = (struct if_msghdr *)w->w_tmem; 2339 2340 #ifdef COMPAT_FREEBSD32 2341 if (w->w_req->flags & SCTL_MASK32) { 2342 struct if_msghdr32 *ifm32; 2343 2344 ifm32 = (struct if_msghdr32 *)ifm; 2345 ifm32->ifm_addrs = info->rti_addrs; 2346 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2347 ifm32->ifm_index = ifp->if_index; 2348 ifm32->_ifm_spare1 = 0; 2349 ifd = &ifm32->ifm_data; 2350 } else 2351 #endif 2352 { 2353 ifm->ifm_addrs = info->rti_addrs; 2354 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2355 ifm->ifm_index = ifp->if_index; 2356 ifm->_ifm_spare1 = 0; 2357 ifd = &ifm->ifm_data; 2358 } 2359 2360 memcpy(ifd, src_ifd, sizeof(*ifd)); 2361 2362 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2363 } 2364 2365 static int 2366 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 2367 struct walkarg *w, int len) 2368 { 2369 struct ifa_msghdrl *ifam; 2370 struct if_data *ifd; 2371 2372 ifam = (struct ifa_msghdrl *)w->w_tmem; 2373 2374 #ifdef COMPAT_FREEBSD32 2375 if (w->w_req->flags & SCTL_MASK32) { 2376 struct ifa_msghdrl32 *ifam32; 2377 2378 ifam32 = (struct ifa_msghdrl32 *)ifam; 2379 ifam32->ifam_addrs = info->rti_addrs; 2380 ifam32->ifam_flags = ifa->ifa_flags; 2381 ifam32->ifam_index = ifa->ifa_ifp->if_index; 2382 ifam32->_ifam_spare1 = 0; 2383 ifam32->ifam_len = sizeof(*ifam32); 2384 ifam32->ifam_data_off = 2385 offsetof(struct ifa_msghdrl32, ifam_data); 2386 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 2387 ifd = &ifam32->ifam_data; 2388 } else 2389 #endif 2390 { 2391 ifam->ifam_addrs = info->rti_addrs; 2392 ifam->ifam_flags = ifa->ifa_flags; 2393 ifam->ifam_index = ifa->ifa_ifp->if_index; 2394 ifam->_ifam_spare1 = 0; 2395 ifam->ifam_len = sizeof(*ifam); 2396 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 2397 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2398 ifd = &ifam->ifam_data; 2399 } 2400 2401 bzero(ifd, sizeof(*ifd)); 2402 ifd->ifi_datalen = sizeof(struct if_data); 2403 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 2404 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 2405 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 2406 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 2407 2408 /* Fixup if_data carp(4) vhid. */ 2409 if (carp_get_vhid_p != NULL) 2410 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 2411 2412 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2413 } 2414 2415 static int 2416 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 2417 struct walkarg *w, int len) 2418 { 2419 struct ifa_msghdr *ifam; 2420 2421 ifam = (struct ifa_msghdr *)w->w_tmem; 2422 ifam->ifam_addrs = info->rti_addrs; 2423 ifam->ifam_flags = ifa->ifa_flags; 2424 ifam->ifam_index = ifa->ifa_ifp->if_index; 2425 ifam->_ifam_spare1 = 0; 2426 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2427 2428 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2429 } 2430 2431 static int 2432 sysctl_iflist(int af, struct walkarg *w) 2433 { 2434 struct ifnet *ifp; 2435 struct ifaddr *ifa; 2436 struct if_data ifd; 2437 struct rt_addrinfo info; 2438 int len, error = 0; 2439 struct sockaddr_storage ss; 2440 2441 bzero((caddr_t)&info, sizeof(info)); 2442 bzero(&ifd, sizeof(ifd)); 2443 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2444 if (w->w_arg && w->w_arg != ifp->if_index) 2445 continue; 2446 if_data_copy(ifp, &ifd); 2447 ifa = ifp->if_addr; 2448 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 2449 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 2450 if (error != 0) 2451 goto done; 2452 info.rti_info[RTAX_IFP] = NULL; 2453 if (w->w_req && w->w_tmem) { 2454 if (w->w_op == NET_RT_IFLISTL) 2455 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 2456 len); 2457 else 2458 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 2459 len); 2460 if (error) 2461 goto done; 2462 } 2463 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 2464 if (af && af != ifa->ifa_addr->sa_family) 2465 continue; 2466 if (prison_if(w->w_req->td->td_ucred, 2467 ifa->ifa_addr) != 0) 2468 continue; 2469 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 2470 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 2471 ifa->ifa_addr, ifa->ifa_netmask, &ss); 2472 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 2473 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 2474 if (error != 0) 2475 goto done; 2476 if (w->w_req && w->w_tmem) { 2477 if (w->w_op == NET_RT_IFLISTL) 2478 error = sysctl_iflist_ifaml(ifa, &info, 2479 w, len); 2480 else 2481 error = sysctl_iflist_ifam(ifa, &info, 2482 w, len); 2483 if (error) 2484 goto done; 2485 } 2486 } 2487 info.rti_info[RTAX_IFA] = NULL; 2488 info.rti_info[RTAX_NETMASK] = NULL; 2489 info.rti_info[RTAX_BRD] = NULL; 2490 } 2491 done: 2492 return (error); 2493 } 2494 2495 static int 2496 sysctl_ifmalist(int af, struct walkarg *w) 2497 { 2498 struct rt_addrinfo info; 2499 struct ifaddr *ifa; 2500 struct ifmultiaddr *ifma; 2501 struct ifnet *ifp; 2502 int error, len; 2503 2504 NET_EPOCH_ASSERT(); 2505 2506 error = 0; 2507 bzero((caddr_t)&info, sizeof(info)); 2508 2509 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2510 if (w->w_arg && w->w_arg != ifp->if_index) 2511 continue; 2512 ifa = ifp->if_addr; 2513 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 2514 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2515 if (af && af != ifma->ifma_addr->sa_family) 2516 continue; 2517 if (prison_if(w->w_req->td->td_ucred, 2518 ifma->ifma_addr) != 0) 2519 continue; 2520 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2521 info.rti_info[RTAX_GATEWAY] = 2522 (ifma->ifma_addr->sa_family != AF_LINK) ? 2523 ifma->ifma_lladdr : NULL; 2524 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 2525 if (error != 0) 2526 break; 2527 if (w->w_req && w->w_tmem) { 2528 struct ifma_msghdr *ifmam; 2529 2530 ifmam = (struct ifma_msghdr *)w->w_tmem; 2531 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 2532 ifmam->ifmam_flags = 0; 2533 ifmam->ifmam_addrs = info.rti_addrs; 2534 ifmam->_ifmam_spare1 = 0; 2535 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 2536 if (error != 0) 2537 break; 2538 } 2539 } 2540 if (error != 0) 2541 break; 2542 } 2543 return (error); 2544 } 2545 2546 static void 2547 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w) 2548 { 2549 union sockaddr_union sa_dst, sa_mask; 2550 2551 w->family = family; 2552 w->dst = (struct sockaddr *)&sa_dst; 2553 w->mask = (struct sockaddr *)&sa_mask; 2554 2555 init_sockaddrs_family(family, w->dst, w->mask); 2556 2557 rib_walk(fibnum, family, false, sysctl_dumpentry, w); 2558 } 2559 2560 static int 2561 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2562 { 2563 struct epoch_tracker et; 2564 int *name = (int *)arg1; 2565 u_int namelen = arg2; 2566 struct rib_head *rnh = NULL; /* silence compiler. */ 2567 int i, lim, error = EINVAL; 2568 int fib = 0; 2569 u_char af; 2570 struct walkarg w; 2571 2572 if (namelen < 3) 2573 return (EINVAL); 2574 2575 name++; 2576 namelen--; 2577 if (req->newptr) 2578 return (EPERM); 2579 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) { 2580 if (namelen == 3) 2581 fib = req->td->td_proc->p_fibnum; 2582 else if (namelen == 4) 2583 fib = (name[3] == RT_ALL_FIBS) ? 2584 req->td->td_proc->p_fibnum : name[3]; 2585 else 2586 return ((namelen < 3) ? EISDIR : ENOTDIR); 2587 if (fib < 0 || fib >= rt_numfibs) 2588 return (EINVAL); 2589 } else if (namelen != 3) 2590 return ((namelen < 3) ? EISDIR : ENOTDIR); 2591 af = name[0]; 2592 if (af > AF_MAX) 2593 return (EINVAL); 2594 bzero(&w, sizeof(w)); 2595 w.w_op = name[1]; 2596 w.w_arg = name[2]; 2597 w.w_req = req; 2598 2599 error = sysctl_wire_old_buffer(req, 0); 2600 if (error) 2601 return (error); 2602 2603 /* 2604 * Allocate reply buffer in advance. 2605 * All rtsock messages has maximum length of u_short. 2606 */ 2607 w.w_tmemsize = 65536; 2608 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2609 2610 NET_EPOCH_ENTER(et); 2611 switch (w.w_op) { 2612 case NET_RT_DUMP: 2613 case NET_RT_FLAGS: 2614 if (af == 0) { /* dump all tables */ 2615 i = 1; 2616 lim = AF_MAX; 2617 } else /* dump only one table */ 2618 i = lim = af; 2619 2620 /* 2621 * take care of llinfo entries, the caller must 2622 * specify an AF 2623 */ 2624 if (w.w_op == NET_RT_FLAGS && 2625 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2626 if (af != 0) 2627 error = lltable_sysctl_dumparp(af, w.w_req); 2628 else 2629 error = EINVAL; 2630 break; 2631 } 2632 /* 2633 * take care of routing entries 2634 */ 2635 for (error = 0; error == 0 && i <= lim; i++) { 2636 rnh = rt_tables_get_rnh(fib, i); 2637 if (rnh != NULL) { 2638 rtable_sysctl_dump(fib, i, &w); 2639 } else if (af != 0) 2640 error = EAFNOSUPPORT; 2641 } 2642 break; 2643 case NET_RT_NHOP: 2644 case NET_RT_NHGRP: 2645 /* Allow dumping one specific af/fib at a time */ 2646 if (namelen < 4) { 2647 error = EINVAL; 2648 break; 2649 } 2650 fib = name[3]; 2651 if (fib < 0 || fib > rt_numfibs) { 2652 error = EINVAL; 2653 break; 2654 } 2655 rnh = rt_tables_get_rnh(fib, af); 2656 if (rnh == NULL) { 2657 error = EAFNOSUPPORT; 2658 break; 2659 } 2660 if (w.w_op == NET_RT_NHOP) 2661 error = nhops_dump_sysctl(rnh, w.w_req); 2662 else 2663 #ifdef ROUTE_MPATH 2664 error = nhgrp_dump_sysctl(rnh, w.w_req); 2665 #else 2666 error = ENOTSUP; 2667 #endif 2668 break; 2669 case NET_RT_IFLIST: 2670 case NET_RT_IFLISTL: 2671 error = sysctl_iflist(af, &w); 2672 break; 2673 2674 case NET_RT_IFMALIST: 2675 error = sysctl_ifmalist(af, &w); 2676 break; 2677 } 2678 NET_EPOCH_EXIT(et); 2679 2680 free(w.w_tmem, M_TEMP); 2681 return (error); 2682 } 2683 2684 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2685 sysctl_rtsock, "Return route tables and interface/address lists"); 2686 2687 /* 2688 * Definitions of protocols supported in the ROUTE domain. 2689 */ 2690 2691 static struct domain routedomain; /* or at least forward */ 2692 2693 static struct protosw routesw = { 2694 .pr_type = SOCK_RAW, 2695 .pr_flags = PR_ATOMIC|PR_ADDR, 2696 .pr_abort = rts_close, 2697 .pr_attach = rts_attach, 2698 .pr_detach = rts_detach, 2699 .pr_send = rts_send, 2700 .pr_shutdown = rts_shutdown, 2701 .pr_disconnect = rts_disconnect, 2702 .pr_close = rts_close, 2703 }; 2704 2705 static struct domain routedomain = { 2706 .dom_family = PF_ROUTE, 2707 .dom_name = "route", 2708 .dom_nprotosw = 1, 2709 .dom_protosw = { &routesw }, 2710 }; 2711 2712 DOMAIN_SET(route); 2713