1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_sctp.h" 33 #include "opt_mpath.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 37 #include <sys/param.h> 38 #include <sys/domain.h> 39 #include <sys/jail.h> 40 #include <sys/kernel.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/priv.h> 44 #include <sys/proc.h> 45 #include <sys/protosw.h> 46 #include <sys/signalvar.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/systm.h> 51 #include <sys/vimage.h> 52 53 #include <net/if.h> 54 #include <net/netisr.h> 55 #include <net/raw_cb.h> 56 #include <net/route.h> 57 #include <net/vnet.h> 58 59 #include <netinet/in.h> 60 #ifdef INET6 61 #include <netinet6/scope6_var.h> 62 #endif 63 64 #ifdef SCTP 65 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 66 #endif /* SCTP */ 67 68 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 69 70 /* NB: these are not modified */ 71 static struct sockaddr route_src = { 2, PF_ROUTE, }; 72 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 73 74 static struct { 75 int ip_count; /* attached w/ AF_INET */ 76 int ip6_count; /* attached w/ AF_INET6 */ 77 int ipx_count; /* attached w/ AF_IPX */ 78 int any_count; /* total attached */ 79 } route_cb; 80 81 struct mtx rtsock_mtx; 82 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 83 84 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 85 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 86 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 87 88 static struct ifqueue rtsintrq; 89 90 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 91 SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW, 92 &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length"); 93 94 struct walkarg { 95 int w_tmemsize; 96 int w_op, w_arg; 97 caddr_t w_tmem; 98 struct sysctl_req *w_req; 99 }; 100 101 static void rts_input(struct mbuf *m); 102 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 103 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 104 caddr_t cp, struct walkarg *w); 105 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 106 struct rt_addrinfo *rtinfo); 107 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 108 static int sysctl_iflist(int af, struct walkarg *w); 109 static int sysctl_ifmalist(int af, struct walkarg *w); 110 static int route_output(struct mbuf *m, struct socket *so); 111 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 112 struct rt_metrics_lite *out); 113 static void rt_getmetrics(const struct rt_metrics_lite *in, 114 struct rt_metrics *out); 115 static void rt_dispatch(struct mbuf *, const struct sockaddr *); 116 117 static void 118 rts_init(void) 119 { 120 int tmp; 121 122 rtsintrq.ifq_maxlen = 256; 123 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 124 rtsintrq.ifq_maxlen = tmp; 125 mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF); 126 netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, 0); 127 } 128 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 129 130 static void 131 rts_input(struct mbuf *m) 132 { 133 struct sockproto route_proto; 134 unsigned short *family; 135 struct m_tag *tag; 136 137 route_proto.sp_family = PF_ROUTE; 138 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 139 if (tag != NULL) { 140 family = (unsigned short *)(tag + 1); 141 route_proto.sp_protocol = *family; 142 m_tag_delete(m, tag); 143 } else 144 route_proto.sp_protocol = 0; 145 146 raw_input(m, &route_proto, &route_src); 147 } 148 149 /* 150 * It really doesn't make any sense at all for this code to share much 151 * with raw_usrreq.c, since its functionality is so restricted. XXX 152 */ 153 static void 154 rts_abort(struct socket *so) 155 { 156 157 raw_usrreqs.pru_abort(so); 158 } 159 160 static void 161 rts_close(struct socket *so) 162 { 163 164 raw_usrreqs.pru_close(so); 165 } 166 167 /* pru_accept is EOPNOTSUPP */ 168 169 static int 170 rts_attach(struct socket *so, int proto, struct thread *td) 171 { 172 struct rawcb *rp; 173 int s, error; 174 175 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 176 177 /* XXX */ 178 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 179 if (rp == NULL) 180 return ENOBUFS; 181 182 /* 183 * The splnet() is necessary to block protocols from sending 184 * error notifications (like RTM_REDIRECT or RTM_LOSING) while 185 * this PCB is extant but incompletely initialized. 186 * Probably we should try to do more of this work beforehand and 187 * eliminate the spl. 188 */ 189 s = splnet(); 190 so->so_pcb = (caddr_t)rp; 191 so->so_fibnum = td->td_proc->p_fibnum; 192 error = raw_attach(so, proto); 193 rp = sotorawcb(so); 194 if (error) { 195 splx(s); 196 so->so_pcb = NULL; 197 free(rp, M_PCB); 198 return error; 199 } 200 RTSOCK_LOCK(); 201 switch(rp->rcb_proto.sp_protocol) { 202 case AF_INET: 203 route_cb.ip_count++; 204 break; 205 case AF_INET6: 206 route_cb.ip6_count++; 207 break; 208 case AF_IPX: 209 route_cb.ipx_count++; 210 break; 211 } 212 route_cb.any_count++; 213 RTSOCK_UNLOCK(); 214 soisconnected(so); 215 so->so_options |= SO_USELOOPBACK; 216 splx(s); 217 return 0; 218 } 219 220 static int 221 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 222 { 223 224 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 225 } 226 227 static int 228 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 229 { 230 231 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 232 } 233 234 /* pru_connect2 is EOPNOTSUPP */ 235 /* pru_control is EOPNOTSUPP */ 236 237 static void 238 rts_detach(struct socket *so) 239 { 240 struct rawcb *rp = sotorawcb(so); 241 242 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 243 244 RTSOCK_LOCK(); 245 switch(rp->rcb_proto.sp_protocol) { 246 case AF_INET: 247 route_cb.ip_count--; 248 break; 249 case AF_INET6: 250 route_cb.ip6_count--; 251 break; 252 case AF_IPX: 253 route_cb.ipx_count--; 254 break; 255 } 256 route_cb.any_count--; 257 RTSOCK_UNLOCK(); 258 raw_usrreqs.pru_detach(so); 259 } 260 261 static int 262 rts_disconnect(struct socket *so) 263 { 264 265 return (raw_usrreqs.pru_disconnect(so)); 266 } 267 268 /* pru_listen is EOPNOTSUPP */ 269 270 static int 271 rts_peeraddr(struct socket *so, struct sockaddr **nam) 272 { 273 274 return (raw_usrreqs.pru_peeraddr(so, nam)); 275 } 276 277 /* pru_rcvd is EOPNOTSUPP */ 278 /* pru_rcvoob is EOPNOTSUPP */ 279 280 static int 281 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 282 struct mbuf *control, struct thread *td) 283 { 284 285 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 286 } 287 288 /* pru_sense is null */ 289 290 static int 291 rts_shutdown(struct socket *so) 292 { 293 294 return (raw_usrreqs.pru_shutdown(so)); 295 } 296 297 static int 298 rts_sockaddr(struct socket *so, struct sockaddr **nam) 299 { 300 301 return (raw_usrreqs.pru_sockaddr(so, nam)); 302 } 303 304 static struct pr_usrreqs route_usrreqs = { 305 .pru_abort = rts_abort, 306 .pru_attach = rts_attach, 307 .pru_bind = rts_bind, 308 .pru_connect = rts_connect, 309 .pru_detach = rts_detach, 310 .pru_disconnect = rts_disconnect, 311 .pru_peeraddr = rts_peeraddr, 312 .pru_send = rts_send, 313 .pru_shutdown = rts_shutdown, 314 .pru_sockaddr = rts_sockaddr, 315 .pru_close = rts_close, 316 }; 317 318 #ifndef _SOCKADDR_UNION_DEFINED 319 #define _SOCKADDR_UNION_DEFINED 320 /* 321 * The union of all possible address formats we handle. 322 */ 323 union sockaddr_union { 324 struct sockaddr sa; 325 struct sockaddr_in sin; 326 struct sockaddr_in6 sin6; 327 }; 328 #endif /* _SOCKADDR_UNION_DEFINED */ 329 330 static int 331 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 332 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 333 { 334 335 switch (info->rti_info[RTAX_DST]->sa_family) { 336 #ifdef INET 337 case AF_INET: 338 { 339 struct in_addr ia; 340 341 /* 342 * 1. Check if the returned address is part of the jail. 343 */ 344 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->sin_addr; 345 if (prison_check_ip4(cred, &ia) != 0) { 346 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 347 348 } else { 349 struct ifaddr *ifa; 350 int found; 351 352 found = 0; 353 354 /* 355 * 2. Try to find an address on the given outgoing 356 * interface that belongs to the jail. 357 */ 358 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 359 struct sockaddr *sa; 360 sa = ifa->ifa_addr; 361 if (sa->sa_family != AF_INET) 362 continue; 363 ia = ((struct sockaddr_in *)sa)->sin_addr; 364 if (prison_check_ip4(cred, &ia) != 0) { 365 found = 1; 366 break; 367 } 368 } 369 if (!found) { 370 /* 371 * 3. As a last resort return the 'default' 372 * jail address. 373 */ 374 if (prison_getip4(cred, &ia) != 0) 375 return (ESRCH); 376 } 377 bzero(&saun->sin, sizeof(struct sockaddr_in)); 378 saun->sin.sin_len = sizeof(struct sockaddr_in); 379 saun->sin.sin_family = AF_INET; 380 saun->sin.sin_addr.s_addr = ia.s_addr; 381 info->rti_info[RTAX_IFA] = 382 (struct sockaddr *)&saun->sin; 383 } 384 break; 385 } 386 #endif 387 #ifdef INET6 388 case AF_INET6: 389 { 390 struct in6_addr ia6; 391 392 /* 393 * 1. Check if the returned address is part of the jail. 394 */ 395 bcopy(&((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->sin6_addr, 396 &ia6, sizeof(struct in6_addr)); 397 if (prison_check_ip6(cred, &ia6) != 0) { 398 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 399 } else { 400 struct ifaddr *ifa; 401 int found; 402 403 found = 0; 404 405 /* 406 * 2. Try to find an address on the given outgoing 407 * interface that belongs to the jail. 408 */ 409 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 410 struct sockaddr *sa; 411 sa = ifa->ifa_addr; 412 if (sa->sa_family != AF_INET6) 413 continue; 414 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 415 &ia6, sizeof(struct in6_addr)); 416 if (prison_check_ip6(cred, &ia6) != 0) { 417 found = 1; 418 break; 419 } 420 } 421 if (!found) { 422 /* 423 * 3. As a last resort return the 'default' 424 * jail address. 425 */ 426 if (prison_getip6(cred, &ia6) != 0) 427 return (ESRCH); 428 } 429 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 430 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 431 saun->sin6.sin6_family = AF_INET6; 432 bcopy(&ia6, &saun->sin6.sin6_addr, 433 sizeof(struct in6_addr)); 434 if (sa6_recoverscope(&saun->sin6) != 0) 435 return (ESRCH); 436 info->rti_info[RTAX_IFA] = 437 (struct sockaddr *)&saun->sin6; 438 } 439 break; 440 } 441 #endif 442 default: 443 return (ESRCH); 444 } 445 return (0); 446 } 447 448 /*ARGSUSED*/ 449 static int 450 route_output(struct mbuf *m, struct socket *so) 451 { 452 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 453 INIT_VNET_NET(so->so_vnet); 454 struct rt_msghdr *rtm = NULL; 455 struct rtentry *rt = NULL; 456 struct radix_node_head *rnh; 457 struct rt_addrinfo info; 458 int len, error = 0; 459 struct ifnet *ifp = NULL; 460 union sockaddr_union saun; 461 462 #define senderr(e) { error = e; goto flush;} 463 if (m == NULL || ((m->m_len < sizeof(long)) && 464 (m = m_pullup(m, sizeof(long))) == NULL)) 465 return (ENOBUFS); 466 if ((m->m_flags & M_PKTHDR) == 0) 467 panic("route_output"); 468 len = m->m_pkthdr.len; 469 if (len < sizeof(*rtm) || 470 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 471 info.rti_info[RTAX_DST] = NULL; 472 senderr(EINVAL); 473 } 474 R_Malloc(rtm, struct rt_msghdr *, len); 475 if (rtm == NULL) { 476 info.rti_info[RTAX_DST] = NULL; 477 senderr(ENOBUFS); 478 } 479 m_copydata(m, 0, len, (caddr_t)rtm); 480 if (rtm->rtm_version != RTM_VERSION) { 481 info.rti_info[RTAX_DST] = NULL; 482 senderr(EPROTONOSUPPORT); 483 } 484 rtm->rtm_pid = curproc->p_pid; 485 bzero(&info, sizeof(info)); 486 info.rti_addrs = rtm->rtm_addrs; 487 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 488 info.rti_info[RTAX_DST] = NULL; 489 senderr(EINVAL); 490 } 491 info.rti_flags = rtm->rtm_flags; 492 if (info.rti_info[RTAX_DST] == NULL || 493 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 494 (info.rti_info[RTAX_GATEWAY] != NULL && 495 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 496 senderr(EINVAL); 497 if (info.rti_info[RTAX_GENMASK]) { 498 struct radix_node *t; 499 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1); 500 if (t != NULL && 501 bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1, 502 (char *)(void *)t->rn_key + 1, 503 ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0) 504 info.rti_info[RTAX_GENMASK] = 505 (struct sockaddr *)t->rn_key; 506 else 507 senderr(ENOBUFS); 508 } 509 510 /* 511 * Verify that the caller has the appropriate privilege; RTM_GET 512 * is the only operation the non-superuser is allowed. 513 */ 514 if (rtm->rtm_type != RTM_GET) { 515 error = priv_check(curthread, PRIV_NET_ROUTE); 516 if (error) 517 senderr(error); 518 } 519 520 switch (rtm->rtm_type) { 521 struct rtentry *saved_nrt; 522 523 case RTM_ADD: 524 if (info.rti_info[RTAX_GATEWAY] == NULL) 525 senderr(EINVAL); 526 saved_nrt = NULL; 527 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 528 so->so_fibnum); 529 if (error == 0 && saved_nrt) { 530 RT_LOCK(saved_nrt); 531 rt_setmetrics(rtm->rtm_inits, 532 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 533 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 534 RT_REMREF(saved_nrt); 535 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; 536 RT_UNLOCK(saved_nrt); 537 } 538 break; 539 540 case RTM_DELETE: 541 saved_nrt = NULL; 542 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 543 so->so_fibnum); 544 if (error == 0) { 545 RT_LOCK(saved_nrt); 546 rt = saved_nrt; 547 goto report; 548 } 549 break; 550 551 case RTM_GET: 552 case RTM_CHANGE: 553 case RTM_LOCK: 554 rnh = V_rt_tables[so->so_fibnum][info.rti_info[RTAX_DST]->sa_family]; 555 if (rnh == NULL) 556 senderr(EAFNOSUPPORT); 557 RADIX_NODE_HEAD_LOCK(rnh); 558 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 559 info.rti_info[RTAX_NETMASK], rnh); 560 if (rt == NULL) { /* XXX looks bogus */ 561 RADIX_NODE_HEAD_UNLOCK(rnh); 562 senderr(ESRCH); 563 } 564 #ifdef RADIX_MPATH 565 /* 566 * for RTM_CHANGE/LOCK, if we got multipath routes, 567 * we require users to specify a matching RTAX_GATEWAY. 568 * 569 * for RTM_GET, gate is optional even with multipath. 570 * if gate == NULL the first match is returned. 571 * (no need to call rt_mpath_matchgate if gate == NULL) 572 */ 573 if (rn_mpath_capable(rnh) && 574 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 575 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 576 if (!rt) { 577 RADIX_NODE_HEAD_UNLOCK(rnh); 578 senderr(ESRCH); 579 } 580 } 581 #endif 582 RT_LOCK(rt); 583 RT_ADDREF(rt); 584 RADIX_NODE_HEAD_UNLOCK(rnh); 585 586 /* 587 * Fix for PR: 82974 588 * 589 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 590 * returns a perfect match in case a netmask is 591 * specified. For host routes only a longest prefix 592 * match is returned so it is necessary to compare the 593 * existence of the netmask. If both have a netmask 594 * rnh_lookup() did a perfect match and if none of them 595 * have a netmask both are host routes which is also a 596 * perfect match. 597 */ 598 599 if (rtm->rtm_type != RTM_GET && 600 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 601 RT_UNLOCK(rt); 602 senderr(ESRCH); 603 } 604 605 switch(rtm->rtm_type) { 606 607 case RTM_GET: 608 report: 609 RT_LOCK_ASSERT(rt); 610 info.rti_info[RTAX_DST] = rt_key(rt); 611 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 612 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 613 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 614 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 615 ifp = rt->rt_ifp; 616 if (ifp) { 617 info.rti_info[RTAX_IFP] = 618 ifp->if_addr->ifa_addr; 619 if (jailed(so->so_cred)) { 620 error = rtm_get_jailed( 621 &info, ifp, rt, &saun, 622 so->so_cred); 623 if (error != 0) { 624 RT_UNLOCK(rt); 625 senderr(ESRCH); 626 } 627 } else { 628 info.rti_info[RTAX_IFA] = 629 rt->rt_ifa->ifa_addr; 630 } 631 if (ifp->if_flags & IFF_POINTOPOINT) 632 info.rti_info[RTAX_BRD] = 633 rt->rt_ifa->ifa_dstaddr; 634 rtm->rtm_index = ifp->if_index; 635 } else { 636 info.rti_info[RTAX_IFP] = NULL; 637 info.rti_info[RTAX_IFA] = NULL; 638 } 639 } else if ((ifp = rt->rt_ifp) != NULL) { 640 rtm->rtm_index = ifp->if_index; 641 } 642 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 643 if (len > rtm->rtm_msglen) { 644 struct rt_msghdr *new_rtm; 645 R_Malloc(new_rtm, struct rt_msghdr *, len); 646 if (new_rtm == NULL) { 647 RT_UNLOCK(rt); 648 senderr(ENOBUFS); 649 } 650 bcopy(rtm, new_rtm, rtm->rtm_msglen); 651 Free(rtm); rtm = new_rtm; 652 } 653 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 654 rtm->rtm_flags = rt->rt_flags; 655 rtm->rtm_use = 0; 656 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 657 rtm->rtm_addrs = info.rti_addrs; 658 break; 659 660 case RTM_CHANGE: 661 /* 662 * New gateway could require new ifaddr, ifp; 663 * flags may also be different; ifp may be specified 664 * by ll sockaddr when protocol address is ambiguous 665 */ 666 if (((rt->rt_flags & RTF_GATEWAY) && 667 info.rti_info[RTAX_GATEWAY] != NULL) || 668 info.rti_info[RTAX_IFP] != NULL || 669 (info.rti_info[RTAX_IFA] != NULL && 670 !sa_equal(info.rti_info[RTAX_IFA], 671 rt->rt_ifa->ifa_addr))) { 672 RT_UNLOCK(rt); 673 if ((error = rt_getifa_fib(&info, 674 rt->rt_fibnum)) != 0) 675 senderr(error); 676 RT_LOCK(rt); 677 } 678 if (info.rti_ifa != NULL && 679 info.rti_ifa != rt->rt_ifa && 680 rt->rt_ifa != NULL && 681 rt->rt_ifa->ifa_rtrequest != NULL) { 682 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 683 &info); 684 IFAFREE(rt->rt_ifa); 685 } 686 if (info.rti_info[RTAX_GATEWAY] != NULL) { 687 if ((error = rt_setgate(rt, rt_key(rt), 688 info.rti_info[RTAX_GATEWAY])) != 0) { 689 RT_UNLOCK(rt); 690 senderr(error); 691 } 692 if (!(rt->rt_flags & RTF_LLINFO)) 693 rt->rt_flags |= RTF_GATEWAY; 694 } 695 if (info.rti_ifa != NULL && 696 info.rti_ifa != rt->rt_ifa) { 697 IFAREF(info.rti_ifa); 698 rt->rt_ifa = info.rti_ifa; 699 rt->rt_ifp = info.rti_ifp; 700 } 701 /* Allow some flags to be toggled on change. */ 702 if (rtm->rtm_fmask & RTF_FMASK) 703 rt->rt_flags = (rt->rt_flags & 704 ~rtm->rtm_fmask) | 705 (rtm->rtm_flags & rtm->rtm_fmask); 706 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 707 &rt->rt_rmx); 708 rtm->rtm_index = rt->rt_ifp->if_index; 709 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 710 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 711 if (info.rti_info[RTAX_GENMASK]) 712 rt->rt_genmask = info.rti_info[RTAX_GENMASK]; 713 /* FALLTHROUGH */ 714 case RTM_LOCK: 715 /* We don't support locks anymore */ 716 break; 717 } 718 RT_UNLOCK(rt); 719 break; 720 721 default: 722 senderr(EOPNOTSUPP); 723 } 724 725 flush: 726 if (rtm) { 727 if (error) 728 rtm->rtm_errno = error; 729 else 730 rtm->rtm_flags |= RTF_DONE; 731 } 732 if (rt) /* XXX can this be true? */ 733 RTFREE(rt); 734 { 735 struct rawcb *rp = NULL; 736 /* 737 * Check to see if we don't want our own messages. 738 */ 739 if ((so->so_options & SO_USELOOPBACK) == 0) { 740 if (route_cb.any_count <= 1) { 741 if (rtm) 742 Free(rtm); 743 m_freem(m); 744 return (error); 745 } 746 /* There is another listener, so construct message */ 747 rp = sotorawcb(so); 748 } 749 if (rtm) { 750 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 751 if (m->m_pkthdr.len < rtm->rtm_msglen) { 752 m_freem(m); 753 m = NULL; 754 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 755 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 756 Free(rtm); 757 } 758 if (m) { 759 if (rp) { 760 /* 761 * XXX insure we don't get a copy by 762 * invalidating our protocol 763 */ 764 unsigned short family = rp->rcb_proto.sp_family; 765 rp->rcb_proto.sp_family = 0; 766 rt_dispatch(m, info.rti_info[RTAX_DST]); 767 rp->rcb_proto.sp_family = family; 768 } else 769 rt_dispatch(m, info.rti_info[RTAX_DST]); 770 } 771 } 772 return (error); 773 #undef sa_equal 774 } 775 776 static void 777 rt_setmetrics(u_long which, const struct rt_metrics *in, 778 struct rt_metrics_lite *out) 779 { 780 #define metric(f, e) if (which & (f)) out->e = in->e; 781 /* 782 * Only these are stored in the routing entry since introduction 783 * of tcp hostcache. The rest is ignored. 784 */ 785 metric(RTV_MTU, rmx_mtu); 786 /* Userland -> kernel timebase conversion. */ 787 if (which & RTV_EXPIRE) 788 out->rmx_expire = in->rmx_expire ? 789 in->rmx_expire - time_second + time_uptime : 0; 790 #undef metric 791 } 792 793 static void 794 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 795 { 796 #define metric(e) out->e = in->e; 797 bzero(out, sizeof(*out)); 798 metric(rmx_mtu); 799 /* Kernel -> userland timebase conversion. */ 800 out->rmx_expire = in->rmx_expire ? 801 in->rmx_expire - time_uptime + time_second : 0; 802 #undef metric 803 } 804 805 /* 806 * Extract the addresses of the passed sockaddrs. 807 * Do a little sanity checking so as to avoid bad memory references. 808 * This data is derived straight from userland. 809 */ 810 static int 811 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 812 { 813 struct sockaddr *sa; 814 int i; 815 816 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 817 if ((rtinfo->rti_addrs & (1 << i)) == 0) 818 continue; 819 sa = (struct sockaddr *)cp; 820 /* 821 * It won't fit. 822 */ 823 if (cp + sa->sa_len > cplim) 824 return (EINVAL); 825 /* 826 * there are no more.. quit now 827 * If there are more bits, they are in error. 828 * I've seen this. route(1) can evidently generate these. 829 * This causes kernel to core dump. 830 * for compatibility, If we see this, point to a safe address. 831 */ 832 if (sa->sa_len == 0) { 833 rtinfo->rti_info[i] = &sa_zero; 834 return (0); /* should be EINVAL but for compat */ 835 } 836 /* accept it */ 837 rtinfo->rti_info[i] = sa; 838 cp += SA_SIZE(sa); 839 } 840 return (0); 841 } 842 843 static struct mbuf * 844 rt_msg1(int type, struct rt_addrinfo *rtinfo) 845 { 846 struct rt_msghdr *rtm; 847 struct mbuf *m; 848 int i; 849 struct sockaddr *sa; 850 int len, dlen; 851 852 switch (type) { 853 854 case RTM_DELADDR: 855 case RTM_NEWADDR: 856 len = sizeof(struct ifa_msghdr); 857 break; 858 859 case RTM_DELMADDR: 860 case RTM_NEWMADDR: 861 len = sizeof(struct ifma_msghdr); 862 break; 863 864 case RTM_IFINFO: 865 len = sizeof(struct if_msghdr); 866 break; 867 868 case RTM_IFANNOUNCE: 869 case RTM_IEEE80211: 870 len = sizeof(struct if_announcemsghdr); 871 break; 872 873 default: 874 len = sizeof(struct rt_msghdr); 875 } 876 if (len > MCLBYTES) 877 panic("rt_msg1"); 878 m = m_gethdr(M_DONTWAIT, MT_DATA); 879 if (m && len > MHLEN) { 880 MCLGET(m, M_DONTWAIT); 881 if ((m->m_flags & M_EXT) == 0) { 882 m_free(m); 883 m = NULL; 884 } 885 } 886 if (m == NULL) 887 return (m); 888 m->m_pkthdr.len = m->m_len = len; 889 m->m_pkthdr.rcvif = NULL; 890 rtm = mtod(m, struct rt_msghdr *); 891 bzero((caddr_t)rtm, len); 892 for (i = 0; i < RTAX_MAX; i++) { 893 if ((sa = rtinfo->rti_info[i]) == NULL) 894 continue; 895 rtinfo->rti_addrs |= (1 << i); 896 dlen = SA_SIZE(sa); 897 m_copyback(m, len, dlen, (caddr_t)sa); 898 len += dlen; 899 } 900 if (m->m_pkthdr.len != len) { 901 m_freem(m); 902 return (NULL); 903 } 904 rtm->rtm_msglen = len; 905 rtm->rtm_version = RTM_VERSION; 906 rtm->rtm_type = type; 907 return (m); 908 } 909 910 static int 911 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 912 { 913 int i; 914 int len, dlen, second_time = 0; 915 caddr_t cp0; 916 917 rtinfo->rti_addrs = 0; 918 again: 919 switch (type) { 920 921 case RTM_DELADDR: 922 case RTM_NEWADDR: 923 len = sizeof(struct ifa_msghdr); 924 break; 925 926 case RTM_IFINFO: 927 len = sizeof(struct if_msghdr); 928 break; 929 930 case RTM_NEWMADDR: 931 len = sizeof(struct ifma_msghdr); 932 break; 933 934 default: 935 len = sizeof(struct rt_msghdr); 936 } 937 cp0 = cp; 938 if (cp0) 939 cp += len; 940 for (i = 0; i < RTAX_MAX; i++) { 941 struct sockaddr *sa; 942 943 if ((sa = rtinfo->rti_info[i]) == NULL) 944 continue; 945 rtinfo->rti_addrs |= (1 << i); 946 dlen = SA_SIZE(sa); 947 if (cp) { 948 bcopy((caddr_t)sa, cp, (unsigned)dlen); 949 cp += dlen; 950 } 951 len += dlen; 952 } 953 len = ALIGN(len); 954 if (cp == NULL && w != NULL && !second_time) { 955 struct walkarg *rw = w; 956 957 if (rw->w_req) { 958 if (rw->w_tmemsize < len) { 959 if (rw->w_tmem) 960 free(rw->w_tmem, M_RTABLE); 961 rw->w_tmem = (caddr_t) 962 malloc(len, M_RTABLE, M_NOWAIT); 963 if (rw->w_tmem) 964 rw->w_tmemsize = len; 965 } 966 if (rw->w_tmem) { 967 cp = rw->w_tmem; 968 second_time = 1; 969 goto again; 970 } 971 } 972 } 973 if (cp) { 974 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 975 976 rtm->rtm_version = RTM_VERSION; 977 rtm->rtm_type = type; 978 rtm->rtm_msglen = len; 979 } 980 return (len); 981 } 982 983 /* 984 * This routine is called to generate a message from the routing 985 * socket indicating that a redirect has occured, a routing lookup 986 * has failed, or that a protocol has detected timeouts to a particular 987 * destination. 988 */ 989 void 990 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 991 { 992 struct rt_msghdr *rtm; 993 struct mbuf *m; 994 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 995 996 if (route_cb.any_count == 0) 997 return; 998 m = rt_msg1(type, rtinfo); 999 if (m == NULL) 1000 return; 1001 rtm = mtod(m, struct rt_msghdr *); 1002 rtm->rtm_flags = RTF_DONE | flags; 1003 rtm->rtm_errno = error; 1004 rtm->rtm_addrs = rtinfo->rti_addrs; 1005 rt_dispatch(m, sa); 1006 } 1007 1008 /* 1009 * This routine is called to generate a message from the routing 1010 * socket indicating that the status of a network interface has changed. 1011 */ 1012 void 1013 rt_ifmsg(struct ifnet *ifp) 1014 { 1015 struct if_msghdr *ifm; 1016 struct mbuf *m; 1017 struct rt_addrinfo info; 1018 1019 if (route_cb.any_count == 0) 1020 return; 1021 bzero((caddr_t)&info, sizeof(info)); 1022 m = rt_msg1(RTM_IFINFO, &info); 1023 if (m == NULL) 1024 return; 1025 ifm = mtod(m, struct if_msghdr *); 1026 ifm->ifm_index = ifp->if_index; 1027 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1028 ifm->ifm_data = ifp->if_data; 1029 ifm->ifm_addrs = 0; 1030 rt_dispatch(m, NULL); 1031 } 1032 1033 /* 1034 * This is called to generate messages from the routing socket 1035 * indicating a network interface has had addresses associated with it. 1036 * if we ever reverse the logic and replace messages TO the routing 1037 * socket indicate a request to configure interfaces, then it will 1038 * be unnecessary as the routing socket will automatically generate 1039 * copies of it. 1040 */ 1041 void 1042 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 1043 { 1044 struct rt_addrinfo info; 1045 struct sockaddr *sa = NULL; 1046 int pass; 1047 struct mbuf *m = NULL; 1048 struct ifnet *ifp = ifa->ifa_ifp; 1049 1050 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 1051 ("unexpected cmd %u", cmd)); 1052 #ifdef SCTP 1053 /* 1054 * notify the SCTP stack 1055 * this will only get called when an address is added/deleted 1056 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 1057 */ 1058 sctp_addr_change(ifa, cmd); 1059 #endif /* SCTP */ 1060 if (route_cb.any_count == 0) 1061 return; 1062 for (pass = 1; pass < 3; pass++) { 1063 bzero((caddr_t)&info, sizeof(info)); 1064 if ((cmd == RTM_ADD && pass == 1) || 1065 (cmd == RTM_DELETE && pass == 2)) { 1066 struct ifa_msghdr *ifam; 1067 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1068 1069 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1070 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1071 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1072 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1073 if ((m = rt_msg1(ncmd, &info)) == NULL) 1074 continue; 1075 ifam = mtod(m, struct ifa_msghdr *); 1076 ifam->ifam_index = ifp->if_index; 1077 ifam->ifam_metric = ifa->ifa_metric; 1078 ifam->ifam_flags = ifa->ifa_flags; 1079 ifam->ifam_addrs = info.rti_addrs; 1080 } 1081 if ((cmd == RTM_ADD && pass == 2) || 1082 (cmd == RTM_DELETE && pass == 1)) { 1083 struct rt_msghdr *rtm; 1084 1085 if (rt == NULL) 1086 continue; 1087 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1088 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1089 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1090 if ((m = rt_msg1(cmd, &info)) == NULL) 1091 continue; 1092 rtm = mtod(m, struct rt_msghdr *); 1093 rtm->rtm_index = ifp->if_index; 1094 rtm->rtm_flags |= rt->rt_flags; 1095 rtm->rtm_errno = error; 1096 rtm->rtm_addrs = info.rti_addrs; 1097 } 1098 rt_dispatch(m, sa); 1099 } 1100 } 1101 1102 /* 1103 * This is the analogue to the rt_newaddrmsg which performs the same 1104 * function but for multicast group memberhips. This is easier since 1105 * there is no route state to worry about. 1106 */ 1107 void 1108 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1109 { 1110 struct rt_addrinfo info; 1111 struct mbuf *m = NULL; 1112 struct ifnet *ifp = ifma->ifma_ifp; 1113 struct ifma_msghdr *ifmam; 1114 1115 if (route_cb.any_count == 0) 1116 return; 1117 1118 bzero((caddr_t)&info, sizeof(info)); 1119 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1120 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1121 /* 1122 * If a link-layer address is present, present it as a ``gateway'' 1123 * (similarly to how ARP entries, e.g., are presented). 1124 */ 1125 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1126 m = rt_msg1(cmd, &info); 1127 if (m == NULL) 1128 return; 1129 ifmam = mtod(m, struct ifma_msghdr *); 1130 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1131 __func__)); 1132 ifmam->ifmam_index = ifp->if_index; 1133 ifmam->ifmam_addrs = info.rti_addrs; 1134 rt_dispatch(m, ifma->ifma_addr); 1135 } 1136 1137 static struct mbuf * 1138 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1139 struct rt_addrinfo *info) 1140 { 1141 struct if_announcemsghdr *ifan; 1142 struct mbuf *m; 1143 1144 if (route_cb.any_count == 0) 1145 return NULL; 1146 bzero((caddr_t)info, sizeof(*info)); 1147 m = rt_msg1(type, info); 1148 if (m != NULL) { 1149 ifan = mtod(m, struct if_announcemsghdr *); 1150 ifan->ifan_index = ifp->if_index; 1151 strlcpy(ifan->ifan_name, ifp->if_xname, 1152 sizeof(ifan->ifan_name)); 1153 ifan->ifan_what = what; 1154 } 1155 return m; 1156 } 1157 1158 /* 1159 * This is called to generate routing socket messages indicating 1160 * IEEE80211 wireless events. 1161 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1162 */ 1163 void 1164 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1165 { 1166 struct mbuf *m; 1167 struct rt_addrinfo info; 1168 1169 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1170 if (m != NULL) { 1171 /* 1172 * Append the ieee80211 data. Try to stick it in the 1173 * mbuf containing the ifannounce msg; otherwise allocate 1174 * a new mbuf and append. 1175 * 1176 * NB: we assume m is a single mbuf. 1177 */ 1178 if (data_len > M_TRAILINGSPACE(m)) { 1179 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1180 if (n == NULL) { 1181 m_freem(m); 1182 return; 1183 } 1184 bcopy(data, mtod(n, void *), data_len); 1185 n->m_len = data_len; 1186 m->m_next = n; 1187 } else if (data_len > 0) { 1188 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1189 m->m_len += data_len; 1190 } 1191 if (m->m_flags & M_PKTHDR) 1192 m->m_pkthdr.len += data_len; 1193 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1194 rt_dispatch(m, NULL); 1195 } 1196 } 1197 1198 /* 1199 * This is called to generate routing socket messages indicating 1200 * network interface arrival and departure. 1201 */ 1202 void 1203 rt_ifannouncemsg(struct ifnet *ifp, int what) 1204 { 1205 struct mbuf *m; 1206 struct rt_addrinfo info; 1207 1208 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1209 if (m != NULL) 1210 rt_dispatch(m, NULL); 1211 } 1212 1213 static void 1214 rt_dispatch(struct mbuf *m, const struct sockaddr *sa) 1215 { 1216 INIT_VNET_NET(curvnet); 1217 struct m_tag *tag; 1218 1219 /* 1220 * Preserve the family from the sockaddr, if any, in an m_tag for 1221 * use when injecting the mbuf into the routing socket buffer from 1222 * the netisr. 1223 */ 1224 if (sa != NULL) { 1225 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1226 M_NOWAIT); 1227 if (tag == NULL) { 1228 m_freem(m); 1229 return; 1230 } 1231 *(unsigned short *)(tag + 1) = sa->sa_family; 1232 m_tag_prepend(m, tag); 1233 } 1234 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1235 } 1236 1237 /* 1238 * This is used in dumping the kernel table via sysctl(). 1239 */ 1240 static int 1241 sysctl_dumpentry(struct radix_node *rn, void *vw) 1242 { 1243 struct walkarg *w = vw; 1244 struct rtentry *rt = (struct rtentry *)rn; 1245 int error = 0, size; 1246 struct rt_addrinfo info; 1247 1248 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1249 return 0; 1250 bzero((caddr_t)&info, sizeof(info)); 1251 info.rti_info[RTAX_DST] = rt_key(rt); 1252 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1253 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1254 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 1255 if (rt->rt_ifp) { 1256 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1257 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1258 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1259 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1260 } 1261 size = rt_msg2(RTM_GET, &info, NULL, w); 1262 if (w->w_req && w->w_tmem) { 1263 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1264 1265 rtm->rtm_flags = rt->rt_flags; 1266 rtm->rtm_use = rt->rt_rmx.rmx_pksent; 1267 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1268 rtm->rtm_index = rt->rt_ifp->if_index; 1269 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1270 rtm->rtm_addrs = info.rti_addrs; 1271 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1272 return (error); 1273 } 1274 return (error); 1275 } 1276 1277 static int 1278 sysctl_iflist(int af, struct walkarg *w) 1279 { 1280 INIT_VNET_NET(curvnet); 1281 struct ifnet *ifp; 1282 struct ifaddr *ifa; 1283 struct rt_addrinfo info; 1284 int len, error = 0; 1285 1286 bzero((caddr_t)&info, sizeof(info)); 1287 IFNET_RLOCK(); 1288 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1289 if (w->w_arg && w->w_arg != ifp->if_index) 1290 continue; 1291 ifa = ifp->if_addr; 1292 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1293 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1294 info.rti_info[RTAX_IFP] = NULL; 1295 if (w->w_req && w->w_tmem) { 1296 struct if_msghdr *ifm; 1297 1298 ifm = (struct if_msghdr *)w->w_tmem; 1299 ifm->ifm_index = ifp->if_index; 1300 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1301 ifm->ifm_data = ifp->if_data; 1302 ifm->ifm_addrs = info.rti_addrs; 1303 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); 1304 if (error) 1305 goto done; 1306 } 1307 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1308 if (af && af != ifa->ifa_addr->sa_family) 1309 continue; 1310 if (jailed(curthread->td_ucred) && 1311 !prison_if(curthread->td_ucred, ifa->ifa_addr)) 1312 continue; 1313 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1314 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1315 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1316 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1317 if (w->w_req && w->w_tmem) { 1318 struct ifa_msghdr *ifam; 1319 1320 ifam = (struct ifa_msghdr *)w->w_tmem; 1321 ifam->ifam_index = ifa->ifa_ifp->if_index; 1322 ifam->ifam_flags = ifa->ifa_flags; 1323 ifam->ifam_metric = ifa->ifa_metric; 1324 ifam->ifam_addrs = info.rti_addrs; 1325 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1326 if (error) 1327 goto done; 1328 } 1329 } 1330 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1331 info.rti_info[RTAX_BRD] = NULL; 1332 } 1333 done: 1334 IFNET_RUNLOCK(); 1335 return (error); 1336 } 1337 1338 int 1339 sysctl_ifmalist(int af, struct walkarg *w) 1340 { 1341 INIT_VNET_NET(curvnet); 1342 struct ifnet *ifp; 1343 struct ifmultiaddr *ifma; 1344 struct rt_addrinfo info; 1345 int len, error = 0; 1346 struct ifaddr *ifa; 1347 1348 bzero((caddr_t)&info, sizeof(info)); 1349 IFNET_RLOCK(); 1350 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1351 if (w->w_arg && w->w_arg != ifp->if_index) 1352 continue; 1353 ifa = ifp->if_addr; 1354 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1355 IF_ADDR_LOCK(ifp); 1356 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1357 if (af && af != ifma->ifma_addr->sa_family) 1358 continue; 1359 if (jailed(curproc->p_ucred) && 1360 !prison_if(curproc->p_ucred, ifma->ifma_addr)) 1361 continue; 1362 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1363 info.rti_info[RTAX_GATEWAY] = 1364 (ifma->ifma_addr->sa_family != AF_LINK) ? 1365 ifma->ifma_lladdr : NULL; 1366 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1367 if (w->w_req && w->w_tmem) { 1368 struct ifma_msghdr *ifmam; 1369 1370 ifmam = (struct ifma_msghdr *)w->w_tmem; 1371 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1372 ifmam->ifmam_flags = 0; 1373 ifmam->ifmam_addrs = info.rti_addrs; 1374 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1375 if (error) { 1376 IF_ADDR_UNLOCK(ifp); 1377 goto done; 1378 } 1379 } 1380 } 1381 IF_ADDR_UNLOCK(ifp); 1382 } 1383 done: 1384 IFNET_RUNLOCK(); 1385 return (error); 1386 } 1387 1388 static int 1389 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1390 { 1391 INIT_VNET_NET(curvnet); 1392 int *name = (int *)arg1; 1393 u_int namelen = arg2; 1394 struct radix_node_head *rnh; 1395 int i, lim, error = EINVAL; 1396 u_char af; 1397 struct walkarg w; 1398 1399 name ++; 1400 namelen--; 1401 if (req->newptr) 1402 return (EPERM); 1403 if (namelen != 3) 1404 return ((namelen < 3) ? EISDIR : ENOTDIR); 1405 af = name[0]; 1406 if (af > AF_MAX) 1407 return (EINVAL); 1408 bzero(&w, sizeof(w)); 1409 w.w_op = name[1]; 1410 w.w_arg = name[2]; 1411 w.w_req = req; 1412 1413 error = sysctl_wire_old_buffer(req, 0); 1414 if (error) 1415 return (error); 1416 switch (w.w_op) { 1417 1418 case NET_RT_DUMP: 1419 case NET_RT_FLAGS: 1420 if (af == 0) { /* dump all tables */ 1421 i = 1; 1422 lim = AF_MAX; 1423 } else /* dump only one table */ 1424 i = lim = af; 1425 for (error = 0; error == 0 && i <= lim; i++) 1426 if ((rnh = V_rt_tables[curthread->td_proc->p_fibnum][i]) != NULL) { 1427 RADIX_NODE_HEAD_LOCK(rnh); 1428 error = rnh->rnh_walktree(rnh, 1429 sysctl_dumpentry, &w); 1430 RADIX_NODE_HEAD_UNLOCK(rnh); 1431 } else if (af != 0) 1432 error = EAFNOSUPPORT; 1433 break; 1434 1435 case NET_RT_IFLIST: 1436 error = sysctl_iflist(af, &w); 1437 break; 1438 1439 case NET_RT_IFMALIST: 1440 error = sysctl_ifmalist(af, &w); 1441 break; 1442 } 1443 if (w.w_tmem) 1444 free(w.w_tmem, M_RTABLE); 1445 return (error); 1446 } 1447 1448 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1449 1450 /* 1451 * Definitions of protocols supported in the ROUTE domain. 1452 */ 1453 1454 static struct domain routedomain; /* or at least forward */ 1455 1456 static struct protosw routesw[] = { 1457 { 1458 .pr_type = SOCK_RAW, 1459 .pr_domain = &routedomain, 1460 .pr_flags = PR_ATOMIC|PR_ADDR, 1461 .pr_output = route_output, 1462 .pr_ctlinput = raw_ctlinput, 1463 .pr_init = raw_init, 1464 .pr_usrreqs = &route_usrreqs 1465 } 1466 }; 1467 1468 static struct domain routedomain = { 1469 .dom_family = PF_ROUTE, 1470 .dom_name = "route", 1471 .dom_protosw = routesw, 1472 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1473 }; 1474 1475 DOMAIN_SET(route); 1476