1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_compat.h" 35 #include "opt_mpath.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/domain.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/rwlock.h> 50 #include <sys/signalvar.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/systm.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/if_llatbl.h> 60 #include <net/if_types.h> 61 #include <net/netisr.h> 62 #include <net/raw_cb.h> 63 #include <net/route.h> 64 #include <net/route_var.h> 65 #include <net/vnet.h> 66 67 #include <netinet/in.h> 68 #include <netinet/if_ether.h> 69 #include <netinet/ip_carp.h> 70 #ifdef INET6 71 #include <netinet6/ip6_var.h> 72 #include <netinet6/scope6_var.h> 73 #endif 74 75 #ifdef COMPAT_FREEBSD32 76 #include <sys/mount.h> 77 #include <compat/freebsd32/freebsd32.h> 78 79 struct if_msghdr32 { 80 uint16_t ifm_msglen; 81 uint8_t ifm_version; 82 uint8_t ifm_type; 83 int32_t ifm_addrs; 84 int32_t ifm_flags; 85 uint16_t ifm_index; 86 struct if_data ifm_data; 87 }; 88 89 struct if_msghdrl32 { 90 uint16_t ifm_msglen; 91 uint8_t ifm_version; 92 uint8_t ifm_type; 93 int32_t ifm_addrs; 94 int32_t ifm_flags; 95 uint16_t ifm_index; 96 uint16_t _ifm_spare1; 97 uint16_t ifm_len; 98 uint16_t ifm_data_off; 99 struct if_data ifm_data; 100 }; 101 102 struct ifa_msghdrl32 { 103 uint16_t ifam_msglen; 104 uint8_t ifam_version; 105 uint8_t ifam_type; 106 int32_t ifam_addrs; 107 int32_t ifam_flags; 108 uint16_t ifam_index; 109 uint16_t _ifam_spare1; 110 uint16_t ifam_len; 111 uint16_t ifam_data_off; 112 int32_t ifam_metric; 113 struct if_data ifam_data; 114 }; 115 116 #define SA_SIZE32(sa) \ 117 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 118 sizeof(int) : \ 119 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 120 121 #endif /* COMPAT_FREEBSD32 */ 122 123 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 124 125 /* NB: these are not modified */ 126 static struct sockaddr route_src = { 2, PF_ROUTE, }; 127 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 128 129 /* These are external hooks for CARP. */ 130 int (*carp_get_vhid_p)(struct ifaddr *); 131 132 /* 133 * Used by rtsock/raw_input callback code to decide whether to filter the update 134 * notification to a socket bound to a particular FIB. 135 */ 136 #define RTS_FILTER_FIB M_PROTO8 137 138 typedef struct { 139 int ip_count; /* attached w/ AF_INET */ 140 int ip6_count; /* attached w/ AF_INET6 */ 141 int any_count; /* total attached */ 142 } route_cb_t; 143 static VNET_DEFINE(route_cb_t, route_cb); 144 #define V_route_cb VNET(route_cb) 145 146 struct mtx rtsock_mtx; 147 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 148 149 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 150 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 151 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 152 153 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 154 155 struct walkarg { 156 int w_tmemsize; 157 int w_op, w_arg; 158 caddr_t w_tmem; 159 struct sysctl_req *w_req; 160 }; 161 162 static void rts_input(struct mbuf *m); 163 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 164 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 165 struct walkarg *w, int *plen); 166 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 167 struct rt_addrinfo *rtinfo); 168 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 169 static int sysctl_iflist(int af, struct walkarg *w); 170 static int sysctl_ifmalist(int af, struct walkarg *w); 171 static int route_output(struct mbuf *m, struct socket *so, ...); 172 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 173 static void rt_dispatch(struct mbuf *, sa_family_t); 174 static struct sockaddr *rtsock_fix_netmask(struct sockaddr *dst, 175 struct sockaddr *smask, struct sockaddr_storage *dmask); 176 177 static struct netisr_handler rtsock_nh = { 178 .nh_name = "rtsock", 179 .nh_handler = rts_input, 180 .nh_proto = NETISR_ROUTE, 181 .nh_policy = NETISR_POLICY_SOURCE, 182 }; 183 184 static int 185 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 186 { 187 int error, qlimit; 188 189 netisr_getqlimit(&rtsock_nh, &qlimit); 190 error = sysctl_handle_int(oidp, &qlimit, 0, req); 191 if (error || !req->newptr) 192 return (error); 193 if (qlimit < 1) 194 return (EINVAL); 195 return (netisr_setqlimit(&rtsock_nh, qlimit)); 196 } 197 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 198 0, 0, sysctl_route_netisr_maxqlen, "I", 199 "maximum routing socket dispatch queue length"); 200 201 static void 202 vnet_rts_init(void) 203 { 204 int tmp; 205 206 if (IS_DEFAULT_VNET(curvnet)) { 207 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 208 rtsock_nh.nh_qlimit = tmp; 209 netisr_register(&rtsock_nh); 210 } 211 #ifdef VIMAGE 212 else 213 netisr_register_vnet(&rtsock_nh); 214 #endif 215 } 216 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 217 vnet_rts_init, 0); 218 219 #ifdef VIMAGE 220 static void 221 vnet_rts_uninit(void) 222 { 223 224 netisr_unregister_vnet(&rtsock_nh); 225 } 226 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 227 vnet_rts_uninit, 0); 228 #endif 229 230 static int 231 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 232 struct rawcb *rp) 233 { 234 int fibnum; 235 236 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 237 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 238 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 239 240 /* No filtering requested. */ 241 if ((m->m_flags & RTS_FILTER_FIB) == 0) 242 return (0); 243 244 /* Check if it is a rts and the fib matches the one of the socket. */ 245 fibnum = M_GETFIB(m); 246 if (proto->sp_family != PF_ROUTE || 247 rp->rcb_socket == NULL || 248 rp->rcb_socket->so_fibnum == fibnum) 249 return (0); 250 251 /* Filtering requested and no match, the socket shall be skipped. */ 252 return (1); 253 } 254 255 static void 256 rts_input(struct mbuf *m) 257 { 258 struct sockproto route_proto; 259 unsigned short *family; 260 struct m_tag *tag; 261 262 route_proto.sp_family = PF_ROUTE; 263 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 264 if (tag != NULL) { 265 family = (unsigned short *)(tag + 1); 266 route_proto.sp_protocol = *family; 267 m_tag_delete(m, tag); 268 } else 269 route_proto.sp_protocol = 0; 270 271 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 272 } 273 274 /* 275 * It really doesn't make any sense at all for this code to share much 276 * with raw_usrreq.c, since its functionality is so restricted. XXX 277 */ 278 static void 279 rts_abort(struct socket *so) 280 { 281 282 raw_usrreqs.pru_abort(so); 283 } 284 285 static void 286 rts_close(struct socket *so) 287 { 288 289 raw_usrreqs.pru_close(so); 290 } 291 292 /* pru_accept is EOPNOTSUPP */ 293 294 static int 295 rts_attach(struct socket *so, int proto, struct thread *td) 296 { 297 struct rawcb *rp; 298 int error; 299 300 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 301 302 /* XXX */ 303 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 304 305 so->so_pcb = (caddr_t)rp; 306 so->so_fibnum = td->td_proc->p_fibnum; 307 error = raw_attach(so, proto); 308 rp = sotorawcb(so); 309 if (error) { 310 so->so_pcb = NULL; 311 free(rp, M_PCB); 312 return error; 313 } 314 RTSOCK_LOCK(); 315 switch(rp->rcb_proto.sp_protocol) { 316 case AF_INET: 317 V_route_cb.ip_count++; 318 break; 319 case AF_INET6: 320 V_route_cb.ip6_count++; 321 break; 322 } 323 V_route_cb.any_count++; 324 RTSOCK_UNLOCK(); 325 soisconnected(so); 326 so->so_options |= SO_USELOOPBACK; 327 return 0; 328 } 329 330 static int 331 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 332 { 333 334 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 335 } 336 337 static int 338 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 339 { 340 341 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 342 } 343 344 /* pru_connect2 is EOPNOTSUPP */ 345 /* pru_control is EOPNOTSUPP */ 346 347 static void 348 rts_detach(struct socket *so) 349 { 350 struct rawcb *rp = sotorawcb(so); 351 352 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 353 354 RTSOCK_LOCK(); 355 switch(rp->rcb_proto.sp_protocol) { 356 case AF_INET: 357 V_route_cb.ip_count--; 358 break; 359 case AF_INET6: 360 V_route_cb.ip6_count--; 361 break; 362 } 363 V_route_cb.any_count--; 364 RTSOCK_UNLOCK(); 365 raw_usrreqs.pru_detach(so); 366 } 367 368 static int 369 rts_disconnect(struct socket *so) 370 { 371 372 return (raw_usrreqs.pru_disconnect(so)); 373 } 374 375 /* pru_listen is EOPNOTSUPP */ 376 377 static int 378 rts_peeraddr(struct socket *so, struct sockaddr **nam) 379 { 380 381 return (raw_usrreqs.pru_peeraddr(so, nam)); 382 } 383 384 /* pru_rcvd is EOPNOTSUPP */ 385 /* pru_rcvoob is EOPNOTSUPP */ 386 387 static int 388 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 389 struct mbuf *control, struct thread *td) 390 { 391 392 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 393 } 394 395 /* pru_sense is null */ 396 397 static int 398 rts_shutdown(struct socket *so) 399 { 400 401 return (raw_usrreqs.pru_shutdown(so)); 402 } 403 404 static int 405 rts_sockaddr(struct socket *so, struct sockaddr **nam) 406 { 407 408 return (raw_usrreqs.pru_sockaddr(so, nam)); 409 } 410 411 static struct pr_usrreqs route_usrreqs = { 412 .pru_abort = rts_abort, 413 .pru_attach = rts_attach, 414 .pru_bind = rts_bind, 415 .pru_connect = rts_connect, 416 .pru_detach = rts_detach, 417 .pru_disconnect = rts_disconnect, 418 .pru_peeraddr = rts_peeraddr, 419 .pru_send = rts_send, 420 .pru_shutdown = rts_shutdown, 421 .pru_sockaddr = rts_sockaddr, 422 .pru_close = rts_close, 423 }; 424 425 #ifndef _SOCKADDR_UNION_DEFINED 426 #define _SOCKADDR_UNION_DEFINED 427 /* 428 * The union of all possible address formats we handle. 429 */ 430 union sockaddr_union { 431 struct sockaddr sa; 432 struct sockaddr_in sin; 433 struct sockaddr_in6 sin6; 434 }; 435 #endif /* _SOCKADDR_UNION_DEFINED */ 436 437 static int 438 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 439 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 440 { 441 442 /* First, see if the returned address is part of the jail. */ 443 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 444 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 445 return (0); 446 } 447 448 switch (info->rti_info[RTAX_DST]->sa_family) { 449 #ifdef INET 450 case AF_INET: 451 { 452 struct in_addr ia; 453 struct ifaddr *ifa; 454 int found; 455 456 found = 0; 457 /* 458 * Try to find an address on the given outgoing interface 459 * that belongs to the jail. 460 */ 461 IF_ADDR_RLOCK(ifp); 462 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 463 struct sockaddr *sa; 464 sa = ifa->ifa_addr; 465 if (sa->sa_family != AF_INET) 466 continue; 467 ia = ((struct sockaddr_in *)sa)->sin_addr; 468 if (prison_check_ip4(cred, &ia) == 0) { 469 found = 1; 470 break; 471 } 472 } 473 IF_ADDR_RUNLOCK(ifp); 474 if (!found) { 475 /* 476 * As a last resort return the 'default' jail address. 477 */ 478 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 479 sin_addr; 480 if (prison_get_ip4(cred, &ia) != 0) 481 return (ESRCH); 482 } 483 bzero(&saun->sin, sizeof(struct sockaddr_in)); 484 saun->sin.sin_len = sizeof(struct sockaddr_in); 485 saun->sin.sin_family = AF_INET; 486 saun->sin.sin_addr.s_addr = ia.s_addr; 487 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 488 break; 489 } 490 #endif 491 #ifdef INET6 492 case AF_INET6: 493 { 494 struct in6_addr ia6; 495 struct ifaddr *ifa; 496 int found; 497 498 found = 0; 499 /* 500 * Try to find an address on the given outgoing interface 501 * that belongs to the jail. 502 */ 503 IF_ADDR_RLOCK(ifp); 504 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 505 struct sockaddr *sa; 506 sa = ifa->ifa_addr; 507 if (sa->sa_family != AF_INET6) 508 continue; 509 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 510 &ia6, sizeof(struct in6_addr)); 511 if (prison_check_ip6(cred, &ia6) == 0) { 512 found = 1; 513 break; 514 } 515 } 516 IF_ADDR_RUNLOCK(ifp); 517 if (!found) { 518 /* 519 * As a last resort return the 'default' jail address. 520 */ 521 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 522 sin6_addr; 523 if (prison_get_ip6(cred, &ia6) != 0) 524 return (ESRCH); 525 } 526 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 527 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 528 saun->sin6.sin6_family = AF_INET6; 529 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 530 if (sa6_recoverscope(&saun->sin6) != 0) 531 return (ESRCH); 532 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 533 break; 534 } 535 #endif 536 default: 537 return (ESRCH); 538 } 539 return (0); 540 } 541 542 /*ARGSUSED*/ 543 static int 544 route_output(struct mbuf *m, struct socket *so, ...) 545 { 546 struct rt_msghdr *rtm = NULL; 547 struct rtentry *rt = NULL; 548 struct rib_head *rnh; 549 struct rt_addrinfo info; 550 struct sockaddr_storage ss; 551 #ifdef INET6 552 struct sockaddr_in6 *sin6; 553 int i, rti_need_deembed = 0; 554 #endif 555 int alloc_len = 0, len, error = 0, fibnum; 556 struct ifnet *ifp = NULL; 557 union sockaddr_union saun; 558 sa_family_t saf = AF_UNSPEC; 559 struct rawcb *rp = NULL; 560 struct walkarg w; 561 562 fibnum = so->so_fibnum; 563 564 #define senderr(e) { error = e; goto flush;} 565 if (m == NULL || ((m->m_len < sizeof(long)) && 566 (m = m_pullup(m, sizeof(long))) == NULL)) 567 return (ENOBUFS); 568 if ((m->m_flags & M_PKTHDR) == 0) 569 panic("route_output"); 570 len = m->m_pkthdr.len; 571 if (len < sizeof(*rtm) || 572 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 573 senderr(EINVAL); 574 575 /* 576 * Most of current messages are in range 200-240 bytes, 577 * minimize possible re-allocation on reply using larger size 578 * buffer aligned on 1k boundaty. 579 */ 580 alloc_len = roundup2(len, 1024); 581 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 582 senderr(ENOBUFS); 583 584 m_copydata(m, 0, len, (caddr_t)rtm); 585 bzero(&info, sizeof(info)); 586 bzero(&w, sizeof(w)); 587 588 if (rtm->rtm_version != RTM_VERSION) { 589 /* Do not touch message since format is unknown */ 590 free(rtm, M_TEMP); 591 rtm = NULL; 592 senderr(EPROTONOSUPPORT); 593 } 594 595 /* 596 * Starting from here, it is possible 597 * to alter original message and insert 598 * caller PID and error value. 599 */ 600 601 rtm->rtm_pid = curproc->p_pid; 602 info.rti_addrs = rtm->rtm_addrs; 603 604 info.rti_mflags = rtm->rtm_inits; 605 info.rti_rmx = &rtm->rtm_rmx; 606 607 /* 608 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 609 * link-local address because rtrequest requires addresses with 610 * embedded scope id. 611 */ 612 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) 613 senderr(EINVAL); 614 615 info.rti_flags = rtm->rtm_flags; 616 if (info.rti_info[RTAX_DST] == NULL || 617 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 618 (info.rti_info[RTAX_GATEWAY] != NULL && 619 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 620 senderr(EINVAL); 621 saf = info.rti_info[RTAX_DST]->sa_family; 622 /* 623 * Verify that the caller has the appropriate privilege; RTM_GET 624 * is the only operation the non-superuser is allowed. 625 */ 626 if (rtm->rtm_type != RTM_GET) { 627 error = priv_check(curthread, PRIV_NET_ROUTE); 628 if (error) 629 senderr(error); 630 } 631 632 /* 633 * The given gateway address may be an interface address. 634 * For example, issuing a "route change" command on a route 635 * entry that was created from a tunnel, and the gateway 636 * address given is the local end point. In this case the 637 * RTF_GATEWAY flag must be cleared or the destination will 638 * not be reachable even though there is no error message. 639 */ 640 if (info.rti_info[RTAX_GATEWAY] != NULL && 641 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 642 struct rt_addrinfo ginfo; 643 struct sockaddr *gdst; 644 645 bzero(&ginfo, sizeof(ginfo)); 646 bzero(&ss, sizeof(ss)); 647 ss.ss_len = sizeof(ss); 648 649 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 650 gdst = info.rti_info[RTAX_GATEWAY]; 651 652 /* 653 * A host route through the loopback interface is 654 * installed for each interface adddress. In pre 8.0 655 * releases the interface address of a PPP link type 656 * is not reachable locally. This behavior is fixed as 657 * part of the new L2/L3 redesign and rewrite work. The 658 * signature of this interface address route is the 659 * AF_LINK sa_family type of the rt_gateway, and the 660 * rt_ifp has the IFF_LOOPBACK flag set. 661 */ 662 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 663 if (ss.ss_family == AF_LINK && 664 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 665 info.rti_flags &= ~RTF_GATEWAY; 666 info.rti_flags |= RTF_GWFLAG_COMPAT; 667 } 668 rib_free_info(&ginfo); 669 } 670 } 671 672 switch (rtm->rtm_type) { 673 struct rtentry *saved_nrt; 674 675 case RTM_ADD: 676 case RTM_CHANGE: 677 if (rtm->rtm_type == RTM_ADD) { 678 if (info.rti_info[RTAX_GATEWAY] == NULL) 679 senderr(EINVAL); 680 } 681 saved_nrt = NULL; 682 683 /* support for new ARP code */ 684 if (info.rti_info[RTAX_GATEWAY] != NULL && 685 info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 686 (rtm->rtm_flags & RTF_LLDATA) != 0) { 687 error = lla_rt_output(rtm, &info); 688 #ifdef INET6 689 if (error == 0) 690 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 691 #endif 692 break; 693 } 694 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt, 695 fibnum); 696 if (error == 0 && saved_nrt != NULL) { 697 #ifdef INET6 698 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 699 #endif 700 RT_LOCK(saved_nrt); 701 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 702 RT_REMREF(saved_nrt); 703 RT_UNLOCK(saved_nrt); 704 } 705 break; 706 707 case RTM_DELETE: 708 saved_nrt = NULL; 709 /* support for new ARP code */ 710 if (info.rti_info[RTAX_GATEWAY] && 711 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 712 (rtm->rtm_flags & RTF_LLDATA) != 0) { 713 error = lla_rt_output(rtm, &info); 714 #ifdef INET6 715 if (error == 0) 716 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 717 #endif 718 break; 719 } 720 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum); 721 if (error == 0) { 722 RT_LOCK(saved_nrt); 723 rt = saved_nrt; 724 goto report; 725 } 726 #ifdef INET6 727 /* rt_msg2() will not be used when RTM_DELETE fails. */ 728 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 729 #endif 730 break; 731 732 case RTM_GET: 733 rnh = rt_tables_get_rnh(fibnum, saf); 734 if (rnh == NULL) 735 senderr(EAFNOSUPPORT); 736 737 RIB_RLOCK(rnh); 738 739 if (info.rti_info[RTAX_NETMASK] == NULL && 740 rtm->rtm_type == RTM_GET) { 741 /* 742 * Provide longest prefix match for 743 * address lookup (no mask). 744 * 'route -n get addr' 745 */ 746 rt = (struct rtentry *) rnh->rnh_matchaddr( 747 info.rti_info[RTAX_DST], &rnh->head); 748 } else 749 rt = (struct rtentry *) rnh->rnh_lookup( 750 info.rti_info[RTAX_DST], 751 info.rti_info[RTAX_NETMASK], &rnh->head); 752 753 if (rt == NULL) { 754 RIB_RUNLOCK(rnh); 755 senderr(ESRCH); 756 } 757 #ifdef RADIX_MPATH 758 /* 759 * for RTM_CHANGE/LOCK, if we got multipath routes, 760 * we require users to specify a matching RTAX_GATEWAY. 761 * 762 * for RTM_GET, gate is optional even with multipath. 763 * if gate == NULL the first match is returned. 764 * (no need to call rt_mpath_matchgate if gate == NULL) 765 */ 766 if (rt_mpath_capable(rnh) && 767 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 768 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 769 if (!rt) { 770 RIB_RUNLOCK(rnh); 771 senderr(ESRCH); 772 } 773 } 774 #endif 775 /* 776 * If performing proxied L2 entry insertion, and 777 * the actual PPP host entry is found, perform 778 * another search to retrieve the prefix route of 779 * the local end point of the PPP link. 780 */ 781 if (rtm->rtm_flags & RTF_ANNOUNCE) { 782 struct sockaddr laddr; 783 784 if (rt->rt_ifp != NULL && 785 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 786 struct ifaddr *ifa; 787 788 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1, 789 RT_ALL_FIBS); 790 if (ifa != NULL) 791 rt_maskedcopy(ifa->ifa_addr, 792 &laddr, 793 ifa->ifa_netmask); 794 } else 795 rt_maskedcopy(rt->rt_ifa->ifa_addr, 796 &laddr, 797 rt->rt_ifa->ifa_netmask); 798 /* 799 * refactor rt and no lock operation necessary 800 */ 801 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 802 &rnh->head); 803 if (rt == NULL) { 804 RIB_RUNLOCK(rnh); 805 senderr(ESRCH); 806 } 807 } 808 RT_LOCK(rt); 809 RT_ADDREF(rt); 810 RIB_RUNLOCK(rnh); 811 812 report: 813 RT_LOCK_ASSERT(rt); 814 if ((rt->rt_flags & RTF_HOST) == 0 815 ? jailed_without_vnet(curthread->td_ucred) 816 : prison_if(curthread->td_ucred, 817 rt_key(rt)) != 0) { 818 RT_UNLOCK(rt); 819 senderr(ESRCH); 820 } 821 info.rti_info[RTAX_DST] = rt_key(rt); 822 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 823 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 824 rt_mask(rt), &ss); 825 info.rti_info[RTAX_GENMASK] = 0; 826 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 827 ifp = rt->rt_ifp; 828 if (ifp) { 829 info.rti_info[RTAX_IFP] = 830 ifp->if_addr->ifa_addr; 831 error = rtm_get_jailed(&info, ifp, rt, 832 &saun, curthread->td_ucred); 833 if (error != 0) { 834 RT_UNLOCK(rt); 835 senderr(error); 836 } 837 if (ifp->if_flags & IFF_POINTOPOINT) 838 info.rti_info[RTAX_BRD] = 839 rt->rt_ifa->ifa_dstaddr; 840 rtm->rtm_index = ifp->if_index; 841 } else { 842 info.rti_info[RTAX_IFP] = NULL; 843 info.rti_info[RTAX_IFA] = NULL; 844 } 845 } else if ((ifp = rt->rt_ifp) != NULL) { 846 rtm->rtm_index = ifp->if_index; 847 } 848 849 /* Check if we need to realloc storage */ 850 rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len); 851 if (len > alloc_len) { 852 struct rt_msghdr *new_rtm; 853 new_rtm = malloc(len, M_TEMP, M_NOWAIT); 854 if (new_rtm == NULL) { 855 RT_UNLOCK(rt); 856 senderr(ENOBUFS); 857 } 858 bcopy(rtm, new_rtm, rtm->rtm_msglen); 859 free(rtm, M_TEMP); 860 rtm = new_rtm; 861 alloc_len = len; 862 } 863 864 w.w_tmem = (caddr_t)rtm; 865 w.w_tmemsize = alloc_len; 866 rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len); 867 868 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 869 rtm->rtm_flags = RTF_GATEWAY | 870 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 871 else 872 rtm->rtm_flags = rt->rt_flags; 873 rt_getmetrics(rt, &rtm->rtm_rmx); 874 rtm->rtm_addrs = info.rti_addrs; 875 876 RT_UNLOCK(rt); 877 break; 878 879 default: 880 senderr(EOPNOTSUPP); 881 } 882 883 flush: 884 if (rt != NULL) 885 RTFREE(rt); 886 /* 887 * Check to see if we don't want our own messages. 888 */ 889 if ((so->so_options & SO_USELOOPBACK) == 0) { 890 if (V_route_cb.any_count <= 1) { 891 if (rtm != NULL) 892 free(rtm, M_TEMP); 893 m_freem(m); 894 return (error); 895 } 896 /* There is another listener, so construct message */ 897 rp = sotorawcb(so); 898 } 899 900 if (rtm != NULL) { 901 #ifdef INET6 902 if (rti_need_deembed) { 903 /* sin6_scope_id is recovered before sending rtm. */ 904 sin6 = (struct sockaddr_in6 *)&ss; 905 for (i = 0; i < RTAX_MAX; i++) { 906 if (info.rti_info[i] == NULL) 907 continue; 908 if (info.rti_info[i]->sa_family != AF_INET6) 909 continue; 910 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 911 if (sa6_recoverscope(sin6) == 0) 912 bcopy(sin6, info.rti_info[i], 913 sizeof(*sin6)); 914 } 915 } 916 #endif 917 if (error != 0) 918 rtm->rtm_errno = error; 919 else 920 rtm->rtm_flags |= RTF_DONE; 921 922 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 923 if (m->m_pkthdr.len < rtm->rtm_msglen) { 924 m_freem(m); 925 m = NULL; 926 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 927 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 928 929 free(rtm, M_TEMP); 930 } 931 if (m != NULL) { 932 M_SETFIB(m, fibnum); 933 m->m_flags |= RTS_FILTER_FIB; 934 if (rp) { 935 /* 936 * XXX insure we don't get a copy by 937 * invalidating our protocol 938 */ 939 unsigned short family = rp->rcb_proto.sp_family; 940 rp->rcb_proto.sp_family = 0; 941 rt_dispatch(m, saf); 942 rp->rcb_proto.sp_family = family; 943 } else 944 rt_dispatch(m, saf); 945 } 946 947 return (error); 948 } 949 950 static void 951 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 952 { 953 954 bzero(out, sizeof(*out)); 955 out->rmx_mtu = rt->rt_mtu; 956 out->rmx_weight = rt->rt_weight; 957 out->rmx_pksent = counter_u64_fetch(rt->rt_pksent); 958 /* Kernel -> userland timebase conversion. */ 959 out->rmx_expire = rt->rt_expire ? 960 rt->rt_expire - time_uptime + time_second : 0; 961 } 962 963 /* 964 * Extract the addresses of the passed sockaddrs. 965 * Do a little sanity checking so as to avoid bad memory references. 966 * This data is derived straight from userland. 967 */ 968 static int 969 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 970 { 971 struct sockaddr *sa; 972 int i; 973 974 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 975 if ((rtinfo->rti_addrs & (1 << i)) == 0) 976 continue; 977 sa = (struct sockaddr *)cp; 978 /* 979 * It won't fit. 980 */ 981 if (cp + sa->sa_len > cplim) 982 return (EINVAL); 983 /* 984 * there are no more.. quit now 985 * If there are more bits, they are in error. 986 * I've seen this. route(1) can evidently generate these. 987 * This causes kernel to core dump. 988 * for compatibility, If we see this, point to a safe address. 989 */ 990 if (sa->sa_len == 0) { 991 rtinfo->rti_info[i] = &sa_zero; 992 return (0); /* should be EINVAL but for compat */ 993 } 994 /* accept it */ 995 #ifdef INET6 996 if (sa->sa_family == AF_INET6) 997 sa6_embedscope((struct sockaddr_in6 *)sa, 998 V_ip6_use_defzone); 999 #endif 1000 rtinfo->rti_info[i] = sa; 1001 cp += SA_SIZE(sa); 1002 } 1003 return (0); 1004 } 1005 1006 /* 1007 * Fill in @dmask with valid netmask leaving original @smask 1008 * intact. Mostly used with radix netmasks. 1009 */ 1010 static struct sockaddr * 1011 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask, 1012 struct sockaddr_storage *dmask) 1013 { 1014 if (dst == NULL || smask == NULL) 1015 return (NULL); 1016 1017 memset(dmask, 0, dst->sa_len); 1018 memcpy(dmask, smask, smask->sa_len); 1019 dmask->ss_len = dst->sa_len; 1020 dmask->ss_family = dst->sa_family; 1021 1022 return ((struct sockaddr *)dmask); 1023 } 1024 1025 /* 1026 * Writes information related to @rtinfo object to newly-allocated mbuf. 1027 * Assumes MCLBYTES is enough to construct any message. 1028 * Used for OS notifications of vaious events (if/ifa announces,etc) 1029 * 1030 * Returns allocated mbuf or NULL on failure. 1031 */ 1032 static struct mbuf * 1033 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1034 { 1035 struct rt_msghdr *rtm; 1036 struct mbuf *m; 1037 int i; 1038 struct sockaddr *sa; 1039 #ifdef INET6 1040 struct sockaddr_storage ss; 1041 struct sockaddr_in6 *sin6; 1042 #endif 1043 int len, dlen; 1044 1045 switch (type) { 1046 1047 case RTM_DELADDR: 1048 case RTM_NEWADDR: 1049 len = sizeof(struct ifa_msghdr); 1050 break; 1051 1052 case RTM_DELMADDR: 1053 case RTM_NEWMADDR: 1054 len = sizeof(struct ifma_msghdr); 1055 break; 1056 1057 case RTM_IFINFO: 1058 len = sizeof(struct if_msghdr); 1059 break; 1060 1061 case RTM_IFANNOUNCE: 1062 case RTM_IEEE80211: 1063 len = sizeof(struct if_announcemsghdr); 1064 break; 1065 1066 default: 1067 len = sizeof(struct rt_msghdr); 1068 } 1069 1070 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1071 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1072 if (len > MHLEN) 1073 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1074 else 1075 m = m_gethdr(M_NOWAIT, MT_DATA); 1076 if (m == NULL) 1077 return (m); 1078 1079 m->m_pkthdr.len = m->m_len = len; 1080 rtm = mtod(m, struct rt_msghdr *); 1081 bzero((caddr_t)rtm, len); 1082 for (i = 0; i < RTAX_MAX; i++) { 1083 if ((sa = rtinfo->rti_info[i]) == NULL) 1084 continue; 1085 rtinfo->rti_addrs |= (1 << i); 1086 dlen = SA_SIZE(sa); 1087 #ifdef INET6 1088 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1089 sin6 = (struct sockaddr_in6 *)&ss; 1090 bcopy(sa, sin6, sizeof(*sin6)); 1091 if (sa6_recoverscope(sin6) == 0) 1092 sa = (struct sockaddr *)sin6; 1093 } 1094 #endif 1095 m_copyback(m, len, dlen, (caddr_t)sa); 1096 len += dlen; 1097 } 1098 if (m->m_pkthdr.len != len) { 1099 m_freem(m); 1100 return (NULL); 1101 } 1102 rtm->rtm_msglen = len; 1103 rtm->rtm_version = RTM_VERSION; 1104 rtm->rtm_type = type; 1105 return (m); 1106 } 1107 1108 /* 1109 * Writes information related to @rtinfo object to preallocated buffer. 1110 * Stores needed size in @plen. If @w is NULL, calculates size without 1111 * writing. 1112 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1113 * 1114 * Returns 0 on success. 1115 * 1116 */ 1117 static int 1118 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1119 { 1120 int i; 1121 int len, buflen = 0, dlen; 1122 caddr_t cp = NULL; 1123 struct rt_msghdr *rtm = NULL; 1124 #ifdef INET6 1125 struct sockaddr_storage ss; 1126 struct sockaddr_in6 *sin6; 1127 #endif 1128 #ifdef COMPAT_FREEBSD32 1129 bool compat32 = false; 1130 #endif 1131 1132 switch (type) { 1133 1134 case RTM_DELADDR: 1135 case RTM_NEWADDR: 1136 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1137 #ifdef COMPAT_FREEBSD32 1138 if (w->w_req->flags & SCTL_MASK32) { 1139 len = sizeof(struct ifa_msghdrl32); 1140 compat32 = true; 1141 } else 1142 #endif 1143 len = sizeof(struct ifa_msghdrl); 1144 } else 1145 len = sizeof(struct ifa_msghdr); 1146 break; 1147 1148 case RTM_IFINFO: 1149 #ifdef COMPAT_FREEBSD32 1150 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1151 if (w->w_op == NET_RT_IFLISTL) 1152 len = sizeof(struct if_msghdrl32); 1153 else 1154 len = sizeof(struct if_msghdr32); 1155 compat32 = true; 1156 break; 1157 } 1158 #endif 1159 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1160 len = sizeof(struct if_msghdrl); 1161 else 1162 len = sizeof(struct if_msghdr); 1163 break; 1164 1165 case RTM_NEWMADDR: 1166 len = sizeof(struct ifma_msghdr); 1167 break; 1168 1169 default: 1170 len = sizeof(struct rt_msghdr); 1171 } 1172 1173 if (w != NULL) { 1174 rtm = (struct rt_msghdr *)w->w_tmem; 1175 buflen = w->w_tmemsize - len; 1176 cp = (caddr_t)w->w_tmem + len; 1177 } 1178 1179 rtinfo->rti_addrs = 0; 1180 for (i = 0; i < RTAX_MAX; i++) { 1181 struct sockaddr *sa; 1182 1183 if ((sa = rtinfo->rti_info[i]) == NULL) 1184 continue; 1185 rtinfo->rti_addrs |= (1 << i); 1186 #ifdef COMPAT_FREEBSD32 1187 if (compat32) 1188 dlen = SA_SIZE32(sa); 1189 else 1190 #endif 1191 dlen = SA_SIZE(sa); 1192 if (cp != NULL && buflen >= dlen) { 1193 #ifdef INET6 1194 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1195 sin6 = (struct sockaddr_in6 *)&ss; 1196 bcopy(sa, sin6, sizeof(*sin6)); 1197 if (sa6_recoverscope(sin6) == 0) 1198 sa = (struct sockaddr *)sin6; 1199 } 1200 #endif 1201 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1202 cp += dlen; 1203 buflen -= dlen; 1204 } else if (cp != NULL) { 1205 /* 1206 * Buffer too small. Count needed size 1207 * and return with error. 1208 */ 1209 cp = NULL; 1210 } 1211 1212 len += dlen; 1213 } 1214 1215 if (cp != NULL) { 1216 dlen = ALIGN(len) - len; 1217 if (buflen < dlen) 1218 cp = NULL; 1219 else 1220 buflen -= dlen; 1221 } 1222 len = ALIGN(len); 1223 1224 if (cp != NULL) { 1225 /* fill header iff buffer is large enough */ 1226 rtm->rtm_version = RTM_VERSION; 1227 rtm->rtm_type = type; 1228 rtm->rtm_msglen = len; 1229 } 1230 1231 *plen = len; 1232 1233 if (w != NULL && cp == NULL) 1234 return (ENOBUFS); 1235 1236 return (0); 1237 } 1238 1239 /* 1240 * This routine is called to generate a message from the routing 1241 * socket indicating that a redirect has occurred, a routing lookup 1242 * has failed, or that a protocol has detected timeouts to a particular 1243 * destination. 1244 */ 1245 void 1246 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1247 int fibnum) 1248 { 1249 struct rt_msghdr *rtm; 1250 struct mbuf *m; 1251 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1252 1253 if (V_route_cb.any_count == 0) 1254 return; 1255 m = rtsock_msg_mbuf(type, rtinfo); 1256 if (m == NULL) 1257 return; 1258 1259 if (fibnum != RT_ALL_FIBS) { 1260 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1261 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1262 M_SETFIB(m, fibnum); 1263 m->m_flags |= RTS_FILTER_FIB; 1264 } 1265 1266 rtm = mtod(m, struct rt_msghdr *); 1267 rtm->rtm_flags = RTF_DONE | flags; 1268 rtm->rtm_errno = error; 1269 rtm->rtm_addrs = rtinfo->rti_addrs; 1270 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1271 } 1272 1273 void 1274 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1275 { 1276 1277 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1278 } 1279 1280 /* 1281 * This routine is called to generate a message from the routing 1282 * socket indicating that the status of a network interface has changed. 1283 */ 1284 void 1285 rt_ifmsg(struct ifnet *ifp) 1286 { 1287 struct if_msghdr *ifm; 1288 struct mbuf *m; 1289 struct rt_addrinfo info; 1290 1291 if (V_route_cb.any_count == 0) 1292 return; 1293 bzero((caddr_t)&info, sizeof(info)); 1294 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1295 if (m == NULL) 1296 return; 1297 ifm = mtod(m, struct if_msghdr *); 1298 ifm->ifm_index = ifp->if_index; 1299 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1300 if_data_copy(ifp, &ifm->ifm_data); 1301 ifm->ifm_addrs = 0; 1302 rt_dispatch(m, AF_UNSPEC); 1303 } 1304 1305 /* 1306 * Announce interface address arrival/withdraw. 1307 * Please do not call directly, use rt_addrmsg(). 1308 * Assume input data to be valid. 1309 * Returns 0 on success. 1310 */ 1311 int 1312 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1313 { 1314 struct rt_addrinfo info; 1315 struct sockaddr *sa; 1316 int ncmd; 1317 struct mbuf *m; 1318 struct ifa_msghdr *ifam; 1319 struct ifnet *ifp = ifa->ifa_ifp; 1320 struct sockaddr_storage ss; 1321 1322 if (V_route_cb.any_count == 0) 1323 return (0); 1324 1325 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1326 1327 bzero((caddr_t)&info, sizeof(info)); 1328 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1329 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1330 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1331 info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss); 1332 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1333 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1334 return (ENOBUFS); 1335 ifam = mtod(m, struct ifa_msghdr *); 1336 ifam->ifam_index = ifp->if_index; 1337 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1338 ifam->ifam_flags = ifa->ifa_flags; 1339 ifam->ifam_addrs = info.rti_addrs; 1340 1341 if (fibnum != RT_ALL_FIBS) { 1342 M_SETFIB(m, fibnum); 1343 m->m_flags |= RTS_FILTER_FIB; 1344 } 1345 1346 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1347 1348 return (0); 1349 } 1350 1351 /* 1352 * Announce route addition/removal. 1353 * Please do not call directly, use rt_routemsg(). 1354 * Note that @rt data MAY be inconsistent/invalid: 1355 * if some userland app sends us "invalid" route message (invalid mask, 1356 * no dst, wrong address families, etc...) we need to pass it back 1357 * to app (and any other rtsock consumers) with rtm_errno field set to 1358 * non-zero value. 1359 * 1360 * Returns 0 on success. 1361 */ 1362 int 1363 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1364 int fibnum) 1365 { 1366 struct rt_addrinfo info; 1367 struct sockaddr *sa; 1368 struct mbuf *m; 1369 struct rt_msghdr *rtm; 1370 struct sockaddr_storage ss; 1371 1372 if (V_route_cb.any_count == 0) 1373 return (0); 1374 1375 bzero((caddr_t)&info, sizeof(info)); 1376 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1377 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss); 1378 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1379 if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL) 1380 return (ENOBUFS); 1381 rtm = mtod(m, struct rt_msghdr *); 1382 rtm->rtm_index = ifp->if_index; 1383 rtm->rtm_flags |= rt->rt_flags; 1384 rtm->rtm_errno = error; 1385 rtm->rtm_addrs = info.rti_addrs; 1386 1387 if (fibnum != RT_ALL_FIBS) { 1388 M_SETFIB(m, fibnum); 1389 m->m_flags |= RTS_FILTER_FIB; 1390 } 1391 1392 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1393 1394 return (0); 1395 } 1396 1397 /* 1398 * This is the analogue to the rt_newaddrmsg which performs the same 1399 * function but for multicast group memberhips. This is easier since 1400 * there is no route state to worry about. 1401 */ 1402 void 1403 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1404 { 1405 struct rt_addrinfo info; 1406 struct mbuf *m = NULL; 1407 struct ifnet *ifp = ifma->ifma_ifp; 1408 struct ifma_msghdr *ifmam; 1409 1410 if (V_route_cb.any_count == 0) 1411 return; 1412 1413 bzero((caddr_t)&info, sizeof(info)); 1414 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1415 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1416 /* 1417 * If a link-layer address is present, present it as a ``gateway'' 1418 * (similarly to how ARP entries, e.g., are presented). 1419 */ 1420 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1421 m = rtsock_msg_mbuf(cmd, &info); 1422 if (m == NULL) 1423 return; 1424 ifmam = mtod(m, struct ifma_msghdr *); 1425 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1426 __func__)); 1427 ifmam->ifmam_index = ifp->if_index; 1428 ifmam->ifmam_addrs = info.rti_addrs; 1429 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1430 } 1431 1432 static struct mbuf * 1433 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1434 struct rt_addrinfo *info) 1435 { 1436 struct if_announcemsghdr *ifan; 1437 struct mbuf *m; 1438 1439 if (V_route_cb.any_count == 0) 1440 return NULL; 1441 bzero((caddr_t)info, sizeof(*info)); 1442 m = rtsock_msg_mbuf(type, info); 1443 if (m != NULL) { 1444 ifan = mtod(m, struct if_announcemsghdr *); 1445 ifan->ifan_index = ifp->if_index; 1446 strlcpy(ifan->ifan_name, ifp->if_xname, 1447 sizeof(ifan->ifan_name)); 1448 ifan->ifan_what = what; 1449 } 1450 return m; 1451 } 1452 1453 /* 1454 * This is called to generate routing socket messages indicating 1455 * IEEE80211 wireless events. 1456 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1457 */ 1458 void 1459 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1460 { 1461 struct mbuf *m; 1462 struct rt_addrinfo info; 1463 1464 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1465 if (m != NULL) { 1466 /* 1467 * Append the ieee80211 data. Try to stick it in the 1468 * mbuf containing the ifannounce msg; otherwise allocate 1469 * a new mbuf and append. 1470 * 1471 * NB: we assume m is a single mbuf. 1472 */ 1473 if (data_len > M_TRAILINGSPACE(m)) { 1474 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1475 if (n == NULL) { 1476 m_freem(m); 1477 return; 1478 } 1479 bcopy(data, mtod(n, void *), data_len); 1480 n->m_len = data_len; 1481 m->m_next = n; 1482 } else if (data_len > 0) { 1483 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1484 m->m_len += data_len; 1485 } 1486 if (m->m_flags & M_PKTHDR) 1487 m->m_pkthdr.len += data_len; 1488 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1489 rt_dispatch(m, AF_UNSPEC); 1490 } 1491 } 1492 1493 /* 1494 * This is called to generate routing socket messages indicating 1495 * network interface arrival and departure. 1496 */ 1497 void 1498 rt_ifannouncemsg(struct ifnet *ifp, int what) 1499 { 1500 struct mbuf *m; 1501 struct rt_addrinfo info; 1502 1503 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1504 if (m != NULL) 1505 rt_dispatch(m, AF_UNSPEC); 1506 } 1507 1508 static void 1509 rt_dispatch(struct mbuf *m, sa_family_t saf) 1510 { 1511 struct m_tag *tag; 1512 1513 /* 1514 * Preserve the family from the sockaddr, if any, in an m_tag for 1515 * use when injecting the mbuf into the routing socket buffer from 1516 * the netisr. 1517 */ 1518 if (saf != AF_UNSPEC) { 1519 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1520 M_NOWAIT); 1521 if (tag == NULL) { 1522 m_freem(m); 1523 return; 1524 } 1525 *(unsigned short *)(tag + 1) = saf; 1526 m_tag_prepend(m, tag); 1527 } 1528 #ifdef VIMAGE 1529 if (V_loif) 1530 m->m_pkthdr.rcvif = V_loif; 1531 else { 1532 m_freem(m); 1533 return; 1534 } 1535 #endif 1536 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1537 } 1538 1539 /* 1540 * This is used in dumping the kernel table via sysctl(). 1541 */ 1542 static int 1543 sysctl_dumpentry(struct radix_node *rn, void *vw) 1544 { 1545 struct walkarg *w = vw; 1546 struct rtentry *rt = (struct rtentry *)rn; 1547 int error = 0, size; 1548 struct rt_addrinfo info; 1549 struct sockaddr_storage ss; 1550 1551 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1552 return 0; 1553 if ((rt->rt_flags & RTF_HOST) == 0 1554 ? jailed_without_vnet(w->w_req->td->td_ucred) 1555 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1556 return (0); 1557 bzero((caddr_t)&info, sizeof(info)); 1558 info.rti_info[RTAX_DST] = rt_key(rt); 1559 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1560 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1561 rt_mask(rt), &ss); 1562 info.rti_info[RTAX_GENMASK] = 0; 1563 if (rt->rt_ifp) { 1564 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1565 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1566 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1567 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1568 } 1569 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1570 return (error); 1571 if (w->w_req && w->w_tmem) { 1572 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1573 1574 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1575 rtm->rtm_flags = RTF_GATEWAY | 1576 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1577 else 1578 rtm->rtm_flags = rt->rt_flags; 1579 rt_getmetrics(rt, &rtm->rtm_rmx); 1580 rtm->rtm_index = rt->rt_ifp->if_index; 1581 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1582 rtm->rtm_addrs = info.rti_addrs; 1583 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1584 return (error); 1585 } 1586 return (error); 1587 } 1588 1589 static int 1590 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1591 struct rt_addrinfo *info, struct walkarg *w, int len) 1592 { 1593 struct if_msghdrl *ifm; 1594 struct if_data *ifd; 1595 1596 ifm = (struct if_msghdrl *)w->w_tmem; 1597 1598 #ifdef COMPAT_FREEBSD32 1599 if (w->w_req->flags & SCTL_MASK32) { 1600 struct if_msghdrl32 *ifm32; 1601 1602 ifm32 = (struct if_msghdrl32 *)ifm; 1603 ifm32->ifm_addrs = info->rti_addrs; 1604 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1605 ifm32->ifm_index = ifp->if_index; 1606 ifm32->_ifm_spare1 = 0; 1607 ifm32->ifm_len = sizeof(*ifm32); 1608 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1609 ifd = &ifm32->ifm_data; 1610 } else 1611 #endif 1612 { 1613 ifm->ifm_addrs = info->rti_addrs; 1614 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1615 ifm->ifm_index = ifp->if_index; 1616 ifm->_ifm_spare1 = 0; 1617 ifm->ifm_len = sizeof(*ifm); 1618 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1619 ifd = &ifm->ifm_data; 1620 } 1621 1622 memcpy(ifd, src_ifd, sizeof(*ifd)); 1623 1624 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1625 } 1626 1627 static int 1628 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 1629 struct rt_addrinfo *info, struct walkarg *w, int len) 1630 { 1631 struct if_msghdr *ifm; 1632 struct if_data *ifd; 1633 1634 ifm = (struct if_msghdr *)w->w_tmem; 1635 1636 #ifdef COMPAT_FREEBSD32 1637 if (w->w_req->flags & SCTL_MASK32) { 1638 struct if_msghdr32 *ifm32; 1639 1640 ifm32 = (struct if_msghdr32 *)ifm; 1641 ifm32->ifm_addrs = info->rti_addrs; 1642 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1643 ifm32->ifm_index = ifp->if_index; 1644 ifd = &ifm32->ifm_data; 1645 } else 1646 #endif 1647 { 1648 ifm->ifm_addrs = info->rti_addrs; 1649 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1650 ifm->ifm_index = ifp->if_index; 1651 ifd = &ifm->ifm_data; 1652 } 1653 1654 memcpy(ifd, src_ifd, sizeof(*ifd)); 1655 1656 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1657 } 1658 1659 static int 1660 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1661 struct walkarg *w, int len) 1662 { 1663 struct ifa_msghdrl *ifam; 1664 struct if_data *ifd; 1665 1666 ifam = (struct ifa_msghdrl *)w->w_tmem; 1667 1668 #ifdef COMPAT_FREEBSD32 1669 if (w->w_req->flags & SCTL_MASK32) { 1670 struct ifa_msghdrl32 *ifam32; 1671 1672 ifam32 = (struct ifa_msghdrl32 *)ifam; 1673 ifam32->ifam_addrs = info->rti_addrs; 1674 ifam32->ifam_flags = ifa->ifa_flags; 1675 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1676 ifam32->_ifam_spare1 = 0; 1677 ifam32->ifam_len = sizeof(*ifam32); 1678 ifam32->ifam_data_off = 1679 offsetof(struct ifa_msghdrl32, ifam_data); 1680 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1681 ifd = &ifam32->ifam_data; 1682 } else 1683 #endif 1684 { 1685 ifam->ifam_addrs = info->rti_addrs; 1686 ifam->ifam_flags = ifa->ifa_flags; 1687 ifam->ifam_index = ifa->ifa_ifp->if_index; 1688 ifam->_ifam_spare1 = 0; 1689 ifam->ifam_len = sizeof(*ifam); 1690 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1691 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1692 ifd = &ifam->ifam_data; 1693 } 1694 1695 bzero(ifd, sizeof(*ifd)); 1696 ifd->ifi_datalen = sizeof(struct if_data); 1697 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1698 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1699 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1700 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1701 1702 /* Fixup if_data carp(4) vhid. */ 1703 if (carp_get_vhid_p != NULL) 1704 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1705 1706 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1707 } 1708 1709 static int 1710 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1711 struct walkarg *w, int len) 1712 { 1713 struct ifa_msghdr *ifam; 1714 1715 ifam = (struct ifa_msghdr *)w->w_tmem; 1716 ifam->ifam_addrs = info->rti_addrs; 1717 ifam->ifam_flags = ifa->ifa_flags; 1718 ifam->ifam_index = ifa->ifa_ifp->if_index; 1719 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1720 1721 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1722 } 1723 1724 static int 1725 sysctl_iflist(int af, struct walkarg *w) 1726 { 1727 struct ifnet *ifp; 1728 struct ifaddr *ifa; 1729 struct if_data ifd; 1730 struct rt_addrinfo info; 1731 int len, error = 0; 1732 struct sockaddr_storage ss; 1733 1734 bzero((caddr_t)&info, sizeof(info)); 1735 bzero(&ifd, sizeof(ifd)); 1736 IFNET_RLOCK_NOSLEEP(); 1737 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1738 if (w->w_arg && w->w_arg != ifp->if_index) 1739 continue; 1740 if_data_copy(ifp, &ifd); 1741 IF_ADDR_RLOCK(ifp); 1742 ifa = ifp->if_addr; 1743 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1744 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1745 if (error != 0) 1746 goto done; 1747 info.rti_info[RTAX_IFP] = NULL; 1748 if (w->w_req && w->w_tmem) { 1749 if (w->w_op == NET_RT_IFLISTL) 1750 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 1751 len); 1752 else 1753 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 1754 len); 1755 if (error) 1756 goto done; 1757 } 1758 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1759 if (af && af != ifa->ifa_addr->sa_family) 1760 continue; 1761 if (prison_if(w->w_req->td->td_ucred, 1762 ifa->ifa_addr) != 0) 1763 continue; 1764 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1765 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1766 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1767 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1768 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1769 if (error != 0) 1770 goto done; 1771 if (w->w_req && w->w_tmem) { 1772 if (w->w_op == NET_RT_IFLISTL) 1773 error = sysctl_iflist_ifaml(ifa, &info, 1774 w, len); 1775 else 1776 error = sysctl_iflist_ifam(ifa, &info, 1777 w, len); 1778 if (error) 1779 goto done; 1780 } 1781 } 1782 IF_ADDR_RUNLOCK(ifp); 1783 info.rti_info[RTAX_IFA] = NULL; 1784 info.rti_info[RTAX_NETMASK] = NULL; 1785 info.rti_info[RTAX_BRD] = NULL; 1786 } 1787 done: 1788 if (ifp != NULL) 1789 IF_ADDR_RUNLOCK(ifp); 1790 IFNET_RUNLOCK_NOSLEEP(); 1791 return (error); 1792 } 1793 1794 static int 1795 sysctl_ifmalist(int af, struct walkarg *w) 1796 { 1797 struct rt_addrinfo info; 1798 struct ifaddr *ifa; 1799 struct ifmultiaddr *ifma; 1800 struct ifnet *ifp; 1801 int error, len; 1802 1803 error = 0; 1804 bzero((caddr_t)&info, sizeof(info)); 1805 1806 IFNET_RLOCK_NOSLEEP(); 1807 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1808 if (w->w_arg && w->w_arg != ifp->if_index) 1809 continue; 1810 ifa = ifp->if_addr; 1811 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1812 IF_ADDR_RLOCK(ifp); 1813 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1814 if (af && af != ifma->ifma_addr->sa_family) 1815 continue; 1816 if (prison_if(w->w_req->td->td_ucred, 1817 ifma->ifma_addr) != 0) 1818 continue; 1819 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1820 info.rti_info[RTAX_GATEWAY] = 1821 (ifma->ifma_addr->sa_family != AF_LINK) ? 1822 ifma->ifma_lladdr : NULL; 1823 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1824 if (error != 0) 1825 break; 1826 if (w->w_req && w->w_tmem) { 1827 struct ifma_msghdr *ifmam; 1828 1829 ifmam = (struct ifma_msghdr *)w->w_tmem; 1830 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1831 ifmam->ifmam_flags = 0; 1832 ifmam->ifmam_addrs = info.rti_addrs; 1833 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1834 if (error != 0) 1835 break; 1836 } 1837 } 1838 IF_ADDR_RUNLOCK(ifp); 1839 if (error != 0) 1840 break; 1841 } 1842 IFNET_RUNLOCK_NOSLEEP(); 1843 return (error); 1844 } 1845 1846 static int 1847 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1848 { 1849 int *name = (int *)arg1; 1850 u_int namelen = arg2; 1851 struct rib_head *rnh = NULL; /* silence compiler. */ 1852 int i, lim, error = EINVAL; 1853 int fib = 0; 1854 u_char af; 1855 struct walkarg w; 1856 1857 name ++; 1858 namelen--; 1859 if (req->newptr) 1860 return (EPERM); 1861 if (name[1] == NET_RT_DUMP) { 1862 if (namelen == 3) 1863 fib = req->td->td_proc->p_fibnum; 1864 else if (namelen == 4) 1865 fib = (name[3] == RT_ALL_FIBS) ? 1866 req->td->td_proc->p_fibnum : name[3]; 1867 else 1868 return ((namelen < 3) ? EISDIR : ENOTDIR); 1869 if (fib < 0 || fib >= rt_numfibs) 1870 return (EINVAL); 1871 } else if (namelen != 3) 1872 return ((namelen < 3) ? EISDIR : ENOTDIR); 1873 af = name[0]; 1874 if (af > AF_MAX) 1875 return (EINVAL); 1876 bzero(&w, sizeof(w)); 1877 w.w_op = name[1]; 1878 w.w_arg = name[2]; 1879 w.w_req = req; 1880 1881 error = sysctl_wire_old_buffer(req, 0); 1882 if (error) 1883 return (error); 1884 1885 /* 1886 * Allocate reply buffer in advance. 1887 * All rtsock messages has maximum length of u_short. 1888 */ 1889 w.w_tmemsize = 65536; 1890 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 1891 1892 switch (w.w_op) { 1893 1894 case NET_RT_DUMP: 1895 case NET_RT_FLAGS: 1896 if (af == 0) { /* dump all tables */ 1897 i = 1; 1898 lim = AF_MAX; 1899 } else /* dump only one table */ 1900 i = lim = af; 1901 1902 /* 1903 * take care of llinfo entries, the caller must 1904 * specify an AF 1905 */ 1906 if (w.w_op == NET_RT_FLAGS && 1907 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1908 if (af != 0) 1909 error = lltable_sysctl_dumparp(af, w.w_req); 1910 else 1911 error = EINVAL; 1912 break; 1913 } 1914 /* 1915 * take care of routing entries 1916 */ 1917 for (error = 0; error == 0 && i <= lim; i++) { 1918 rnh = rt_tables_get_rnh(fib, i); 1919 if (rnh != NULL) { 1920 RIB_RLOCK(rnh); 1921 error = rnh->rnh_walktree(&rnh->head, 1922 sysctl_dumpentry, &w); 1923 RIB_RUNLOCK(rnh); 1924 } else if (af != 0) 1925 error = EAFNOSUPPORT; 1926 } 1927 break; 1928 1929 case NET_RT_IFLIST: 1930 case NET_RT_IFLISTL: 1931 error = sysctl_iflist(af, &w); 1932 break; 1933 1934 case NET_RT_IFMALIST: 1935 error = sysctl_ifmalist(af, &w); 1936 break; 1937 } 1938 1939 free(w.w_tmem, M_TEMP); 1940 return (error); 1941 } 1942 1943 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1944 1945 /* 1946 * Definitions of protocols supported in the ROUTE domain. 1947 */ 1948 1949 static struct domain routedomain; /* or at least forward */ 1950 1951 static struct protosw routesw[] = { 1952 { 1953 .pr_type = SOCK_RAW, 1954 .pr_domain = &routedomain, 1955 .pr_flags = PR_ATOMIC|PR_ADDR, 1956 .pr_output = route_output, 1957 .pr_ctlinput = raw_ctlinput, 1958 .pr_init = raw_init, 1959 .pr_usrreqs = &route_usrreqs 1960 } 1961 }; 1962 1963 static struct domain routedomain = { 1964 .dom_family = PF_ROUTE, 1965 .dom_name = "route", 1966 .dom_protosw = routesw, 1967 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 1968 }; 1969 1970 VNET_DOMAIN_SET(route); 1971