1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_mpath.h" 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/jail.h> 40 #include <sys/kernel.h> 41 #include <sys/domain.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/rwlock.h> 49 #include <sys/signalvar.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <net/if.h> 56 #include <net/if_var.h> 57 #include <net/if_dl.h> 58 #include <net/if_llatbl.h> 59 #include <net/if_types.h> 60 #include <net/netisr.h> 61 #include <net/raw_cb.h> 62 #include <net/route.h> 63 #include <net/route_var.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/if_ether.h> 68 #include <netinet/ip_carp.h> 69 #ifdef INET6 70 #include <netinet6/ip6_var.h> 71 #include <netinet6/scope6_var.h> 72 #endif 73 74 #ifdef COMPAT_FREEBSD32 75 #include <sys/mount.h> 76 #include <compat/freebsd32/freebsd32.h> 77 78 struct if_msghdr32 { 79 uint16_t ifm_msglen; 80 uint8_t ifm_version; 81 uint8_t ifm_type; 82 int32_t ifm_addrs; 83 int32_t ifm_flags; 84 uint16_t ifm_index; 85 struct if_data ifm_data; 86 }; 87 88 struct if_msghdrl32 { 89 uint16_t ifm_msglen; 90 uint8_t ifm_version; 91 uint8_t ifm_type; 92 int32_t ifm_addrs; 93 int32_t ifm_flags; 94 uint16_t ifm_index; 95 uint16_t _ifm_spare1; 96 uint16_t ifm_len; 97 uint16_t ifm_data_off; 98 struct if_data ifm_data; 99 }; 100 101 struct ifa_msghdrl32 { 102 uint16_t ifam_msglen; 103 uint8_t ifam_version; 104 uint8_t ifam_type; 105 int32_t ifam_addrs; 106 int32_t ifam_flags; 107 uint16_t ifam_index; 108 uint16_t _ifam_spare1; 109 uint16_t ifam_len; 110 uint16_t ifam_data_off; 111 int32_t ifam_metric; 112 struct if_data ifam_data; 113 }; 114 115 #define SA_SIZE32(sa) \ 116 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 117 sizeof(int) : \ 118 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 119 120 #endif /* COMPAT_FREEBSD32 */ 121 122 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 123 124 /* NB: these are not modified */ 125 static struct sockaddr route_src = { 2, PF_ROUTE, }; 126 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 127 128 /* These are external hooks for CARP. */ 129 int (*carp_get_vhid_p)(struct ifaddr *); 130 131 /* 132 * Used by rtsock/raw_input callback code to decide whether to filter the update 133 * notification to a socket bound to a particular FIB. 134 */ 135 #define RTS_FILTER_FIB M_PROTO8 136 137 typedef struct { 138 int ip_count; /* attached w/ AF_INET */ 139 int ip6_count; /* attached w/ AF_INET6 */ 140 int any_count; /* total attached */ 141 } route_cb_t; 142 static VNET_DEFINE(route_cb_t, route_cb); 143 #define V_route_cb VNET(route_cb) 144 145 struct mtx rtsock_mtx; 146 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 147 148 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 149 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 150 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 151 152 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 153 154 struct walkarg { 155 int w_tmemsize; 156 int w_op, w_arg; 157 caddr_t w_tmem; 158 struct sysctl_req *w_req; 159 }; 160 161 static void rts_input(struct mbuf *m); 162 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 163 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 164 struct walkarg *w, int *plen); 165 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 166 struct rt_addrinfo *rtinfo); 167 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 168 static int sysctl_iflist(int af, struct walkarg *w); 169 static int sysctl_ifmalist(int af, struct walkarg *w); 170 static int route_output(struct mbuf *m, struct socket *so, ...); 171 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 172 static void rt_dispatch(struct mbuf *, sa_family_t); 173 static struct sockaddr *rtsock_fix_netmask(struct sockaddr *dst, 174 struct sockaddr *smask, struct sockaddr_storage *dmask); 175 176 static struct netisr_handler rtsock_nh = { 177 .nh_name = "rtsock", 178 .nh_handler = rts_input, 179 .nh_proto = NETISR_ROUTE, 180 .nh_policy = NETISR_POLICY_SOURCE, 181 }; 182 183 static int 184 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 185 { 186 int error, qlimit; 187 188 netisr_getqlimit(&rtsock_nh, &qlimit); 189 error = sysctl_handle_int(oidp, &qlimit, 0, req); 190 if (error || !req->newptr) 191 return (error); 192 if (qlimit < 1) 193 return (EINVAL); 194 return (netisr_setqlimit(&rtsock_nh, qlimit)); 195 } 196 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 197 0, 0, sysctl_route_netisr_maxqlen, "I", 198 "maximum routing socket dispatch queue length"); 199 200 static void 201 vnet_rts_init(void) 202 { 203 int tmp; 204 205 if (IS_DEFAULT_VNET(curvnet)) { 206 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 207 rtsock_nh.nh_qlimit = tmp; 208 netisr_register(&rtsock_nh); 209 } 210 #ifdef VIMAGE 211 else 212 netisr_register_vnet(&rtsock_nh); 213 #endif 214 } 215 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 216 vnet_rts_init, 0); 217 218 #ifdef VIMAGE 219 static void 220 vnet_rts_uninit(void) 221 { 222 223 netisr_unregister_vnet(&rtsock_nh); 224 } 225 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 226 vnet_rts_uninit, 0); 227 #endif 228 229 static int 230 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 231 struct rawcb *rp) 232 { 233 int fibnum; 234 235 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 236 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 237 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 238 239 /* No filtering requested. */ 240 if ((m->m_flags & RTS_FILTER_FIB) == 0) 241 return (0); 242 243 /* Check if it is a rts and the fib matches the one of the socket. */ 244 fibnum = M_GETFIB(m); 245 if (proto->sp_family != PF_ROUTE || 246 rp->rcb_socket == NULL || 247 rp->rcb_socket->so_fibnum == fibnum) 248 return (0); 249 250 /* Filtering requested and no match, the socket shall be skipped. */ 251 return (1); 252 } 253 254 static void 255 rts_input(struct mbuf *m) 256 { 257 struct sockproto route_proto; 258 unsigned short *family; 259 struct m_tag *tag; 260 261 route_proto.sp_family = PF_ROUTE; 262 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 263 if (tag != NULL) { 264 family = (unsigned short *)(tag + 1); 265 route_proto.sp_protocol = *family; 266 m_tag_delete(m, tag); 267 } else 268 route_proto.sp_protocol = 0; 269 270 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 271 } 272 273 /* 274 * It really doesn't make any sense at all for this code to share much 275 * with raw_usrreq.c, since its functionality is so restricted. XXX 276 */ 277 static void 278 rts_abort(struct socket *so) 279 { 280 281 raw_usrreqs.pru_abort(so); 282 } 283 284 static void 285 rts_close(struct socket *so) 286 { 287 288 raw_usrreqs.pru_close(so); 289 } 290 291 /* pru_accept is EOPNOTSUPP */ 292 293 static int 294 rts_attach(struct socket *so, int proto, struct thread *td) 295 { 296 struct rawcb *rp; 297 int error; 298 299 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 300 301 /* XXX */ 302 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 303 304 so->so_pcb = (caddr_t)rp; 305 so->so_fibnum = td->td_proc->p_fibnum; 306 error = raw_attach(so, proto); 307 rp = sotorawcb(so); 308 if (error) { 309 so->so_pcb = NULL; 310 free(rp, M_PCB); 311 return error; 312 } 313 RTSOCK_LOCK(); 314 switch(rp->rcb_proto.sp_protocol) { 315 case AF_INET: 316 V_route_cb.ip_count++; 317 break; 318 case AF_INET6: 319 V_route_cb.ip6_count++; 320 break; 321 } 322 V_route_cb.any_count++; 323 RTSOCK_UNLOCK(); 324 soisconnected(so); 325 so->so_options |= SO_USELOOPBACK; 326 return 0; 327 } 328 329 static int 330 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 331 { 332 333 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 334 } 335 336 static int 337 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 338 { 339 340 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 341 } 342 343 /* pru_connect2 is EOPNOTSUPP */ 344 /* pru_control is EOPNOTSUPP */ 345 346 static void 347 rts_detach(struct socket *so) 348 { 349 struct rawcb *rp = sotorawcb(so); 350 351 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 352 353 RTSOCK_LOCK(); 354 switch(rp->rcb_proto.sp_protocol) { 355 case AF_INET: 356 V_route_cb.ip_count--; 357 break; 358 case AF_INET6: 359 V_route_cb.ip6_count--; 360 break; 361 } 362 V_route_cb.any_count--; 363 RTSOCK_UNLOCK(); 364 raw_usrreqs.pru_detach(so); 365 } 366 367 static int 368 rts_disconnect(struct socket *so) 369 { 370 371 return (raw_usrreqs.pru_disconnect(so)); 372 } 373 374 /* pru_listen is EOPNOTSUPP */ 375 376 static int 377 rts_peeraddr(struct socket *so, struct sockaddr **nam) 378 { 379 380 return (raw_usrreqs.pru_peeraddr(so, nam)); 381 } 382 383 /* pru_rcvd is EOPNOTSUPP */ 384 /* pru_rcvoob is EOPNOTSUPP */ 385 386 static int 387 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 388 struct mbuf *control, struct thread *td) 389 { 390 391 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 392 } 393 394 /* pru_sense is null */ 395 396 static int 397 rts_shutdown(struct socket *so) 398 { 399 400 return (raw_usrreqs.pru_shutdown(so)); 401 } 402 403 static int 404 rts_sockaddr(struct socket *so, struct sockaddr **nam) 405 { 406 407 return (raw_usrreqs.pru_sockaddr(so, nam)); 408 } 409 410 static struct pr_usrreqs route_usrreqs = { 411 .pru_abort = rts_abort, 412 .pru_attach = rts_attach, 413 .pru_bind = rts_bind, 414 .pru_connect = rts_connect, 415 .pru_detach = rts_detach, 416 .pru_disconnect = rts_disconnect, 417 .pru_peeraddr = rts_peeraddr, 418 .pru_send = rts_send, 419 .pru_shutdown = rts_shutdown, 420 .pru_sockaddr = rts_sockaddr, 421 .pru_close = rts_close, 422 }; 423 424 #ifndef _SOCKADDR_UNION_DEFINED 425 #define _SOCKADDR_UNION_DEFINED 426 /* 427 * The union of all possible address formats we handle. 428 */ 429 union sockaddr_union { 430 struct sockaddr sa; 431 struct sockaddr_in sin; 432 struct sockaddr_in6 sin6; 433 }; 434 #endif /* _SOCKADDR_UNION_DEFINED */ 435 436 static int 437 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 438 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 439 { 440 441 /* First, see if the returned address is part of the jail. */ 442 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 443 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 444 return (0); 445 } 446 447 switch (info->rti_info[RTAX_DST]->sa_family) { 448 #ifdef INET 449 case AF_INET: 450 { 451 struct in_addr ia; 452 struct ifaddr *ifa; 453 int found; 454 455 found = 0; 456 /* 457 * Try to find an address on the given outgoing interface 458 * that belongs to the jail. 459 */ 460 IF_ADDR_RLOCK(ifp); 461 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 462 struct sockaddr *sa; 463 sa = ifa->ifa_addr; 464 if (sa->sa_family != AF_INET) 465 continue; 466 ia = ((struct sockaddr_in *)sa)->sin_addr; 467 if (prison_check_ip4(cred, &ia) == 0) { 468 found = 1; 469 break; 470 } 471 } 472 IF_ADDR_RUNLOCK(ifp); 473 if (!found) { 474 /* 475 * As a last resort return the 'default' jail address. 476 */ 477 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 478 sin_addr; 479 if (prison_get_ip4(cred, &ia) != 0) 480 return (ESRCH); 481 } 482 bzero(&saun->sin, sizeof(struct sockaddr_in)); 483 saun->sin.sin_len = sizeof(struct sockaddr_in); 484 saun->sin.sin_family = AF_INET; 485 saun->sin.sin_addr.s_addr = ia.s_addr; 486 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 487 break; 488 } 489 #endif 490 #ifdef INET6 491 case AF_INET6: 492 { 493 struct in6_addr ia6; 494 struct ifaddr *ifa; 495 int found; 496 497 found = 0; 498 /* 499 * Try to find an address on the given outgoing interface 500 * that belongs to the jail. 501 */ 502 IF_ADDR_RLOCK(ifp); 503 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 504 struct sockaddr *sa; 505 sa = ifa->ifa_addr; 506 if (sa->sa_family != AF_INET6) 507 continue; 508 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 509 &ia6, sizeof(struct in6_addr)); 510 if (prison_check_ip6(cred, &ia6) == 0) { 511 found = 1; 512 break; 513 } 514 } 515 IF_ADDR_RUNLOCK(ifp); 516 if (!found) { 517 /* 518 * As a last resort return the 'default' jail address. 519 */ 520 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 521 sin6_addr; 522 if (prison_get_ip6(cred, &ia6) != 0) 523 return (ESRCH); 524 } 525 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 526 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 527 saun->sin6.sin6_family = AF_INET6; 528 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 529 if (sa6_recoverscope(&saun->sin6) != 0) 530 return (ESRCH); 531 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 532 break; 533 } 534 #endif 535 default: 536 return (ESRCH); 537 } 538 return (0); 539 } 540 541 /*ARGSUSED*/ 542 static int 543 route_output(struct mbuf *m, struct socket *so, ...) 544 { 545 struct rt_msghdr *rtm = NULL; 546 struct rtentry *rt = NULL; 547 struct rib_head *rnh; 548 struct rt_addrinfo info; 549 struct sockaddr_storage ss; 550 #ifdef INET6 551 struct sockaddr_in6 *sin6; 552 int i, rti_need_deembed = 0; 553 #endif 554 int alloc_len = 0, len, error = 0, fibnum; 555 struct ifnet *ifp = NULL; 556 union sockaddr_union saun; 557 sa_family_t saf = AF_UNSPEC; 558 struct rawcb *rp = NULL; 559 struct walkarg w; 560 561 fibnum = so->so_fibnum; 562 563 #define senderr(e) { error = e; goto flush;} 564 if (m == NULL || ((m->m_len < sizeof(long)) && 565 (m = m_pullup(m, sizeof(long))) == NULL)) 566 return (ENOBUFS); 567 if ((m->m_flags & M_PKTHDR) == 0) 568 panic("route_output"); 569 len = m->m_pkthdr.len; 570 if (len < sizeof(*rtm) || 571 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 572 senderr(EINVAL); 573 574 /* 575 * Most of current messages are in range 200-240 bytes, 576 * minimize possible re-allocation on reply using larger size 577 * buffer aligned on 1k boundaty. 578 */ 579 alloc_len = roundup2(len, 1024); 580 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 581 senderr(ENOBUFS); 582 583 m_copydata(m, 0, len, (caddr_t)rtm); 584 bzero(&info, sizeof(info)); 585 bzero(&w, sizeof(w)); 586 587 if (rtm->rtm_version != RTM_VERSION) { 588 /* Do not touch message since format is unknown */ 589 free(rtm, M_TEMP); 590 rtm = NULL; 591 senderr(EPROTONOSUPPORT); 592 } 593 594 /* 595 * Starting from here, it is possible 596 * to alter original message and insert 597 * caller PID and error value. 598 */ 599 600 rtm->rtm_pid = curproc->p_pid; 601 info.rti_addrs = rtm->rtm_addrs; 602 603 info.rti_mflags = rtm->rtm_inits; 604 info.rti_rmx = &rtm->rtm_rmx; 605 606 /* 607 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 608 * link-local address because rtrequest requires addresses with 609 * embedded scope id. 610 */ 611 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) 612 senderr(EINVAL); 613 614 info.rti_flags = rtm->rtm_flags; 615 if (info.rti_info[RTAX_DST] == NULL || 616 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 617 (info.rti_info[RTAX_GATEWAY] != NULL && 618 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 619 senderr(EINVAL); 620 saf = info.rti_info[RTAX_DST]->sa_family; 621 /* 622 * Verify that the caller has the appropriate privilege; RTM_GET 623 * is the only operation the non-superuser is allowed. 624 */ 625 if (rtm->rtm_type != RTM_GET) { 626 error = priv_check(curthread, PRIV_NET_ROUTE); 627 if (error) 628 senderr(error); 629 } 630 631 /* 632 * The given gateway address may be an interface address. 633 * For example, issuing a "route change" command on a route 634 * entry that was created from a tunnel, and the gateway 635 * address given is the local end point. In this case the 636 * RTF_GATEWAY flag must be cleared or the destination will 637 * not be reachable even though there is no error message. 638 */ 639 if (info.rti_info[RTAX_GATEWAY] != NULL && 640 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 641 struct rt_addrinfo ginfo; 642 struct sockaddr *gdst; 643 644 bzero(&ginfo, sizeof(ginfo)); 645 bzero(&ss, sizeof(ss)); 646 ss.ss_len = sizeof(ss); 647 648 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 649 gdst = info.rti_info[RTAX_GATEWAY]; 650 651 /* 652 * A host route through the loopback interface is 653 * installed for each interface adddress. In pre 8.0 654 * releases the interface address of a PPP link type 655 * is not reachable locally. This behavior is fixed as 656 * part of the new L2/L3 redesign and rewrite work. The 657 * signature of this interface address route is the 658 * AF_LINK sa_family type of the rt_gateway, and the 659 * rt_ifp has the IFF_LOOPBACK flag set. 660 */ 661 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 662 if (ss.ss_family == AF_LINK && 663 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 664 info.rti_flags &= ~RTF_GATEWAY; 665 info.rti_flags |= RTF_GWFLAG_COMPAT; 666 } 667 rib_free_info(&ginfo); 668 } 669 } 670 671 switch (rtm->rtm_type) { 672 struct rtentry *saved_nrt; 673 674 case RTM_ADD: 675 case RTM_CHANGE: 676 if (rtm->rtm_type == RTM_ADD) { 677 if (info.rti_info[RTAX_GATEWAY] == NULL) 678 senderr(EINVAL); 679 } 680 saved_nrt = NULL; 681 682 /* support for new ARP code */ 683 if (info.rti_info[RTAX_GATEWAY] != NULL && 684 info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 685 (rtm->rtm_flags & RTF_LLDATA) != 0) { 686 error = lla_rt_output(rtm, &info); 687 #ifdef INET6 688 if (error == 0) 689 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 690 #endif 691 break; 692 } 693 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt, 694 fibnum); 695 if (error == 0 && saved_nrt != NULL) { 696 #ifdef INET6 697 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 698 #endif 699 RT_LOCK(saved_nrt); 700 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 701 RT_REMREF(saved_nrt); 702 RT_UNLOCK(saved_nrt); 703 } 704 break; 705 706 case RTM_DELETE: 707 saved_nrt = NULL; 708 /* support for new ARP code */ 709 if (info.rti_info[RTAX_GATEWAY] && 710 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 711 (rtm->rtm_flags & RTF_LLDATA) != 0) { 712 error = lla_rt_output(rtm, &info); 713 #ifdef INET6 714 if (error == 0) 715 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 716 #endif 717 break; 718 } 719 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum); 720 if (error == 0) { 721 RT_LOCK(saved_nrt); 722 rt = saved_nrt; 723 goto report; 724 } 725 #ifdef INET6 726 /* rt_msg2() will not be used when RTM_DELETE fails. */ 727 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 728 #endif 729 break; 730 731 case RTM_GET: 732 rnh = rt_tables_get_rnh(fibnum, saf); 733 if (rnh == NULL) 734 senderr(EAFNOSUPPORT); 735 736 RIB_RLOCK(rnh); 737 738 if (info.rti_info[RTAX_NETMASK] == NULL && 739 rtm->rtm_type == RTM_GET) { 740 /* 741 * Provide longest prefix match for 742 * address lookup (no mask). 743 * 'route -n get addr' 744 */ 745 rt = (struct rtentry *) rnh->rnh_matchaddr( 746 info.rti_info[RTAX_DST], &rnh->head); 747 } else 748 rt = (struct rtentry *) rnh->rnh_lookup( 749 info.rti_info[RTAX_DST], 750 info.rti_info[RTAX_NETMASK], &rnh->head); 751 752 if (rt == NULL) { 753 RIB_RUNLOCK(rnh); 754 senderr(ESRCH); 755 } 756 #ifdef RADIX_MPATH 757 /* 758 * for RTM_CHANGE/LOCK, if we got multipath routes, 759 * we require users to specify a matching RTAX_GATEWAY. 760 * 761 * for RTM_GET, gate is optional even with multipath. 762 * if gate == NULL the first match is returned. 763 * (no need to call rt_mpath_matchgate if gate == NULL) 764 */ 765 if (rt_mpath_capable(rnh) && 766 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 767 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 768 if (!rt) { 769 RIB_RUNLOCK(rnh); 770 senderr(ESRCH); 771 } 772 } 773 #endif 774 /* 775 * If performing proxied L2 entry insertion, and 776 * the actual PPP host entry is found, perform 777 * another search to retrieve the prefix route of 778 * the local end point of the PPP link. 779 */ 780 if (rtm->rtm_flags & RTF_ANNOUNCE) { 781 struct sockaddr laddr; 782 783 if (rt->rt_ifp != NULL && 784 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 785 struct ifaddr *ifa; 786 787 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1, 788 RT_ALL_FIBS); 789 if (ifa != NULL) 790 rt_maskedcopy(ifa->ifa_addr, 791 &laddr, 792 ifa->ifa_netmask); 793 } else 794 rt_maskedcopy(rt->rt_ifa->ifa_addr, 795 &laddr, 796 rt->rt_ifa->ifa_netmask); 797 /* 798 * refactor rt and no lock operation necessary 799 */ 800 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 801 &rnh->head); 802 if (rt == NULL) { 803 RIB_RUNLOCK(rnh); 804 senderr(ESRCH); 805 } 806 } 807 RT_LOCK(rt); 808 RT_ADDREF(rt); 809 RIB_RUNLOCK(rnh); 810 811 report: 812 RT_LOCK_ASSERT(rt); 813 if ((rt->rt_flags & RTF_HOST) == 0 814 ? jailed_without_vnet(curthread->td_ucred) 815 : prison_if(curthread->td_ucred, 816 rt_key(rt)) != 0) { 817 RT_UNLOCK(rt); 818 senderr(ESRCH); 819 } 820 info.rti_info[RTAX_DST] = rt_key(rt); 821 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 822 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 823 rt_mask(rt), &ss); 824 info.rti_info[RTAX_GENMASK] = 0; 825 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 826 ifp = rt->rt_ifp; 827 if (ifp) { 828 info.rti_info[RTAX_IFP] = 829 ifp->if_addr->ifa_addr; 830 error = rtm_get_jailed(&info, ifp, rt, 831 &saun, curthread->td_ucred); 832 if (error != 0) { 833 RT_UNLOCK(rt); 834 senderr(error); 835 } 836 if (ifp->if_flags & IFF_POINTOPOINT) 837 info.rti_info[RTAX_BRD] = 838 rt->rt_ifa->ifa_dstaddr; 839 rtm->rtm_index = ifp->if_index; 840 } else { 841 info.rti_info[RTAX_IFP] = NULL; 842 info.rti_info[RTAX_IFA] = NULL; 843 } 844 } else if ((ifp = rt->rt_ifp) != NULL) { 845 rtm->rtm_index = ifp->if_index; 846 } 847 848 /* Check if we need to realloc storage */ 849 rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len); 850 if (len > alloc_len) { 851 struct rt_msghdr *new_rtm; 852 new_rtm = malloc(len, M_TEMP, M_NOWAIT); 853 if (new_rtm == NULL) { 854 RT_UNLOCK(rt); 855 senderr(ENOBUFS); 856 } 857 bcopy(rtm, new_rtm, rtm->rtm_msglen); 858 free(rtm, M_TEMP); 859 rtm = new_rtm; 860 alloc_len = len; 861 } 862 863 w.w_tmem = (caddr_t)rtm; 864 w.w_tmemsize = alloc_len; 865 rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len); 866 867 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 868 rtm->rtm_flags = RTF_GATEWAY | 869 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 870 else 871 rtm->rtm_flags = rt->rt_flags; 872 rt_getmetrics(rt, &rtm->rtm_rmx); 873 rtm->rtm_addrs = info.rti_addrs; 874 875 RT_UNLOCK(rt); 876 break; 877 878 default: 879 senderr(EOPNOTSUPP); 880 } 881 882 flush: 883 if (rt != NULL) 884 RTFREE(rt); 885 /* 886 * Check to see if we don't want our own messages. 887 */ 888 if ((so->so_options & SO_USELOOPBACK) == 0) { 889 if (V_route_cb.any_count <= 1) { 890 if (rtm != NULL) 891 free(rtm, M_TEMP); 892 m_freem(m); 893 return (error); 894 } 895 /* There is another listener, so construct message */ 896 rp = sotorawcb(so); 897 } 898 899 if (rtm != NULL) { 900 #ifdef INET6 901 if (rti_need_deembed) { 902 /* sin6_scope_id is recovered before sending rtm. */ 903 sin6 = (struct sockaddr_in6 *)&ss; 904 for (i = 0; i < RTAX_MAX; i++) { 905 if (info.rti_info[i] == NULL) 906 continue; 907 if (info.rti_info[i]->sa_family != AF_INET6) 908 continue; 909 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 910 if (sa6_recoverscope(sin6) == 0) 911 bcopy(sin6, info.rti_info[i], 912 sizeof(*sin6)); 913 } 914 } 915 #endif 916 if (error != 0) 917 rtm->rtm_errno = error; 918 else 919 rtm->rtm_flags |= RTF_DONE; 920 921 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 922 if (m->m_pkthdr.len < rtm->rtm_msglen) { 923 m_freem(m); 924 m = NULL; 925 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 926 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 927 928 free(rtm, M_TEMP); 929 } 930 if (m != NULL) { 931 M_SETFIB(m, fibnum); 932 m->m_flags |= RTS_FILTER_FIB; 933 if (rp) { 934 /* 935 * XXX insure we don't get a copy by 936 * invalidating our protocol 937 */ 938 unsigned short family = rp->rcb_proto.sp_family; 939 rp->rcb_proto.sp_family = 0; 940 rt_dispatch(m, saf); 941 rp->rcb_proto.sp_family = family; 942 } else 943 rt_dispatch(m, saf); 944 } 945 946 return (error); 947 } 948 949 static void 950 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 951 { 952 953 bzero(out, sizeof(*out)); 954 out->rmx_mtu = rt->rt_mtu; 955 out->rmx_weight = rt->rt_weight; 956 out->rmx_pksent = counter_u64_fetch(rt->rt_pksent); 957 /* Kernel -> userland timebase conversion. */ 958 out->rmx_expire = rt->rt_expire ? 959 rt->rt_expire - time_uptime + time_second : 0; 960 } 961 962 /* 963 * Extract the addresses of the passed sockaddrs. 964 * Do a little sanity checking so as to avoid bad memory references. 965 * This data is derived straight from userland. 966 */ 967 static int 968 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 969 { 970 struct sockaddr *sa; 971 int i; 972 973 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 974 if ((rtinfo->rti_addrs & (1 << i)) == 0) 975 continue; 976 sa = (struct sockaddr *)cp; 977 /* 978 * It won't fit. 979 */ 980 if (cp + sa->sa_len > cplim) 981 return (EINVAL); 982 /* 983 * there are no more.. quit now 984 * If there are more bits, they are in error. 985 * I've seen this. route(1) can evidently generate these. 986 * This causes kernel to core dump. 987 * for compatibility, If we see this, point to a safe address. 988 */ 989 if (sa->sa_len == 0) { 990 rtinfo->rti_info[i] = &sa_zero; 991 return (0); /* should be EINVAL but for compat */ 992 } 993 /* accept it */ 994 #ifdef INET6 995 if (sa->sa_family == AF_INET6) 996 sa6_embedscope((struct sockaddr_in6 *)sa, 997 V_ip6_use_defzone); 998 #endif 999 rtinfo->rti_info[i] = sa; 1000 cp += SA_SIZE(sa); 1001 } 1002 return (0); 1003 } 1004 1005 /* 1006 * Fill in @dmask with valid netmask leaving original @smask 1007 * intact. Mostly used with radix netmasks. 1008 */ 1009 static struct sockaddr * 1010 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask, 1011 struct sockaddr_storage *dmask) 1012 { 1013 if (dst == NULL || smask == NULL) 1014 return (NULL); 1015 1016 memset(dmask, 0, dst->sa_len); 1017 memcpy(dmask, smask, smask->sa_len); 1018 dmask->ss_len = dst->sa_len; 1019 dmask->ss_family = dst->sa_family; 1020 1021 return ((struct sockaddr *)dmask); 1022 } 1023 1024 /* 1025 * Writes information related to @rtinfo object to newly-allocated mbuf. 1026 * Assumes MCLBYTES is enough to construct any message. 1027 * Used for OS notifications of vaious events (if/ifa announces,etc) 1028 * 1029 * Returns allocated mbuf or NULL on failure. 1030 */ 1031 static struct mbuf * 1032 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1033 { 1034 struct rt_msghdr *rtm; 1035 struct mbuf *m; 1036 int i; 1037 struct sockaddr *sa; 1038 #ifdef INET6 1039 struct sockaddr_storage ss; 1040 struct sockaddr_in6 *sin6; 1041 #endif 1042 int len, dlen; 1043 1044 switch (type) { 1045 1046 case RTM_DELADDR: 1047 case RTM_NEWADDR: 1048 len = sizeof(struct ifa_msghdr); 1049 break; 1050 1051 case RTM_DELMADDR: 1052 case RTM_NEWMADDR: 1053 len = sizeof(struct ifma_msghdr); 1054 break; 1055 1056 case RTM_IFINFO: 1057 len = sizeof(struct if_msghdr); 1058 break; 1059 1060 case RTM_IFANNOUNCE: 1061 case RTM_IEEE80211: 1062 len = sizeof(struct if_announcemsghdr); 1063 break; 1064 1065 default: 1066 len = sizeof(struct rt_msghdr); 1067 } 1068 1069 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1070 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1071 if (len > MHLEN) 1072 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1073 else 1074 m = m_gethdr(M_NOWAIT, MT_DATA); 1075 if (m == NULL) 1076 return (m); 1077 1078 m->m_pkthdr.len = m->m_len = len; 1079 rtm = mtod(m, struct rt_msghdr *); 1080 bzero((caddr_t)rtm, len); 1081 for (i = 0; i < RTAX_MAX; i++) { 1082 if ((sa = rtinfo->rti_info[i]) == NULL) 1083 continue; 1084 rtinfo->rti_addrs |= (1 << i); 1085 dlen = SA_SIZE(sa); 1086 #ifdef INET6 1087 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1088 sin6 = (struct sockaddr_in6 *)&ss; 1089 bcopy(sa, sin6, sizeof(*sin6)); 1090 if (sa6_recoverscope(sin6) == 0) 1091 sa = (struct sockaddr *)sin6; 1092 } 1093 #endif 1094 m_copyback(m, len, dlen, (caddr_t)sa); 1095 len += dlen; 1096 } 1097 if (m->m_pkthdr.len != len) { 1098 m_freem(m); 1099 return (NULL); 1100 } 1101 rtm->rtm_msglen = len; 1102 rtm->rtm_version = RTM_VERSION; 1103 rtm->rtm_type = type; 1104 return (m); 1105 } 1106 1107 /* 1108 * Writes information related to @rtinfo object to preallocated buffer. 1109 * Stores needed size in @plen. If @w is NULL, calculates size without 1110 * writing. 1111 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1112 * 1113 * Returns 0 on success. 1114 * 1115 */ 1116 static int 1117 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1118 { 1119 int i; 1120 int len, buflen = 0, dlen; 1121 caddr_t cp = NULL; 1122 struct rt_msghdr *rtm = NULL; 1123 #ifdef INET6 1124 struct sockaddr_storage ss; 1125 struct sockaddr_in6 *sin6; 1126 #endif 1127 #ifdef COMPAT_FREEBSD32 1128 bool compat32 = false; 1129 #endif 1130 1131 switch (type) { 1132 1133 case RTM_DELADDR: 1134 case RTM_NEWADDR: 1135 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1136 #ifdef COMPAT_FREEBSD32 1137 if (w->w_req->flags & SCTL_MASK32) { 1138 len = sizeof(struct ifa_msghdrl32); 1139 compat32 = true; 1140 } else 1141 #endif 1142 len = sizeof(struct ifa_msghdrl); 1143 } else 1144 len = sizeof(struct ifa_msghdr); 1145 break; 1146 1147 case RTM_IFINFO: 1148 #ifdef COMPAT_FREEBSD32 1149 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1150 if (w->w_op == NET_RT_IFLISTL) 1151 len = sizeof(struct if_msghdrl32); 1152 else 1153 len = sizeof(struct if_msghdr32); 1154 compat32 = true; 1155 break; 1156 } 1157 #endif 1158 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1159 len = sizeof(struct if_msghdrl); 1160 else 1161 len = sizeof(struct if_msghdr); 1162 break; 1163 1164 case RTM_NEWMADDR: 1165 len = sizeof(struct ifma_msghdr); 1166 break; 1167 1168 default: 1169 len = sizeof(struct rt_msghdr); 1170 } 1171 1172 if (w != NULL) { 1173 rtm = (struct rt_msghdr *)w->w_tmem; 1174 buflen = w->w_tmemsize - len; 1175 cp = (caddr_t)w->w_tmem + len; 1176 } 1177 1178 rtinfo->rti_addrs = 0; 1179 for (i = 0; i < RTAX_MAX; i++) { 1180 struct sockaddr *sa; 1181 1182 if ((sa = rtinfo->rti_info[i]) == NULL) 1183 continue; 1184 rtinfo->rti_addrs |= (1 << i); 1185 #ifdef COMPAT_FREEBSD32 1186 if (compat32) 1187 dlen = SA_SIZE32(sa); 1188 else 1189 #endif 1190 dlen = SA_SIZE(sa); 1191 if (cp != NULL && buflen >= dlen) { 1192 #ifdef INET6 1193 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1194 sin6 = (struct sockaddr_in6 *)&ss; 1195 bcopy(sa, sin6, sizeof(*sin6)); 1196 if (sa6_recoverscope(sin6) == 0) 1197 sa = (struct sockaddr *)sin6; 1198 } 1199 #endif 1200 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1201 cp += dlen; 1202 buflen -= dlen; 1203 } else if (cp != NULL) { 1204 /* 1205 * Buffer too small. Count needed size 1206 * and return with error. 1207 */ 1208 cp = NULL; 1209 } 1210 1211 len += dlen; 1212 } 1213 1214 if (cp != NULL) { 1215 dlen = ALIGN(len) - len; 1216 if (buflen < dlen) 1217 cp = NULL; 1218 else 1219 buflen -= dlen; 1220 } 1221 len = ALIGN(len); 1222 1223 if (cp != NULL) { 1224 /* fill header iff buffer is large enough */ 1225 rtm->rtm_version = RTM_VERSION; 1226 rtm->rtm_type = type; 1227 rtm->rtm_msglen = len; 1228 } 1229 1230 *plen = len; 1231 1232 if (w != NULL && cp == NULL) 1233 return (ENOBUFS); 1234 1235 return (0); 1236 } 1237 1238 /* 1239 * This routine is called to generate a message from the routing 1240 * socket indicating that a redirect has occurred, a routing lookup 1241 * has failed, or that a protocol has detected timeouts to a particular 1242 * destination. 1243 */ 1244 void 1245 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1246 int fibnum) 1247 { 1248 struct rt_msghdr *rtm; 1249 struct mbuf *m; 1250 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1251 1252 if (V_route_cb.any_count == 0) 1253 return; 1254 m = rtsock_msg_mbuf(type, rtinfo); 1255 if (m == NULL) 1256 return; 1257 1258 if (fibnum != RT_ALL_FIBS) { 1259 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1260 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1261 M_SETFIB(m, fibnum); 1262 m->m_flags |= RTS_FILTER_FIB; 1263 } 1264 1265 rtm = mtod(m, struct rt_msghdr *); 1266 rtm->rtm_flags = RTF_DONE | flags; 1267 rtm->rtm_errno = error; 1268 rtm->rtm_addrs = rtinfo->rti_addrs; 1269 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1270 } 1271 1272 void 1273 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1274 { 1275 1276 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1277 } 1278 1279 /* 1280 * This routine is called to generate a message from the routing 1281 * socket indicating that the status of a network interface has changed. 1282 */ 1283 void 1284 rt_ifmsg(struct ifnet *ifp) 1285 { 1286 struct if_msghdr *ifm; 1287 struct mbuf *m; 1288 struct rt_addrinfo info; 1289 1290 if (V_route_cb.any_count == 0) 1291 return; 1292 bzero((caddr_t)&info, sizeof(info)); 1293 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1294 if (m == NULL) 1295 return; 1296 ifm = mtod(m, struct if_msghdr *); 1297 ifm->ifm_index = ifp->if_index; 1298 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1299 if_data_copy(ifp, &ifm->ifm_data); 1300 ifm->ifm_addrs = 0; 1301 rt_dispatch(m, AF_UNSPEC); 1302 } 1303 1304 /* 1305 * Announce interface address arrival/withdraw. 1306 * Please do not call directly, use rt_addrmsg(). 1307 * Assume input data to be valid. 1308 * Returns 0 on success. 1309 */ 1310 int 1311 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1312 { 1313 struct rt_addrinfo info; 1314 struct sockaddr *sa; 1315 int ncmd; 1316 struct mbuf *m; 1317 struct ifa_msghdr *ifam; 1318 struct ifnet *ifp = ifa->ifa_ifp; 1319 struct sockaddr_storage ss; 1320 1321 if (V_route_cb.any_count == 0) 1322 return (0); 1323 1324 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1325 1326 bzero((caddr_t)&info, sizeof(info)); 1327 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1328 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1329 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1330 info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss); 1331 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1332 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1333 return (ENOBUFS); 1334 ifam = mtod(m, struct ifa_msghdr *); 1335 ifam->ifam_index = ifp->if_index; 1336 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1337 ifam->ifam_flags = ifa->ifa_flags; 1338 ifam->ifam_addrs = info.rti_addrs; 1339 1340 if (fibnum != RT_ALL_FIBS) { 1341 M_SETFIB(m, fibnum); 1342 m->m_flags |= RTS_FILTER_FIB; 1343 } 1344 1345 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1346 1347 return (0); 1348 } 1349 1350 /* 1351 * Announce route addition/removal. 1352 * Please do not call directly, use rt_routemsg(). 1353 * Note that @rt data MAY be inconsistent/invalid: 1354 * if some userland app sends us "invalid" route message (invalid mask, 1355 * no dst, wrong address families, etc...) we need to pass it back 1356 * to app (and any other rtsock consumers) with rtm_errno field set to 1357 * non-zero value. 1358 * 1359 * Returns 0 on success. 1360 */ 1361 int 1362 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1363 int fibnum) 1364 { 1365 struct rt_addrinfo info; 1366 struct sockaddr *sa; 1367 struct mbuf *m; 1368 struct rt_msghdr *rtm; 1369 struct sockaddr_storage ss; 1370 1371 if (V_route_cb.any_count == 0) 1372 return (0); 1373 1374 bzero((caddr_t)&info, sizeof(info)); 1375 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1376 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss); 1377 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1378 if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL) 1379 return (ENOBUFS); 1380 rtm = mtod(m, struct rt_msghdr *); 1381 rtm->rtm_index = ifp->if_index; 1382 rtm->rtm_flags |= rt->rt_flags; 1383 rtm->rtm_errno = error; 1384 rtm->rtm_addrs = info.rti_addrs; 1385 1386 if (fibnum != RT_ALL_FIBS) { 1387 M_SETFIB(m, fibnum); 1388 m->m_flags |= RTS_FILTER_FIB; 1389 } 1390 1391 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1392 1393 return (0); 1394 } 1395 1396 /* 1397 * This is the analogue to the rt_newaddrmsg which performs the same 1398 * function but for multicast group memberhips. This is easier since 1399 * there is no route state to worry about. 1400 */ 1401 void 1402 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1403 { 1404 struct rt_addrinfo info; 1405 struct mbuf *m = NULL; 1406 struct ifnet *ifp = ifma->ifma_ifp; 1407 struct ifma_msghdr *ifmam; 1408 1409 if (V_route_cb.any_count == 0) 1410 return; 1411 1412 bzero((caddr_t)&info, sizeof(info)); 1413 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1414 if (ifp && ifp->if_addr) 1415 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1416 else 1417 info.rti_info[RTAX_IFP] = NULL; 1418 /* 1419 * If a link-layer address is present, present it as a ``gateway'' 1420 * (similarly to how ARP entries, e.g., are presented). 1421 */ 1422 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1423 m = rtsock_msg_mbuf(cmd, &info); 1424 if (m == NULL) 1425 return; 1426 ifmam = mtod(m, struct ifma_msghdr *); 1427 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1428 __func__)); 1429 ifmam->ifmam_index = ifp->if_index; 1430 ifmam->ifmam_addrs = info.rti_addrs; 1431 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1432 } 1433 1434 static struct mbuf * 1435 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1436 struct rt_addrinfo *info) 1437 { 1438 struct if_announcemsghdr *ifan; 1439 struct mbuf *m; 1440 1441 if (V_route_cb.any_count == 0) 1442 return NULL; 1443 bzero((caddr_t)info, sizeof(*info)); 1444 m = rtsock_msg_mbuf(type, info); 1445 if (m != NULL) { 1446 ifan = mtod(m, struct if_announcemsghdr *); 1447 ifan->ifan_index = ifp->if_index; 1448 strlcpy(ifan->ifan_name, ifp->if_xname, 1449 sizeof(ifan->ifan_name)); 1450 ifan->ifan_what = what; 1451 } 1452 return m; 1453 } 1454 1455 /* 1456 * This is called to generate routing socket messages indicating 1457 * IEEE80211 wireless events. 1458 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1459 */ 1460 void 1461 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1462 { 1463 struct mbuf *m; 1464 struct rt_addrinfo info; 1465 1466 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1467 if (m != NULL) { 1468 /* 1469 * Append the ieee80211 data. Try to stick it in the 1470 * mbuf containing the ifannounce msg; otherwise allocate 1471 * a new mbuf and append. 1472 * 1473 * NB: we assume m is a single mbuf. 1474 */ 1475 if (data_len > M_TRAILINGSPACE(m)) { 1476 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1477 if (n == NULL) { 1478 m_freem(m); 1479 return; 1480 } 1481 bcopy(data, mtod(n, void *), data_len); 1482 n->m_len = data_len; 1483 m->m_next = n; 1484 } else if (data_len > 0) { 1485 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1486 m->m_len += data_len; 1487 } 1488 if (m->m_flags & M_PKTHDR) 1489 m->m_pkthdr.len += data_len; 1490 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1491 rt_dispatch(m, AF_UNSPEC); 1492 } 1493 } 1494 1495 /* 1496 * This is called to generate routing socket messages indicating 1497 * network interface arrival and departure. 1498 */ 1499 void 1500 rt_ifannouncemsg(struct ifnet *ifp, int what) 1501 { 1502 struct mbuf *m; 1503 struct rt_addrinfo info; 1504 1505 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1506 if (m != NULL) 1507 rt_dispatch(m, AF_UNSPEC); 1508 } 1509 1510 static void 1511 rt_dispatch(struct mbuf *m, sa_family_t saf) 1512 { 1513 struct m_tag *tag; 1514 1515 /* 1516 * Preserve the family from the sockaddr, if any, in an m_tag for 1517 * use when injecting the mbuf into the routing socket buffer from 1518 * the netisr. 1519 */ 1520 if (saf != AF_UNSPEC) { 1521 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1522 M_NOWAIT); 1523 if (tag == NULL) { 1524 m_freem(m); 1525 return; 1526 } 1527 *(unsigned short *)(tag + 1) = saf; 1528 m_tag_prepend(m, tag); 1529 } 1530 #ifdef VIMAGE 1531 if (V_loif) 1532 m->m_pkthdr.rcvif = V_loif; 1533 else { 1534 m_freem(m); 1535 return; 1536 } 1537 #endif 1538 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1539 } 1540 1541 /* 1542 * This is used in dumping the kernel table via sysctl(). 1543 */ 1544 static int 1545 sysctl_dumpentry(struct radix_node *rn, void *vw) 1546 { 1547 struct walkarg *w = vw; 1548 struct rtentry *rt = (struct rtentry *)rn; 1549 int error = 0, size; 1550 struct rt_addrinfo info; 1551 struct sockaddr_storage ss; 1552 1553 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1554 return 0; 1555 if ((rt->rt_flags & RTF_HOST) == 0 1556 ? jailed_without_vnet(w->w_req->td->td_ucred) 1557 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1558 return (0); 1559 bzero((caddr_t)&info, sizeof(info)); 1560 info.rti_info[RTAX_DST] = rt_key(rt); 1561 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1562 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1563 rt_mask(rt), &ss); 1564 info.rti_info[RTAX_GENMASK] = 0; 1565 if (rt->rt_ifp) { 1566 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1567 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1568 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1569 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1570 } 1571 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1572 return (error); 1573 if (w->w_req && w->w_tmem) { 1574 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1575 1576 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1577 rtm->rtm_flags = RTF_GATEWAY | 1578 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1579 else 1580 rtm->rtm_flags = rt->rt_flags; 1581 rt_getmetrics(rt, &rtm->rtm_rmx); 1582 rtm->rtm_index = rt->rt_ifp->if_index; 1583 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1584 rtm->rtm_addrs = info.rti_addrs; 1585 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1586 return (error); 1587 } 1588 return (error); 1589 } 1590 1591 static int 1592 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1593 struct rt_addrinfo *info, struct walkarg *w, int len) 1594 { 1595 struct if_msghdrl *ifm; 1596 struct if_data *ifd; 1597 1598 ifm = (struct if_msghdrl *)w->w_tmem; 1599 1600 #ifdef COMPAT_FREEBSD32 1601 if (w->w_req->flags & SCTL_MASK32) { 1602 struct if_msghdrl32 *ifm32; 1603 1604 ifm32 = (struct if_msghdrl32 *)ifm; 1605 ifm32->ifm_addrs = info->rti_addrs; 1606 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1607 ifm32->ifm_index = ifp->if_index; 1608 ifm32->_ifm_spare1 = 0; 1609 ifm32->ifm_len = sizeof(*ifm32); 1610 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1611 ifd = &ifm32->ifm_data; 1612 } else 1613 #endif 1614 { 1615 ifm->ifm_addrs = info->rti_addrs; 1616 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1617 ifm->ifm_index = ifp->if_index; 1618 ifm->_ifm_spare1 = 0; 1619 ifm->ifm_len = sizeof(*ifm); 1620 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1621 ifd = &ifm->ifm_data; 1622 } 1623 1624 memcpy(ifd, src_ifd, sizeof(*ifd)); 1625 1626 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1627 } 1628 1629 static int 1630 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 1631 struct rt_addrinfo *info, struct walkarg *w, int len) 1632 { 1633 struct if_msghdr *ifm; 1634 struct if_data *ifd; 1635 1636 ifm = (struct if_msghdr *)w->w_tmem; 1637 1638 #ifdef COMPAT_FREEBSD32 1639 if (w->w_req->flags & SCTL_MASK32) { 1640 struct if_msghdr32 *ifm32; 1641 1642 ifm32 = (struct if_msghdr32 *)ifm; 1643 ifm32->ifm_addrs = info->rti_addrs; 1644 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1645 ifm32->ifm_index = ifp->if_index; 1646 ifd = &ifm32->ifm_data; 1647 } else 1648 #endif 1649 { 1650 ifm->ifm_addrs = info->rti_addrs; 1651 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1652 ifm->ifm_index = ifp->if_index; 1653 ifd = &ifm->ifm_data; 1654 } 1655 1656 memcpy(ifd, src_ifd, sizeof(*ifd)); 1657 1658 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1659 } 1660 1661 static int 1662 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1663 struct walkarg *w, int len) 1664 { 1665 struct ifa_msghdrl *ifam; 1666 struct if_data *ifd; 1667 1668 ifam = (struct ifa_msghdrl *)w->w_tmem; 1669 1670 #ifdef COMPAT_FREEBSD32 1671 if (w->w_req->flags & SCTL_MASK32) { 1672 struct ifa_msghdrl32 *ifam32; 1673 1674 ifam32 = (struct ifa_msghdrl32 *)ifam; 1675 ifam32->ifam_addrs = info->rti_addrs; 1676 ifam32->ifam_flags = ifa->ifa_flags; 1677 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1678 ifam32->_ifam_spare1 = 0; 1679 ifam32->ifam_len = sizeof(*ifam32); 1680 ifam32->ifam_data_off = 1681 offsetof(struct ifa_msghdrl32, ifam_data); 1682 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1683 ifd = &ifam32->ifam_data; 1684 } else 1685 #endif 1686 { 1687 ifam->ifam_addrs = info->rti_addrs; 1688 ifam->ifam_flags = ifa->ifa_flags; 1689 ifam->ifam_index = ifa->ifa_ifp->if_index; 1690 ifam->_ifam_spare1 = 0; 1691 ifam->ifam_len = sizeof(*ifam); 1692 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1693 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1694 ifd = &ifam->ifam_data; 1695 } 1696 1697 bzero(ifd, sizeof(*ifd)); 1698 ifd->ifi_datalen = sizeof(struct if_data); 1699 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1700 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1701 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1702 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1703 1704 /* Fixup if_data carp(4) vhid. */ 1705 if (carp_get_vhid_p != NULL) 1706 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1707 1708 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1709 } 1710 1711 static int 1712 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1713 struct walkarg *w, int len) 1714 { 1715 struct ifa_msghdr *ifam; 1716 1717 ifam = (struct ifa_msghdr *)w->w_tmem; 1718 ifam->ifam_addrs = info->rti_addrs; 1719 ifam->ifam_flags = ifa->ifa_flags; 1720 ifam->ifam_index = ifa->ifa_ifp->if_index; 1721 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1722 1723 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1724 } 1725 1726 static int 1727 sysctl_iflist(int af, struct walkarg *w) 1728 { 1729 struct ifnet *ifp; 1730 struct ifaddr *ifa; 1731 struct if_data ifd; 1732 struct rt_addrinfo info; 1733 int len, error = 0; 1734 struct sockaddr_storage ss; 1735 1736 bzero((caddr_t)&info, sizeof(info)); 1737 bzero(&ifd, sizeof(ifd)); 1738 IFNET_RLOCK_NOSLEEP(); 1739 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1740 if (w->w_arg && w->w_arg != ifp->if_index) 1741 continue; 1742 if_data_copy(ifp, &ifd); 1743 IF_ADDR_RLOCK(ifp); 1744 ifa = ifp->if_addr; 1745 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1746 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1747 if (error != 0) 1748 goto done; 1749 info.rti_info[RTAX_IFP] = NULL; 1750 if (w->w_req && w->w_tmem) { 1751 if (w->w_op == NET_RT_IFLISTL) 1752 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 1753 len); 1754 else 1755 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 1756 len); 1757 if (error) 1758 goto done; 1759 } 1760 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 1761 if (af && af != ifa->ifa_addr->sa_family) 1762 continue; 1763 if (prison_if(w->w_req->td->td_ucred, 1764 ifa->ifa_addr) != 0) 1765 continue; 1766 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1767 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1768 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1769 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1770 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1771 if (error != 0) 1772 goto done; 1773 if (w->w_req && w->w_tmem) { 1774 if (w->w_op == NET_RT_IFLISTL) 1775 error = sysctl_iflist_ifaml(ifa, &info, 1776 w, len); 1777 else 1778 error = sysctl_iflist_ifam(ifa, &info, 1779 w, len); 1780 if (error) 1781 goto done; 1782 } 1783 } 1784 IF_ADDR_RUNLOCK(ifp); 1785 info.rti_info[RTAX_IFA] = NULL; 1786 info.rti_info[RTAX_NETMASK] = NULL; 1787 info.rti_info[RTAX_BRD] = NULL; 1788 } 1789 done: 1790 if (ifp != NULL) 1791 IF_ADDR_RUNLOCK(ifp); 1792 IFNET_RUNLOCK_NOSLEEP(); 1793 return (error); 1794 } 1795 1796 static int 1797 sysctl_ifmalist(int af, struct walkarg *w) 1798 { 1799 struct rt_addrinfo info; 1800 struct ifaddr *ifa; 1801 struct ifmultiaddr *ifma; 1802 struct ifnet *ifp; 1803 int error, len; 1804 1805 error = 0; 1806 bzero((caddr_t)&info, sizeof(info)); 1807 1808 IFNET_RLOCK_NOSLEEP(); 1809 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1810 if (w->w_arg && w->w_arg != ifp->if_index) 1811 continue; 1812 ifa = ifp->if_addr; 1813 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1814 IF_ADDR_RLOCK(ifp); 1815 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1816 if (af && af != ifma->ifma_addr->sa_family) 1817 continue; 1818 if (prison_if(w->w_req->td->td_ucred, 1819 ifma->ifma_addr) != 0) 1820 continue; 1821 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1822 info.rti_info[RTAX_GATEWAY] = 1823 (ifma->ifma_addr->sa_family != AF_LINK) ? 1824 ifma->ifma_lladdr : NULL; 1825 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1826 if (error != 0) 1827 break; 1828 if (w->w_req && w->w_tmem) { 1829 struct ifma_msghdr *ifmam; 1830 1831 ifmam = (struct ifma_msghdr *)w->w_tmem; 1832 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1833 ifmam->ifmam_flags = 0; 1834 ifmam->ifmam_addrs = info.rti_addrs; 1835 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1836 if (error != 0) 1837 break; 1838 } 1839 } 1840 IF_ADDR_RUNLOCK(ifp); 1841 if (error != 0) 1842 break; 1843 } 1844 IFNET_RUNLOCK_NOSLEEP(); 1845 return (error); 1846 } 1847 1848 static int 1849 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1850 { 1851 int *name = (int *)arg1; 1852 u_int namelen = arg2; 1853 struct rib_head *rnh = NULL; /* silence compiler. */ 1854 int i, lim, error = EINVAL; 1855 int fib = 0; 1856 u_char af; 1857 struct walkarg w; 1858 1859 name ++; 1860 namelen--; 1861 if (req->newptr) 1862 return (EPERM); 1863 if (name[1] == NET_RT_DUMP) { 1864 if (namelen == 3) 1865 fib = req->td->td_proc->p_fibnum; 1866 else if (namelen == 4) 1867 fib = (name[3] == RT_ALL_FIBS) ? 1868 req->td->td_proc->p_fibnum : name[3]; 1869 else 1870 return ((namelen < 3) ? EISDIR : ENOTDIR); 1871 if (fib < 0 || fib >= rt_numfibs) 1872 return (EINVAL); 1873 } else if (namelen != 3) 1874 return ((namelen < 3) ? EISDIR : ENOTDIR); 1875 af = name[0]; 1876 if (af > AF_MAX) 1877 return (EINVAL); 1878 bzero(&w, sizeof(w)); 1879 w.w_op = name[1]; 1880 w.w_arg = name[2]; 1881 w.w_req = req; 1882 1883 error = sysctl_wire_old_buffer(req, 0); 1884 if (error) 1885 return (error); 1886 1887 /* 1888 * Allocate reply buffer in advance. 1889 * All rtsock messages has maximum length of u_short. 1890 */ 1891 w.w_tmemsize = 65536; 1892 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 1893 1894 switch (w.w_op) { 1895 1896 case NET_RT_DUMP: 1897 case NET_RT_FLAGS: 1898 if (af == 0) { /* dump all tables */ 1899 i = 1; 1900 lim = AF_MAX; 1901 } else /* dump only one table */ 1902 i = lim = af; 1903 1904 /* 1905 * take care of llinfo entries, the caller must 1906 * specify an AF 1907 */ 1908 if (w.w_op == NET_RT_FLAGS && 1909 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1910 if (af != 0) 1911 error = lltable_sysctl_dumparp(af, w.w_req); 1912 else 1913 error = EINVAL; 1914 break; 1915 } 1916 /* 1917 * take care of routing entries 1918 */ 1919 for (error = 0; error == 0 && i <= lim; i++) { 1920 rnh = rt_tables_get_rnh(fib, i); 1921 if (rnh != NULL) { 1922 RIB_RLOCK(rnh); 1923 error = rnh->rnh_walktree(&rnh->head, 1924 sysctl_dumpentry, &w); 1925 RIB_RUNLOCK(rnh); 1926 } else if (af != 0) 1927 error = EAFNOSUPPORT; 1928 } 1929 break; 1930 1931 case NET_RT_IFLIST: 1932 case NET_RT_IFLISTL: 1933 error = sysctl_iflist(af, &w); 1934 break; 1935 1936 case NET_RT_IFMALIST: 1937 error = sysctl_ifmalist(af, &w); 1938 break; 1939 } 1940 1941 free(w.w_tmem, M_TEMP); 1942 return (error); 1943 } 1944 1945 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1946 1947 /* 1948 * Definitions of protocols supported in the ROUTE domain. 1949 */ 1950 1951 static struct domain routedomain; /* or at least forward */ 1952 1953 static struct protosw routesw[] = { 1954 { 1955 .pr_type = SOCK_RAW, 1956 .pr_domain = &routedomain, 1957 .pr_flags = PR_ATOMIC|PR_ADDR, 1958 .pr_output = route_output, 1959 .pr_ctlinput = raw_ctlinput, 1960 .pr_init = raw_init, 1961 .pr_usrreqs = &route_usrreqs 1962 } 1963 }; 1964 1965 static struct domain routedomain = { 1966 .dom_family = PF_ROUTE, 1967 .dom_name = "route", 1968 .dom_protosw = routesw, 1969 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 1970 }; 1971 1972 VNET_DOMAIN_SET(route); 1973