1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_compat.h" 33 #include "opt_mpath.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 37 #include <sys/param.h> 38 #include <sys/jail.h> 39 #include <sys/kernel.h> 40 #include <sys/domain.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/rwlock.h> 48 #include <sys/signalvar.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/systm.h> 53 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_dl.h> 57 #include <net/if_llatbl.h> 58 #include <net/if_types.h> 59 #include <net/netisr.h> 60 #include <net/raw_cb.h> 61 #include <net/route.h> 62 #include <net/vnet.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 #include <netinet/ip_carp.h> 67 #ifdef INET6 68 #include <netinet6/ip6_var.h> 69 #include <netinet6/scope6_var.h> 70 #endif 71 72 #ifdef COMPAT_FREEBSD32 73 #include <sys/mount.h> 74 #include <compat/freebsd32/freebsd32.h> 75 76 struct if_msghdr32 { 77 uint16_t ifm_msglen; 78 uint8_t ifm_version; 79 uint8_t ifm_type; 80 int32_t ifm_addrs; 81 int32_t ifm_flags; 82 uint16_t ifm_index; 83 struct if_data ifm_data; 84 }; 85 86 struct if_msghdrl32 { 87 uint16_t ifm_msglen; 88 uint8_t ifm_version; 89 uint8_t ifm_type; 90 int32_t ifm_addrs; 91 int32_t ifm_flags; 92 uint16_t ifm_index; 93 uint16_t _ifm_spare1; 94 uint16_t ifm_len; 95 uint16_t ifm_data_off; 96 struct if_data ifm_data; 97 }; 98 99 struct ifa_msghdrl32 { 100 uint16_t ifam_msglen; 101 uint8_t ifam_version; 102 uint8_t ifam_type; 103 int32_t ifam_addrs; 104 int32_t ifam_flags; 105 uint16_t ifam_index; 106 uint16_t _ifam_spare1; 107 uint16_t ifam_len; 108 uint16_t ifam_data_off; 109 int32_t ifam_metric; 110 struct if_data ifam_data; 111 }; 112 #endif /* COMPAT_FREEBSD32 */ 113 114 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 115 116 /* NB: these are not modified */ 117 static struct sockaddr route_src = { 2, PF_ROUTE, }; 118 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 119 120 /* These are external hooks for CARP. */ 121 int (*carp_get_vhid_p)(struct ifaddr *); 122 123 /* 124 * Used by rtsock/raw_input callback code to decide whether to filter the update 125 * notification to a socket bound to a particular FIB. 126 */ 127 #define RTS_FILTER_FIB M_PROTO8 128 129 typedef struct { 130 int ip_count; /* attached w/ AF_INET */ 131 int ip6_count; /* attached w/ AF_INET6 */ 132 int any_count; /* total attached */ 133 } route_cb_t; 134 static VNET_DEFINE(route_cb_t, route_cb); 135 #define V_route_cb VNET(route_cb) 136 137 struct mtx rtsock_mtx; 138 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 139 140 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 141 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 142 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 143 144 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 145 146 struct walkarg { 147 int w_tmemsize; 148 int w_op, w_arg; 149 caddr_t w_tmem; 150 struct sysctl_req *w_req; 151 }; 152 153 static void rts_input(struct mbuf *m); 154 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 155 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 156 struct walkarg *w, int *plen); 157 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 158 struct rt_addrinfo *rtinfo); 159 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 160 static int sysctl_iflist(int af, struct walkarg *w); 161 static int sysctl_ifmalist(int af, struct walkarg *w); 162 static int route_output(struct mbuf *m, struct socket *so, ...); 163 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 164 static void rt_dispatch(struct mbuf *, sa_family_t); 165 static struct sockaddr *rtsock_fix_netmask(struct sockaddr *dst, 166 struct sockaddr *smask, struct sockaddr_storage *dmask); 167 168 static struct netisr_handler rtsock_nh = { 169 .nh_name = "rtsock", 170 .nh_handler = rts_input, 171 .nh_proto = NETISR_ROUTE, 172 .nh_policy = NETISR_POLICY_SOURCE, 173 }; 174 175 static int 176 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 177 { 178 int error, qlimit; 179 180 netisr_getqlimit(&rtsock_nh, &qlimit); 181 error = sysctl_handle_int(oidp, &qlimit, 0, req); 182 if (error || !req->newptr) 183 return (error); 184 if (qlimit < 1) 185 return (EINVAL); 186 return (netisr_setqlimit(&rtsock_nh, qlimit)); 187 } 188 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 189 0, 0, sysctl_route_netisr_maxqlen, "I", 190 "maximum routing socket dispatch queue length"); 191 192 static void 193 rts_init(void) 194 { 195 int tmp; 196 197 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 198 rtsock_nh.nh_qlimit = tmp; 199 netisr_register(&rtsock_nh); 200 } 201 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 202 203 static int 204 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 205 struct rawcb *rp) 206 { 207 int fibnum; 208 209 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 210 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 211 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 212 213 /* No filtering requested. */ 214 if ((m->m_flags & RTS_FILTER_FIB) == 0) 215 return (0); 216 217 /* Check if it is a rts and the fib matches the one of the socket. */ 218 fibnum = M_GETFIB(m); 219 if (proto->sp_family != PF_ROUTE || 220 rp->rcb_socket == NULL || 221 rp->rcb_socket->so_fibnum == fibnum) 222 return (0); 223 224 /* Filtering requested and no match, the socket shall be skipped. */ 225 return (1); 226 } 227 228 static void 229 rts_input(struct mbuf *m) 230 { 231 struct sockproto route_proto; 232 unsigned short *family; 233 struct m_tag *tag; 234 235 route_proto.sp_family = PF_ROUTE; 236 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 237 if (tag != NULL) { 238 family = (unsigned short *)(tag + 1); 239 route_proto.sp_protocol = *family; 240 m_tag_delete(m, tag); 241 } else 242 route_proto.sp_protocol = 0; 243 244 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 245 } 246 247 /* 248 * It really doesn't make any sense at all for this code to share much 249 * with raw_usrreq.c, since its functionality is so restricted. XXX 250 */ 251 static void 252 rts_abort(struct socket *so) 253 { 254 255 raw_usrreqs.pru_abort(so); 256 } 257 258 static void 259 rts_close(struct socket *so) 260 { 261 262 raw_usrreqs.pru_close(so); 263 } 264 265 /* pru_accept is EOPNOTSUPP */ 266 267 static int 268 rts_attach(struct socket *so, int proto, struct thread *td) 269 { 270 struct rawcb *rp; 271 int error; 272 273 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 274 275 /* XXX */ 276 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 277 if (rp == NULL) 278 return ENOBUFS; 279 280 so->so_pcb = (caddr_t)rp; 281 so->so_fibnum = td->td_proc->p_fibnum; 282 error = raw_attach(so, proto); 283 rp = sotorawcb(so); 284 if (error) { 285 so->so_pcb = NULL; 286 free(rp, M_PCB); 287 return error; 288 } 289 RTSOCK_LOCK(); 290 switch(rp->rcb_proto.sp_protocol) { 291 case AF_INET: 292 V_route_cb.ip_count++; 293 break; 294 case AF_INET6: 295 V_route_cb.ip6_count++; 296 break; 297 } 298 V_route_cb.any_count++; 299 RTSOCK_UNLOCK(); 300 soisconnected(so); 301 so->so_options |= SO_USELOOPBACK; 302 return 0; 303 } 304 305 static int 306 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 307 { 308 309 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 310 } 311 312 static int 313 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 314 { 315 316 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 317 } 318 319 /* pru_connect2 is EOPNOTSUPP */ 320 /* pru_control is EOPNOTSUPP */ 321 322 static void 323 rts_detach(struct socket *so) 324 { 325 struct rawcb *rp = sotorawcb(so); 326 327 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 328 329 RTSOCK_LOCK(); 330 switch(rp->rcb_proto.sp_protocol) { 331 case AF_INET: 332 V_route_cb.ip_count--; 333 break; 334 case AF_INET6: 335 V_route_cb.ip6_count--; 336 break; 337 } 338 V_route_cb.any_count--; 339 RTSOCK_UNLOCK(); 340 raw_usrreqs.pru_detach(so); 341 } 342 343 static int 344 rts_disconnect(struct socket *so) 345 { 346 347 return (raw_usrreqs.pru_disconnect(so)); 348 } 349 350 /* pru_listen is EOPNOTSUPP */ 351 352 static int 353 rts_peeraddr(struct socket *so, struct sockaddr **nam) 354 { 355 356 return (raw_usrreqs.pru_peeraddr(so, nam)); 357 } 358 359 /* pru_rcvd is EOPNOTSUPP */ 360 /* pru_rcvoob is EOPNOTSUPP */ 361 362 static int 363 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 364 struct mbuf *control, struct thread *td) 365 { 366 367 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 368 } 369 370 /* pru_sense is null */ 371 372 static int 373 rts_shutdown(struct socket *so) 374 { 375 376 return (raw_usrreqs.pru_shutdown(so)); 377 } 378 379 static int 380 rts_sockaddr(struct socket *so, struct sockaddr **nam) 381 { 382 383 return (raw_usrreqs.pru_sockaddr(so, nam)); 384 } 385 386 static struct pr_usrreqs route_usrreqs = { 387 .pru_abort = rts_abort, 388 .pru_attach = rts_attach, 389 .pru_bind = rts_bind, 390 .pru_connect = rts_connect, 391 .pru_detach = rts_detach, 392 .pru_disconnect = rts_disconnect, 393 .pru_peeraddr = rts_peeraddr, 394 .pru_send = rts_send, 395 .pru_shutdown = rts_shutdown, 396 .pru_sockaddr = rts_sockaddr, 397 .pru_close = rts_close, 398 }; 399 400 #ifndef _SOCKADDR_UNION_DEFINED 401 #define _SOCKADDR_UNION_DEFINED 402 /* 403 * The union of all possible address formats we handle. 404 */ 405 union sockaddr_union { 406 struct sockaddr sa; 407 struct sockaddr_in sin; 408 struct sockaddr_in6 sin6; 409 }; 410 #endif /* _SOCKADDR_UNION_DEFINED */ 411 412 static int 413 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 414 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 415 { 416 417 /* First, see if the returned address is part of the jail. */ 418 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 419 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 420 return (0); 421 } 422 423 switch (info->rti_info[RTAX_DST]->sa_family) { 424 #ifdef INET 425 case AF_INET: 426 { 427 struct in_addr ia; 428 struct ifaddr *ifa; 429 int found; 430 431 found = 0; 432 /* 433 * Try to find an address on the given outgoing interface 434 * that belongs to the jail. 435 */ 436 IF_ADDR_RLOCK(ifp); 437 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 438 struct sockaddr *sa; 439 sa = ifa->ifa_addr; 440 if (sa->sa_family != AF_INET) 441 continue; 442 ia = ((struct sockaddr_in *)sa)->sin_addr; 443 if (prison_check_ip4(cred, &ia) == 0) { 444 found = 1; 445 break; 446 } 447 } 448 IF_ADDR_RUNLOCK(ifp); 449 if (!found) { 450 /* 451 * As a last resort return the 'default' jail address. 452 */ 453 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 454 sin_addr; 455 if (prison_get_ip4(cred, &ia) != 0) 456 return (ESRCH); 457 } 458 bzero(&saun->sin, sizeof(struct sockaddr_in)); 459 saun->sin.sin_len = sizeof(struct sockaddr_in); 460 saun->sin.sin_family = AF_INET; 461 saun->sin.sin_addr.s_addr = ia.s_addr; 462 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 463 break; 464 } 465 #endif 466 #ifdef INET6 467 case AF_INET6: 468 { 469 struct in6_addr ia6; 470 struct ifaddr *ifa; 471 int found; 472 473 found = 0; 474 /* 475 * Try to find an address on the given outgoing interface 476 * that belongs to the jail. 477 */ 478 IF_ADDR_RLOCK(ifp); 479 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 480 struct sockaddr *sa; 481 sa = ifa->ifa_addr; 482 if (sa->sa_family != AF_INET6) 483 continue; 484 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 485 &ia6, sizeof(struct in6_addr)); 486 if (prison_check_ip6(cred, &ia6) == 0) { 487 found = 1; 488 break; 489 } 490 } 491 IF_ADDR_RUNLOCK(ifp); 492 if (!found) { 493 /* 494 * As a last resort return the 'default' jail address. 495 */ 496 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 497 sin6_addr; 498 if (prison_get_ip6(cred, &ia6) != 0) 499 return (ESRCH); 500 } 501 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 502 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 503 saun->sin6.sin6_family = AF_INET6; 504 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 505 if (sa6_recoverscope(&saun->sin6) != 0) 506 return (ESRCH); 507 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 508 break; 509 } 510 #endif 511 default: 512 return (ESRCH); 513 } 514 return (0); 515 } 516 517 /*ARGSUSED*/ 518 static int 519 route_output(struct mbuf *m, struct socket *so, ...) 520 { 521 struct rt_msghdr *rtm = NULL; 522 struct rtentry *rt = NULL; 523 struct radix_node_head *rnh; 524 struct rt_addrinfo info; 525 struct sockaddr_storage ss; 526 #ifdef INET6 527 struct sockaddr_in6 *sin6; 528 int i, rti_need_deembed = 0; 529 #endif 530 int alloc_len = 0, len, error = 0, fibnum; 531 struct ifnet *ifp = NULL; 532 union sockaddr_union saun; 533 sa_family_t saf = AF_UNSPEC; 534 struct rawcb *rp = NULL; 535 struct walkarg w; 536 537 fibnum = so->so_fibnum; 538 539 #define senderr(e) { error = e; goto flush;} 540 if (m == NULL || ((m->m_len < sizeof(long)) && 541 (m = m_pullup(m, sizeof(long))) == NULL)) 542 return (ENOBUFS); 543 if ((m->m_flags & M_PKTHDR) == 0) 544 panic("route_output"); 545 len = m->m_pkthdr.len; 546 if (len < sizeof(*rtm) || 547 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 548 senderr(EINVAL); 549 550 /* 551 * Most of current messages are in range 200-240 bytes, 552 * minimize possible re-allocation on reply using larger size 553 * buffer aligned on 1k boundaty. 554 */ 555 alloc_len = roundup2(len, 1024); 556 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 557 senderr(ENOBUFS); 558 559 m_copydata(m, 0, len, (caddr_t)rtm); 560 bzero(&info, sizeof(info)); 561 bzero(&w, sizeof(w)); 562 563 if (rtm->rtm_version != RTM_VERSION) { 564 /* Do not touch message since format is unknown */ 565 free(rtm, M_TEMP); 566 rtm = NULL; 567 senderr(EPROTONOSUPPORT); 568 } 569 570 /* 571 * Starting from here, it is possible 572 * to alter original message and insert 573 * caller PID and error value. 574 */ 575 576 rtm->rtm_pid = curproc->p_pid; 577 info.rti_addrs = rtm->rtm_addrs; 578 579 info.rti_mflags = rtm->rtm_inits; 580 info.rti_rmx = &rtm->rtm_rmx; 581 582 /* 583 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 584 * link-local address because rtrequest requires addresses with 585 * embedded scope id. 586 */ 587 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) 588 senderr(EINVAL); 589 590 info.rti_flags = rtm->rtm_flags; 591 if (info.rti_info[RTAX_DST] == NULL || 592 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 593 (info.rti_info[RTAX_GATEWAY] != NULL && 594 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 595 senderr(EINVAL); 596 saf = info.rti_info[RTAX_DST]->sa_family; 597 /* 598 * Verify that the caller has the appropriate privilege; RTM_GET 599 * is the only operation the non-superuser is allowed. 600 */ 601 if (rtm->rtm_type != RTM_GET) { 602 error = priv_check(curthread, PRIV_NET_ROUTE); 603 if (error) 604 senderr(error); 605 } 606 607 /* 608 * The given gateway address may be an interface address. 609 * For example, issuing a "route change" command on a route 610 * entry that was created from a tunnel, and the gateway 611 * address given is the local end point. In this case the 612 * RTF_GATEWAY flag must be cleared or the destination will 613 * not be reachable even though there is no error message. 614 */ 615 if (info.rti_info[RTAX_GATEWAY] != NULL && 616 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 617 struct route gw_ro; 618 619 bzero(&gw_ro, sizeof(gw_ro)); 620 gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY]; 621 rtalloc_ign_fib(&gw_ro, 0, fibnum); 622 /* 623 * A host route through the loopback interface is 624 * installed for each interface adddress. In pre 8.0 625 * releases the interface address of a PPP link type 626 * is not reachable locally. This behavior is fixed as 627 * part of the new L2/L3 redesign and rewrite work. The 628 * signature of this interface address route is the 629 * AF_LINK sa_family type of the rt_gateway, and the 630 * rt_ifp has the IFF_LOOPBACK flag set. 631 */ 632 if (gw_ro.ro_rt != NULL && 633 gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK && 634 gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) { 635 info.rti_flags &= ~RTF_GATEWAY; 636 info.rti_flags |= RTF_GWFLAG_COMPAT; 637 } 638 if (gw_ro.ro_rt != NULL) 639 RTFREE(gw_ro.ro_rt); 640 } 641 642 switch (rtm->rtm_type) { 643 struct rtentry *saved_nrt; 644 645 case RTM_ADD: 646 case RTM_CHANGE: 647 if (info.rti_info[RTAX_GATEWAY] == NULL) 648 senderr(EINVAL); 649 saved_nrt = NULL; 650 651 /* support for new ARP code */ 652 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 653 (rtm->rtm_flags & RTF_LLDATA) != 0) { 654 error = lla_rt_output(rtm, &info); 655 #ifdef INET6 656 if (error == 0) 657 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 658 #endif 659 break; 660 } 661 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt, 662 fibnum); 663 if (error == 0 && saved_nrt != NULL) { 664 #ifdef INET6 665 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 666 #endif 667 RT_LOCK(saved_nrt); 668 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 669 RT_REMREF(saved_nrt); 670 RT_UNLOCK(saved_nrt); 671 } 672 break; 673 674 case RTM_DELETE: 675 saved_nrt = NULL; 676 /* support for new ARP code */ 677 if (info.rti_info[RTAX_GATEWAY] && 678 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 679 (rtm->rtm_flags & RTF_LLDATA) != 0) { 680 error = lla_rt_output(rtm, &info); 681 #ifdef INET6 682 if (error == 0) 683 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 684 #endif 685 break; 686 } 687 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum); 688 if (error == 0) { 689 RT_LOCK(saved_nrt); 690 rt = saved_nrt; 691 goto report; 692 } 693 #ifdef INET6 694 /* rt_msg2() will not be used when RTM_DELETE fails. */ 695 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 696 #endif 697 break; 698 699 case RTM_GET: 700 rnh = rt_tables_get_rnh(fibnum, saf); 701 if (rnh == NULL) 702 senderr(EAFNOSUPPORT); 703 704 RADIX_NODE_HEAD_RLOCK(rnh); 705 706 if (info.rti_info[RTAX_NETMASK] == NULL && 707 rtm->rtm_type == RTM_GET) { 708 /* 709 * Provide logest prefix match for 710 * address lookup (no mask). 711 * 'route -n get addr' 712 */ 713 rt = (struct rtentry *) rnh->rnh_matchaddr( 714 info.rti_info[RTAX_DST], rnh); 715 } else 716 rt = (struct rtentry *) rnh->rnh_lookup( 717 info.rti_info[RTAX_DST], 718 info.rti_info[RTAX_NETMASK], rnh); 719 720 if (rt == NULL) { 721 RADIX_NODE_HEAD_RUNLOCK(rnh); 722 senderr(ESRCH); 723 } 724 #ifdef RADIX_MPATH 725 /* 726 * for RTM_CHANGE/LOCK, if we got multipath routes, 727 * we require users to specify a matching RTAX_GATEWAY. 728 * 729 * for RTM_GET, gate is optional even with multipath. 730 * if gate == NULL the first match is returned. 731 * (no need to call rt_mpath_matchgate if gate == NULL) 732 */ 733 if (rn_mpath_capable(rnh) && 734 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 735 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 736 if (!rt) { 737 RADIX_NODE_HEAD_RUNLOCK(rnh); 738 senderr(ESRCH); 739 } 740 } 741 #endif 742 /* 743 * If performing proxied L2 entry insertion, and 744 * the actual PPP host entry is found, perform 745 * another search to retrieve the prefix route of 746 * the local end point of the PPP link. 747 */ 748 if (rtm->rtm_flags & RTF_ANNOUNCE) { 749 struct sockaddr laddr; 750 751 if (rt->rt_ifp != NULL && 752 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 753 struct ifaddr *ifa; 754 755 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1, 756 RT_ALL_FIBS); 757 if (ifa != NULL) 758 rt_maskedcopy(ifa->ifa_addr, 759 &laddr, 760 ifa->ifa_netmask); 761 } else 762 rt_maskedcopy(rt->rt_ifa->ifa_addr, 763 &laddr, 764 rt->rt_ifa->ifa_netmask); 765 /* 766 * refactor rt and no lock operation necessary 767 */ 768 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh); 769 if (rt == NULL) { 770 RADIX_NODE_HEAD_RUNLOCK(rnh); 771 senderr(ESRCH); 772 } 773 } 774 RT_LOCK(rt); 775 RT_ADDREF(rt); 776 RADIX_NODE_HEAD_RUNLOCK(rnh); 777 778 report: 779 RT_LOCK_ASSERT(rt); 780 if ((rt->rt_flags & RTF_HOST) == 0 781 ? jailed_without_vnet(curthread->td_ucred) 782 : prison_if(curthread->td_ucred, 783 rt_key(rt)) != 0) { 784 RT_UNLOCK(rt); 785 senderr(ESRCH); 786 } 787 info.rti_info[RTAX_DST] = rt_key(rt); 788 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 789 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 790 rt_mask(rt), &ss); 791 info.rti_info[RTAX_GENMASK] = 0; 792 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 793 ifp = rt->rt_ifp; 794 if (ifp) { 795 info.rti_info[RTAX_IFP] = 796 ifp->if_addr->ifa_addr; 797 error = rtm_get_jailed(&info, ifp, rt, 798 &saun, curthread->td_ucred); 799 if (error != 0) { 800 RT_UNLOCK(rt); 801 senderr(error); 802 } 803 if (ifp->if_flags & IFF_POINTOPOINT) 804 info.rti_info[RTAX_BRD] = 805 rt->rt_ifa->ifa_dstaddr; 806 rtm->rtm_index = ifp->if_index; 807 } else { 808 info.rti_info[RTAX_IFP] = NULL; 809 info.rti_info[RTAX_IFA] = NULL; 810 } 811 } else if ((ifp = rt->rt_ifp) != NULL) { 812 rtm->rtm_index = ifp->if_index; 813 } 814 815 /* Check if we need to realloc storage */ 816 rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len); 817 if (len > alloc_len) { 818 struct rt_msghdr *new_rtm; 819 new_rtm = malloc(len, M_TEMP, M_NOWAIT); 820 if (new_rtm == NULL) { 821 RT_UNLOCK(rt); 822 senderr(ENOBUFS); 823 } 824 bcopy(rtm, new_rtm, rtm->rtm_msglen); 825 free(rtm, M_TEMP); 826 rtm = new_rtm; 827 alloc_len = len; 828 } 829 830 w.w_tmem = (caddr_t)rtm; 831 w.w_tmemsize = alloc_len; 832 rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len); 833 834 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 835 rtm->rtm_flags = RTF_GATEWAY | 836 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 837 else 838 rtm->rtm_flags = rt->rt_flags; 839 rt_getmetrics(rt, &rtm->rtm_rmx); 840 rtm->rtm_addrs = info.rti_addrs; 841 842 RT_UNLOCK(rt); 843 break; 844 845 default: 846 senderr(EOPNOTSUPP); 847 } 848 849 flush: 850 if (rt != NULL) 851 RTFREE(rt); 852 /* 853 * Check to see if we don't want our own messages. 854 */ 855 if ((so->so_options & SO_USELOOPBACK) == 0) { 856 if (V_route_cb.any_count <= 1) { 857 if (rtm != NULL) 858 free(rtm, M_TEMP); 859 m_freem(m); 860 return (error); 861 } 862 /* There is another listener, so construct message */ 863 rp = sotorawcb(so); 864 } 865 866 if (rtm != NULL) { 867 #ifdef INET6 868 if (rti_need_deembed) { 869 /* sin6_scope_id is recovered before sending rtm. */ 870 sin6 = (struct sockaddr_in6 *)&ss; 871 for (i = 0; i < RTAX_MAX; i++) { 872 if (info.rti_info[i] == NULL) 873 continue; 874 if (info.rti_info[i]->sa_family != AF_INET6) 875 continue; 876 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 877 if (sa6_recoverscope(sin6) == 0) 878 bcopy(sin6, info.rti_info[i], 879 sizeof(*sin6)); 880 } 881 } 882 #endif 883 if (error != 0) 884 rtm->rtm_errno = error; 885 else 886 rtm->rtm_flags |= RTF_DONE; 887 888 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 889 if (m->m_pkthdr.len < rtm->rtm_msglen) { 890 m_freem(m); 891 m = NULL; 892 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 893 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 894 895 free(rtm, M_TEMP); 896 } 897 if (m != NULL) { 898 M_SETFIB(m, fibnum); 899 m->m_flags |= RTS_FILTER_FIB; 900 if (rp) { 901 /* 902 * XXX insure we don't get a copy by 903 * invalidating our protocol 904 */ 905 unsigned short family = rp->rcb_proto.sp_family; 906 rp->rcb_proto.sp_family = 0; 907 rt_dispatch(m, saf); 908 rp->rcb_proto.sp_family = family; 909 } else 910 rt_dispatch(m, saf); 911 } 912 913 return (error); 914 } 915 916 static void 917 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 918 { 919 920 bzero(out, sizeof(*out)); 921 out->rmx_mtu = rt->rt_mtu; 922 out->rmx_weight = rt->rt_weight; 923 out->rmx_pksent = counter_u64_fetch(rt->rt_pksent); 924 /* Kernel -> userland timebase conversion. */ 925 out->rmx_expire = rt->rt_expire ? 926 rt->rt_expire - time_uptime + time_second : 0; 927 } 928 929 /* 930 * Extract the addresses of the passed sockaddrs. 931 * Do a little sanity checking so as to avoid bad memory references. 932 * This data is derived straight from userland. 933 */ 934 static int 935 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 936 { 937 struct sockaddr *sa; 938 int i; 939 940 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 941 if ((rtinfo->rti_addrs & (1 << i)) == 0) 942 continue; 943 sa = (struct sockaddr *)cp; 944 /* 945 * It won't fit. 946 */ 947 if (cp + sa->sa_len > cplim) 948 return (EINVAL); 949 /* 950 * there are no more.. quit now 951 * If there are more bits, they are in error. 952 * I've seen this. route(1) can evidently generate these. 953 * This causes kernel to core dump. 954 * for compatibility, If we see this, point to a safe address. 955 */ 956 if (sa->sa_len == 0) { 957 rtinfo->rti_info[i] = &sa_zero; 958 return (0); /* should be EINVAL but for compat */ 959 } 960 /* accept it */ 961 #ifdef INET6 962 if (sa->sa_family == AF_INET6) 963 sa6_embedscope((struct sockaddr_in6 *)sa, 964 V_ip6_use_defzone); 965 #endif 966 rtinfo->rti_info[i] = sa; 967 cp += SA_SIZE(sa); 968 } 969 return (0); 970 } 971 972 /* 973 * Fill in @dmask with valid netmask leaving original @smask 974 * intact. Mostly used with radix netmasks. 975 */ 976 static struct sockaddr * 977 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask, 978 struct sockaddr_storage *dmask) 979 { 980 if (dst == NULL || smask == NULL) 981 return (NULL); 982 983 memset(dmask, 0, dst->sa_len); 984 memcpy(dmask, smask, smask->sa_len); 985 dmask->ss_len = dst->sa_len; 986 dmask->ss_family = dst->sa_family; 987 988 return ((struct sockaddr *)dmask); 989 } 990 991 /* 992 * Writes information related to @rtinfo object to newly-allocated mbuf. 993 * Assumes MCLBYTES is enough to construct any message. 994 * Used for OS notifications of vaious events (if/ifa announces,etc) 995 * 996 * Returns allocated mbuf or NULL on failure. 997 */ 998 static struct mbuf * 999 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1000 { 1001 struct rt_msghdr *rtm; 1002 struct mbuf *m; 1003 int i; 1004 struct sockaddr *sa; 1005 #ifdef INET6 1006 struct sockaddr_storage ss; 1007 struct sockaddr_in6 *sin6; 1008 #endif 1009 int len, dlen; 1010 1011 switch (type) { 1012 1013 case RTM_DELADDR: 1014 case RTM_NEWADDR: 1015 len = sizeof(struct ifa_msghdr); 1016 break; 1017 1018 case RTM_DELMADDR: 1019 case RTM_NEWMADDR: 1020 len = sizeof(struct ifma_msghdr); 1021 break; 1022 1023 case RTM_IFINFO: 1024 len = sizeof(struct if_msghdr); 1025 break; 1026 1027 case RTM_IFANNOUNCE: 1028 case RTM_IEEE80211: 1029 len = sizeof(struct if_announcemsghdr); 1030 break; 1031 1032 default: 1033 len = sizeof(struct rt_msghdr); 1034 } 1035 1036 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1037 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1038 if (len > MHLEN) 1039 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1040 else 1041 m = m_gethdr(M_NOWAIT, MT_DATA); 1042 if (m == NULL) 1043 return (m); 1044 1045 m->m_pkthdr.len = m->m_len = len; 1046 rtm = mtod(m, struct rt_msghdr *); 1047 bzero((caddr_t)rtm, len); 1048 for (i = 0; i < RTAX_MAX; i++) { 1049 if ((sa = rtinfo->rti_info[i]) == NULL) 1050 continue; 1051 rtinfo->rti_addrs |= (1 << i); 1052 dlen = SA_SIZE(sa); 1053 #ifdef INET6 1054 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1055 sin6 = (struct sockaddr_in6 *)&ss; 1056 bcopy(sa, sin6, sizeof(*sin6)); 1057 if (sa6_recoverscope(sin6) == 0) 1058 sa = (struct sockaddr *)sin6; 1059 } 1060 #endif 1061 m_copyback(m, len, dlen, (caddr_t)sa); 1062 len += dlen; 1063 } 1064 if (m->m_pkthdr.len != len) { 1065 m_freem(m); 1066 return (NULL); 1067 } 1068 rtm->rtm_msglen = len; 1069 rtm->rtm_version = RTM_VERSION; 1070 rtm->rtm_type = type; 1071 return (m); 1072 } 1073 1074 /* 1075 * Writes information related to @rtinfo object to preallocated buffer. 1076 * Stores needed size in @plen. If @w is NULL, calculates size without 1077 * writing. 1078 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1079 * 1080 * Returns 0 on success. 1081 * 1082 */ 1083 static int 1084 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1085 { 1086 int i; 1087 int len, buflen = 0, dlen; 1088 caddr_t cp = NULL; 1089 struct rt_msghdr *rtm = NULL; 1090 #ifdef INET6 1091 struct sockaddr_storage ss; 1092 struct sockaddr_in6 *sin6; 1093 #endif 1094 1095 switch (type) { 1096 1097 case RTM_DELADDR: 1098 case RTM_NEWADDR: 1099 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1100 #ifdef COMPAT_FREEBSD32 1101 if (w->w_req->flags & SCTL_MASK32) 1102 len = sizeof(struct ifa_msghdrl32); 1103 else 1104 #endif 1105 len = sizeof(struct ifa_msghdrl); 1106 } else 1107 len = sizeof(struct ifa_msghdr); 1108 break; 1109 1110 case RTM_IFINFO: 1111 #ifdef COMPAT_FREEBSD32 1112 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1113 if (w->w_op == NET_RT_IFLISTL) 1114 len = sizeof(struct if_msghdrl32); 1115 else 1116 len = sizeof(struct if_msghdr32); 1117 break; 1118 } 1119 #endif 1120 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1121 len = sizeof(struct if_msghdrl); 1122 else 1123 len = sizeof(struct if_msghdr); 1124 break; 1125 1126 case RTM_NEWMADDR: 1127 len = sizeof(struct ifma_msghdr); 1128 break; 1129 1130 default: 1131 len = sizeof(struct rt_msghdr); 1132 } 1133 1134 if (w != NULL) { 1135 rtm = (struct rt_msghdr *)w->w_tmem; 1136 buflen = w->w_tmemsize - len; 1137 cp = (caddr_t)w->w_tmem + len; 1138 } 1139 1140 rtinfo->rti_addrs = 0; 1141 for (i = 0; i < RTAX_MAX; i++) { 1142 struct sockaddr *sa; 1143 1144 if ((sa = rtinfo->rti_info[i]) == NULL) 1145 continue; 1146 rtinfo->rti_addrs |= (1 << i); 1147 dlen = SA_SIZE(sa); 1148 if (cp != NULL && buflen >= dlen) { 1149 #ifdef INET6 1150 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1151 sin6 = (struct sockaddr_in6 *)&ss; 1152 bcopy(sa, sin6, sizeof(*sin6)); 1153 if (sa6_recoverscope(sin6) == 0) 1154 sa = (struct sockaddr *)sin6; 1155 } 1156 #endif 1157 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1158 cp += dlen; 1159 buflen -= dlen; 1160 } else if (cp != NULL) { 1161 /* 1162 * Buffer too small. Count needed size 1163 * and return with error. 1164 */ 1165 cp = NULL; 1166 } 1167 1168 len += dlen; 1169 } 1170 1171 if (cp != NULL) { 1172 dlen = ALIGN(len) - len; 1173 if (buflen < dlen) 1174 cp = NULL; 1175 else 1176 buflen -= dlen; 1177 } 1178 len = ALIGN(len); 1179 1180 if (cp != NULL) { 1181 /* fill header iff buffer is large enough */ 1182 rtm->rtm_version = RTM_VERSION; 1183 rtm->rtm_type = type; 1184 rtm->rtm_msglen = len; 1185 } 1186 1187 *plen = len; 1188 1189 if (w != NULL && cp == NULL) 1190 return (ENOBUFS); 1191 1192 return (0); 1193 } 1194 1195 /* 1196 * This routine is called to generate a message from the routing 1197 * socket indicating that a redirect has occured, a routing lookup 1198 * has failed, or that a protocol has detected timeouts to a particular 1199 * destination. 1200 */ 1201 void 1202 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1203 int fibnum) 1204 { 1205 struct rt_msghdr *rtm; 1206 struct mbuf *m; 1207 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1208 1209 if (V_route_cb.any_count == 0) 1210 return; 1211 m = rtsock_msg_mbuf(type, rtinfo); 1212 if (m == NULL) 1213 return; 1214 1215 if (fibnum != RT_ALL_FIBS) { 1216 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1217 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1218 M_SETFIB(m, fibnum); 1219 m->m_flags |= RTS_FILTER_FIB; 1220 } 1221 1222 rtm = mtod(m, struct rt_msghdr *); 1223 rtm->rtm_flags = RTF_DONE | flags; 1224 rtm->rtm_errno = error; 1225 rtm->rtm_addrs = rtinfo->rti_addrs; 1226 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1227 } 1228 1229 void 1230 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1231 { 1232 1233 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1234 } 1235 1236 /* 1237 * This routine is called to generate a message from the routing 1238 * socket indicating that the status of a network interface has changed. 1239 */ 1240 void 1241 rt_ifmsg(struct ifnet *ifp) 1242 { 1243 struct if_msghdr *ifm; 1244 struct mbuf *m; 1245 struct rt_addrinfo info; 1246 1247 if (V_route_cb.any_count == 0) 1248 return; 1249 bzero((caddr_t)&info, sizeof(info)); 1250 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1251 if (m == NULL) 1252 return; 1253 ifm = mtod(m, struct if_msghdr *); 1254 ifm->ifm_index = ifp->if_index; 1255 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1256 if_data_copy(ifp, &ifm->ifm_data); 1257 ifm->ifm_addrs = 0; 1258 rt_dispatch(m, AF_UNSPEC); 1259 } 1260 1261 /* 1262 * Announce interface address arrival/withdraw. 1263 * Please do not call directly, use rt_addrmsg(). 1264 * Assume input data to be valid. 1265 * Returns 0 on success. 1266 */ 1267 int 1268 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1269 { 1270 struct rt_addrinfo info; 1271 struct sockaddr *sa; 1272 int ncmd; 1273 struct mbuf *m; 1274 struct ifa_msghdr *ifam; 1275 struct ifnet *ifp = ifa->ifa_ifp; 1276 struct sockaddr_storage ss; 1277 1278 if (V_route_cb.any_count == 0) 1279 return (0); 1280 1281 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1282 1283 bzero((caddr_t)&info, sizeof(info)); 1284 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1285 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1286 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1287 info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss); 1288 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1289 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1290 return (ENOBUFS); 1291 ifam = mtod(m, struct ifa_msghdr *); 1292 ifam->ifam_index = ifp->if_index; 1293 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1294 ifam->ifam_flags = ifa->ifa_flags; 1295 ifam->ifam_addrs = info.rti_addrs; 1296 1297 if (fibnum != RT_ALL_FIBS) { 1298 M_SETFIB(m, fibnum); 1299 m->m_flags |= RTS_FILTER_FIB; 1300 } 1301 1302 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1303 1304 return (0); 1305 } 1306 1307 /* 1308 * Announce route addition/removal. 1309 * Please do not call directly, use rt_routemsg(). 1310 * Note that @rt data MAY be inconsistent/invalid: 1311 * if some userland app sends us "invalid" route message (invalid mask, 1312 * no dst, wrong address families, etc...) we need to pass it back 1313 * to app (and any other rtsock consumers) with rtm_errno field set to 1314 * non-zero value. 1315 * 1316 * Returns 0 on success. 1317 */ 1318 int 1319 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1320 int fibnum) 1321 { 1322 struct rt_addrinfo info; 1323 struct sockaddr *sa; 1324 struct mbuf *m; 1325 struct rt_msghdr *rtm; 1326 struct sockaddr_storage ss; 1327 1328 if (V_route_cb.any_count == 0) 1329 return (0); 1330 1331 bzero((caddr_t)&info, sizeof(info)); 1332 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1333 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss); 1334 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1335 if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL) 1336 return (ENOBUFS); 1337 rtm = mtod(m, struct rt_msghdr *); 1338 rtm->rtm_index = ifp->if_index; 1339 rtm->rtm_flags |= rt->rt_flags; 1340 rtm->rtm_errno = error; 1341 rtm->rtm_addrs = info.rti_addrs; 1342 1343 if (fibnum != RT_ALL_FIBS) { 1344 M_SETFIB(m, fibnum); 1345 m->m_flags |= RTS_FILTER_FIB; 1346 } 1347 1348 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1349 1350 return (0); 1351 } 1352 1353 /* 1354 * This is the analogue to the rt_newaddrmsg which performs the same 1355 * function but for multicast group memberhips. This is easier since 1356 * there is no route state to worry about. 1357 */ 1358 void 1359 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1360 { 1361 struct rt_addrinfo info; 1362 struct mbuf *m = NULL; 1363 struct ifnet *ifp = ifma->ifma_ifp; 1364 struct ifma_msghdr *ifmam; 1365 1366 if (V_route_cb.any_count == 0) 1367 return; 1368 1369 bzero((caddr_t)&info, sizeof(info)); 1370 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1371 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1372 /* 1373 * If a link-layer address is present, present it as a ``gateway'' 1374 * (similarly to how ARP entries, e.g., are presented). 1375 */ 1376 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1377 m = rtsock_msg_mbuf(cmd, &info); 1378 if (m == NULL) 1379 return; 1380 ifmam = mtod(m, struct ifma_msghdr *); 1381 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1382 __func__)); 1383 ifmam->ifmam_index = ifp->if_index; 1384 ifmam->ifmam_addrs = info.rti_addrs; 1385 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1386 } 1387 1388 static struct mbuf * 1389 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1390 struct rt_addrinfo *info) 1391 { 1392 struct if_announcemsghdr *ifan; 1393 struct mbuf *m; 1394 1395 if (V_route_cb.any_count == 0) 1396 return NULL; 1397 bzero((caddr_t)info, sizeof(*info)); 1398 m = rtsock_msg_mbuf(type, info); 1399 if (m != NULL) { 1400 ifan = mtod(m, struct if_announcemsghdr *); 1401 ifan->ifan_index = ifp->if_index; 1402 strlcpy(ifan->ifan_name, ifp->if_xname, 1403 sizeof(ifan->ifan_name)); 1404 ifan->ifan_what = what; 1405 } 1406 return m; 1407 } 1408 1409 /* 1410 * This is called to generate routing socket messages indicating 1411 * IEEE80211 wireless events. 1412 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1413 */ 1414 void 1415 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1416 { 1417 struct mbuf *m; 1418 struct rt_addrinfo info; 1419 1420 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1421 if (m != NULL) { 1422 /* 1423 * Append the ieee80211 data. Try to stick it in the 1424 * mbuf containing the ifannounce msg; otherwise allocate 1425 * a new mbuf and append. 1426 * 1427 * NB: we assume m is a single mbuf. 1428 */ 1429 if (data_len > M_TRAILINGSPACE(m)) { 1430 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1431 if (n == NULL) { 1432 m_freem(m); 1433 return; 1434 } 1435 bcopy(data, mtod(n, void *), data_len); 1436 n->m_len = data_len; 1437 m->m_next = n; 1438 } else if (data_len > 0) { 1439 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1440 m->m_len += data_len; 1441 } 1442 if (m->m_flags & M_PKTHDR) 1443 m->m_pkthdr.len += data_len; 1444 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1445 rt_dispatch(m, AF_UNSPEC); 1446 } 1447 } 1448 1449 /* 1450 * This is called to generate routing socket messages indicating 1451 * network interface arrival and departure. 1452 */ 1453 void 1454 rt_ifannouncemsg(struct ifnet *ifp, int what) 1455 { 1456 struct mbuf *m; 1457 struct rt_addrinfo info; 1458 1459 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1460 if (m != NULL) 1461 rt_dispatch(m, AF_UNSPEC); 1462 } 1463 1464 static void 1465 rt_dispatch(struct mbuf *m, sa_family_t saf) 1466 { 1467 struct m_tag *tag; 1468 1469 /* 1470 * Preserve the family from the sockaddr, if any, in an m_tag for 1471 * use when injecting the mbuf into the routing socket buffer from 1472 * the netisr. 1473 */ 1474 if (saf != AF_UNSPEC) { 1475 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1476 M_NOWAIT); 1477 if (tag == NULL) { 1478 m_freem(m); 1479 return; 1480 } 1481 *(unsigned short *)(tag + 1) = saf; 1482 m_tag_prepend(m, tag); 1483 } 1484 #ifdef VIMAGE 1485 if (V_loif) 1486 m->m_pkthdr.rcvif = V_loif; 1487 else { 1488 m_freem(m); 1489 return; 1490 } 1491 #endif 1492 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1493 } 1494 1495 /* 1496 * This is used in dumping the kernel table via sysctl(). 1497 */ 1498 static int 1499 sysctl_dumpentry(struct radix_node *rn, void *vw) 1500 { 1501 struct walkarg *w = vw; 1502 struct rtentry *rt = (struct rtentry *)rn; 1503 int error = 0, size; 1504 struct rt_addrinfo info; 1505 struct sockaddr_storage ss; 1506 1507 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1508 return 0; 1509 if ((rt->rt_flags & RTF_HOST) == 0 1510 ? jailed_without_vnet(w->w_req->td->td_ucred) 1511 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1512 return (0); 1513 bzero((caddr_t)&info, sizeof(info)); 1514 info.rti_info[RTAX_DST] = rt_key(rt); 1515 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1516 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1517 rt_mask(rt), &ss); 1518 info.rti_info[RTAX_GENMASK] = 0; 1519 if (rt->rt_ifp) { 1520 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1521 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1522 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1523 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1524 } 1525 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1526 return (error); 1527 if (w->w_req && w->w_tmem) { 1528 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1529 1530 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1531 rtm->rtm_flags = RTF_GATEWAY | 1532 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1533 else 1534 rtm->rtm_flags = rt->rt_flags; 1535 rt_getmetrics(rt, &rtm->rtm_rmx); 1536 rtm->rtm_index = rt->rt_ifp->if_index; 1537 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1538 rtm->rtm_addrs = info.rti_addrs; 1539 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1540 return (error); 1541 } 1542 return (error); 1543 } 1544 1545 static int 1546 sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info, 1547 struct walkarg *w, int len) 1548 { 1549 struct if_msghdrl *ifm; 1550 struct if_data *ifd; 1551 1552 ifm = (struct if_msghdrl *)w->w_tmem; 1553 1554 #ifdef COMPAT_FREEBSD32 1555 if (w->w_req->flags & SCTL_MASK32) { 1556 struct if_msghdrl32 *ifm32; 1557 1558 ifm32 = (struct if_msghdrl32 *)ifm; 1559 ifm32->ifm_addrs = info->rti_addrs; 1560 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1561 ifm32->ifm_index = ifp->if_index; 1562 ifm32->_ifm_spare1 = 0; 1563 ifm32->ifm_len = sizeof(*ifm32); 1564 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1565 ifd = &ifm32->ifm_data; 1566 } else 1567 #endif 1568 { 1569 ifm->ifm_addrs = info->rti_addrs; 1570 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1571 ifm->ifm_index = ifp->if_index; 1572 ifm->_ifm_spare1 = 0; 1573 ifm->ifm_len = sizeof(*ifm); 1574 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1575 ifd = &ifm->ifm_data; 1576 } 1577 1578 if_data_copy(ifp, ifd); 1579 1580 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1581 } 1582 1583 static int 1584 sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info, 1585 struct walkarg *w, int len) 1586 { 1587 struct if_msghdr *ifm; 1588 struct if_data *ifd; 1589 1590 ifm = (struct if_msghdr *)w->w_tmem; 1591 1592 #ifdef COMPAT_FREEBSD32 1593 if (w->w_req->flags & SCTL_MASK32) { 1594 struct if_msghdr32 *ifm32; 1595 1596 ifm32 = (struct if_msghdr32 *)ifm; 1597 ifm32->ifm_addrs = info->rti_addrs; 1598 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1599 ifm32->ifm_index = ifp->if_index; 1600 ifd = &ifm32->ifm_data; 1601 } else 1602 #endif 1603 { 1604 ifm->ifm_addrs = info->rti_addrs; 1605 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1606 ifm->ifm_index = ifp->if_index; 1607 ifd = &ifm->ifm_data; 1608 } 1609 1610 if_data_copy(ifp, ifd); 1611 1612 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1613 } 1614 1615 static int 1616 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1617 struct walkarg *w, int len) 1618 { 1619 struct ifa_msghdrl *ifam; 1620 struct if_data *ifd; 1621 1622 ifam = (struct ifa_msghdrl *)w->w_tmem; 1623 1624 #ifdef COMPAT_FREEBSD32 1625 if (w->w_req->flags & SCTL_MASK32) { 1626 struct ifa_msghdrl32 *ifam32; 1627 1628 ifam32 = (struct ifa_msghdrl32 *)ifam; 1629 ifam32->ifam_addrs = info->rti_addrs; 1630 ifam32->ifam_flags = ifa->ifa_flags; 1631 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1632 ifam32->_ifam_spare1 = 0; 1633 ifam32->ifam_len = sizeof(*ifam32); 1634 ifam32->ifam_data_off = 1635 offsetof(struct ifa_msghdrl32, ifam_data); 1636 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1637 ifd = &ifam32->ifam_data; 1638 } else 1639 #endif 1640 { 1641 ifam->ifam_addrs = info->rti_addrs; 1642 ifam->ifam_flags = ifa->ifa_flags; 1643 ifam->ifam_index = ifa->ifa_ifp->if_index; 1644 ifam->_ifam_spare1 = 0; 1645 ifam->ifam_len = sizeof(*ifam); 1646 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1647 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1648 ifd = &ifam->ifam_data; 1649 } 1650 1651 bzero(ifd, sizeof(*ifd)); 1652 ifd->ifi_datalen = sizeof(struct if_data); 1653 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1654 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1655 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1656 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1657 1658 /* Fixup if_data carp(4) vhid. */ 1659 if (carp_get_vhid_p != NULL) 1660 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1661 1662 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1663 } 1664 1665 static int 1666 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1667 struct walkarg *w, int len) 1668 { 1669 struct ifa_msghdr *ifam; 1670 1671 ifam = (struct ifa_msghdr *)w->w_tmem; 1672 ifam->ifam_addrs = info->rti_addrs; 1673 ifam->ifam_flags = ifa->ifa_flags; 1674 ifam->ifam_index = ifa->ifa_ifp->if_index; 1675 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1676 1677 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1678 } 1679 1680 static int 1681 sysctl_iflist(int af, struct walkarg *w) 1682 { 1683 struct ifnet *ifp; 1684 struct ifaddr *ifa; 1685 struct rt_addrinfo info; 1686 int len, error = 0; 1687 struct sockaddr_storage ss; 1688 1689 bzero((caddr_t)&info, sizeof(info)); 1690 IFNET_RLOCK_NOSLEEP(); 1691 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1692 if (w->w_arg && w->w_arg != ifp->if_index) 1693 continue; 1694 IF_ADDR_RLOCK(ifp); 1695 ifa = ifp->if_addr; 1696 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1697 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1698 if (error != 0) 1699 goto done; 1700 info.rti_info[RTAX_IFP] = NULL; 1701 if (w->w_req && w->w_tmem) { 1702 if (w->w_op == NET_RT_IFLISTL) 1703 error = sysctl_iflist_ifml(ifp, &info, w, len); 1704 else 1705 error = sysctl_iflist_ifm(ifp, &info, w, len); 1706 if (error) 1707 goto done; 1708 } 1709 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1710 if (af && af != ifa->ifa_addr->sa_family) 1711 continue; 1712 if (prison_if(w->w_req->td->td_ucred, 1713 ifa->ifa_addr) != 0) 1714 continue; 1715 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1716 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1717 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1718 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1719 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1720 if (error != 0) 1721 goto done; 1722 if (w->w_req && w->w_tmem) { 1723 if (w->w_op == NET_RT_IFLISTL) 1724 error = sysctl_iflist_ifaml(ifa, &info, 1725 w, len); 1726 else 1727 error = sysctl_iflist_ifam(ifa, &info, 1728 w, len); 1729 if (error) 1730 goto done; 1731 } 1732 } 1733 IF_ADDR_RUNLOCK(ifp); 1734 info.rti_info[RTAX_IFA] = NULL; 1735 info.rti_info[RTAX_NETMASK] = NULL; 1736 info.rti_info[RTAX_BRD] = NULL; 1737 } 1738 done: 1739 if (ifp != NULL) 1740 IF_ADDR_RUNLOCK(ifp); 1741 IFNET_RUNLOCK_NOSLEEP(); 1742 return (error); 1743 } 1744 1745 static int 1746 sysctl_ifmalist(int af, struct walkarg *w) 1747 { 1748 struct ifnet *ifp; 1749 struct ifmultiaddr *ifma; 1750 struct rt_addrinfo info; 1751 int len, error = 0; 1752 struct ifaddr *ifa; 1753 1754 bzero((caddr_t)&info, sizeof(info)); 1755 IFNET_RLOCK_NOSLEEP(); 1756 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1757 if (w->w_arg && w->w_arg != ifp->if_index) 1758 continue; 1759 ifa = ifp->if_addr; 1760 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1761 IF_ADDR_RLOCK(ifp); 1762 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1763 if (af && af != ifma->ifma_addr->sa_family) 1764 continue; 1765 if (prison_if(w->w_req->td->td_ucred, 1766 ifma->ifma_addr) != 0) 1767 continue; 1768 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1769 info.rti_info[RTAX_GATEWAY] = 1770 (ifma->ifma_addr->sa_family != AF_LINK) ? 1771 ifma->ifma_lladdr : NULL; 1772 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1773 if (error != 0) 1774 goto done; 1775 if (w->w_req && w->w_tmem) { 1776 struct ifma_msghdr *ifmam; 1777 1778 ifmam = (struct ifma_msghdr *)w->w_tmem; 1779 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1780 ifmam->ifmam_flags = 0; 1781 ifmam->ifmam_addrs = info.rti_addrs; 1782 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1783 if (error) { 1784 IF_ADDR_RUNLOCK(ifp); 1785 goto done; 1786 } 1787 } 1788 } 1789 IF_ADDR_RUNLOCK(ifp); 1790 } 1791 done: 1792 IFNET_RUNLOCK_NOSLEEP(); 1793 return (error); 1794 } 1795 1796 static int 1797 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1798 { 1799 int *name = (int *)arg1; 1800 u_int namelen = arg2; 1801 struct radix_node_head *rnh = NULL; /* silence compiler. */ 1802 int i, lim, error = EINVAL; 1803 int fib = 0; 1804 u_char af; 1805 struct walkarg w; 1806 1807 name ++; 1808 namelen--; 1809 if (req->newptr) 1810 return (EPERM); 1811 if (name[1] == NET_RT_DUMP) { 1812 if (namelen == 3) 1813 fib = req->td->td_proc->p_fibnum; 1814 else if (namelen == 4) 1815 fib = (name[3] == RT_ALL_FIBS) ? 1816 req->td->td_proc->p_fibnum : name[3]; 1817 else 1818 return ((namelen < 3) ? EISDIR : ENOTDIR); 1819 if (fib < 0 || fib >= rt_numfibs) 1820 return (EINVAL); 1821 } else if (namelen != 3) 1822 return ((namelen < 3) ? EISDIR : ENOTDIR); 1823 af = name[0]; 1824 if (af > AF_MAX) 1825 return (EINVAL); 1826 bzero(&w, sizeof(w)); 1827 w.w_op = name[1]; 1828 w.w_arg = name[2]; 1829 w.w_req = req; 1830 1831 error = sysctl_wire_old_buffer(req, 0); 1832 if (error) 1833 return (error); 1834 1835 /* 1836 * Allocate reply buffer in advance. 1837 * All rtsock messages has maximum length of u_short. 1838 */ 1839 w.w_tmemsize = 65536; 1840 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 1841 1842 switch (w.w_op) { 1843 1844 case NET_RT_DUMP: 1845 case NET_RT_FLAGS: 1846 if (af == 0) { /* dump all tables */ 1847 i = 1; 1848 lim = AF_MAX; 1849 } else /* dump only one table */ 1850 i = lim = af; 1851 1852 /* 1853 * take care of llinfo entries, the caller must 1854 * specify an AF 1855 */ 1856 if (w.w_op == NET_RT_FLAGS && 1857 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1858 if (af != 0) 1859 error = lltable_sysctl_dumparp(af, w.w_req); 1860 else 1861 error = EINVAL; 1862 break; 1863 } 1864 /* 1865 * take care of routing entries 1866 */ 1867 for (error = 0; error == 0 && i <= lim; i++) { 1868 rnh = rt_tables_get_rnh(fib, i); 1869 if (rnh != NULL) { 1870 RADIX_NODE_HEAD_RLOCK(rnh); 1871 error = rnh->rnh_walktree(rnh, 1872 sysctl_dumpentry, &w); 1873 RADIX_NODE_HEAD_RUNLOCK(rnh); 1874 } else if (af != 0) 1875 error = EAFNOSUPPORT; 1876 } 1877 break; 1878 1879 case NET_RT_IFLIST: 1880 case NET_RT_IFLISTL: 1881 error = sysctl_iflist(af, &w); 1882 break; 1883 1884 case NET_RT_IFMALIST: 1885 error = sysctl_ifmalist(af, &w); 1886 break; 1887 } 1888 1889 free(w.w_tmem, M_TEMP); 1890 return (error); 1891 } 1892 1893 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1894 1895 /* 1896 * Definitions of protocols supported in the ROUTE domain. 1897 */ 1898 1899 static struct domain routedomain; /* or at least forward */ 1900 1901 static struct protosw routesw[] = { 1902 { 1903 .pr_type = SOCK_RAW, 1904 .pr_domain = &routedomain, 1905 .pr_flags = PR_ATOMIC|PR_ADDR, 1906 .pr_output = route_output, 1907 .pr_ctlinput = raw_ctlinput, 1908 .pr_init = raw_init, 1909 .pr_usrreqs = &route_usrreqs 1910 } 1911 }; 1912 1913 static struct domain routedomain = { 1914 .dom_family = PF_ROUTE, 1915 .dom_name = "route", 1916 .dom_protosw = routesw, 1917 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1918 }; 1919 1920 VNET_DOMAIN_SET(route); 1921