xref: /freebsd/sys/net/rtsock.c (revision 562894f0dc310f658284863ff329906e7737a0a0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
32  * $FreeBSD$
33  */
34 #include "opt_ddb.h"
35 #include "opt_mpath.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 
39 #include <sys/param.h>
40 #include <sys/jail.h>
41 #include <sys/kernel.h>
42 #include <sys/domain.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/rmlock.h>
50 #include <sys/rwlock.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 
57 #ifdef DDB
58 #include <ddb/ddb.h>
59 #include <ddb/db_lex.h>
60 #endif
61 
62 #include <net/if.h>
63 #include <net/if_var.h>
64 #include <net/if_dl.h>
65 #include <net/if_llatbl.h>
66 #include <net/if_types.h>
67 #include <net/netisr.h>
68 #include <net/raw_cb.h>
69 #include <net/route.h>
70 #include <net/route_var.h>
71 #include <net/vnet.h>
72 
73 #include <netinet/in.h>
74 #include <netinet/if_ether.h>
75 #include <netinet/ip_carp.h>
76 #ifdef INET6
77 #include <netinet6/ip6_var.h>
78 #include <netinet6/scope6_var.h>
79 #endif
80 #include <net/route/nhop.h>
81 
82 #ifdef COMPAT_FREEBSD32
83 #include <sys/mount.h>
84 #include <compat/freebsd32/freebsd32.h>
85 
86 struct if_msghdr32 {
87 	uint16_t ifm_msglen;
88 	uint8_t	ifm_version;
89 	uint8_t	ifm_type;
90 	int32_t	ifm_addrs;
91 	int32_t	ifm_flags;
92 	uint16_t ifm_index;
93 	uint16_t _ifm_spare1;
94 	struct	if_data ifm_data;
95 };
96 
97 struct if_msghdrl32 {
98 	uint16_t ifm_msglen;
99 	uint8_t	ifm_version;
100 	uint8_t	ifm_type;
101 	int32_t	ifm_addrs;
102 	int32_t	ifm_flags;
103 	uint16_t ifm_index;
104 	uint16_t _ifm_spare1;
105 	uint16_t ifm_len;
106 	uint16_t ifm_data_off;
107 	uint32_t _ifm_spare2;
108 	struct	if_data ifm_data;
109 };
110 
111 struct ifa_msghdrl32 {
112 	uint16_t ifam_msglen;
113 	uint8_t	ifam_version;
114 	uint8_t	ifam_type;
115 	int32_t	ifam_addrs;
116 	int32_t	ifam_flags;
117 	uint16_t ifam_index;
118 	uint16_t _ifam_spare1;
119 	uint16_t ifam_len;
120 	uint16_t ifam_data_off;
121 	int32_t	ifam_metric;
122 	struct	if_data ifam_data;
123 };
124 
125 #define SA_SIZE32(sa)						\
126     (  (((struct sockaddr *)(sa))->sa_len == 0) ?		\
127 	sizeof(int)		:				\
128 	1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
129 
130 #endif /* COMPAT_FREEBSD32 */
131 
132 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
133 
134 /* NB: these are not modified */
135 static struct	sockaddr route_src = { 2, PF_ROUTE, };
136 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
137 
138 /* These are external hooks for CARP. */
139 int	(*carp_get_vhid_p)(struct ifaddr *);
140 
141 /*
142  * Used by rtsock/raw_input callback code to decide whether to filter the update
143  * notification to a socket bound to a particular FIB.
144  */
145 #define	RTS_FILTER_FIB	M_PROTO8
146 
147 typedef struct {
148 	int	ip_count;	/* attached w/ AF_INET */
149 	int	ip6_count;	/* attached w/ AF_INET6 */
150 	int	any_count;	/* total attached */
151 } route_cb_t;
152 VNET_DEFINE_STATIC(route_cb_t, route_cb);
153 #define	V_route_cb VNET(route_cb)
154 
155 struct mtx rtsock_mtx;
156 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
157 
158 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
159 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
160 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
161 
162 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
163     "");
164 
165 struct walkarg {
166 	int	w_tmemsize;
167 	int	w_op, w_arg;
168 	caddr_t	w_tmem;
169 	struct sysctl_req *w_req;
170 };
171 
172 static void	rts_input(struct mbuf *m);
173 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
174 static int	rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
175 			struct walkarg *w, int *plen);
176 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
177 			struct rt_addrinfo *rtinfo);
178 static int	sysctl_dumpentry(struct radix_node *rn, void *vw);
179 static int	sysctl_iflist(int af, struct walkarg *w);
180 static int	sysctl_ifmalist(int af, struct walkarg *w);
181 static int	route_output(struct mbuf *m, struct socket *so, ...);
182 static void	rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out);
183 static void	rt_dispatch(struct mbuf *, sa_family_t);
184 static struct sockaddr	*rtsock_fix_netmask(struct sockaddr *dst,
185 			struct sockaddr *smask, struct sockaddr_storage *dmask);
186 static int	handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
187 			struct rt_msghdr *rtm, struct rtentry **ret_nrt);
188 static int	update_rtm_from_rte(struct rt_addrinfo *info,
189 			struct rt_msghdr **prtm, int alloc_len,
190 			struct rtentry *rt);
191 static void	send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
192 			struct mbuf *m, sa_family_t saf, u_int fibnum,
193 			int rtm_errno);
194 static int	can_export_rte(struct ucred *td_ucred, const struct rtentry *rt);
195 
196 static struct netisr_handler rtsock_nh = {
197 	.nh_name = "rtsock",
198 	.nh_handler = rts_input,
199 	.nh_proto = NETISR_ROUTE,
200 	.nh_policy = NETISR_POLICY_SOURCE,
201 };
202 
203 static int
204 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
205 {
206 	int error, qlimit;
207 
208 	netisr_getqlimit(&rtsock_nh, &qlimit);
209 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
210         if (error || !req->newptr)
211                 return (error);
212 	if (qlimit < 1)
213 		return (EINVAL);
214 	return (netisr_setqlimit(&rtsock_nh, qlimit));
215 }
216 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen,
217     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
218     0, 0, sysctl_route_netisr_maxqlen, "I",
219     "maximum routing socket dispatch queue length");
220 
221 static void
222 vnet_rts_init(void)
223 {
224 	int tmp;
225 
226 	if (IS_DEFAULT_VNET(curvnet)) {
227 		if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
228 			rtsock_nh.nh_qlimit = tmp;
229 		netisr_register(&rtsock_nh);
230 	}
231 #ifdef VIMAGE
232 	 else
233 		netisr_register_vnet(&rtsock_nh);
234 #endif
235 }
236 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
237     vnet_rts_init, 0);
238 
239 #ifdef VIMAGE
240 static void
241 vnet_rts_uninit(void)
242 {
243 
244 	netisr_unregister_vnet(&rtsock_nh);
245 }
246 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
247     vnet_rts_uninit, 0);
248 #endif
249 
250 static int
251 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
252     struct rawcb *rp)
253 {
254 	int fibnum;
255 
256 	KASSERT(m != NULL, ("%s: m is NULL", __func__));
257 	KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
258 	KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
259 
260 	/* No filtering requested. */
261 	if ((m->m_flags & RTS_FILTER_FIB) == 0)
262 		return (0);
263 
264 	/* Check if it is a rts and the fib matches the one of the socket. */
265 	fibnum = M_GETFIB(m);
266 	if (proto->sp_family != PF_ROUTE ||
267 	    rp->rcb_socket == NULL ||
268 	    rp->rcb_socket->so_fibnum == fibnum)
269 		return (0);
270 
271 	/* Filtering requested and no match, the socket shall be skipped. */
272 	return (1);
273 }
274 
275 static void
276 rts_input(struct mbuf *m)
277 {
278 	struct sockproto route_proto;
279 	unsigned short *family;
280 	struct m_tag *tag;
281 
282 	route_proto.sp_family = PF_ROUTE;
283 	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
284 	if (tag != NULL) {
285 		family = (unsigned short *)(tag + 1);
286 		route_proto.sp_protocol = *family;
287 		m_tag_delete(m, tag);
288 	} else
289 		route_proto.sp_protocol = 0;
290 
291 	raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
292 }
293 
294 /*
295  * It really doesn't make any sense at all for this code to share much
296  * with raw_usrreq.c, since its functionality is so restricted.  XXX
297  */
298 static void
299 rts_abort(struct socket *so)
300 {
301 
302 	raw_usrreqs.pru_abort(so);
303 }
304 
305 static void
306 rts_close(struct socket *so)
307 {
308 
309 	raw_usrreqs.pru_close(so);
310 }
311 
312 /* pru_accept is EOPNOTSUPP */
313 
314 static int
315 rts_attach(struct socket *so, int proto, struct thread *td)
316 {
317 	struct rawcb *rp;
318 	int error;
319 
320 	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
321 
322 	/* XXX */
323 	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
324 
325 	so->so_pcb = (caddr_t)rp;
326 	so->so_fibnum = td->td_proc->p_fibnum;
327 	error = raw_attach(so, proto);
328 	rp = sotorawcb(so);
329 	if (error) {
330 		so->so_pcb = NULL;
331 		free(rp, M_PCB);
332 		return error;
333 	}
334 	RTSOCK_LOCK();
335 	switch(rp->rcb_proto.sp_protocol) {
336 	case AF_INET:
337 		V_route_cb.ip_count++;
338 		break;
339 	case AF_INET6:
340 		V_route_cb.ip6_count++;
341 		break;
342 	}
343 	V_route_cb.any_count++;
344 	RTSOCK_UNLOCK();
345 	soisconnected(so);
346 	so->so_options |= SO_USELOOPBACK;
347 	return 0;
348 }
349 
350 static int
351 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
352 {
353 
354 	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
355 }
356 
357 static int
358 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
359 {
360 
361 	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
362 }
363 
364 /* pru_connect2 is EOPNOTSUPP */
365 /* pru_control is EOPNOTSUPP */
366 
367 static void
368 rts_detach(struct socket *so)
369 {
370 	struct rawcb *rp = sotorawcb(so);
371 
372 	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
373 
374 	RTSOCK_LOCK();
375 	switch(rp->rcb_proto.sp_protocol) {
376 	case AF_INET:
377 		V_route_cb.ip_count--;
378 		break;
379 	case AF_INET6:
380 		V_route_cb.ip6_count--;
381 		break;
382 	}
383 	V_route_cb.any_count--;
384 	RTSOCK_UNLOCK();
385 	raw_usrreqs.pru_detach(so);
386 }
387 
388 static int
389 rts_disconnect(struct socket *so)
390 {
391 
392 	return (raw_usrreqs.pru_disconnect(so));
393 }
394 
395 /* pru_listen is EOPNOTSUPP */
396 
397 static int
398 rts_peeraddr(struct socket *so, struct sockaddr **nam)
399 {
400 
401 	return (raw_usrreqs.pru_peeraddr(so, nam));
402 }
403 
404 /* pru_rcvd is EOPNOTSUPP */
405 /* pru_rcvoob is EOPNOTSUPP */
406 
407 static int
408 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
409 	 struct mbuf *control, struct thread *td)
410 {
411 
412 	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
413 }
414 
415 /* pru_sense is null */
416 
417 static int
418 rts_shutdown(struct socket *so)
419 {
420 
421 	return (raw_usrreqs.pru_shutdown(so));
422 }
423 
424 static int
425 rts_sockaddr(struct socket *so, struct sockaddr **nam)
426 {
427 
428 	return (raw_usrreqs.pru_sockaddr(so, nam));
429 }
430 
431 static struct pr_usrreqs route_usrreqs = {
432 	.pru_abort =		rts_abort,
433 	.pru_attach =		rts_attach,
434 	.pru_bind =		rts_bind,
435 	.pru_connect =		rts_connect,
436 	.pru_detach =		rts_detach,
437 	.pru_disconnect =	rts_disconnect,
438 	.pru_peeraddr =		rts_peeraddr,
439 	.pru_send =		rts_send,
440 	.pru_shutdown =		rts_shutdown,
441 	.pru_sockaddr =		rts_sockaddr,
442 	.pru_close =		rts_close,
443 };
444 
445 #ifndef _SOCKADDR_UNION_DEFINED
446 #define	_SOCKADDR_UNION_DEFINED
447 /*
448  * The union of all possible address formats we handle.
449  */
450 union sockaddr_union {
451 	struct sockaddr		sa;
452 	struct sockaddr_in	sin;
453 	struct sockaddr_in6	sin6;
454 };
455 #endif /* _SOCKADDR_UNION_DEFINED */
456 
457 static int
458 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
459     struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
460 {
461 #if defined(INET) || defined(INET6)
462 	struct epoch_tracker et;
463 #endif
464 
465 	/* First, see if the returned address is part of the jail. */
466 	if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
467 		info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
468 		return (0);
469 	}
470 
471 	switch (info->rti_info[RTAX_DST]->sa_family) {
472 #ifdef INET
473 	case AF_INET:
474 	{
475 		struct in_addr ia;
476 		struct ifaddr *ifa;
477 		int found;
478 
479 		found = 0;
480 		/*
481 		 * Try to find an address on the given outgoing interface
482 		 * that belongs to the jail.
483 		 */
484 		NET_EPOCH_ENTER(et);
485 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
486 			struct sockaddr *sa;
487 			sa = ifa->ifa_addr;
488 			if (sa->sa_family != AF_INET)
489 				continue;
490 			ia = ((struct sockaddr_in *)sa)->sin_addr;
491 			if (prison_check_ip4(cred, &ia) == 0) {
492 				found = 1;
493 				break;
494 			}
495 		}
496 		NET_EPOCH_EXIT(et);
497 		if (!found) {
498 			/*
499 			 * As a last resort return the 'default' jail address.
500 			 */
501 			ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->
502 			    sin_addr;
503 			if (prison_get_ip4(cred, &ia) != 0)
504 				return (ESRCH);
505 		}
506 		bzero(&saun->sin, sizeof(struct sockaddr_in));
507 		saun->sin.sin_len = sizeof(struct sockaddr_in);
508 		saun->sin.sin_family = AF_INET;
509 		saun->sin.sin_addr.s_addr = ia.s_addr;
510 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
511 		break;
512 	}
513 #endif
514 #ifdef INET6
515 	case AF_INET6:
516 	{
517 		struct in6_addr ia6;
518 		struct ifaddr *ifa;
519 		int found;
520 
521 		found = 0;
522 		/*
523 		 * Try to find an address on the given outgoing interface
524 		 * that belongs to the jail.
525 		 */
526 		NET_EPOCH_ENTER(et);
527 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
528 			struct sockaddr *sa;
529 			sa = ifa->ifa_addr;
530 			if (sa->sa_family != AF_INET6)
531 				continue;
532 			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
533 			    &ia6, sizeof(struct in6_addr));
534 			if (prison_check_ip6(cred, &ia6) == 0) {
535 				found = 1;
536 				break;
537 			}
538 		}
539 		NET_EPOCH_EXIT(et);
540 		if (!found) {
541 			/*
542 			 * As a last resort return the 'default' jail address.
543 			 */
544 			ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->
545 			    sin6_addr;
546 			if (prison_get_ip6(cred, &ia6) != 0)
547 				return (ESRCH);
548 		}
549 		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
550 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
551 		saun->sin6.sin6_family = AF_INET6;
552 		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
553 		if (sa6_recoverscope(&saun->sin6) != 0)
554 			return (ESRCH);
555 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
556 		break;
557 	}
558 #endif
559 	default:
560 		return (ESRCH);
561 	}
562 	return (0);
563 }
564 
565 /*
566  * Fills in @info based on userland-provided @rtm message.
567  *
568  * Returns 0 on success.
569  */
570 static int
571 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info)
572 {
573 	int error;
574 	sa_family_t saf;
575 
576 	rtm->rtm_pid = curproc->p_pid;
577 	info->rti_addrs = rtm->rtm_addrs;
578 
579 	info->rti_mflags = rtm->rtm_inits;
580 	info->rti_rmx = &rtm->rtm_rmx;
581 
582 	/*
583 	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
584 	 * link-local address because rtrequest requires addresses with
585 	 * embedded scope id.
586 	 */
587 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
588 		return (EINVAL);
589 
590 	if (rtm->rtm_flags & RTF_RNH_LOCKED)
591 		return (EINVAL);
592 	info->rti_flags = rtm->rtm_flags;
593 	if (info->rti_info[RTAX_DST] == NULL ||
594 	    info->rti_info[RTAX_DST]->sa_family >= AF_MAX ||
595 	    (info->rti_info[RTAX_GATEWAY] != NULL &&
596 	     info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
597 		return (EINVAL);
598 	saf = info->rti_info[RTAX_DST]->sa_family;
599 	/*
600 	 * Verify that the caller has the appropriate privilege; RTM_GET
601 	 * is the only operation the non-superuser is allowed.
602 	 */
603 	if (rtm->rtm_type != RTM_GET) {
604 		error = priv_check(curthread, PRIV_NET_ROUTE);
605 		if (error != 0)
606 			return (error);
607 	}
608 
609 	/*
610 	 * The given gateway address may be an interface address.
611 	 * For example, issuing a "route change" command on a route
612 	 * entry that was created from a tunnel, and the gateway
613 	 * address given is the local end point. In this case the
614 	 * RTF_GATEWAY flag must be cleared or the destination will
615 	 * not be reachable even though there is no error message.
616 	 */
617 	if (info->rti_info[RTAX_GATEWAY] != NULL &&
618 	    info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
619 		struct rt_addrinfo ginfo;
620 		struct sockaddr *gdst;
621 		struct sockaddr_storage ss;
622 
623 		bzero(&ginfo, sizeof(ginfo));
624 		bzero(&ss, sizeof(ss));
625 		ss.ss_len = sizeof(ss);
626 
627 		ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
628 		gdst = info->rti_info[RTAX_GATEWAY];
629 
630 		/*
631 		 * A host route through the loopback interface is
632 		 * installed for each interface adddress. In pre 8.0
633 		 * releases the interface address of a PPP link type
634 		 * is not reachable locally. This behavior is fixed as
635 		 * part of the new L2/L3 redesign and rewrite work. The
636 		 * signature of this interface address route is the
637 		 * AF_LINK sa_family type of the rt_gateway, and the
638 		 * rt_ifp has the IFF_LOOPBACK flag set.
639 		 */
640 		if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
641 			if (ss.ss_family == AF_LINK &&
642 			    ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
643 				info->rti_flags &= ~RTF_GATEWAY;
644 				info->rti_flags |= RTF_GWFLAG_COMPAT;
645 			}
646 			rib_free_info(&ginfo);
647 		}
648 	}
649 
650 	return (0);
651 }
652 
653 /*
654  * Handles RTM_GET message from routing socket, returning matching rt.
655  *
656  * Returns:
657  * 0 on success, with locked and referenced matching rt in @rt_nrt
658  * errno of failure
659  */
660 static int
661 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
662     struct rt_msghdr *rtm, struct rtentry **ret_nrt)
663 {
664 	RIB_RLOCK_TRACKER;
665 	struct rtentry *rt;
666 	struct rib_head *rnh;
667 	sa_family_t saf;
668 
669 	saf = info->rti_info[RTAX_DST]->sa_family;
670 
671 	rnh = rt_tables_get_rnh(fibnum, saf);
672 	if (rnh == NULL)
673 		return (EAFNOSUPPORT);
674 
675 	RIB_RLOCK(rnh);
676 
677 	if (info->rti_info[RTAX_NETMASK] == NULL) {
678 		/*
679 		 * Provide longest prefix match for
680 		 * address lookup (no mask).
681 		 * 'route -n get addr'
682 		 */
683 		rt = (struct rtentry *) rnh->rnh_matchaddr(
684 		    info->rti_info[RTAX_DST], &rnh->head);
685 	} else
686 		rt = (struct rtentry *) rnh->rnh_lookup(
687 		    info->rti_info[RTAX_DST],
688 		    info->rti_info[RTAX_NETMASK], &rnh->head);
689 
690 	if (rt == NULL) {
691 		RIB_RUNLOCK(rnh);
692 		return (ESRCH);
693 	}
694 #ifdef RADIX_MPATH
695 	/*
696 	 * for RTM_GET, gate is optional even with multipath.
697 	 * if gate == NULL the first match is returned.
698 	 * (no need to call rt_mpath_matchgate if gate == NULL)
699 	 */
700 	if (rt_mpath_capable(rnh) && info->rti_info[RTAX_GATEWAY]) {
701 		rt = rt_mpath_matchgate(rt, info->rti_info[RTAX_GATEWAY]);
702 		if (!rt) {
703 			RIB_RUNLOCK(rnh);
704 			return (ESRCH);
705 		}
706 	}
707 #endif
708 	/*
709 	 * If performing proxied L2 entry insertion, and
710 	 * the actual PPP host entry is found, perform
711 	 * another search to retrieve the prefix route of
712 	 * the local end point of the PPP link.
713 	 */
714 	if (rtm->rtm_flags & RTF_ANNOUNCE) {
715 		struct sockaddr laddr;
716 
717 		if (rt->rt_ifp != NULL &&
718 		    rt->rt_ifp->if_type == IFT_PROPVIRTUAL) {
719 			struct epoch_tracker et;
720 			struct ifaddr *ifa;
721 
722 			NET_EPOCH_ENTER(et);
723 			ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
724 					RT_ALL_FIBS);
725 			NET_EPOCH_EXIT(et);
726 			if (ifa != NULL)
727 				rt_maskedcopy(ifa->ifa_addr,
728 					      &laddr,
729 					      ifa->ifa_netmask);
730 		} else
731 			rt_maskedcopy(rt->rt_ifa->ifa_addr,
732 				      &laddr,
733 				      rt->rt_ifa->ifa_netmask);
734 		/*
735 		 * refactor rt and no lock operation necessary
736 		 */
737 		rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
738 		    &rnh->head);
739 		if (rt == NULL) {
740 			RIB_RUNLOCK(rnh);
741 			return (ESRCH);
742 		}
743 	}
744 	RT_LOCK(rt);
745 	RT_ADDREF(rt);
746 	RIB_RUNLOCK(rnh);
747 
748 	*ret_nrt = rt;
749 
750 	return (0);
751 }
752 
753 /*
754  * Update sockaddrs, flags, etc in @prtm based on @rt data.
755  * Assumes @rt is locked.
756  * rtm can be reallocated.
757  *
758  * Returns 0 on success, along with pointer to (potentially reallocated)
759  *  rtm.
760  *
761  */
762 static int
763 update_rtm_from_rte(struct rt_addrinfo *info, struct rt_msghdr **prtm,
764     int alloc_len, struct rtentry *rt)
765 {
766 	struct sockaddr_storage netmask_ss;
767 	struct walkarg w;
768 	union sockaddr_union saun;
769 	struct rt_msghdr *rtm, *orig_rtm = NULL;
770 	struct ifnet *ifp;
771 	int error, len;
772 
773 	RT_LOCK_ASSERT(rt);
774 
775 	rtm = *prtm;
776 
777 	info->rti_info[RTAX_DST] = rt_key(rt);
778 	info->rti_info[RTAX_GATEWAY] = rt->rt_gateway;
779 	info->rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
780 	    rt_mask(rt), &netmask_ss);
781 	info->rti_info[RTAX_GENMASK] = 0;
782 	ifp = rt->rt_ifp;
783 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
784 		if (ifp) {
785 			info->rti_info[RTAX_IFP] =
786 			    ifp->if_addr->ifa_addr;
787 			error = rtm_get_jailed(info, ifp, rt,
788 			    &saun, curthread->td_ucred);
789 			if (error != 0)
790 				return (error);
791 			if (ifp->if_flags & IFF_POINTOPOINT)
792 				info->rti_info[RTAX_BRD] =
793 				    rt->rt_ifa->ifa_dstaddr;
794 			rtm->rtm_index = ifp->if_index;
795 		} else {
796 			info->rti_info[RTAX_IFP] = NULL;
797 			info->rti_info[RTAX_IFA] = NULL;
798 		}
799 	} else if (ifp != NULL)
800 		rtm->rtm_index = ifp->if_index;
801 
802 	/* Check if we need to realloc storage */
803 	rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
804 	if (len > alloc_len) {
805 		struct rt_msghdr *tmp_rtm;
806 
807 		tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
808 		if (tmp_rtm == NULL)
809 			return (ENOBUFS);
810 		bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
811 		orig_rtm = rtm;
812 		rtm = tmp_rtm;
813 		alloc_len = len;
814 
815 		/*
816 		 * Delay freeing original rtm as info contains
817 		 * data referencing it.
818 		 */
819 	}
820 
821 	w.w_tmem = (caddr_t)rtm;
822 	w.w_tmemsize = alloc_len;
823 	rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
824 
825 	if (rt->rt_flags & RTF_GWFLAG_COMPAT)
826 		rtm->rtm_flags = RTF_GATEWAY |
827 			(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
828 	else
829 		rtm->rtm_flags = rt->rt_flags;
830 	rt_getmetrics(rt, &rtm->rtm_rmx);
831 	rtm->rtm_addrs = info->rti_addrs;
832 
833 	if (orig_rtm != NULL)
834 		free(orig_rtm, M_TEMP);
835 	*prtm = rtm;
836 
837 	return (0);
838 }
839 
840 /*ARGSUSED*/
841 static int
842 route_output(struct mbuf *m, struct socket *so, ...)
843 {
844 	struct rt_msghdr *rtm = NULL;
845 	struct rtentry *rt = NULL;
846 	struct rt_addrinfo info;
847 	struct epoch_tracker et;
848 #ifdef INET6
849 	struct sockaddr_storage ss;
850 	struct sockaddr_in6 *sin6;
851 	int i, rti_need_deembed = 0;
852 #endif
853 	int alloc_len = 0, len, error = 0, fibnum;
854 	sa_family_t saf = AF_UNSPEC;
855 	struct walkarg w;
856 
857 	fibnum = so->so_fibnum;
858 
859 #define senderr(e) { error = e; goto flush;}
860 	if (m == NULL || ((m->m_len < sizeof(long)) &&
861 		       (m = m_pullup(m, sizeof(long))) == NULL))
862 		return (ENOBUFS);
863 	if ((m->m_flags & M_PKTHDR) == 0)
864 		panic("route_output");
865 	NET_EPOCH_ENTER(et);
866 	len = m->m_pkthdr.len;
867 	if (len < sizeof(*rtm) ||
868 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
869 		senderr(EINVAL);
870 
871 	/*
872 	 * Most of current messages are in range 200-240 bytes,
873 	 * minimize possible re-allocation on reply using larger size
874 	 * buffer aligned on 1k boundaty.
875 	 */
876 	alloc_len = roundup2(len, 1024);
877 	if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL)
878 		senderr(ENOBUFS);
879 
880 	m_copydata(m, 0, len, (caddr_t)rtm);
881 	bzero(&info, sizeof(info));
882 	bzero(&w, sizeof(w));
883 
884 	if (rtm->rtm_version != RTM_VERSION) {
885 		/* Do not touch message since format is unknown */
886 		free(rtm, M_TEMP);
887 		rtm = NULL;
888 		senderr(EPROTONOSUPPORT);
889 	}
890 
891 	/*
892 	 * Starting from here, it is possible
893 	 * to alter original message and insert
894 	 * caller PID and error value.
895 	 */
896 
897 	if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) {
898 		senderr(error);
899 	}
900 
901 	saf = info.rti_info[RTAX_DST]->sa_family;
902 
903 	/* support for new ARP code */
904 	if (rtm->rtm_flags & RTF_LLDATA) {
905 		error = lla_rt_output(rtm, &info);
906 #ifdef INET6
907 		if (error == 0)
908 			rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
909 #endif
910 		goto flush;
911 	}
912 
913 	switch (rtm->rtm_type) {
914 		struct rtentry *saved_nrt;
915 
916 	case RTM_ADD:
917 	case RTM_CHANGE:
918 		if (rtm->rtm_type == RTM_ADD) {
919 			if (info.rti_info[RTAX_GATEWAY] == NULL)
920 				senderr(EINVAL);
921 		}
922 		saved_nrt = NULL;
923 		error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt,
924 		    fibnum);
925 		if (error == 0 && saved_nrt != NULL) {
926 #ifdef INET6
927 			rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
928 #endif
929 			RT_LOCK(saved_nrt);
930 			rtm->rtm_index = saved_nrt->rt_ifp->if_index;
931 			RT_REMREF(saved_nrt);
932 			RT_UNLOCK(saved_nrt);
933 		}
934 		break;
935 
936 	case RTM_DELETE:
937 		saved_nrt = NULL;
938 		error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum);
939 		if (error == 0) {
940 			RT_LOCK(saved_nrt);
941 			rt = saved_nrt;
942 			goto report;
943 		}
944 #ifdef INET6
945 		/* rt_msg2() will not be used when RTM_DELETE fails. */
946 		rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
947 #endif
948 		break;
949 
950 	case RTM_GET:
951 		error = handle_rtm_get(&info, fibnum, rtm, &rt);
952 		if (error != 0)
953 			senderr(error);
954 
955 report:
956 		RT_LOCK_ASSERT(rt);
957 		if (!can_export_rte(curthread->td_ucred, rt)) {
958 			RT_UNLOCK(rt);
959 			senderr(ESRCH);
960 		}
961 		error = update_rtm_from_rte(&info, &rtm, alloc_len, rt);
962 		/*
963 		 * Note that some sockaddr pointers may have changed to
964 		 * point to memory outsize @rtm. Some may be pointing
965 		 * to the on-stack variables.
966 		 * Given that, any pointer in @info CANNOT BE USED.
967 		 */
968 
969 		/*
970 		 * scopeid deembedding has been performed while
971 		 * writing updated rtm in rtsock_msg_buffer().
972 		 * With that in mind, skip deembedding procedure below.
973 		 */
974 #ifdef INET6
975 		rti_need_deembed = 0;
976 #endif
977 		RT_UNLOCK(rt);
978 		if (error != 0)
979 			senderr(error);
980 		break;
981 
982 	default:
983 		senderr(EOPNOTSUPP);
984 	}
985 
986 flush:
987 	NET_EPOCH_EXIT(et);
988 	if (rt != NULL)
989 		RTFREE(rt);
990 
991 #ifdef INET6
992 	if (rtm != NULL) {
993 		if (rti_need_deembed) {
994 			/* sin6_scope_id is recovered before sending rtm. */
995 			sin6 = (struct sockaddr_in6 *)&ss;
996 			for (i = 0; i < RTAX_MAX; i++) {
997 				if (info.rti_info[i] == NULL)
998 					continue;
999 				if (info.rti_info[i]->sa_family != AF_INET6)
1000 					continue;
1001 				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
1002 				if (sa6_recoverscope(sin6) == 0)
1003 					bcopy(sin6, info.rti_info[i],
1004 						    sizeof(*sin6));
1005 			}
1006 		}
1007 	}
1008 #endif
1009 	send_rtm_reply(so, rtm, m, saf, fibnum, error);
1010 
1011 	return (error);
1012 }
1013 
1014 /*
1015  * Sends the prepared reply message in @rtm to all rtsock clients.
1016  * Frees @m and @rtm.
1017  *
1018  */
1019 static void
1020 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
1021     sa_family_t saf, u_int fibnum, int rtm_errno)
1022 {
1023 	struct rawcb *rp = NULL;
1024 
1025 	/*
1026 	 * Check to see if we don't want our own messages.
1027 	 */
1028 	if ((so->so_options & SO_USELOOPBACK) == 0) {
1029 		if (V_route_cb.any_count <= 1) {
1030 			if (rtm != NULL)
1031 				free(rtm, M_TEMP);
1032 			m_freem(m);
1033 			return;
1034 		}
1035 		/* There is another listener, so construct message */
1036 		rp = sotorawcb(so);
1037 	}
1038 
1039 	if (rtm != NULL) {
1040 		if (rtm_errno!= 0)
1041 			rtm->rtm_errno = rtm_errno;
1042 		else
1043 			rtm->rtm_flags |= RTF_DONE;
1044 
1045 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
1046 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
1047 			m_freem(m);
1048 			m = NULL;
1049 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
1050 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1051 
1052 		free(rtm, M_TEMP);
1053 	}
1054 	if (m != NULL) {
1055 		M_SETFIB(m, fibnum);
1056 		m->m_flags |= RTS_FILTER_FIB;
1057 		if (rp) {
1058 			/*
1059 			 * XXX insure we don't get a copy by
1060 			 * invalidating our protocol
1061 			 */
1062 			unsigned short family = rp->rcb_proto.sp_family;
1063 			rp->rcb_proto.sp_family = 0;
1064 			rt_dispatch(m, saf);
1065 			rp->rcb_proto.sp_family = family;
1066 		} else
1067 			rt_dispatch(m, saf);
1068 	}
1069 }
1070 
1071 
1072 static void
1073 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out)
1074 {
1075 
1076 	bzero(out, sizeof(*out));
1077 	out->rmx_mtu = rt->rt_mtu;
1078 	out->rmx_weight = rt->rt_weight;
1079 	out->rmx_pksent = counter_u64_fetch(rt->rt_pksent);
1080 	out->rmx_nhidx = nhop_get_idx(rt->rt_nhop);
1081 	/* Kernel -> userland timebase conversion. */
1082 	out->rmx_expire = rt->rt_expire ?
1083 	    rt->rt_expire - time_uptime + time_second : 0;
1084 }
1085 
1086 /*
1087  * Extract the addresses of the passed sockaddrs.
1088  * Do a little sanity checking so as to avoid bad memory references.
1089  * This data is derived straight from userland.
1090  */
1091 static int
1092 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1093 {
1094 	struct sockaddr *sa;
1095 	int i;
1096 
1097 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1098 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
1099 			continue;
1100 		sa = (struct sockaddr *)cp;
1101 		/*
1102 		 * It won't fit.
1103 		 */
1104 		if (cp + sa->sa_len > cplim)
1105 			return (EINVAL);
1106 		/*
1107 		 * there are no more.. quit now
1108 		 * If there are more bits, they are in error.
1109 		 * I've seen this. route(1) can evidently generate these.
1110 		 * This causes kernel to core dump.
1111 		 * for compatibility, If we see this, point to a safe address.
1112 		 */
1113 		if (sa->sa_len == 0) {
1114 			rtinfo->rti_info[i] = &sa_zero;
1115 			return (0); /* should be EINVAL but for compat */
1116 		}
1117 		/* accept it */
1118 #ifdef INET6
1119 		if (sa->sa_family == AF_INET6)
1120 			sa6_embedscope((struct sockaddr_in6 *)sa,
1121 			    V_ip6_use_defzone);
1122 #endif
1123 		rtinfo->rti_info[i] = sa;
1124 		cp += SA_SIZE(sa);
1125 	}
1126 	return (0);
1127 }
1128 
1129 /*
1130  * Fill in @dmask with valid netmask leaving original @smask
1131  * intact. Mostly used with radix netmasks.
1132  */
1133 static struct sockaddr *
1134 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask,
1135     struct sockaddr_storage *dmask)
1136 {
1137 	if (dst == NULL || smask == NULL)
1138 		return (NULL);
1139 
1140 	memset(dmask, 0, dst->sa_len);
1141 	memcpy(dmask, smask, smask->sa_len);
1142 	dmask->ss_len = dst->sa_len;
1143 	dmask->ss_family = dst->sa_family;
1144 
1145 	return ((struct sockaddr *)dmask);
1146 }
1147 
1148 /*
1149  * Writes information related to @rtinfo object to newly-allocated mbuf.
1150  * Assumes MCLBYTES is enough to construct any message.
1151  * Used for OS notifications of vaious events (if/ifa announces,etc)
1152  *
1153  * Returns allocated mbuf or NULL on failure.
1154  */
1155 static struct mbuf *
1156 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1157 {
1158 	struct rt_msghdr *rtm;
1159 	struct mbuf *m;
1160 	int i;
1161 	struct sockaddr *sa;
1162 #ifdef INET6
1163 	struct sockaddr_storage ss;
1164 	struct sockaddr_in6 *sin6;
1165 #endif
1166 	int len, dlen;
1167 
1168 	switch (type) {
1169 
1170 	case RTM_DELADDR:
1171 	case RTM_NEWADDR:
1172 		len = sizeof(struct ifa_msghdr);
1173 		break;
1174 
1175 	case RTM_DELMADDR:
1176 	case RTM_NEWMADDR:
1177 		len = sizeof(struct ifma_msghdr);
1178 		break;
1179 
1180 	case RTM_IFINFO:
1181 		len = sizeof(struct if_msghdr);
1182 		break;
1183 
1184 	case RTM_IFANNOUNCE:
1185 	case RTM_IEEE80211:
1186 		len = sizeof(struct if_announcemsghdr);
1187 		break;
1188 
1189 	default:
1190 		len = sizeof(struct rt_msghdr);
1191 	}
1192 
1193 	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
1194 	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1195 	if (len > MHLEN)
1196 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1197 	else
1198 		m = m_gethdr(M_NOWAIT, MT_DATA);
1199 	if (m == NULL)
1200 		return (m);
1201 
1202 	m->m_pkthdr.len = m->m_len = len;
1203 	rtm = mtod(m, struct rt_msghdr *);
1204 	bzero((caddr_t)rtm, len);
1205 	for (i = 0; i < RTAX_MAX; i++) {
1206 		if ((sa = rtinfo->rti_info[i]) == NULL)
1207 			continue;
1208 		rtinfo->rti_addrs |= (1 << i);
1209 		dlen = SA_SIZE(sa);
1210 #ifdef INET6
1211 		if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1212 			sin6 = (struct sockaddr_in6 *)&ss;
1213 			bcopy(sa, sin6, sizeof(*sin6));
1214 			if (sa6_recoverscope(sin6) == 0)
1215 				sa = (struct sockaddr *)sin6;
1216 		}
1217 #endif
1218 		m_copyback(m, len, dlen, (caddr_t)sa);
1219 		len += dlen;
1220 	}
1221 	if (m->m_pkthdr.len != len) {
1222 		m_freem(m);
1223 		return (NULL);
1224 	}
1225 	rtm->rtm_msglen = len;
1226 	rtm->rtm_version = RTM_VERSION;
1227 	rtm->rtm_type = type;
1228 	return (m);
1229 }
1230 
1231 /*
1232  * Writes information related to @rtinfo object to preallocated buffer.
1233  * Stores needed size in @plen. If @w is NULL, calculates size without
1234  * writing.
1235  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1236  *
1237  * Returns 0 on success.
1238  *
1239  */
1240 static int
1241 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1242 {
1243 	int i;
1244 	int len, buflen = 0, dlen;
1245 	caddr_t cp = NULL;
1246 	struct rt_msghdr *rtm = NULL;
1247 #ifdef INET6
1248 	struct sockaddr_storage ss;
1249 	struct sockaddr_in6 *sin6;
1250 #endif
1251 #ifdef COMPAT_FREEBSD32
1252 	bool compat32 = false;
1253 #endif
1254 
1255 	switch (type) {
1256 
1257 	case RTM_DELADDR:
1258 	case RTM_NEWADDR:
1259 		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1260 #ifdef COMPAT_FREEBSD32
1261 			if (w->w_req->flags & SCTL_MASK32) {
1262 				len = sizeof(struct ifa_msghdrl32);
1263 				compat32 = true;
1264 			} else
1265 #endif
1266 				len = sizeof(struct ifa_msghdrl);
1267 		} else
1268 			len = sizeof(struct ifa_msghdr);
1269 		break;
1270 
1271 	case RTM_IFINFO:
1272 #ifdef COMPAT_FREEBSD32
1273 		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1274 			if (w->w_op == NET_RT_IFLISTL)
1275 				len = sizeof(struct if_msghdrl32);
1276 			else
1277 				len = sizeof(struct if_msghdr32);
1278 			compat32 = true;
1279 			break;
1280 		}
1281 #endif
1282 		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1283 			len = sizeof(struct if_msghdrl);
1284 		else
1285 			len = sizeof(struct if_msghdr);
1286 		break;
1287 
1288 	case RTM_NEWMADDR:
1289 		len = sizeof(struct ifma_msghdr);
1290 		break;
1291 
1292 	default:
1293 		len = sizeof(struct rt_msghdr);
1294 	}
1295 
1296 	if (w != NULL) {
1297 		rtm = (struct rt_msghdr *)w->w_tmem;
1298 		buflen = w->w_tmemsize - len;
1299 		cp = (caddr_t)w->w_tmem + len;
1300 	}
1301 
1302 	rtinfo->rti_addrs = 0;
1303 	for (i = 0; i < RTAX_MAX; i++) {
1304 		struct sockaddr *sa;
1305 
1306 		if ((sa = rtinfo->rti_info[i]) == NULL)
1307 			continue;
1308 		rtinfo->rti_addrs |= (1 << i);
1309 #ifdef COMPAT_FREEBSD32
1310 		if (compat32)
1311 			dlen = SA_SIZE32(sa);
1312 		else
1313 #endif
1314 			dlen = SA_SIZE(sa);
1315 		if (cp != NULL && buflen >= dlen) {
1316 #ifdef INET6
1317 			if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1318 				sin6 = (struct sockaddr_in6 *)&ss;
1319 				bcopy(sa, sin6, sizeof(*sin6));
1320 				if (sa6_recoverscope(sin6) == 0)
1321 					sa = (struct sockaddr *)sin6;
1322 			}
1323 #endif
1324 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1325 			cp += dlen;
1326 			buflen -= dlen;
1327 		} else if (cp != NULL) {
1328 			/*
1329 			 * Buffer too small. Count needed size
1330 			 * and return with error.
1331 			 */
1332 			cp = NULL;
1333 		}
1334 
1335 		len += dlen;
1336 	}
1337 
1338 	if (cp != NULL) {
1339 		dlen = ALIGN(len) - len;
1340 		if (buflen < dlen)
1341 			cp = NULL;
1342 		else {
1343 			bzero(cp, dlen);
1344 			cp += dlen;
1345 			buflen -= dlen;
1346 		}
1347 	}
1348 	len = ALIGN(len);
1349 
1350 	if (cp != NULL) {
1351 		/* fill header iff buffer is large enough */
1352 		rtm->rtm_version = RTM_VERSION;
1353 		rtm->rtm_type = type;
1354 		rtm->rtm_msglen = len;
1355 	}
1356 
1357 	*plen = len;
1358 
1359 	if (w != NULL && cp == NULL)
1360 		return (ENOBUFS);
1361 
1362 	return (0);
1363 }
1364 
1365 /*
1366  * This routine is called to generate a message from the routing
1367  * socket indicating that a redirect has occurred, a routing lookup
1368  * has failed, or that a protocol has detected timeouts to a particular
1369  * destination.
1370  */
1371 void
1372 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1373     int fibnum)
1374 {
1375 	struct rt_msghdr *rtm;
1376 	struct mbuf *m;
1377 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1378 
1379 	if (V_route_cb.any_count == 0)
1380 		return;
1381 	m = rtsock_msg_mbuf(type, rtinfo);
1382 	if (m == NULL)
1383 		return;
1384 
1385 	if (fibnum != RT_ALL_FIBS) {
1386 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1387 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1388 		M_SETFIB(m, fibnum);
1389 		m->m_flags |= RTS_FILTER_FIB;
1390 	}
1391 
1392 	rtm = mtod(m, struct rt_msghdr *);
1393 	rtm->rtm_flags = RTF_DONE | flags;
1394 	rtm->rtm_errno = error;
1395 	rtm->rtm_addrs = rtinfo->rti_addrs;
1396 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1397 }
1398 
1399 void
1400 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1401 {
1402 
1403 	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1404 }
1405 
1406 /*
1407  * This routine is called to generate a message from the routing
1408  * socket indicating that the status of a network interface has changed.
1409  */
1410 void
1411 rt_ifmsg(struct ifnet *ifp)
1412 {
1413 	struct if_msghdr *ifm;
1414 	struct mbuf *m;
1415 	struct rt_addrinfo info;
1416 
1417 	if (V_route_cb.any_count == 0)
1418 		return;
1419 	bzero((caddr_t)&info, sizeof(info));
1420 	m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1421 	if (m == NULL)
1422 		return;
1423 	ifm = mtod(m, struct if_msghdr *);
1424 	ifm->ifm_index = ifp->if_index;
1425 	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1426 	if_data_copy(ifp, &ifm->ifm_data);
1427 	ifm->ifm_addrs = 0;
1428 	rt_dispatch(m, AF_UNSPEC);
1429 }
1430 
1431 /*
1432  * Announce interface address arrival/withdraw.
1433  * Please do not call directly, use rt_addrmsg().
1434  * Assume input data to be valid.
1435  * Returns 0 on success.
1436  */
1437 int
1438 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1439 {
1440 	struct rt_addrinfo info;
1441 	struct sockaddr *sa;
1442 	int ncmd;
1443 	struct mbuf *m;
1444 	struct ifa_msghdr *ifam;
1445 	struct ifnet *ifp = ifa->ifa_ifp;
1446 	struct sockaddr_storage ss;
1447 
1448 	if (V_route_cb.any_count == 0)
1449 		return (0);
1450 
1451 	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1452 
1453 	bzero((caddr_t)&info, sizeof(info));
1454 	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1455 	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1456 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1457 	    info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
1458 	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1459 	if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1460 		return (ENOBUFS);
1461 	ifam = mtod(m, struct ifa_msghdr *);
1462 	ifam->ifam_index = ifp->if_index;
1463 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1464 	ifam->ifam_flags = ifa->ifa_flags;
1465 	ifam->ifam_addrs = info.rti_addrs;
1466 
1467 	if (fibnum != RT_ALL_FIBS) {
1468 		M_SETFIB(m, fibnum);
1469 		m->m_flags |= RTS_FILTER_FIB;
1470 	}
1471 
1472 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1473 
1474 	return (0);
1475 }
1476 
1477 /*
1478  * Announce route addition/removal to rtsock based on @rt data.
1479  * Callers are advives to use rt_routemsg() instead of using this
1480  *  function directly.
1481  * Assume @rt data is consistent.
1482  *
1483  * Returns 0 on success.
1484  */
1485 int
1486 rtsock_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs,
1487     int fibnum)
1488 {
1489 	struct sockaddr_storage ss;
1490 	struct rt_addrinfo info;
1491 
1492 	if (V_route_cb.any_count == 0)
1493 		return (0);
1494 
1495 	bzero((caddr_t)&info, sizeof(info));
1496 	info.rti_info[RTAX_DST] = rt_key(rt);
1497 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), rt_mask(rt), &ss);
1498 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1499 	info.rti_flags = rt->rt_flags;
1500 	info.rti_ifp = ifp;
1501 
1502 	return (rtsock_routemsg_info(cmd, &info, fibnum));
1503 }
1504 
1505 int
1506 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
1507 {
1508 	struct rt_msghdr *rtm;
1509 	struct sockaddr *sa;
1510 	struct mbuf *m;
1511 
1512 	if (V_route_cb.any_count == 0)
1513 		return (0);
1514 
1515 	if (info->rti_flags & RTF_HOST)
1516 		info->rti_info[RTAX_NETMASK] = NULL;
1517 
1518 	m = rtsock_msg_mbuf(cmd, info);
1519 	if (m == NULL)
1520 		return (ENOBUFS);
1521 
1522 	if (fibnum != RT_ALL_FIBS) {
1523 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1524 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1525 		M_SETFIB(m, fibnum);
1526 		m->m_flags |= RTS_FILTER_FIB;
1527 	}
1528 
1529 	rtm = mtod(m, struct rt_msghdr *);
1530 	rtm->rtm_addrs = info->rti_addrs;
1531 	if (info->rti_ifp != NULL)
1532 		rtm->rtm_index = info->rti_ifp->if_index;
1533 	/* Add RTF_DONE to indicate command 'completion' required by API */
1534 	info->rti_flags |= RTF_DONE;
1535 	/* Reported routes has to be up */
1536 	if (cmd == RTM_ADD || cmd == RTM_CHANGE)
1537 		info->rti_flags |= RTF_UP;
1538 	rtm->rtm_flags = info->rti_flags;
1539 
1540 	sa = info->rti_info[RTAX_DST];
1541 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1542 
1543 	return (0);
1544 }
1545 
1546 /*
1547  * This is the analogue to the rt_newaddrmsg which performs the same
1548  * function but for multicast group memberhips.  This is easier since
1549  * there is no route state to worry about.
1550  */
1551 void
1552 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1553 {
1554 	struct rt_addrinfo info;
1555 	struct mbuf *m = NULL;
1556 	struct ifnet *ifp = ifma->ifma_ifp;
1557 	struct ifma_msghdr *ifmam;
1558 
1559 	if (V_route_cb.any_count == 0)
1560 		return;
1561 
1562 	bzero((caddr_t)&info, sizeof(info));
1563 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1564 	if (ifp && ifp->if_addr)
1565 		info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1566 	else
1567 		info.rti_info[RTAX_IFP] = NULL;
1568 	/*
1569 	 * If a link-layer address is present, present it as a ``gateway''
1570 	 * (similarly to how ARP entries, e.g., are presented).
1571 	 */
1572 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1573 	m = rtsock_msg_mbuf(cmd, &info);
1574 	if (m == NULL)
1575 		return;
1576 	ifmam = mtod(m, struct ifma_msghdr *);
1577 	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1578 	    __func__));
1579 	ifmam->ifmam_index = ifp->if_index;
1580 	ifmam->ifmam_addrs = info.rti_addrs;
1581 	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1582 }
1583 
1584 static struct mbuf *
1585 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1586 	struct rt_addrinfo *info)
1587 {
1588 	struct if_announcemsghdr *ifan;
1589 	struct mbuf *m;
1590 
1591 	if (V_route_cb.any_count == 0)
1592 		return NULL;
1593 	bzero((caddr_t)info, sizeof(*info));
1594 	m = rtsock_msg_mbuf(type, info);
1595 	if (m != NULL) {
1596 		ifan = mtod(m, struct if_announcemsghdr *);
1597 		ifan->ifan_index = ifp->if_index;
1598 		strlcpy(ifan->ifan_name, ifp->if_xname,
1599 			sizeof(ifan->ifan_name));
1600 		ifan->ifan_what = what;
1601 	}
1602 	return m;
1603 }
1604 
1605 /*
1606  * This is called to generate routing socket messages indicating
1607  * IEEE80211 wireless events.
1608  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1609  */
1610 void
1611 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1612 {
1613 	struct mbuf *m;
1614 	struct rt_addrinfo info;
1615 
1616 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1617 	if (m != NULL) {
1618 		/*
1619 		 * Append the ieee80211 data.  Try to stick it in the
1620 		 * mbuf containing the ifannounce msg; otherwise allocate
1621 		 * a new mbuf and append.
1622 		 *
1623 		 * NB: we assume m is a single mbuf.
1624 		 */
1625 		if (data_len > M_TRAILINGSPACE(m)) {
1626 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1627 			if (n == NULL) {
1628 				m_freem(m);
1629 				return;
1630 			}
1631 			bcopy(data, mtod(n, void *), data_len);
1632 			n->m_len = data_len;
1633 			m->m_next = n;
1634 		} else if (data_len > 0) {
1635 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1636 			m->m_len += data_len;
1637 		}
1638 		if (m->m_flags & M_PKTHDR)
1639 			m->m_pkthdr.len += data_len;
1640 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1641 		rt_dispatch(m, AF_UNSPEC);
1642 	}
1643 }
1644 
1645 /*
1646  * This is called to generate routing socket messages indicating
1647  * network interface arrival and departure.
1648  */
1649 void
1650 rt_ifannouncemsg(struct ifnet *ifp, int what)
1651 {
1652 	struct mbuf *m;
1653 	struct rt_addrinfo info;
1654 
1655 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1656 	if (m != NULL)
1657 		rt_dispatch(m, AF_UNSPEC);
1658 }
1659 
1660 static void
1661 rt_dispatch(struct mbuf *m, sa_family_t saf)
1662 {
1663 	struct m_tag *tag;
1664 
1665 	/*
1666 	 * Preserve the family from the sockaddr, if any, in an m_tag for
1667 	 * use when injecting the mbuf into the routing socket buffer from
1668 	 * the netisr.
1669 	 */
1670 	if (saf != AF_UNSPEC) {
1671 		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1672 		    M_NOWAIT);
1673 		if (tag == NULL) {
1674 			m_freem(m);
1675 			return;
1676 		}
1677 		*(unsigned short *)(tag + 1) = saf;
1678 		m_tag_prepend(m, tag);
1679 	}
1680 #ifdef VIMAGE
1681 	if (V_loif)
1682 		m->m_pkthdr.rcvif = V_loif;
1683 	else {
1684 		m_freem(m);
1685 		return;
1686 	}
1687 #endif
1688 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
1689 }
1690 
1691 /*
1692  * Checks if rte can be exported v.r.t jails/vnets.
1693  *
1694  * Returns 1 if it can, 0 otherwise.
1695  */
1696 static int
1697 can_export_rte(struct ucred *td_ucred, const struct rtentry *rt)
1698 {
1699 
1700 	if ((rt->rt_flags & RTF_HOST) == 0
1701 	    ? jailed_without_vnet(td_ucred)
1702 	    : prison_if(td_ucred, rt_key_const(rt)) != 0)
1703 		return (0);
1704 	return (1);
1705 }
1706 
1707 /*
1708  * This is used in dumping the kernel table via sysctl().
1709  */
1710 static int
1711 sysctl_dumpentry(struct radix_node *rn, void *vw)
1712 {
1713 	struct walkarg *w = vw;
1714 	struct rtentry *rt = (struct rtentry *)rn;
1715 	int error = 0, size;
1716 	struct rt_addrinfo info;
1717 	struct sockaddr_storage ss;
1718 
1719 	NET_EPOCH_ASSERT();
1720 
1721 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1722 		return 0;
1723 	if (!can_export_rte(w->w_req->td->td_ucred, rt))
1724 		return (0);
1725 	bzero((caddr_t)&info, sizeof(info));
1726 	info.rti_info[RTAX_DST] = rt_key(rt);
1727 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1728 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
1729 	    rt_mask(rt), &ss);
1730 	info.rti_info[RTAX_GENMASK] = 0;
1731 	if (rt->rt_ifp && !(rt->rt_ifp->if_flags & IFF_DYING)) {
1732 		info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1733 		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1734 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1735 			info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1736 	}
1737 	if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
1738 		return (error);
1739 	if (w->w_req && w->w_tmem) {
1740 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1741 
1742 		bzero(&rtm->rtm_index,
1743 		    sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
1744 		if (rt->rt_flags & RTF_GWFLAG_COMPAT)
1745 			rtm->rtm_flags = RTF_GATEWAY |
1746 				(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
1747 		else
1748 			rtm->rtm_flags = rt->rt_flags;
1749 		rt_getmetrics(rt, &rtm->rtm_rmx);
1750 		rtm->rtm_index = rt->rt_ifp->if_index;
1751 		rtm->rtm_addrs = info.rti_addrs;
1752 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1753 		return (error);
1754 	}
1755 	return (error);
1756 }
1757 
1758 static int
1759 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
1760     struct rt_addrinfo *info, struct walkarg *w, int len)
1761 {
1762 	struct if_msghdrl *ifm;
1763 	struct if_data *ifd;
1764 
1765 	ifm = (struct if_msghdrl *)w->w_tmem;
1766 
1767 #ifdef COMPAT_FREEBSD32
1768 	if (w->w_req->flags & SCTL_MASK32) {
1769 		struct if_msghdrl32 *ifm32;
1770 
1771 		ifm32 = (struct if_msghdrl32 *)ifm;
1772 		ifm32->ifm_addrs = info->rti_addrs;
1773 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1774 		ifm32->ifm_index = ifp->if_index;
1775 		ifm32->_ifm_spare1 = 0;
1776 		ifm32->ifm_len = sizeof(*ifm32);
1777 		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1778 		ifm32->_ifm_spare2 = 0;
1779 		ifd = &ifm32->ifm_data;
1780 	} else
1781 #endif
1782 	{
1783 		ifm->ifm_addrs = info->rti_addrs;
1784 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1785 		ifm->ifm_index = ifp->if_index;
1786 		ifm->_ifm_spare1 = 0;
1787 		ifm->ifm_len = sizeof(*ifm);
1788 		ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1789 		ifm->_ifm_spare2 = 0;
1790 		ifd = &ifm->ifm_data;
1791 	}
1792 
1793 	memcpy(ifd, src_ifd, sizeof(*ifd));
1794 
1795 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1796 }
1797 
1798 static int
1799 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
1800     struct rt_addrinfo *info, struct walkarg *w, int len)
1801 {
1802 	struct if_msghdr *ifm;
1803 	struct if_data *ifd;
1804 
1805 	ifm = (struct if_msghdr *)w->w_tmem;
1806 
1807 #ifdef COMPAT_FREEBSD32
1808 	if (w->w_req->flags & SCTL_MASK32) {
1809 		struct if_msghdr32 *ifm32;
1810 
1811 		ifm32 = (struct if_msghdr32 *)ifm;
1812 		ifm32->ifm_addrs = info->rti_addrs;
1813 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1814 		ifm32->ifm_index = ifp->if_index;
1815 		ifm32->_ifm_spare1 = 0;
1816 		ifd = &ifm32->ifm_data;
1817 	} else
1818 #endif
1819 	{
1820 		ifm->ifm_addrs = info->rti_addrs;
1821 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1822 		ifm->ifm_index = ifp->if_index;
1823 		ifm->_ifm_spare1 = 0;
1824 		ifd = &ifm->ifm_data;
1825 	}
1826 
1827 	memcpy(ifd, src_ifd, sizeof(*ifd));
1828 
1829 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1830 }
1831 
1832 static int
1833 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1834     struct walkarg *w, int len)
1835 {
1836 	struct ifa_msghdrl *ifam;
1837 	struct if_data *ifd;
1838 
1839 	ifam = (struct ifa_msghdrl *)w->w_tmem;
1840 
1841 #ifdef COMPAT_FREEBSD32
1842 	if (w->w_req->flags & SCTL_MASK32) {
1843 		struct ifa_msghdrl32 *ifam32;
1844 
1845 		ifam32 = (struct ifa_msghdrl32 *)ifam;
1846 		ifam32->ifam_addrs = info->rti_addrs;
1847 		ifam32->ifam_flags = ifa->ifa_flags;
1848 		ifam32->ifam_index = ifa->ifa_ifp->if_index;
1849 		ifam32->_ifam_spare1 = 0;
1850 		ifam32->ifam_len = sizeof(*ifam32);
1851 		ifam32->ifam_data_off =
1852 		    offsetof(struct ifa_msghdrl32, ifam_data);
1853 		ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
1854 		ifd = &ifam32->ifam_data;
1855 	} else
1856 #endif
1857 	{
1858 		ifam->ifam_addrs = info->rti_addrs;
1859 		ifam->ifam_flags = ifa->ifa_flags;
1860 		ifam->ifam_index = ifa->ifa_ifp->if_index;
1861 		ifam->_ifam_spare1 = 0;
1862 		ifam->ifam_len = sizeof(*ifam);
1863 		ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
1864 		ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1865 		ifd = &ifam->ifam_data;
1866 	}
1867 
1868 	bzero(ifd, sizeof(*ifd));
1869 	ifd->ifi_datalen = sizeof(struct if_data);
1870 	ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
1871 	ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
1872 	ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
1873 	ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
1874 
1875 	/* Fixup if_data carp(4) vhid. */
1876 	if (carp_get_vhid_p != NULL)
1877 		ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
1878 
1879 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1880 }
1881 
1882 static int
1883 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
1884     struct walkarg *w, int len)
1885 {
1886 	struct ifa_msghdr *ifam;
1887 
1888 	ifam = (struct ifa_msghdr *)w->w_tmem;
1889 	ifam->ifam_addrs = info->rti_addrs;
1890 	ifam->ifam_flags = ifa->ifa_flags;
1891 	ifam->ifam_index = ifa->ifa_ifp->if_index;
1892 	ifam->_ifam_spare1 = 0;
1893 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1894 
1895 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1896 }
1897 
1898 static int
1899 sysctl_iflist(int af, struct walkarg *w)
1900 {
1901 	struct ifnet *ifp;
1902 	struct ifaddr *ifa;
1903 	struct if_data ifd;
1904 	struct rt_addrinfo info;
1905 	int len, error = 0;
1906 	struct sockaddr_storage ss;
1907 
1908 	bzero((caddr_t)&info, sizeof(info));
1909 	bzero(&ifd, sizeof(ifd));
1910 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1911 		if (w->w_arg && w->w_arg != ifp->if_index)
1912 			continue;
1913 		if_data_copy(ifp, &ifd);
1914 		ifa = ifp->if_addr;
1915 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1916 		error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
1917 		if (error != 0)
1918 			goto done;
1919 		info.rti_info[RTAX_IFP] = NULL;
1920 		if (w->w_req && w->w_tmem) {
1921 			if (w->w_op == NET_RT_IFLISTL)
1922 				error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
1923 				    len);
1924 			else
1925 				error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
1926 				    len);
1927 			if (error)
1928 				goto done;
1929 		}
1930 		while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
1931 			if (af && af != ifa->ifa_addr->sa_family)
1932 				continue;
1933 			if (prison_if(w->w_req->td->td_ucred,
1934 			    ifa->ifa_addr) != 0)
1935 				continue;
1936 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1937 			info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1938 			    ifa->ifa_addr, ifa->ifa_netmask, &ss);
1939 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1940 			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
1941 			if (error != 0)
1942 				goto done;
1943 			if (w->w_req && w->w_tmem) {
1944 				if (w->w_op == NET_RT_IFLISTL)
1945 					error = sysctl_iflist_ifaml(ifa, &info,
1946 					    w, len);
1947 				else
1948 					error = sysctl_iflist_ifam(ifa, &info,
1949 					    w, len);
1950 				if (error)
1951 					goto done;
1952 			}
1953 		}
1954 		info.rti_info[RTAX_IFA] = NULL;
1955 		info.rti_info[RTAX_NETMASK] = NULL;
1956 		info.rti_info[RTAX_BRD] = NULL;
1957 	}
1958 done:
1959 	return (error);
1960 }
1961 
1962 static int
1963 sysctl_ifmalist(int af, struct walkarg *w)
1964 {
1965 	struct rt_addrinfo info;
1966 	struct ifaddr *ifa;
1967 	struct ifmultiaddr *ifma;
1968 	struct ifnet *ifp;
1969 	int error, len;
1970 
1971 	NET_EPOCH_ASSERT();
1972 
1973 	error = 0;
1974 	bzero((caddr_t)&info, sizeof(info));
1975 
1976 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1977 		if (w->w_arg && w->w_arg != ifp->if_index)
1978 			continue;
1979 		ifa = ifp->if_addr;
1980 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1981 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1982 			if (af && af != ifma->ifma_addr->sa_family)
1983 				continue;
1984 			if (prison_if(w->w_req->td->td_ucred,
1985 			    ifma->ifma_addr) != 0)
1986 				continue;
1987 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1988 			info.rti_info[RTAX_GATEWAY] =
1989 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
1990 			    ifma->ifma_lladdr : NULL;
1991 			error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
1992 			if (error != 0)
1993 				break;
1994 			if (w->w_req && w->w_tmem) {
1995 				struct ifma_msghdr *ifmam;
1996 
1997 				ifmam = (struct ifma_msghdr *)w->w_tmem;
1998 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1999 				ifmam->ifmam_flags = 0;
2000 				ifmam->ifmam_addrs = info.rti_addrs;
2001 				ifmam->_ifmam_spare1 = 0;
2002 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
2003 				if (error != 0)
2004 					break;
2005 			}
2006 		}
2007 		if (error != 0)
2008 			break;
2009 	}
2010 	return (error);
2011 }
2012 
2013 static int
2014 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
2015 {
2016 	RIB_RLOCK_TRACKER;
2017 	struct epoch_tracker et;
2018 	int	*name = (int *)arg1;
2019 	u_int	namelen = arg2;
2020 	struct rib_head *rnh = NULL; /* silence compiler. */
2021 	int	i, lim, error = EINVAL;
2022 	int	fib = 0;
2023 	u_char	af;
2024 	struct	walkarg w;
2025 
2026 	name ++;
2027 	namelen--;
2028 	if (req->newptr)
2029 		return (EPERM);
2030 	if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP) {
2031 		if (namelen == 3)
2032 			fib = req->td->td_proc->p_fibnum;
2033 		else if (namelen == 4)
2034 			fib = (name[3] == RT_ALL_FIBS) ?
2035 			    req->td->td_proc->p_fibnum : name[3];
2036 		else
2037 			return ((namelen < 3) ? EISDIR : ENOTDIR);
2038 		if (fib < 0 || fib >= rt_numfibs)
2039 			return (EINVAL);
2040 	} else if (namelen != 3)
2041 		return ((namelen < 3) ? EISDIR : ENOTDIR);
2042 	af = name[0];
2043 	if (af > AF_MAX)
2044 		return (EINVAL);
2045 	bzero(&w, sizeof(w));
2046 	w.w_op = name[1];
2047 	w.w_arg = name[2];
2048 	w.w_req = req;
2049 
2050 	error = sysctl_wire_old_buffer(req, 0);
2051 	if (error)
2052 		return (error);
2053 
2054 	/*
2055 	 * Allocate reply buffer in advance.
2056 	 * All rtsock messages has maximum length of u_short.
2057 	 */
2058 	w.w_tmemsize = 65536;
2059 	w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
2060 
2061 	NET_EPOCH_ENTER(et);
2062 	switch (w.w_op) {
2063 	case NET_RT_DUMP:
2064 	case NET_RT_FLAGS:
2065 		if (af == 0) {			/* dump all tables */
2066 			i = 1;
2067 			lim = AF_MAX;
2068 		} else				/* dump only one table */
2069 			i = lim = af;
2070 
2071 		/*
2072 		 * take care of llinfo entries, the caller must
2073 		 * specify an AF
2074 		 */
2075 		if (w.w_op == NET_RT_FLAGS &&
2076 		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
2077 			if (af != 0)
2078 				error = lltable_sysctl_dumparp(af, w.w_req);
2079 			else
2080 				error = EINVAL;
2081 			break;
2082 		}
2083 		/*
2084 		 * take care of routing entries
2085 		 */
2086 		for (error = 0; error == 0 && i <= lim; i++) {
2087 			rnh = rt_tables_get_rnh(fib, i);
2088 			if (rnh != NULL) {
2089 				RIB_RLOCK(rnh);
2090 			    	error = rnh->rnh_walktree(&rnh->head,
2091 				    sysctl_dumpentry, &w);
2092 				RIB_RUNLOCK(rnh);
2093 			} else if (af != 0)
2094 				error = EAFNOSUPPORT;
2095 		}
2096 		break;
2097 	case NET_RT_NHOP:
2098 		/* Allow dumping one specific af/fib at a time */
2099 		if (namelen < 4) {
2100 			error = EINVAL;
2101 			break;
2102 		}
2103 		fib = name[3];
2104 		if (fib < 0 || fib > rt_numfibs) {
2105 			error = EINVAL;
2106 			break;
2107 		}
2108 		rnh = rt_tables_get_rnh(fib, af);
2109 		if (rnh == NULL) {
2110 			error = EAFNOSUPPORT;
2111 			break;
2112 		}
2113 		if (w.w_op == NET_RT_NHOP)
2114 			error = nhops_dump_sysctl(rnh, w.w_req);
2115 		break;
2116 	case NET_RT_IFLIST:
2117 	case NET_RT_IFLISTL:
2118 		error = sysctl_iflist(af, &w);
2119 		break;
2120 
2121 	case NET_RT_IFMALIST:
2122 		error = sysctl_ifmalist(af, &w);
2123 		break;
2124 	}
2125 	NET_EPOCH_EXIT(et);
2126 
2127 	free(w.w_tmem, M_TEMP);
2128 	return (error);
2129 }
2130 
2131 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
2132     sysctl_rtsock, "Return route tables and interface/address lists");
2133 
2134 /*
2135  * Definitions of protocols supported in the ROUTE domain.
2136  */
2137 
2138 static struct domain routedomain;		/* or at least forward */
2139 
2140 static struct protosw routesw[] = {
2141 {
2142 	.pr_type =		SOCK_RAW,
2143 	.pr_domain =		&routedomain,
2144 	.pr_flags =		PR_ATOMIC|PR_ADDR,
2145 	.pr_output =		route_output,
2146 	.pr_ctlinput =		raw_ctlinput,
2147 	.pr_init =		raw_init,
2148 	.pr_usrreqs =		&route_usrreqs
2149 }
2150 };
2151 
2152 static struct domain routedomain = {
2153 	.dom_family =		PF_ROUTE,
2154 	.dom_name =		 "route",
2155 	.dom_protosw =		routesw,
2156 	.dom_protoswNPROTOSW =	&routesw[nitems(routesw)]
2157 };
2158 
2159 VNET_DOMAIN_SET(route);
2160 
2161 #ifdef DDB
2162 /*
2163  * Unfortunately, RTF_ values are expressed as raw masks rather than powers of
2164  * 2, so we cannot use them as nice C99 initializer indices below.
2165  */
2166 static const char * const rtf_flag_strings[] = {
2167 	"UP",
2168 	"GATEWAY",
2169 	"HOST",
2170 	"REJECT",
2171 	"DYNAMIC",
2172 	"MODIFIED",
2173 	"DONE",
2174 	"UNUSED_0x80",
2175 	"UNUSED_0x100",
2176 	"XRESOLVE",
2177 	"LLDATA",
2178 	"STATIC",
2179 	"BLACKHOLE",
2180 	"UNUSED_0x2000",
2181 	"PROTO2",
2182 	"PROTO1",
2183 	"UNUSED_0x10000",
2184 	"UNUSED_0x20000",
2185 	"PROTO3",
2186 	"FIXEDMTU",
2187 	"PINNED",
2188 	"LOCAL",
2189 	"BROADCAST",
2190 	"MULTICAST",
2191 	/* Big gap. */
2192 	[28] = "STICKY",
2193 	[30] = "RNH_LOCKED",
2194 	[31] = "GWFLAG_COMPAT",
2195 };
2196 
2197 static const char * __pure
2198 rt_flag_name(unsigned idx)
2199 {
2200 	if (idx >= nitems(rtf_flag_strings))
2201 		return ("INVALID_FLAG");
2202 	if (rtf_flag_strings[idx] == NULL)
2203 		return ("UNKNOWN");
2204 	return (rtf_flag_strings[idx]);
2205 }
2206 
2207 static void
2208 rt_dumpaddr_ddb(const char *name, const struct sockaddr *sa)
2209 {
2210 	char buf[INET6_ADDRSTRLEN], *res;
2211 
2212 	res = NULL;
2213 	if (sa == NULL)
2214 		res = "NULL";
2215 	else if (sa->sa_family == AF_INET) {
2216 		res = inet_ntop(AF_INET,
2217 		    &((const struct sockaddr_in *)sa)->sin_addr,
2218 		    buf, sizeof(buf));
2219 	} else if (sa->sa_family == AF_INET6) {
2220 		res = inet_ntop(AF_INET6,
2221 		    &((const struct sockaddr_in6 *)sa)->sin6_addr,
2222 		    buf, sizeof(buf));
2223 	} else if (sa->sa_family == AF_LINK) {
2224 		res = "on link";
2225 	}
2226 
2227 	if (res != NULL) {
2228 		db_printf("%s <%s> ", name, res);
2229 		return;
2230 	}
2231 
2232 	db_printf("%s <af:%d> ", name, sa->sa_family);
2233 }
2234 
2235 static int
2236 rt_dumpentry_ddb(struct radix_node *rn, void *arg __unused)
2237 {
2238 	struct sockaddr_storage ss;
2239 	struct rtentry *rt;
2240 	int flags, idx;
2241 
2242 	/* If RNTORT is important, put it in a header. */
2243 	rt = (void *)rn;
2244 
2245 	rt_dumpaddr_ddb("dst", rt_key(rt));
2246 	rt_dumpaddr_ddb("gateway", rt->rt_gateway);
2247 	rt_dumpaddr_ddb("netmask", rtsock_fix_netmask(rt_key(rt), rt_mask(rt),
2248 	    &ss));
2249 	if (rt->rt_ifp != NULL && (rt->rt_ifp->if_flags & IFF_DYING) == 0) {
2250 		rt_dumpaddr_ddb("ifp", rt->rt_ifp->if_addr->ifa_addr);
2251 		rt_dumpaddr_ddb("ifa", rt->rt_ifa->ifa_addr);
2252 	}
2253 
2254 	db_printf("flags ");
2255 	flags = rt->rt_flags;
2256 	if (flags == 0)
2257 		db_printf("none");
2258 
2259 	while ((idx = ffs(flags)) > 0) {
2260 		idx--;
2261 
2262 		if (flags != rt->rt_flags)
2263 			db_printf(",");
2264 		db_printf("%s", rt_flag_name(idx));
2265 
2266 		flags &= ~(1ul << idx);
2267 	}
2268 
2269 	db_printf("\n");
2270 	return (0);
2271 }
2272 
2273 DB_SHOW_COMMAND(routetable, db_show_routetable_cmd)
2274 {
2275 	struct rib_head *rnh;
2276 	int error, i, lim;
2277 
2278 	if (have_addr)
2279 		i = lim = addr;
2280 	else {
2281 		i = 1;
2282 		lim = AF_MAX;
2283 	}
2284 
2285 	for (; i <= lim; i++) {
2286 		rnh = rt_tables_get_rnh(0, i);
2287 		if (rnh == NULL) {
2288 			if (have_addr) {
2289 				db_printf("%s: AF %d not supported?\n",
2290 				    __func__, i);
2291 				break;
2292 			}
2293 			continue;
2294 		}
2295 
2296 		if (!have_addr && i > 1)
2297 			db_printf("\n");
2298 
2299 		db_printf("Route table for AF %d%s%s%s:\n", i,
2300 		    (i == AF_INET || i == AF_INET6) ? " (" : "",
2301 		    (i == AF_INET) ? "INET" : (i == AF_INET6) ? "INET6" : "",
2302 		    (i == AF_INET || i == AF_INET6) ? ")" : "");
2303 
2304 		error = rnh->rnh_walktree(&rnh->head, rt_dumpentry_ddb, NULL);
2305 		if (error != 0)
2306 			db_printf("%s: walktree(%d): %d\n", __func__, i,
2307 			    error);
2308 	}
2309 }
2310 
2311 _DB_FUNC(_show, route, db_show_route_cmd, db_show_table, CS_OWN, NULL)
2312 {
2313 	char buf[INET6_ADDRSTRLEN], *bp;
2314 	const void *dst_addrp;
2315 	struct sockaddr *dstp;
2316 	struct rtentry *rt;
2317 	union {
2318 		struct sockaddr_in dest_sin;
2319 		struct sockaddr_in6 dest_sin6;
2320 	} u;
2321 	uint16_t hextets[8];
2322 	unsigned i, tets;
2323 	int t, af, exp, tokflags;
2324 
2325 	/*
2326 	 * Undecoded address family.  No double-colon expansion seen yet.
2327 	 */
2328 	af = -1;
2329 	exp = -1;
2330 	/* Assume INET6 to start; we can work back if guess was wrong. */
2331 	tokflags = DRT_WSPACE | DRT_HEX | DRT_HEXADECIMAL;
2332 
2333 	/*
2334 	 * db_command has lexed 'show route' for us.
2335 	 */
2336 	t = db_read_token_flags(tokflags);
2337 	if (t == tWSPACE)
2338 		t = db_read_token_flags(tokflags);
2339 
2340 	/*
2341 	 * tEOL: Just 'show route' isn't a valid mode.
2342 	 * tMINUS: It's either '-h' or some invalid option.  Regardless, usage.
2343 	 */
2344 	if (t == tEOL || t == tMINUS)
2345 		goto usage;
2346 
2347 	db_unread_token(t);
2348 
2349 	tets = nitems(hextets);
2350 
2351 	/*
2352 	 * Each loop iteration, we expect to read one octet (v4) or hextet
2353 	 * (v6), followed by an appropriate field separator ('.' or ':' or
2354 	 * '::').
2355 	 *
2356 	 * At the start of each loop, we're looking for a number (octet or
2357 	 * hextet).
2358 	 *
2359 	 * INET6 addresses have a special case where they may begin with '::'.
2360 	 */
2361 	for (i = 0; i < tets; i++) {
2362 		t = db_read_token_flags(tokflags);
2363 
2364 		if (t == tCOLONCOLON) {
2365 			/* INET6 with leading '::' or invalid. */
2366 			if (i != 0) {
2367 				db_printf("Parse error: unexpected extra "
2368 				    "colons.\n");
2369 				goto exit;
2370 			}
2371 
2372 			af = AF_INET6;
2373 			exp = i;
2374 			hextets[i] = 0;
2375 			continue;
2376 		} else if (t == tNUMBER) {
2377 			/*
2378 			 * Lexer separates out '-' as tMINUS, but make the
2379 			 * assumption explicit here.
2380 			 */
2381 			MPASS(db_tok_number >= 0);
2382 
2383 			if (af == AF_INET && db_tok_number > UINT8_MAX) {
2384 				db_printf("Not a valid v4 octet: %ld\n",
2385 				    (long)db_tok_number);
2386 				goto exit;
2387 			}
2388 			hextets[i] = db_tok_number;
2389 		} else if (t == tEOL) {
2390 			/*
2391 			 * We can only detect the end of an IPv6 address in
2392 			 * compact representation with EOL.
2393 			 */
2394 			if (af != AF_INET6 || exp < 0) {
2395 				db_printf("Parse failed.  Got unexpected EOF "
2396 				    "when the address is not a compact-"
2397 				    "representation IPv6 address.\n");
2398 				goto exit;
2399 			}
2400 			break;
2401 		} else {
2402 			db_printf("Parse failed.  Unexpected token %d.\n", t);
2403 			goto exit;
2404 		}
2405 
2406 		/* Next, look for a separator, if appropriate. */
2407 		if (i == tets - 1)
2408 			continue;
2409 
2410 		t = db_read_token_flags(tokflags);
2411 		if (af < 0) {
2412 			if (t == tCOLON) {
2413 				af = AF_INET6;
2414 				continue;
2415 			}
2416 			if (t == tCOLONCOLON) {
2417 				af = AF_INET6;
2418 				i++;
2419 				hextets[i] = 0;
2420 				exp = i;
2421 				continue;
2422 			}
2423 			if (t == tDOT) {
2424 				unsigned hn, dn;
2425 
2426 				af = AF_INET;
2427 				/* Need to fixup the first parsed number. */
2428 				if (hextets[0] > 0x255 ||
2429 				    (hextets[0] & 0xf0) > 0x90 ||
2430 				    (hextets[0] & 0xf) > 9) {
2431 					db_printf("Not a valid v4 octet: %x\n",
2432 					    hextets[0]);
2433 					goto exit;
2434 				}
2435 
2436 				hn = hextets[0];
2437 				dn = (hn >> 8) * 100 +
2438 				    ((hn >> 4) & 0xf) * 10 +
2439 				    (hn & 0xf);
2440 
2441 				hextets[0] = dn;
2442 
2443 				/* Switch to decimal for remaining octets. */
2444 				tokflags &= ~DRT_RADIX_MASK;
2445 				tokflags |= DRT_DECIMAL;
2446 
2447 				tets = 4;
2448 				continue;
2449 			}
2450 
2451 			db_printf("Parse error.  Unexpected token %d.\n", t);
2452 			goto exit;
2453 		} else if (af == AF_INET) {
2454 			if (t == tDOT)
2455 				continue;
2456 			db_printf("Expected '.' (%d) between octets but got "
2457 			    "(%d).\n", tDOT, t);
2458 			goto exit;
2459 
2460 		} else if (af == AF_INET6) {
2461 			if (t == tCOLON)
2462 				continue;
2463 			if (t == tCOLONCOLON) {
2464 				if (exp < 0) {
2465 					i++;
2466 					hextets[i] = 0;
2467 					exp = i;
2468 					continue;
2469 				}
2470 				db_printf("Got bogus second '::' in v6 "
2471 				    "address.\n");
2472 				goto exit;
2473 			}
2474 			if (t == tEOL) {
2475 				/*
2476 				 * Handle in the earlier part of the loop
2477 				 * because we need to handle trailing :: too.
2478 				 */
2479 				db_unread_token(t);
2480 				continue;
2481 			}
2482 
2483 			db_printf("Expected ':' (%d) or '::' (%d) between "
2484 			    "hextets but got (%d).\n", tCOLON, tCOLONCOLON, t);
2485 			goto exit;
2486 		}
2487 	}
2488 
2489 	/* Check for trailing garbage. */
2490 	if (i == tets) {
2491 		t = db_read_token_flags(tokflags);
2492 		if (t != tEOL) {
2493 			db_printf("Got unexpected garbage after address "
2494 			    "(%d).\n", t);
2495 			goto exit;
2496 		}
2497 	}
2498 
2499 	/*
2500 	 * Need to expand compact INET6 addresses.
2501 	 *
2502 	 * Technically '::' for a single ':0:' is MUST NOT but just in case,
2503 	 * don't bother expanding that form (exp >= 0 && i == tets case).
2504 	 */
2505 	if (af == AF_INET6 && exp >= 0 && i < tets) {
2506 		if (exp + 1 < i) {
2507 			memmove(&hextets[exp + 1 + (nitems(hextets) - i)],
2508 			    &hextets[exp + 1],
2509 			    (i - (exp + 1)) * sizeof(hextets[0]));
2510 		}
2511 		memset(&hextets[exp + 1], 0, (nitems(hextets) - i) *
2512 		    sizeof(hextets[0]));
2513 	}
2514 
2515 	memset(&u, 0, sizeof(u));
2516 	if (af == AF_INET) {
2517 		u.dest_sin.sin_family = AF_INET;
2518 		u.dest_sin.sin_len = sizeof(u.dest_sin);
2519 		u.dest_sin.sin_addr.s_addr = htonl(
2520 		    ((uint32_t)hextets[0] << 24) |
2521 		    ((uint32_t)hextets[1] << 16) |
2522 		    ((uint32_t)hextets[2] << 8) |
2523 		    (uint32_t)hextets[3]);
2524 		dstp = (void *)&u.dest_sin;
2525 		dst_addrp = &u.dest_sin.sin_addr;
2526 	} else if (af == AF_INET6) {
2527 		u.dest_sin6.sin6_family = AF_INET6;
2528 		u.dest_sin6.sin6_len = sizeof(u.dest_sin6);
2529 		for (i = 0; i < nitems(hextets); i++)
2530 			u.dest_sin6.sin6_addr.s6_addr16[i] = htons(hextets[i]);
2531 		dstp = (void *)&u.dest_sin6;
2532 		dst_addrp = &u.dest_sin6.sin6_addr;
2533 	} else {
2534 		MPASS(false);
2535 		/* UNREACHABLE */
2536 		/* Appease Clang false positive: */
2537 		dstp = NULL;
2538 	}
2539 
2540 	bp = inet_ntop(af, dst_addrp, buf, sizeof(buf));
2541 	if (bp != NULL)
2542 		db_printf("Looking up route to destination '%s'\n", bp);
2543 
2544 	CURVNET_SET(vnet0);
2545 	rt = rtalloc1(dstp, 0, RTF_RNH_LOCKED);
2546 	CURVNET_RESTORE();
2547 
2548 	if (rt == NULL) {
2549 		db_printf("Could not get route for that server.\n");
2550 		return;
2551 	}
2552 
2553 	rt_dumpentry_ddb((void *)rt, NULL);
2554 	RTFREE_LOCKED(rt);
2555 
2556 	return;
2557 usage:
2558 	db_printf("Usage: 'show route <address>'\n"
2559 	    "  Currently accepts only dotted-decimal INET or colon-separated\n"
2560 	    "  hextet INET6 addresses.\n");
2561 exit:
2562 	db_skip_to_eol();
2563 }
2564 #endif
2565