1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_sctp.h" 33 #include "opt_mpath.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 37 #include <sys/param.h> 38 #include <sys/domain.h> 39 #include <sys/jail.h> 40 #include <sys/kernel.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/rwlock.h> 48 #include <sys/signalvar.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/systm.h> 53 #include <sys/vimage.h> 54 55 #include <net/if.h> 56 #include <net/netisr.h> 57 #include <net/raw_cb.h> 58 #include <net/route.h> 59 #include <net/vnet.h> 60 61 #include <netinet/in.h> 62 #ifdef INET6 63 #include <netinet6/scope6_var.h> 64 #endif 65 66 #ifdef SCTP 67 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 68 #endif /* SCTP */ 69 70 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 71 72 /* NB: these are not modified */ 73 static struct sockaddr route_src = { 2, PF_ROUTE, }; 74 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 75 76 static struct { 77 int ip_count; /* attached w/ AF_INET */ 78 int ip6_count; /* attached w/ AF_INET6 */ 79 int ipx_count; /* attached w/ AF_IPX */ 80 int any_count; /* total attached */ 81 } route_cb; 82 83 struct mtx rtsock_mtx; 84 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 85 86 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 87 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 88 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 89 90 static struct ifqueue rtsintrq; 91 92 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 93 SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW, 94 &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length"); 95 96 struct walkarg { 97 int w_tmemsize; 98 int w_op, w_arg; 99 caddr_t w_tmem; 100 struct sysctl_req *w_req; 101 }; 102 103 static void rts_input(struct mbuf *m); 104 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 105 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 106 caddr_t cp, struct walkarg *w); 107 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 108 struct rt_addrinfo *rtinfo); 109 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 110 static int sysctl_iflist(int af, struct walkarg *w); 111 static int sysctl_ifmalist(int af, struct walkarg *w); 112 static int route_output(struct mbuf *m, struct socket *so); 113 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 114 struct rt_metrics_lite *out); 115 static void rt_getmetrics(const struct rt_metrics_lite *in, 116 struct rt_metrics *out); 117 static void rt_dispatch(struct mbuf *, const struct sockaddr *); 118 119 static void 120 rts_init(void) 121 { 122 int tmp; 123 124 rtsintrq.ifq_maxlen = 256; 125 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 126 rtsintrq.ifq_maxlen = tmp; 127 mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF); 128 netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, 0); 129 } 130 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 131 132 static void 133 rts_input(struct mbuf *m) 134 { 135 struct sockproto route_proto; 136 unsigned short *family; 137 struct m_tag *tag; 138 139 route_proto.sp_family = PF_ROUTE; 140 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 141 if (tag != NULL) { 142 family = (unsigned short *)(tag + 1); 143 route_proto.sp_protocol = *family; 144 m_tag_delete(m, tag); 145 } else 146 route_proto.sp_protocol = 0; 147 148 raw_input(m, &route_proto, &route_src); 149 } 150 151 /* 152 * It really doesn't make any sense at all for this code to share much 153 * with raw_usrreq.c, since its functionality is so restricted. XXX 154 */ 155 static void 156 rts_abort(struct socket *so) 157 { 158 159 raw_usrreqs.pru_abort(so); 160 } 161 162 static void 163 rts_close(struct socket *so) 164 { 165 166 raw_usrreqs.pru_close(so); 167 } 168 169 /* pru_accept is EOPNOTSUPP */ 170 171 static int 172 rts_attach(struct socket *so, int proto, struct thread *td) 173 { 174 struct rawcb *rp; 175 int s, error; 176 177 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 178 179 /* XXX */ 180 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 181 if (rp == NULL) 182 return ENOBUFS; 183 184 /* 185 * The splnet() is necessary to block protocols from sending 186 * error notifications (like RTM_REDIRECT or RTM_LOSING) while 187 * this PCB is extant but incompletely initialized. 188 * Probably we should try to do more of this work beforehand and 189 * eliminate the spl. 190 */ 191 s = splnet(); 192 so->so_pcb = (caddr_t)rp; 193 so->so_fibnum = td->td_proc->p_fibnum; 194 error = raw_attach(so, proto); 195 rp = sotorawcb(so); 196 if (error) { 197 splx(s); 198 so->so_pcb = NULL; 199 free(rp, M_PCB); 200 return error; 201 } 202 RTSOCK_LOCK(); 203 switch(rp->rcb_proto.sp_protocol) { 204 case AF_INET: 205 route_cb.ip_count++; 206 break; 207 case AF_INET6: 208 route_cb.ip6_count++; 209 break; 210 case AF_IPX: 211 route_cb.ipx_count++; 212 break; 213 } 214 route_cb.any_count++; 215 RTSOCK_UNLOCK(); 216 soisconnected(so); 217 so->so_options |= SO_USELOOPBACK; 218 splx(s); 219 return 0; 220 } 221 222 static int 223 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 224 { 225 226 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 227 } 228 229 static int 230 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 231 { 232 233 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 234 } 235 236 /* pru_connect2 is EOPNOTSUPP */ 237 /* pru_control is EOPNOTSUPP */ 238 239 static void 240 rts_detach(struct socket *so) 241 { 242 struct rawcb *rp = sotorawcb(so); 243 244 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 245 246 RTSOCK_LOCK(); 247 switch(rp->rcb_proto.sp_protocol) { 248 case AF_INET: 249 route_cb.ip_count--; 250 break; 251 case AF_INET6: 252 route_cb.ip6_count--; 253 break; 254 case AF_IPX: 255 route_cb.ipx_count--; 256 break; 257 } 258 route_cb.any_count--; 259 RTSOCK_UNLOCK(); 260 raw_usrreqs.pru_detach(so); 261 } 262 263 static int 264 rts_disconnect(struct socket *so) 265 { 266 267 return (raw_usrreqs.pru_disconnect(so)); 268 } 269 270 /* pru_listen is EOPNOTSUPP */ 271 272 static int 273 rts_peeraddr(struct socket *so, struct sockaddr **nam) 274 { 275 276 return (raw_usrreqs.pru_peeraddr(so, nam)); 277 } 278 279 /* pru_rcvd is EOPNOTSUPP */ 280 /* pru_rcvoob is EOPNOTSUPP */ 281 282 static int 283 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 284 struct mbuf *control, struct thread *td) 285 { 286 287 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 288 } 289 290 /* pru_sense is null */ 291 292 static int 293 rts_shutdown(struct socket *so) 294 { 295 296 return (raw_usrreqs.pru_shutdown(so)); 297 } 298 299 static int 300 rts_sockaddr(struct socket *so, struct sockaddr **nam) 301 { 302 303 return (raw_usrreqs.pru_sockaddr(so, nam)); 304 } 305 306 static struct pr_usrreqs route_usrreqs = { 307 .pru_abort = rts_abort, 308 .pru_attach = rts_attach, 309 .pru_bind = rts_bind, 310 .pru_connect = rts_connect, 311 .pru_detach = rts_detach, 312 .pru_disconnect = rts_disconnect, 313 .pru_peeraddr = rts_peeraddr, 314 .pru_send = rts_send, 315 .pru_shutdown = rts_shutdown, 316 .pru_sockaddr = rts_sockaddr, 317 .pru_close = rts_close, 318 }; 319 320 #ifndef _SOCKADDR_UNION_DEFINED 321 #define _SOCKADDR_UNION_DEFINED 322 /* 323 * The union of all possible address formats we handle. 324 */ 325 union sockaddr_union { 326 struct sockaddr sa; 327 struct sockaddr_in sin; 328 struct sockaddr_in6 sin6; 329 }; 330 #endif /* _SOCKADDR_UNION_DEFINED */ 331 332 static int 333 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 334 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 335 { 336 337 switch (info->rti_info[RTAX_DST]->sa_family) { 338 #ifdef INET 339 case AF_INET: 340 { 341 struct in_addr ia; 342 343 /* 344 * 1. Check if the returned address is part of the jail. 345 */ 346 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->sin_addr; 347 if (prison_check_ip4(cred, &ia) != 0) { 348 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 349 350 } else { 351 struct ifaddr *ifa; 352 int found; 353 354 found = 0; 355 356 /* 357 * 2. Try to find an address on the given outgoing 358 * interface that belongs to the jail. 359 */ 360 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 361 struct sockaddr *sa; 362 sa = ifa->ifa_addr; 363 if (sa->sa_family != AF_INET) 364 continue; 365 ia = ((struct sockaddr_in *)sa)->sin_addr; 366 if (prison_check_ip4(cred, &ia) != 0) { 367 found = 1; 368 break; 369 } 370 } 371 if (!found) { 372 /* 373 * 3. As a last resort return the 'default' 374 * jail address. 375 */ 376 if (prison_getip4(cred, &ia) != 0) 377 return (ESRCH); 378 } 379 bzero(&saun->sin, sizeof(struct sockaddr_in)); 380 saun->sin.sin_len = sizeof(struct sockaddr_in); 381 saun->sin.sin_family = AF_INET; 382 saun->sin.sin_addr.s_addr = ia.s_addr; 383 info->rti_info[RTAX_IFA] = 384 (struct sockaddr *)&saun->sin; 385 } 386 break; 387 } 388 #endif 389 #ifdef INET6 390 case AF_INET6: 391 { 392 struct in6_addr ia6; 393 394 /* 395 * 1. Check if the returned address is part of the jail. 396 */ 397 bcopy(&((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->sin6_addr, 398 &ia6, sizeof(struct in6_addr)); 399 if (prison_check_ip6(cred, &ia6) != 0) { 400 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 401 } else { 402 struct ifaddr *ifa; 403 int found; 404 405 found = 0; 406 407 /* 408 * 2. Try to find an address on the given outgoing 409 * interface that belongs to the jail. 410 */ 411 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 412 struct sockaddr *sa; 413 sa = ifa->ifa_addr; 414 if (sa->sa_family != AF_INET6) 415 continue; 416 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 417 &ia6, sizeof(struct in6_addr)); 418 if (prison_check_ip6(cred, &ia6) != 0) { 419 found = 1; 420 break; 421 } 422 } 423 if (!found) { 424 /* 425 * 3. As a last resort return the 'default' 426 * jail address. 427 */ 428 if (prison_getip6(cred, &ia6) != 0) 429 return (ESRCH); 430 } 431 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 432 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 433 saun->sin6.sin6_family = AF_INET6; 434 bcopy(&ia6, &saun->sin6.sin6_addr, 435 sizeof(struct in6_addr)); 436 if (sa6_recoverscope(&saun->sin6) != 0) 437 return (ESRCH); 438 info->rti_info[RTAX_IFA] = 439 (struct sockaddr *)&saun->sin6; 440 } 441 break; 442 } 443 #endif 444 default: 445 return (ESRCH); 446 } 447 return (0); 448 } 449 450 /*ARGSUSED*/ 451 static int 452 route_output(struct mbuf *m, struct socket *so) 453 { 454 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 455 INIT_VNET_NET(so->so_vnet); 456 struct rt_msghdr *rtm = NULL; 457 struct rtentry *rt = NULL; 458 struct radix_node_head *rnh; 459 struct rt_addrinfo info; 460 int len, error = 0; 461 struct ifnet *ifp = NULL; 462 union sockaddr_union saun; 463 464 #define senderr(e) { error = e; goto flush;} 465 if (m == NULL || ((m->m_len < sizeof(long)) && 466 (m = m_pullup(m, sizeof(long))) == NULL)) 467 return (ENOBUFS); 468 if ((m->m_flags & M_PKTHDR) == 0) 469 panic("route_output"); 470 len = m->m_pkthdr.len; 471 if (len < sizeof(*rtm) || 472 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 473 info.rti_info[RTAX_DST] = NULL; 474 senderr(EINVAL); 475 } 476 R_Malloc(rtm, struct rt_msghdr *, len); 477 if (rtm == NULL) { 478 info.rti_info[RTAX_DST] = NULL; 479 senderr(ENOBUFS); 480 } 481 m_copydata(m, 0, len, (caddr_t)rtm); 482 if (rtm->rtm_version != RTM_VERSION) { 483 info.rti_info[RTAX_DST] = NULL; 484 senderr(EPROTONOSUPPORT); 485 } 486 rtm->rtm_pid = curproc->p_pid; 487 bzero(&info, sizeof(info)); 488 info.rti_addrs = rtm->rtm_addrs; 489 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 490 info.rti_info[RTAX_DST] = NULL; 491 senderr(EINVAL); 492 } 493 info.rti_flags = rtm->rtm_flags; 494 if (info.rti_info[RTAX_DST] == NULL || 495 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 496 (info.rti_info[RTAX_GATEWAY] != NULL && 497 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 498 senderr(EINVAL); 499 if (info.rti_info[RTAX_GENMASK]) { 500 struct radix_node *t; 501 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1); 502 if (t != NULL && 503 bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1, 504 (char *)(void *)t->rn_key + 1, 505 ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0) 506 info.rti_info[RTAX_GENMASK] = 507 (struct sockaddr *)t->rn_key; 508 else 509 senderr(ENOBUFS); 510 } 511 512 /* 513 * Verify that the caller has the appropriate privilege; RTM_GET 514 * is the only operation the non-superuser is allowed. 515 */ 516 if (rtm->rtm_type != RTM_GET) { 517 error = priv_check(curthread, PRIV_NET_ROUTE); 518 if (error) 519 senderr(error); 520 } 521 522 switch (rtm->rtm_type) { 523 struct rtentry *saved_nrt; 524 525 case RTM_ADD: 526 if (info.rti_info[RTAX_GATEWAY] == NULL) 527 senderr(EINVAL); 528 saved_nrt = NULL; 529 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 530 so->so_fibnum); 531 if (error == 0 && saved_nrt) { 532 RT_LOCK(saved_nrt); 533 rt_setmetrics(rtm->rtm_inits, 534 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 535 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 536 RT_REMREF(saved_nrt); 537 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; 538 RT_UNLOCK(saved_nrt); 539 } 540 break; 541 542 case RTM_DELETE: 543 saved_nrt = NULL; 544 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 545 so->so_fibnum); 546 if (error == 0) { 547 RT_LOCK(saved_nrt); 548 rt = saved_nrt; 549 goto report; 550 } 551 break; 552 553 case RTM_GET: 554 case RTM_CHANGE: 555 case RTM_LOCK: 556 rnh = V_rt_tables[so->so_fibnum][info.rti_info[RTAX_DST]->sa_family]; 557 if (rnh == NULL) 558 senderr(EAFNOSUPPORT); 559 RADIX_NODE_HEAD_RLOCK(rnh); 560 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 561 info.rti_info[RTAX_NETMASK], rnh); 562 if (rt == NULL) { /* XXX looks bogus */ 563 RADIX_NODE_HEAD_RUNLOCK(rnh); 564 senderr(ESRCH); 565 } 566 #ifdef RADIX_MPATH 567 /* 568 * for RTM_CHANGE/LOCK, if we got multipath routes, 569 * we require users to specify a matching RTAX_GATEWAY. 570 * 571 * for RTM_GET, gate is optional even with multipath. 572 * if gate == NULL the first match is returned. 573 * (no need to call rt_mpath_matchgate if gate == NULL) 574 */ 575 if (rn_mpath_capable(rnh) && 576 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 577 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 578 if (!rt) { 579 RADIX_NODE_HEAD_RUNLOCK(rnh); 580 senderr(ESRCH); 581 } 582 } 583 #endif 584 RT_LOCK(rt); 585 RT_ADDREF(rt); 586 RADIX_NODE_HEAD_RUNLOCK(rnh); 587 588 /* 589 * Fix for PR: 82974 590 * 591 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 592 * returns a perfect match in case a netmask is 593 * specified. For host routes only a longest prefix 594 * match is returned so it is necessary to compare the 595 * existence of the netmask. If both have a netmask 596 * rnh_lookup() did a perfect match and if none of them 597 * have a netmask both are host routes which is also a 598 * perfect match. 599 */ 600 601 if (rtm->rtm_type != RTM_GET && 602 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 603 RT_UNLOCK(rt); 604 senderr(ESRCH); 605 } 606 607 switch(rtm->rtm_type) { 608 609 case RTM_GET: 610 report: 611 RT_LOCK_ASSERT(rt); 612 info.rti_info[RTAX_DST] = rt_key(rt); 613 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 614 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 615 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 616 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 617 ifp = rt->rt_ifp; 618 if (ifp) { 619 info.rti_info[RTAX_IFP] = 620 ifp->if_addr->ifa_addr; 621 if (jailed(so->so_cred)) { 622 error = rtm_get_jailed( 623 &info, ifp, rt, &saun, 624 so->so_cred); 625 if (error != 0) { 626 RT_UNLOCK(rt); 627 senderr(ESRCH); 628 } 629 } else { 630 info.rti_info[RTAX_IFA] = 631 rt->rt_ifa->ifa_addr; 632 } 633 if (ifp->if_flags & IFF_POINTOPOINT) 634 info.rti_info[RTAX_BRD] = 635 rt->rt_ifa->ifa_dstaddr; 636 rtm->rtm_index = ifp->if_index; 637 } else { 638 info.rti_info[RTAX_IFP] = NULL; 639 info.rti_info[RTAX_IFA] = NULL; 640 } 641 } else if ((ifp = rt->rt_ifp) != NULL) { 642 rtm->rtm_index = ifp->if_index; 643 } 644 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 645 if (len > rtm->rtm_msglen) { 646 struct rt_msghdr *new_rtm; 647 R_Malloc(new_rtm, struct rt_msghdr *, len); 648 if (new_rtm == NULL) { 649 RT_UNLOCK(rt); 650 senderr(ENOBUFS); 651 } 652 bcopy(rtm, new_rtm, rtm->rtm_msglen); 653 Free(rtm); rtm = new_rtm; 654 } 655 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 656 rtm->rtm_flags = rt->rt_flags; 657 rtm->rtm_use = 0; 658 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 659 rtm->rtm_addrs = info.rti_addrs; 660 break; 661 662 case RTM_CHANGE: 663 /* 664 * New gateway could require new ifaddr, ifp; 665 * flags may also be different; ifp may be specified 666 * by ll sockaddr when protocol address is ambiguous 667 */ 668 if (((rt->rt_flags & RTF_GATEWAY) && 669 info.rti_info[RTAX_GATEWAY] != NULL) || 670 info.rti_info[RTAX_IFP] != NULL || 671 (info.rti_info[RTAX_IFA] != NULL && 672 !sa_equal(info.rti_info[RTAX_IFA], 673 rt->rt_ifa->ifa_addr))) { 674 RT_UNLOCK(rt); 675 RADIX_NODE_HEAD_LOCK(rnh); 676 error = rt_getifa_fib(&info, rt->rt_fibnum); 677 RADIX_NODE_HEAD_UNLOCK(rnh); 678 if (error != 0) 679 senderr(error); 680 RT_LOCK(rt); 681 } 682 if (info.rti_ifa != NULL && 683 info.rti_ifa != rt->rt_ifa && 684 rt->rt_ifa != NULL && 685 rt->rt_ifa->ifa_rtrequest != NULL) { 686 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 687 &info); 688 IFAFREE(rt->rt_ifa); 689 } 690 if (info.rti_info[RTAX_GATEWAY] != NULL) { 691 RT_UNLOCK(rt); 692 RADIX_NODE_HEAD_LOCK(rnh); 693 RT_LOCK(rt); 694 695 error = rt_setgate(rt, rt_key(rt), 696 info.rti_info[RTAX_GATEWAY]); 697 RADIX_NODE_HEAD_UNLOCK(rnh); 698 if (error != 0) { 699 RT_UNLOCK(rt); 700 senderr(error); 701 } 702 if (!(rt->rt_flags & RTF_LLINFO)) 703 rt->rt_flags |= RTF_GATEWAY; 704 } 705 if (info.rti_ifa != NULL && 706 info.rti_ifa != rt->rt_ifa) { 707 IFAREF(info.rti_ifa); 708 rt->rt_ifa = info.rti_ifa; 709 rt->rt_ifp = info.rti_ifp; 710 } 711 /* Allow some flags to be toggled on change. */ 712 if (rtm->rtm_fmask & RTF_FMASK) 713 rt->rt_flags = (rt->rt_flags & 714 ~rtm->rtm_fmask) | 715 (rtm->rtm_flags & rtm->rtm_fmask); 716 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 717 &rt->rt_rmx); 718 rtm->rtm_index = rt->rt_ifp->if_index; 719 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 720 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 721 if (info.rti_info[RTAX_GENMASK]) 722 rt->rt_genmask = info.rti_info[RTAX_GENMASK]; 723 /* FALLTHROUGH */ 724 case RTM_LOCK: 725 /* We don't support locks anymore */ 726 break; 727 } 728 RT_UNLOCK(rt); 729 break; 730 731 default: 732 senderr(EOPNOTSUPP); 733 } 734 735 flush: 736 if (rtm) { 737 if (error) 738 rtm->rtm_errno = error; 739 else 740 rtm->rtm_flags |= RTF_DONE; 741 } 742 if (rt) /* XXX can this be true? */ 743 RTFREE(rt); 744 { 745 struct rawcb *rp = NULL; 746 /* 747 * Check to see if we don't want our own messages. 748 */ 749 if ((so->so_options & SO_USELOOPBACK) == 0) { 750 if (route_cb.any_count <= 1) { 751 if (rtm) 752 Free(rtm); 753 m_freem(m); 754 return (error); 755 } 756 /* There is another listener, so construct message */ 757 rp = sotorawcb(so); 758 } 759 if (rtm) { 760 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 761 if (m->m_pkthdr.len < rtm->rtm_msglen) { 762 m_freem(m); 763 m = NULL; 764 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 765 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 766 Free(rtm); 767 } 768 if (m) { 769 if (rp) { 770 /* 771 * XXX insure we don't get a copy by 772 * invalidating our protocol 773 */ 774 unsigned short family = rp->rcb_proto.sp_family; 775 rp->rcb_proto.sp_family = 0; 776 rt_dispatch(m, info.rti_info[RTAX_DST]); 777 rp->rcb_proto.sp_family = family; 778 } else 779 rt_dispatch(m, info.rti_info[RTAX_DST]); 780 } 781 } 782 return (error); 783 #undef sa_equal 784 } 785 786 static void 787 rt_setmetrics(u_long which, const struct rt_metrics *in, 788 struct rt_metrics_lite *out) 789 { 790 #define metric(f, e) if (which & (f)) out->e = in->e; 791 /* 792 * Only these are stored in the routing entry since introduction 793 * of tcp hostcache. The rest is ignored. 794 */ 795 metric(RTV_MTU, rmx_mtu); 796 /* Userland -> kernel timebase conversion. */ 797 if (which & RTV_EXPIRE) 798 out->rmx_expire = in->rmx_expire ? 799 in->rmx_expire - time_second + time_uptime : 0; 800 #undef metric 801 } 802 803 static void 804 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 805 { 806 #define metric(e) out->e = in->e; 807 bzero(out, sizeof(*out)); 808 metric(rmx_mtu); 809 /* Kernel -> userland timebase conversion. */ 810 out->rmx_expire = in->rmx_expire ? 811 in->rmx_expire - time_uptime + time_second : 0; 812 #undef metric 813 } 814 815 /* 816 * Extract the addresses of the passed sockaddrs. 817 * Do a little sanity checking so as to avoid bad memory references. 818 * This data is derived straight from userland. 819 */ 820 static int 821 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 822 { 823 struct sockaddr *sa; 824 int i; 825 826 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 827 if ((rtinfo->rti_addrs & (1 << i)) == 0) 828 continue; 829 sa = (struct sockaddr *)cp; 830 /* 831 * It won't fit. 832 */ 833 if (cp + sa->sa_len > cplim) 834 return (EINVAL); 835 /* 836 * there are no more.. quit now 837 * If there are more bits, they are in error. 838 * I've seen this. route(1) can evidently generate these. 839 * This causes kernel to core dump. 840 * for compatibility, If we see this, point to a safe address. 841 */ 842 if (sa->sa_len == 0) { 843 rtinfo->rti_info[i] = &sa_zero; 844 return (0); /* should be EINVAL but for compat */ 845 } 846 /* accept it */ 847 rtinfo->rti_info[i] = sa; 848 cp += SA_SIZE(sa); 849 } 850 return (0); 851 } 852 853 static struct mbuf * 854 rt_msg1(int type, struct rt_addrinfo *rtinfo) 855 { 856 struct rt_msghdr *rtm; 857 struct mbuf *m; 858 int i; 859 struct sockaddr *sa; 860 int len, dlen; 861 862 switch (type) { 863 864 case RTM_DELADDR: 865 case RTM_NEWADDR: 866 len = sizeof(struct ifa_msghdr); 867 break; 868 869 case RTM_DELMADDR: 870 case RTM_NEWMADDR: 871 len = sizeof(struct ifma_msghdr); 872 break; 873 874 case RTM_IFINFO: 875 len = sizeof(struct if_msghdr); 876 break; 877 878 case RTM_IFANNOUNCE: 879 case RTM_IEEE80211: 880 len = sizeof(struct if_announcemsghdr); 881 break; 882 883 default: 884 len = sizeof(struct rt_msghdr); 885 } 886 if (len > MCLBYTES) 887 panic("rt_msg1"); 888 m = m_gethdr(M_DONTWAIT, MT_DATA); 889 if (m && len > MHLEN) { 890 MCLGET(m, M_DONTWAIT); 891 if ((m->m_flags & M_EXT) == 0) { 892 m_free(m); 893 m = NULL; 894 } 895 } 896 if (m == NULL) 897 return (m); 898 m->m_pkthdr.len = m->m_len = len; 899 m->m_pkthdr.rcvif = NULL; 900 rtm = mtod(m, struct rt_msghdr *); 901 bzero((caddr_t)rtm, len); 902 for (i = 0; i < RTAX_MAX; i++) { 903 if ((sa = rtinfo->rti_info[i]) == NULL) 904 continue; 905 rtinfo->rti_addrs |= (1 << i); 906 dlen = SA_SIZE(sa); 907 m_copyback(m, len, dlen, (caddr_t)sa); 908 len += dlen; 909 } 910 if (m->m_pkthdr.len != len) { 911 m_freem(m); 912 return (NULL); 913 } 914 rtm->rtm_msglen = len; 915 rtm->rtm_version = RTM_VERSION; 916 rtm->rtm_type = type; 917 return (m); 918 } 919 920 static int 921 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 922 { 923 int i; 924 int len, dlen, second_time = 0; 925 caddr_t cp0; 926 927 rtinfo->rti_addrs = 0; 928 again: 929 switch (type) { 930 931 case RTM_DELADDR: 932 case RTM_NEWADDR: 933 len = sizeof(struct ifa_msghdr); 934 break; 935 936 case RTM_IFINFO: 937 len = sizeof(struct if_msghdr); 938 break; 939 940 case RTM_NEWMADDR: 941 len = sizeof(struct ifma_msghdr); 942 break; 943 944 default: 945 len = sizeof(struct rt_msghdr); 946 } 947 cp0 = cp; 948 if (cp0) 949 cp += len; 950 for (i = 0; i < RTAX_MAX; i++) { 951 struct sockaddr *sa; 952 953 if ((sa = rtinfo->rti_info[i]) == NULL) 954 continue; 955 rtinfo->rti_addrs |= (1 << i); 956 dlen = SA_SIZE(sa); 957 if (cp) { 958 bcopy((caddr_t)sa, cp, (unsigned)dlen); 959 cp += dlen; 960 } 961 len += dlen; 962 } 963 len = ALIGN(len); 964 if (cp == NULL && w != NULL && !second_time) { 965 struct walkarg *rw = w; 966 967 if (rw->w_req) { 968 if (rw->w_tmemsize < len) { 969 if (rw->w_tmem) 970 free(rw->w_tmem, M_RTABLE); 971 rw->w_tmem = (caddr_t) 972 malloc(len, M_RTABLE, M_NOWAIT); 973 if (rw->w_tmem) 974 rw->w_tmemsize = len; 975 } 976 if (rw->w_tmem) { 977 cp = rw->w_tmem; 978 second_time = 1; 979 goto again; 980 } 981 } 982 } 983 if (cp) { 984 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 985 986 rtm->rtm_version = RTM_VERSION; 987 rtm->rtm_type = type; 988 rtm->rtm_msglen = len; 989 } 990 return (len); 991 } 992 993 /* 994 * This routine is called to generate a message from the routing 995 * socket indicating that a redirect has occured, a routing lookup 996 * has failed, or that a protocol has detected timeouts to a particular 997 * destination. 998 */ 999 void 1000 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1001 { 1002 struct rt_msghdr *rtm; 1003 struct mbuf *m; 1004 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1005 1006 if (route_cb.any_count == 0) 1007 return; 1008 m = rt_msg1(type, rtinfo); 1009 if (m == NULL) 1010 return; 1011 rtm = mtod(m, struct rt_msghdr *); 1012 rtm->rtm_flags = RTF_DONE | flags; 1013 rtm->rtm_errno = error; 1014 rtm->rtm_addrs = rtinfo->rti_addrs; 1015 rt_dispatch(m, sa); 1016 } 1017 1018 /* 1019 * This routine is called to generate a message from the routing 1020 * socket indicating that the status of a network interface has changed. 1021 */ 1022 void 1023 rt_ifmsg(struct ifnet *ifp) 1024 { 1025 struct if_msghdr *ifm; 1026 struct mbuf *m; 1027 struct rt_addrinfo info; 1028 1029 if (route_cb.any_count == 0) 1030 return; 1031 bzero((caddr_t)&info, sizeof(info)); 1032 m = rt_msg1(RTM_IFINFO, &info); 1033 if (m == NULL) 1034 return; 1035 ifm = mtod(m, struct if_msghdr *); 1036 ifm->ifm_index = ifp->if_index; 1037 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1038 ifm->ifm_data = ifp->if_data; 1039 ifm->ifm_addrs = 0; 1040 rt_dispatch(m, NULL); 1041 } 1042 1043 /* 1044 * This is called to generate messages from the routing socket 1045 * indicating a network interface has had addresses associated with it. 1046 * if we ever reverse the logic and replace messages TO the routing 1047 * socket indicate a request to configure interfaces, then it will 1048 * be unnecessary as the routing socket will automatically generate 1049 * copies of it. 1050 */ 1051 void 1052 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 1053 { 1054 struct rt_addrinfo info; 1055 struct sockaddr *sa = NULL; 1056 int pass; 1057 struct mbuf *m = NULL; 1058 struct ifnet *ifp = ifa->ifa_ifp; 1059 1060 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 1061 ("unexpected cmd %u", cmd)); 1062 #ifdef SCTP 1063 /* 1064 * notify the SCTP stack 1065 * this will only get called when an address is added/deleted 1066 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 1067 */ 1068 sctp_addr_change(ifa, cmd); 1069 #endif /* SCTP */ 1070 if (route_cb.any_count == 0) 1071 return; 1072 for (pass = 1; pass < 3; pass++) { 1073 bzero((caddr_t)&info, sizeof(info)); 1074 if ((cmd == RTM_ADD && pass == 1) || 1075 (cmd == RTM_DELETE && pass == 2)) { 1076 struct ifa_msghdr *ifam; 1077 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1078 1079 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1080 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1081 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1082 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1083 if ((m = rt_msg1(ncmd, &info)) == NULL) 1084 continue; 1085 ifam = mtod(m, struct ifa_msghdr *); 1086 ifam->ifam_index = ifp->if_index; 1087 ifam->ifam_metric = ifa->ifa_metric; 1088 ifam->ifam_flags = ifa->ifa_flags; 1089 ifam->ifam_addrs = info.rti_addrs; 1090 } 1091 if ((cmd == RTM_ADD && pass == 2) || 1092 (cmd == RTM_DELETE && pass == 1)) { 1093 struct rt_msghdr *rtm; 1094 1095 if (rt == NULL) 1096 continue; 1097 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1098 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1099 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1100 if ((m = rt_msg1(cmd, &info)) == NULL) 1101 continue; 1102 rtm = mtod(m, struct rt_msghdr *); 1103 rtm->rtm_index = ifp->if_index; 1104 rtm->rtm_flags |= rt->rt_flags; 1105 rtm->rtm_errno = error; 1106 rtm->rtm_addrs = info.rti_addrs; 1107 } 1108 rt_dispatch(m, sa); 1109 } 1110 } 1111 1112 /* 1113 * This is the analogue to the rt_newaddrmsg which performs the same 1114 * function but for multicast group memberhips. This is easier since 1115 * there is no route state to worry about. 1116 */ 1117 void 1118 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1119 { 1120 struct rt_addrinfo info; 1121 struct mbuf *m = NULL; 1122 struct ifnet *ifp = ifma->ifma_ifp; 1123 struct ifma_msghdr *ifmam; 1124 1125 if (route_cb.any_count == 0) 1126 return; 1127 1128 bzero((caddr_t)&info, sizeof(info)); 1129 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1130 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1131 /* 1132 * If a link-layer address is present, present it as a ``gateway'' 1133 * (similarly to how ARP entries, e.g., are presented). 1134 */ 1135 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1136 m = rt_msg1(cmd, &info); 1137 if (m == NULL) 1138 return; 1139 ifmam = mtod(m, struct ifma_msghdr *); 1140 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1141 __func__)); 1142 ifmam->ifmam_index = ifp->if_index; 1143 ifmam->ifmam_addrs = info.rti_addrs; 1144 rt_dispatch(m, ifma->ifma_addr); 1145 } 1146 1147 static struct mbuf * 1148 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1149 struct rt_addrinfo *info) 1150 { 1151 struct if_announcemsghdr *ifan; 1152 struct mbuf *m; 1153 1154 if (route_cb.any_count == 0) 1155 return NULL; 1156 bzero((caddr_t)info, sizeof(*info)); 1157 m = rt_msg1(type, info); 1158 if (m != NULL) { 1159 ifan = mtod(m, struct if_announcemsghdr *); 1160 ifan->ifan_index = ifp->if_index; 1161 strlcpy(ifan->ifan_name, ifp->if_xname, 1162 sizeof(ifan->ifan_name)); 1163 ifan->ifan_what = what; 1164 } 1165 return m; 1166 } 1167 1168 /* 1169 * This is called to generate routing socket messages indicating 1170 * IEEE80211 wireless events. 1171 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1172 */ 1173 void 1174 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1175 { 1176 struct mbuf *m; 1177 struct rt_addrinfo info; 1178 1179 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1180 if (m != NULL) { 1181 /* 1182 * Append the ieee80211 data. Try to stick it in the 1183 * mbuf containing the ifannounce msg; otherwise allocate 1184 * a new mbuf and append. 1185 * 1186 * NB: we assume m is a single mbuf. 1187 */ 1188 if (data_len > M_TRAILINGSPACE(m)) { 1189 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1190 if (n == NULL) { 1191 m_freem(m); 1192 return; 1193 } 1194 bcopy(data, mtod(n, void *), data_len); 1195 n->m_len = data_len; 1196 m->m_next = n; 1197 } else if (data_len > 0) { 1198 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1199 m->m_len += data_len; 1200 } 1201 if (m->m_flags & M_PKTHDR) 1202 m->m_pkthdr.len += data_len; 1203 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1204 rt_dispatch(m, NULL); 1205 } 1206 } 1207 1208 /* 1209 * This is called to generate routing socket messages indicating 1210 * network interface arrival and departure. 1211 */ 1212 void 1213 rt_ifannouncemsg(struct ifnet *ifp, int what) 1214 { 1215 struct mbuf *m; 1216 struct rt_addrinfo info; 1217 1218 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1219 if (m != NULL) 1220 rt_dispatch(m, NULL); 1221 } 1222 1223 static void 1224 rt_dispatch(struct mbuf *m, const struct sockaddr *sa) 1225 { 1226 INIT_VNET_NET(curvnet); 1227 struct m_tag *tag; 1228 1229 /* 1230 * Preserve the family from the sockaddr, if any, in an m_tag for 1231 * use when injecting the mbuf into the routing socket buffer from 1232 * the netisr. 1233 */ 1234 if (sa != NULL) { 1235 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1236 M_NOWAIT); 1237 if (tag == NULL) { 1238 m_freem(m); 1239 return; 1240 } 1241 *(unsigned short *)(tag + 1) = sa->sa_family; 1242 m_tag_prepend(m, tag); 1243 } 1244 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1245 } 1246 1247 /* 1248 * This is used in dumping the kernel table via sysctl(). 1249 */ 1250 static int 1251 sysctl_dumpentry(struct radix_node *rn, void *vw) 1252 { 1253 struct walkarg *w = vw; 1254 struct rtentry *rt = (struct rtentry *)rn; 1255 int error = 0, size; 1256 struct rt_addrinfo info; 1257 1258 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1259 return 0; 1260 bzero((caddr_t)&info, sizeof(info)); 1261 info.rti_info[RTAX_DST] = rt_key(rt); 1262 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1263 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1264 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 1265 if (rt->rt_ifp) { 1266 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1267 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1268 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1269 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1270 } 1271 size = rt_msg2(RTM_GET, &info, NULL, w); 1272 if (w->w_req && w->w_tmem) { 1273 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1274 1275 rtm->rtm_flags = rt->rt_flags; 1276 rtm->rtm_use = rt->rt_rmx.rmx_pksent; 1277 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1278 rtm->rtm_index = rt->rt_ifp->if_index; 1279 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1280 rtm->rtm_addrs = info.rti_addrs; 1281 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1282 return (error); 1283 } 1284 return (error); 1285 } 1286 1287 static int 1288 sysctl_iflist(int af, struct walkarg *w) 1289 { 1290 INIT_VNET_NET(curvnet); 1291 struct ifnet *ifp; 1292 struct ifaddr *ifa; 1293 struct rt_addrinfo info; 1294 int len, error = 0; 1295 1296 bzero((caddr_t)&info, sizeof(info)); 1297 IFNET_RLOCK(); 1298 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1299 if (w->w_arg && w->w_arg != ifp->if_index) 1300 continue; 1301 ifa = ifp->if_addr; 1302 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1303 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1304 info.rti_info[RTAX_IFP] = NULL; 1305 if (w->w_req && w->w_tmem) { 1306 struct if_msghdr *ifm; 1307 1308 ifm = (struct if_msghdr *)w->w_tmem; 1309 ifm->ifm_index = ifp->if_index; 1310 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1311 ifm->ifm_data = ifp->if_data; 1312 ifm->ifm_addrs = info.rti_addrs; 1313 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); 1314 if (error) 1315 goto done; 1316 } 1317 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1318 if (af && af != ifa->ifa_addr->sa_family) 1319 continue; 1320 if (jailed(curthread->td_ucred) && 1321 !prison_if(curthread->td_ucred, ifa->ifa_addr)) 1322 continue; 1323 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1324 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1325 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1326 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1327 if (w->w_req && w->w_tmem) { 1328 struct ifa_msghdr *ifam; 1329 1330 ifam = (struct ifa_msghdr *)w->w_tmem; 1331 ifam->ifam_index = ifa->ifa_ifp->if_index; 1332 ifam->ifam_flags = ifa->ifa_flags; 1333 ifam->ifam_metric = ifa->ifa_metric; 1334 ifam->ifam_addrs = info.rti_addrs; 1335 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1336 if (error) 1337 goto done; 1338 } 1339 } 1340 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1341 info.rti_info[RTAX_BRD] = NULL; 1342 } 1343 done: 1344 IFNET_RUNLOCK(); 1345 return (error); 1346 } 1347 1348 int 1349 sysctl_ifmalist(int af, struct walkarg *w) 1350 { 1351 INIT_VNET_NET(curvnet); 1352 struct ifnet *ifp; 1353 struct ifmultiaddr *ifma; 1354 struct rt_addrinfo info; 1355 int len, error = 0; 1356 struct ifaddr *ifa; 1357 1358 bzero((caddr_t)&info, sizeof(info)); 1359 IFNET_RLOCK(); 1360 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1361 if (w->w_arg && w->w_arg != ifp->if_index) 1362 continue; 1363 ifa = ifp->if_addr; 1364 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1365 IF_ADDR_LOCK(ifp); 1366 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1367 if (af && af != ifma->ifma_addr->sa_family) 1368 continue; 1369 if (jailed(curproc->p_ucred) && 1370 !prison_if(curproc->p_ucred, ifma->ifma_addr)) 1371 continue; 1372 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1373 info.rti_info[RTAX_GATEWAY] = 1374 (ifma->ifma_addr->sa_family != AF_LINK) ? 1375 ifma->ifma_lladdr : NULL; 1376 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1377 if (w->w_req && w->w_tmem) { 1378 struct ifma_msghdr *ifmam; 1379 1380 ifmam = (struct ifma_msghdr *)w->w_tmem; 1381 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1382 ifmam->ifmam_flags = 0; 1383 ifmam->ifmam_addrs = info.rti_addrs; 1384 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1385 if (error) { 1386 IF_ADDR_UNLOCK(ifp); 1387 goto done; 1388 } 1389 } 1390 } 1391 IF_ADDR_UNLOCK(ifp); 1392 } 1393 done: 1394 IFNET_RUNLOCK(); 1395 return (error); 1396 } 1397 1398 static int 1399 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1400 { 1401 INIT_VNET_NET(curvnet); 1402 int *name = (int *)arg1; 1403 u_int namelen = arg2; 1404 struct radix_node_head *rnh; 1405 int i, lim, error = EINVAL; 1406 u_char af; 1407 struct walkarg w; 1408 1409 name ++; 1410 namelen--; 1411 if (req->newptr) 1412 return (EPERM); 1413 if (namelen != 3) 1414 return ((namelen < 3) ? EISDIR : ENOTDIR); 1415 af = name[0]; 1416 if (af > AF_MAX) 1417 return (EINVAL); 1418 bzero(&w, sizeof(w)); 1419 w.w_op = name[1]; 1420 w.w_arg = name[2]; 1421 w.w_req = req; 1422 1423 error = sysctl_wire_old_buffer(req, 0); 1424 if (error) 1425 return (error); 1426 switch (w.w_op) { 1427 1428 case NET_RT_DUMP: 1429 case NET_RT_FLAGS: 1430 if (af == 0) { /* dump all tables */ 1431 i = 1; 1432 lim = AF_MAX; 1433 } else /* dump only one table */ 1434 i = lim = af; 1435 for (error = 0; error == 0 && i <= lim; i++) 1436 if ((rnh = V_rt_tables[curthread->td_proc->p_fibnum][i]) != NULL) { 1437 RADIX_NODE_HEAD_LOCK(rnh); 1438 error = rnh->rnh_walktree(rnh, 1439 sysctl_dumpentry, &w); 1440 RADIX_NODE_HEAD_UNLOCK(rnh); 1441 } else if (af != 0) 1442 error = EAFNOSUPPORT; 1443 break; 1444 1445 case NET_RT_IFLIST: 1446 error = sysctl_iflist(af, &w); 1447 break; 1448 1449 case NET_RT_IFMALIST: 1450 error = sysctl_ifmalist(af, &w); 1451 break; 1452 } 1453 if (w.w_tmem) 1454 free(w.w_tmem, M_RTABLE); 1455 return (error); 1456 } 1457 1458 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1459 1460 /* 1461 * Definitions of protocols supported in the ROUTE domain. 1462 */ 1463 1464 static struct domain routedomain; /* or at least forward */ 1465 1466 static struct protosw routesw[] = { 1467 { 1468 .pr_type = SOCK_RAW, 1469 .pr_domain = &routedomain, 1470 .pr_flags = PR_ATOMIC|PR_ADDR, 1471 .pr_output = route_output, 1472 .pr_ctlinput = raw_ctlinput, 1473 .pr_init = raw_init, 1474 .pr_usrreqs = &route_usrreqs 1475 } 1476 }; 1477 1478 static struct domain routedomain = { 1479 .dom_family = PF_ROUTE, 1480 .dom_name = "route", 1481 .dom_protosw = routesw, 1482 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1483 }; 1484 1485 DOMAIN_SET(route); 1486