1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_ddb.h" 35 #include "opt_mpath.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/domain.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/rmlock.h> 50 #include <sys/rwlock.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_dl.h> 60 #include <net/if_llatbl.h> 61 #include <net/if_types.h> 62 #include <net/netisr.h> 63 #include <net/raw_cb.h> 64 #include <net/route.h> 65 #include <net/route/route_var.h> 66 #ifdef RADIX_MPATH 67 #include <net/radix_mpath.h> 68 #endif 69 #include <net/vnet.h> 70 71 #include <netinet/in.h> 72 #include <netinet/if_ether.h> 73 #include <netinet/ip_carp.h> 74 #ifdef INET6 75 #include <netinet6/ip6_var.h> 76 #include <netinet6/scope6_var.h> 77 #endif 78 #include <net/route/nhop.h> 79 #include <net/route/shared.h> 80 81 #ifdef COMPAT_FREEBSD32 82 #include <sys/mount.h> 83 #include <compat/freebsd32/freebsd32.h> 84 85 struct if_msghdr32 { 86 uint16_t ifm_msglen; 87 uint8_t ifm_version; 88 uint8_t ifm_type; 89 int32_t ifm_addrs; 90 int32_t ifm_flags; 91 uint16_t ifm_index; 92 uint16_t _ifm_spare1; 93 struct if_data ifm_data; 94 }; 95 96 struct if_msghdrl32 { 97 uint16_t ifm_msglen; 98 uint8_t ifm_version; 99 uint8_t ifm_type; 100 int32_t ifm_addrs; 101 int32_t ifm_flags; 102 uint16_t ifm_index; 103 uint16_t _ifm_spare1; 104 uint16_t ifm_len; 105 uint16_t ifm_data_off; 106 uint32_t _ifm_spare2; 107 struct if_data ifm_data; 108 }; 109 110 struct ifa_msghdrl32 { 111 uint16_t ifam_msglen; 112 uint8_t ifam_version; 113 uint8_t ifam_type; 114 int32_t ifam_addrs; 115 int32_t ifam_flags; 116 uint16_t ifam_index; 117 uint16_t _ifam_spare1; 118 uint16_t ifam_len; 119 uint16_t ifam_data_off; 120 int32_t ifam_metric; 121 struct if_data ifam_data; 122 }; 123 124 #define SA_SIZE32(sa) \ 125 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 126 sizeof(int) : \ 127 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 128 129 #endif /* COMPAT_FREEBSD32 */ 130 131 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 132 133 /* NB: these are not modified */ 134 static struct sockaddr route_src = { 2, PF_ROUTE, }; 135 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 136 137 /* These are external hooks for CARP. */ 138 int (*carp_get_vhid_p)(struct ifaddr *); 139 140 /* 141 * Used by rtsock/raw_input callback code to decide whether to filter the update 142 * notification to a socket bound to a particular FIB. 143 */ 144 #define RTS_FILTER_FIB M_PROTO8 145 146 typedef struct { 147 int ip_count; /* attached w/ AF_INET */ 148 int ip6_count; /* attached w/ AF_INET6 */ 149 int any_count; /* total attached */ 150 } route_cb_t; 151 VNET_DEFINE_STATIC(route_cb_t, route_cb); 152 #define V_route_cb VNET(route_cb) 153 154 struct mtx rtsock_mtx; 155 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 156 157 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 158 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 159 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 160 161 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 162 ""); 163 164 struct walkarg { 165 int w_tmemsize; 166 int w_op, w_arg; 167 caddr_t w_tmem; 168 struct sysctl_req *w_req; 169 }; 170 171 static void rts_input(struct mbuf *m); 172 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 173 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 174 struct walkarg *w, int *plen); 175 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 176 struct rt_addrinfo *rtinfo); 177 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 178 static int sysctl_iflist(int af, struct walkarg *w); 179 static int sysctl_ifmalist(int af, struct walkarg *w); 180 static int route_output(struct mbuf *m, struct socket *so, ...); 181 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 182 static void rt_dispatch(struct mbuf *, sa_family_t); 183 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 184 struct rt_msghdr *rtm, struct rtentry **ret_nrt); 185 static int update_rtm_from_rte(struct rt_addrinfo *info, 186 struct rt_msghdr **prtm, int alloc_len, 187 struct rtentry *rt); 188 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 189 struct mbuf *m, sa_family_t saf, u_int fibnum, 190 int rtm_errno); 191 static int can_export_rte(struct ucred *td_ucred, const struct rtentry *rt); 192 193 static struct netisr_handler rtsock_nh = { 194 .nh_name = "rtsock", 195 .nh_handler = rts_input, 196 .nh_proto = NETISR_ROUTE, 197 .nh_policy = NETISR_POLICY_SOURCE, 198 }; 199 200 static int 201 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 202 { 203 int error, qlimit; 204 205 netisr_getqlimit(&rtsock_nh, &qlimit); 206 error = sysctl_handle_int(oidp, &qlimit, 0, req); 207 if (error || !req->newptr) 208 return (error); 209 if (qlimit < 1) 210 return (EINVAL); 211 return (netisr_setqlimit(&rtsock_nh, qlimit)); 212 } 213 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 214 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 215 0, 0, sysctl_route_netisr_maxqlen, "I", 216 "maximum routing socket dispatch queue length"); 217 218 static void 219 vnet_rts_init(void) 220 { 221 int tmp; 222 223 if (IS_DEFAULT_VNET(curvnet)) { 224 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 225 rtsock_nh.nh_qlimit = tmp; 226 netisr_register(&rtsock_nh); 227 } 228 #ifdef VIMAGE 229 else 230 netisr_register_vnet(&rtsock_nh); 231 #endif 232 } 233 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 234 vnet_rts_init, 0); 235 236 #ifdef VIMAGE 237 static void 238 vnet_rts_uninit(void) 239 { 240 241 netisr_unregister_vnet(&rtsock_nh); 242 } 243 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 244 vnet_rts_uninit, 0); 245 #endif 246 247 static int 248 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 249 struct rawcb *rp) 250 { 251 int fibnum; 252 253 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 254 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 255 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 256 257 /* No filtering requested. */ 258 if ((m->m_flags & RTS_FILTER_FIB) == 0) 259 return (0); 260 261 /* Check if it is a rts and the fib matches the one of the socket. */ 262 fibnum = M_GETFIB(m); 263 if (proto->sp_family != PF_ROUTE || 264 rp->rcb_socket == NULL || 265 rp->rcb_socket->so_fibnum == fibnum) 266 return (0); 267 268 /* Filtering requested and no match, the socket shall be skipped. */ 269 return (1); 270 } 271 272 static void 273 rts_input(struct mbuf *m) 274 { 275 struct sockproto route_proto; 276 unsigned short *family; 277 struct m_tag *tag; 278 279 route_proto.sp_family = PF_ROUTE; 280 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 281 if (tag != NULL) { 282 family = (unsigned short *)(tag + 1); 283 route_proto.sp_protocol = *family; 284 m_tag_delete(m, tag); 285 } else 286 route_proto.sp_protocol = 0; 287 288 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 289 } 290 291 /* 292 * It really doesn't make any sense at all for this code to share much 293 * with raw_usrreq.c, since its functionality is so restricted. XXX 294 */ 295 static void 296 rts_abort(struct socket *so) 297 { 298 299 raw_usrreqs.pru_abort(so); 300 } 301 302 static void 303 rts_close(struct socket *so) 304 { 305 306 raw_usrreqs.pru_close(so); 307 } 308 309 /* pru_accept is EOPNOTSUPP */ 310 311 static int 312 rts_attach(struct socket *so, int proto, struct thread *td) 313 { 314 struct rawcb *rp; 315 int error; 316 317 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 318 319 /* XXX */ 320 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 321 322 so->so_pcb = (caddr_t)rp; 323 so->so_fibnum = td->td_proc->p_fibnum; 324 error = raw_attach(so, proto); 325 rp = sotorawcb(so); 326 if (error) { 327 so->so_pcb = NULL; 328 free(rp, M_PCB); 329 return error; 330 } 331 RTSOCK_LOCK(); 332 switch(rp->rcb_proto.sp_protocol) { 333 case AF_INET: 334 V_route_cb.ip_count++; 335 break; 336 case AF_INET6: 337 V_route_cb.ip6_count++; 338 break; 339 } 340 V_route_cb.any_count++; 341 RTSOCK_UNLOCK(); 342 soisconnected(so); 343 so->so_options |= SO_USELOOPBACK; 344 return 0; 345 } 346 347 static int 348 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 349 { 350 351 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 352 } 353 354 static int 355 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 356 { 357 358 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 359 } 360 361 /* pru_connect2 is EOPNOTSUPP */ 362 /* pru_control is EOPNOTSUPP */ 363 364 static void 365 rts_detach(struct socket *so) 366 { 367 struct rawcb *rp = sotorawcb(so); 368 369 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 370 371 RTSOCK_LOCK(); 372 switch(rp->rcb_proto.sp_protocol) { 373 case AF_INET: 374 V_route_cb.ip_count--; 375 break; 376 case AF_INET6: 377 V_route_cb.ip6_count--; 378 break; 379 } 380 V_route_cb.any_count--; 381 RTSOCK_UNLOCK(); 382 raw_usrreqs.pru_detach(so); 383 } 384 385 static int 386 rts_disconnect(struct socket *so) 387 { 388 389 return (raw_usrreqs.pru_disconnect(so)); 390 } 391 392 /* pru_listen is EOPNOTSUPP */ 393 394 static int 395 rts_peeraddr(struct socket *so, struct sockaddr **nam) 396 { 397 398 return (raw_usrreqs.pru_peeraddr(so, nam)); 399 } 400 401 /* pru_rcvd is EOPNOTSUPP */ 402 /* pru_rcvoob is EOPNOTSUPP */ 403 404 static int 405 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 406 struct mbuf *control, struct thread *td) 407 { 408 409 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 410 } 411 412 /* pru_sense is null */ 413 414 static int 415 rts_shutdown(struct socket *so) 416 { 417 418 return (raw_usrreqs.pru_shutdown(so)); 419 } 420 421 static int 422 rts_sockaddr(struct socket *so, struct sockaddr **nam) 423 { 424 425 return (raw_usrreqs.pru_sockaddr(so, nam)); 426 } 427 428 static struct pr_usrreqs route_usrreqs = { 429 .pru_abort = rts_abort, 430 .pru_attach = rts_attach, 431 .pru_bind = rts_bind, 432 .pru_connect = rts_connect, 433 .pru_detach = rts_detach, 434 .pru_disconnect = rts_disconnect, 435 .pru_peeraddr = rts_peeraddr, 436 .pru_send = rts_send, 437 .pru_shutdown = rts_shutdown, 438 .pru_sockaddr = rts_sockaddr, 439 .pru_close = rts_close, 440 }; 441 442 #ifndef _SOCKADDR_UNION_DEFINED 443 #define _SOCKADDR_UNION_DEFINED 444 /* 445 * The union of all possible address formats we handle. 446 */ 447 union sockaddr_union { 448 struct sockaddr sa; 449 struct sockaddr_in sin; 450 struct sockaddr_in6 sin6; 451 }; 452 #endif /* _SOCKADDR_UNION_DEFINED */ 453 454 static int 455 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 456 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 457 { 458 #if defined(INET) || defined(INET6) 459 struct epoch_tracker et; 460 #endif 461 462 /* First, see if the returned address is part of the jail. */ 463 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 464 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 465 return (0); 466 } 467 468 switch (info->rti_info[RTAX_DST]->sa_family) { 469 #ifdef INET 470 case AF_INET: 471 { 472 struct in_addr ia; 473 struct ifaddr *ifa; 474 int found; 475 476 found = 0; 477 /* 478 * Try to find an address on the given outgoing interface 479 * that belongs to the jail. 480 */ 481 NET_EPOCH_ENTER(et); 482 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 483 struct sockaddr *sa; 484 sa = ifa->ifa_addr; 485 if (sa->sa_family != AF_INET) 486 continue; 487 ia = ((struct sockaddr_in *)sa)->sin_addr; 488 if (prison_check_ip4(cred, &ia) == 0) { 489 found = 1; 490 break; 491 } 492 } 493 NET_EPOCH_EXIT(et); 494 if (!found) { 495 /* 496 * As a last resort return the 'default' jail address. 497 */ 498 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 499 sin_addr; 500 if (prison_get_ip4(cred, &ia) != 0) 501 return (ESRCH); 502 } 503 bzero(&saun->sin, sizeof(struct sockaddr_in)); 504 saun->sin.sin_len = sizeof(struct sockaddr_in); 505 saun->sin.sin_family = AF_INET; 506 saun->sin.sin_addr.s_addr = ia.s_addr; 507 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 508 break; 509 } 510 #endif 511 #ifdef INET6 512 case AF_INET6: 513 { 514 struct in6_addr ia6; 515 struct ifaddr *ifa; 516 int found; 517 518 found = 0; 519 /* 520 * Try to find an address on the given outgoing interface 521 * that belongs to the jail. 522 */ 523 NET_EPOCH_ENTER(et); 524 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 525 struct sockaddr *sa; 526 sa = ifa->ifa_addr; 527 if (sa->sa_family != AF_INET6) 528 continue; 529 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 530 &ia6, sizeof(struct in6_addr)); 531 if (prison_check_ip6(cred, &ia6) == 0) { 532 found = 1; 533 break; 534 } 535 } 536 NET_EPOCH_EXIT(et); 537 if (!found) { 538 /* 539 * As a last resort return the 'default' jail address. 540 */ 541 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 542 sin6_addr; 543 if (prison_get_ip6(cred, &ia6) != 0) 544 return (ESRCH); 545 } 546 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 547 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 548 saun->sin6.sin6_family = AF_INET6; 549 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 550 if (sa6_recoverscope(&saun->sin6) != 0) 551 return (ESRCH); 552 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 553 break; 554 } 555 #endif 556 default: 557 return (ESRCH); 558 } 559 return (0); 560 } 561 562 /* 563 * Fills in @info based on userland-provided @rtm message. 564 * 565 * Returns 0 on success. 566 */ 567 static int 568 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info) 569 { 570 int error; 571 sa_family_t saf; 572 573 rtm->rtm_pid = curproc->p_pid; 574 info->rti_addrs = rtm->rtm_addrs; 575 576 info->rti_mflags = rtm->rtm_inits; 577 info->rti_rmx = &rtm->rtm_rmx; 578 579 /* 580 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 581 * link-local address because rtrequest requires addresses with 582 * embedded scope id. 583 */ 584 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 585 return (EINVAL); 586 587 if (rtm->rtm_flags & RTF_RNH_LOCKED) 588 return (EINVAL); 589 info->rti_flags = rtm->rtm_flags; 590 if (info->rti_info[RTAX_DST] == NULL || 591 info->rti_info[RTAX_DST]->sa_family >= AF_MAX || 592 (info->rti_info[RTAX_GATEWAY] != NULL && 593 info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 594 return (EINVAL); 595 saf = info->rti_info[RTAX_DST]->sa_family; 596 /* 597 * Verify that the caller has the appropriate privilege; RTM_GET 598 * is the only operation the non-superuser is allowed. 599 */ 600 if (rtm->rtm_type != RTM_GET) { 601 error = priv_check(curthread, PRIV_NET_ROUTE); 602 if (error != 0) 603 return (error); 604 } 605 606 /* 607 * The given gateway address may be an interface address. 608 * For example, issuing a "route change" command on a route 609 * entry that was created from a tunnel, and the gateway 610 * address given is the local end point. In this case the 611 * RTF_GATEWAY flag must be cleared or the destination will 612 * not be reachable even though there is no error message. 613 */ 614 if (info->rti_info[RTAX_GATEWAY] != NULL && 615 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 616 struct rt_addrinfo ginfo; 617 struct sockaddr *gdst; 618 struct sockaddr_storage ss; 619 620 bzero(&ginfo, sizeof(ginfo)); 621 bzero(&ss, sizeof(ss)); 622 ss.ss_len = sizeof(ss); 623 624 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 625 gdst = info->rti_info[RTAX_GATEWAY]; 626 627 /* 628 * A host route through the loopback interface is 629 * installed for each interface adddress. In pre 8.0 630 * releases the interface address of a PPP link type 631 * is not reachable locally. This behavior is fixed as 632 * part of the new L2/L3 redesign and rewrite work. The 633 * signature of this interface address route is the 634 * AF_LINK sa_family type of the gateway, and the 635 * rt_ifp has the IFF_LOOPBACK flag set. 636 */ 637 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 638 if (ss.ss_family == AF_LINK && 639 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 640 info->rti_flags &= ~RTF_GATEWAY; 641 info->rti_flags |= RTF_GWFLAG_COMPAT; 642 } 643 rib_free_info(&ginfo); 644 } 645 } 646 647 return (0); 648 } 649 650 /* 651 * Handles RTM_GET message from routing socket, returning matching rt. 652 * 653 * Returns: 654 * 0 on success, with locked and referenced matching rt in @rt_nrt 655 * errno of failure 656 */ 657 static int 658 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 659 struct rt_msghdr *rtm, struct rtentry **ret_nrt) 660 { 661 RIB_RLOCK_TRACKER; 662 struct rtentry *rt; 663 struct rib_head *rnh; 664 sa_family_t saf; 665 666 saf = info->rti_info[RTAX_DST]->sa_family; 667 668 rnh = rt_tables_get_rnh(fibnum, saf); 669 if (rnh == NULL) 670 return (EAFNOSUPPORT); 671 672 RIB_RLOCK(rnh); 673 674 if (info->rti_info[RTAX_NETMASK] == NULL) { 675 /* 676 * Provide longest prefix match for 677 * address lookup (no mask). 678 * 'route -n get addr' 679 */ 680 rt = (struct rtentry *) rnh->rnh_matchaddr( 681 info->rti_info[RTAX_DST], &rnh->head); 682 } else 683 rt = (struct rtentry *) rnh->rnh_lookup( 684 info->rti_info[RTAX_DST], 685 info->rti_info[RTAX_NETMASK], &rnh->head); 686 687 if (rt == NULL) { 688 RIB_RUNLOCK(rnh); 689 return (ESRCH); 690 } 691 #ifdef RADIX_MPATH 692 /* 693 * for RTM_GET, gate is optional even with multipath. 694 * if gate == NULL the first match is returned. 695 * (no need to call rt_mpath_matchgate if gate == NULL) 696 */ 697 if (rt_mpath_capable(rnh) && info->rti_info[RTAX_GATEWAY]) { 698 rt = rt_mpath_matchgate(rt, info->rti_info[RTAX_GATEWAY]); 699 if (!rt) { 700 RIB_RUNLOCK(rnh); 701 return (ESRCH); 702 } 703 } 704 #endif 705 /* 706 * If performing proxied L2 entry insertion, and 707 * the actual PPP host entry is found, perform 708 * another search to retrieve the prefix route of 709 * the local end point of the PPP link. 710 * TODO: move this logic to userland. 711 */ 712 if (rtm->rtm_flags & RTF_ANNOUNCE) { 713 struct sockaddr laddr; 714 struct nhop_object *nh; 715 716 nh = rt->rt_nhop; 717 if (nh->nh_ifp != NULL && 718 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 719 struct epoch_tracker et; 720 struct ifaddr *ifa; 721 722 NET_EPOCH_ENTER(et); 723 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 724 RT_ALL_FIBS); 725 NET_EPOCH_EXIT(et); 726 if (ifa != NULL) 727 rt_maskedcopy(ifa->ifa_addr, 728 &laddr, 729 ifa->ifa_netmask); 730 } else 731 rt_maskedcopy(nh->nh_ifa->ifa_addr, 732 &laddr, 733 nh->nh_ifa->ifa_netmask); 734 /* 735 * refactor rt and no lock operation necessary 736 */ 737 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 738 &rnh->head); 739 if (rt == NULL) { 740 RIB_RUNLOCK(rnh); 741 return (ESRCH); 742 } 743 } 744 RT_LOCK(rt); 745 RIB_RUNLOCK(rnh); 746 747 *ret_nrt = rt; 748 749 return (0); 750 } 751 752 /* 753 * Update sockaddrs, flags, etc in @prtm based on @rt data. 754 * Assumes @rt is locked. 755 * rtm can be reallocated. 756 * 757 * Returns 0 on success, along with pointer to (potentially reallocated) 758 * rtm. 759 * 760 */ 761 static int 762 update_rtm_from_rte(struct rt_addrinfo *info, struct rt_msghdr **prtm, 763 int alloc_len, struct rtentry *rt) 764 { 765 struct sockaddr_storage netmask_ss; 766 struct walkarg w; 767 union sockaddr_union saun; 768 struct rt_msghdr *rtm, *orig_rtm = NULL; 769 struct nhop_object *nh; 770 struct ifnet *ifp; 771 int error, len; 772 773 RT_LOCK_ASSERT(rt); 774 775 rtm = *prtm; 776 777 nh = rt->rt_nhop; 778 info->rti_info[RTAX_DST] = rt_key(rt); 779 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 780 info->rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 781 rt_mask(rt), &netmask_ss); 782 info->rti_info[RTAX_GENMASK] = 0; 783 ifp = nh->nh_ifp; 784 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 785 if (ifp) { 786 info->rti_info[RTAX_IFP] = 787 ifp->if_addr->ifa_addr; 788 error = rtm_get_jailed(info, ifp, nh, 789 &saun, curthread->td_ucred); 790 if (error != 0) 791 return (error); 792 if (ifp->if_flags & IFF_POINTOPOINT) 793 info->rti_info[RTAX_BRD] = 794 nh->nh_ifa->ifa_dstaddr; 795 rtm->rtm_index = ifp->if_index; 796 } else { 797 info->rti_info[RTAX_IFP] = NULL; 798 info->rti_info[RTAX_IFA] = NULL; 799 } 800 } else if (ifp != NULL) 801 rtm->rtm_index = ifp->if_index; 802 803 /* Check if we need to realloc storage */ 804 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 805 if (len > alloc_len) { 806 struct rt_msghdr *tmp_rtm; 807 808 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 809 if (tmp_rtm == NULL) 810 return (ENOBUFS); 811 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 812 orig_rtm = rtm; 813 rtm = tmp_rtm; 814 alloc_len = len; 815 816 /* 817 * Delay freeing original rtm as info contains 818 * data referencing it. 819 */ 820 } 821 822 w.w_tmem = (caddr_t)rtm; 823 w.w_tmemsize = alloc_len; 824 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 825 826 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 827 rtm->rtm_flags = RTF_GATEWAY | 828 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 829 else 830 rtm->rtm_flags = rt->rt_flags; 831 rt_getmetrics(rt, &rtm->rtm_rmx); 832 rtm->rtm_addrs = info->rti_addrs; 833 834 if (orig_rtm != NULL) 835 free(orig_rtm, M_TEMP); 836 *prtm = rtm; 837 838 return (0); 839 } 840 841 /*ARGSUSED*/ 842 static int 843 route_output(struct mbuf *m, struct socket *so, ...) 844 { 845 struct rt_msghdr *rtm = NULL; 846 struct rtentry *rt = NULL; 847 struct rt_addrinfo info; 848 struct epoch_tracker et; 849 #ifdef INET6 850 struct sockaddr_storage ss; 851 struct sockaddr_in6 *sin6; 852 int i, rti_need_deembed = 0; 853 #endif 854 int alloc_len = 0, len, error = 0, fibnum; 855 sa_family_t saf = AF_UNSPEC; 856 struct walkarg w; 857 858 fibnum = so->so_fibnum; 859 860 #define senderr(e) { error = e; goto flush;} 861 if (m == NULL || ((m->m_len < sizeof(long)) && 862 (m = m_pullup(m, sizeof(long))) == NULL)) 863 return (ENOBUFS); 864 if ((m->m_flags & M_PKTHDR) == 0) 865 panic("route_output"); 866 NET_EPOCH_ENTER(et); 867 len = m->m_pkthdr.len; 868 if (len < sizeof(*rtm) || 869 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 870 senderr(EINVAL); 871 872 /* 873 * Most of current messages are in range 200-240 bytes, 874 * minimize possible re-allocation on reply using larger size 875 * buffer aligned on 1k boundaty. 876 */ 877 alloc_len = roundup2(len, 1024); 878 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 879 senderr(ENOBUFS); 880 881 m_copydata(m, 0, len, (caddr_t)rtm); 882 bzero(&info, sizeof(info)); 883 bzero(&w, sizeof(w)); 884 885 if (rtm->rtm_version != RTM_VERSION) { 886 /* Do not touch message since format is unknown */ 887 free(rtm, M_TEMP); 888 rtm = NULL; 889 senderr(EPROTONOSUPPORT); 890 } 891 892 /* 893 * Starting from here, it is possible 894 * to alter original message and insert 895 * caller PID and error value. 896 */ 897 898 if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) { 899 senderr(error); 900 } 901 902 saf = info.rti_info[RTAX_DST]->sa_family; 903 904 /* support for new ARP code */ 905 if (rtm->rtm_flags & RTF_LLDATA) { 906 error = lla_rt_output(rtm, &info); 907 #ifdef INET6 908 if (error == 0) 909 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 910 #endif 911 goto flush; 912 } 913 914 switch (rtm->rtm_type) { 915 struct rtentry *saved_nrt; 916 917 case RTM_ADD: 918 case RTM_CHANGE: 919 if (rtm->rtm_type == RTM_ADD) { 920 if (info.rti_info[RTAX_GATEWAY] == NULL) 921 senderr(EINVAL); 922 } 923 saved_nrt = NULL; 924 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt, 925 fibnum); 926 if (error == 0 && saved_nrt != NULL) { 927 #ifdef INET6 928 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 929 #endif 930 RT_LOCK(saved_nrt); 931 rtm->rtm_index = saved_nrt->rt_nhop->nh_ifp->if_index; 932 RT_UNLOCK(saved_nrt); 933 } 934 break; 935 936 case RTM_DELETE: 937 saved_nrt = NULL; 938 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum); 939 if (error == 0) { 940 RT_LOCK(saved_nrt); 941 rt = saved_nrt; 942 goto report; 943 } 944 #ifdef INET6 945 /* rt_msg2() will not be used when RTM_DELETE fails. */ 946 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 947 #endif 948 break; 949 950 case RTM_GET: 951 error = handle_rtm_get(&info, fibnum, rtm, &rt); 952 if (error != 0) 953 senderr(error); 954 955 report: 956 RT_LOCK_ASSERT(rt); 957 if (!can_export_rte(curthread->td_ucred, rt)) { 958 RT_UNLOCK(rt); 959 senderr(ESRCH); 960 } 961 error = update_rtm_from_rte(&info, &rtm, alloc_len, rt); 962 /* 963 * Note that some sockaddr pointers may have changed to 964 * point to memory outsize @rtm. Some may be pointing 965 * to the on-stack variables. 966 * Given that, any pointer in @info CANNOT BE USED. 967 */ 968 969 /* 970 * scopeid deembedding has been performed while 971 * writing updated rtm in rtsock_msg_buffer(). 972 * With that in mind, skip deembedding procedure below. 973 */ 974 #ifdef INET6 975 rti_need_deembed = 0; 976 #endif 977 RT_UNLOCK(rt); 978 if (error != 0) 979 senderr(error); 980 break; 981 982 default: 983 senderr(EOPNOTSUPP); 984 } 985 986 flush: 987 NET_EPOCH_EXIT(et); 988 rt = NULL; 989 990 #ifdef INET6 991 if (rtm != NULL) { 992 if (rti_need_deembed) { 993 /* sin6_scope_id is recovered before sending rtm. */ 994 sin6 = (struct sockaddr_in6 *)&ss; 995 for (i = 0; i < RTAX_MAX; i++) { 996 if (info.rti_info[i] == NULL) 997 continue; 998 if (info.rti_info[i]->sa_family != AF_INET6) 999 continue; 1000 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 1001 if (sa6_recoverscope(sin6) == 0) 1002 bcopy(sin6, info.rti_info[i], 1003 sizeof(*sin6)); 1004 } 1005 } 1006 } 1007 #endif 1008 send_rtm_reply(so, rtm, m, saf, fibnum, error); 1009 1010 return (error); 1011 } 1012 1013 /* 1014 * Sends the prepared reply message in @rtm to all rtsock clients. 1015 * Frees @m and @rtm. 1016 * 1017 */ 1018 static void 1019 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1020 sa_family_t saf, u_int fibnum, int rtm_errno) 1021 { 1022 struct rawcb *rp = NULL; 1023 1024 /* 1025 * Check to see if we don't want our own messages. 1026 */ 1027 if ((so->so_options & SO_USELOOPBACK) == 0) { 1028 if (V_route_cb.any_count <= 1) { 1029 if (rtm != NULL) 1030 free(rtm, M_TEMP); 1031 m_freem(m); 1032 return; 1033 } 1034 /* There is another listener, so construct message */ 1035 rp = sotorawcb(so); 1036 } 1037 1038 if (rtm != NULL) { 1039 if (rtm_errno!= 0) 1040 rtm->rtm_errno = rtm_errno; 1041 else 1042 rtm->rtm_flags |= RTF_DONE; 1043 1044 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1045 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1046 m_freem(m); 1047 m = NULL; 1048 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1049 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1050 1051 free(rtm, M_TEMP); 1052 } 1053 if (m != NULL) { 1054 M_SETFIB(m, fibnum); 1055 m->m_flags |= RTS_FILTER_FIB; 1056 if (rp) { 1057 /* 1058 * XXX insure we don't get a copy by 1059 * invalidating our protocol 1060 */ 1061 unsigned short family = rp->rcb_proto.sp_family; 1062 rp->rcb_proto.sp_family = 0; 1063 rt_dispatch(m, saf); 1064 rp->rcb_proto.sp_family = family; 1065 } else 1066 rt_dispatch(m, saf); 1067 } 1068 } 1069 1070 1071 static void 1072 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 1073 { 1074 1075 bzero(out, sizeof(*out)); 1076 out->rmx_mtu = rt->rt_nhop->nh_mtu; 1077 out->rmx_weight = rt->rt_weight; 1078 out->rmx_nhidx = nhop_get_idx(rt->rt_nhop); 1079 /* Kernel -> userland timebase conversion. */ 1080 out->rmx_expire = rt->rt_expire ? 1081 rt->rt_expire - time_uptime + time_second : 0; 1082 } 1083 1084 /* 1085 * Extract the addresses of the passed sockaddrs. 1086 * Do a little sanity checking so as to avoid bad memory references. 1087 * This data is derived straight from userland. 1088 */ 1089 static int 1090 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1091 { 1092 struct sockaddr *sa; 1093 int i; 1094 1095 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1096 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1097 continue; 1098 sa = (struct sockaddr *)cp; 1099 /* 1100 * It won't fit. 1101 */ 1102 if (cp + sa->sa_len > cplim) 1103 return (EINVAL); 1104 /* 1105 * there are no more.. quit now 1106 * If there are more bits, they are in error. 1107 * I've seen this. route(1) can evidently generate these. 1108 * This causes kernel to core dump. 1109 * for compatibility, If we see this, point to a safe address. 1110 */ 1111 if (sa->sa_len == 0) { 1112 rtinfo->rti_info[i] = &sa_zero; 1113 return (0); /* should be EINVAL but for compat */ 1114 } 1115 /* accept it */ 1116 #ifdef INET6 1117 if (sa->sa_family == AF_INET6) 1118 sa6_embedscope((struct sockaddr_in6 *)sa, 1119 V_ip6_use_defzone); 1120 #endif 1121 rtinfo->rti_info[i] = sa; 1122 cp += SA_SIZE(sa); 1123 } 1124 return (0); 1125 } 1126 1127 /* 1128 * Fill in @dmask with valid netmask leaving original @smask 1129 * intact. Mostly used with radix netmasks. 1130 */ 1131 struct sockaddr * 1132 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1133 struct sockaddr_storage *dmask) 1134 { 1135 if (dst == NULL || smask == NULL) 1136 return (NULL); 1137 1138 memset(dmask, 0, dst->sa_len); 1139 memcpy(dmask, smask, smask->sa_len); 1140 dmask->ss_len = dst->sa_len; 1141 dmask->ss_family = dst->sa_family; 1142 1143 return ((struct sockaddr *)dmask); 1144 } 1145 1146 /* 1147 * Writes information related to @rtinfo object to newly-allocated mbuf. 1148 * Assumes MCLBYTES is enough to construct any message. 1149 * Used for OS notifications of vaious events (if/ifa announces,etc) 1150 * 1151 * Returns allocated mbuf or NULL on failure. 1152 */ 1153 static struct mbuf * 1154 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1155 { 1156 struct rt_msghdr *rtm; 1157 struct mbuf *m; 1158 int i; 1159 struct sockaddr *sa; 1160 #ifdef INET6 1161 struct sockaddr_storage ss; 1162 struct sockaddr_in6 *sin6; 1163 #endif 1164 int len, dlen; 1165 1166 switch (type) { 1167 1168 case RTM_DELADDR: 1169 case RTM_NEWADDR: 1170 len = sizeof(struct ifa_msghdr); 1171 break; 1172 1173 case RTM_DELMADDR: 1174 case RTM_NEWMADDR: 1175 len = sizeof(struct ifma_msghdr); 1176 break; 1177 1178 case RTM_IFINFO: 1179 len = sizeof(struct if_msghdr); 1180 break; 1181 1182 case RTM_IFANNOUNCE: 1183 case RTM_IEEE80211: 1184 len = sizeof(struct if_announcemsghdr); 1185 break; 1186 1187 default: 1188 len = sizeof(struct rt_msghdr); 1189 } 1190 1191 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1192 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1193 if (len > MHLEN) 1194 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1195 else 1196 m = m_gethdr(M_NOWAIT, MT_DATA); 1197 if (m == NULL) 1198 return (m); 1199 1200 m->m_pkthdr.len = m->m_len = len; 1201 rtm = mtod(m, struct rt_msghdr *); 1202 bzero((caddr_t)rtm, len); 1203 for (i = 0; i < RTAX_MAX; i++) { 1204 if ((sa = rtinfo->rti_info[i]) == NULL) 1205 continue; 1206 rtinfo->rti_addrs |= (1 << i); 1207 dlen = SA_SIZE(sa); 1208 #ifdef INET6 1209 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1210 sin6 = (struct sockaddr_in6 *)&ss; 1211 bcopy(sa, sin6, sizeof(*sin6)); 1212 if (sa6_recoverscope(sin6) == 0) 1213 sa = (struct sockaddr *)sin6; 1214 } 1215 #endif 1216 m_copyback(m, len, dlen, (caddr_t)sa); 1217 len += dlen; 1218 } 1219 if (m->m_pkthdr.len != len) { 1220 m_freem(m); 1221 return (NULL); 1222 } 1223 rtm->rtm_msglen = len; 1224 rtm->rtm_version = RTM_VERSION; 1225 rtm->rtm_type = type; 1226 return (m); 1227 } 1228 1229 /* 1230 * Writes information related to @rtinfo object to preallocated buffer. 1231 * Stores needed size in @plen. If @w is NULL, calculates size without 1232 * writing. 1233 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1234 * 1235 * Returns 0 on success. 1236 * 1237 */ 1238 static int 1239 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1240 { 1241 int i; 1242 int len, buflen = 0, dlen; 1243 caddr_t cp = NULL; 1244 struct rt_msghdr *rtm = NULL; 1245 #ifdef INET6 1246 struct sockaddr_storage ss; 1247 struct sockaddr_in6 *sin6; 1248 #endif 1249 #ifdef COMPAT_FREEBSD32 1250 bool compat32 = false; 1251 #endif 1252 1253 switch (type) { 1254 1255 case RTM_DELADDR: 1256 case RTM_NEWADDR: 1257 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1258 #ifdef COMPAT_FREEBSD32 1259 if (w->w_req->flags & SCTL_MASK32) { 1260 len = sizeof(struct ifa_msghdrl32); 1261 compat32 = true; 1262 } else 1263 #endif 1264 len = sizeof(struct ifa_msghdrl); 1265 } else 1266 len = sizeof(struct ifa_msghdr); 1267 break; 1268 1269 case RTM_IFINFO: 1270 #ifdef COMPAT_FREEBSD32 1271 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1272 if (w->w_op == NET_RT_IFLISTL) 1273 len = sizeof(struct if_msghdrl32); 1274 else 1275 len = sizeof(struct if_msghdr32); 1276 compat32 = true; 1277 break; 1278 } 1279 #endif 1280 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1281 len = sizeof(struct if_msghdrl); 1282 else 1283 len = sizeof(struct if_msghdr); 1284 break; 1285 1286 case RTM_NEWMADDR: 1287 len = sizeof(struct ifma_msghdr); 1288 break; 1289 1290 default: 1291 len = sizeof(struct rt_msghdr); 1292 } 1293 1294 if (w != NULL) { 1295 rtm = (struct rt_msghdr *)w->w_tmem; 1296 buflen = w->w_tmemsize - len; 1297 cp = (caddr_t)w->w_tmem + len; 1298 } 1299 1300 rtinfo->rti_addrs = 0; 1301 for (i = 0; i < RTAX_MAX; i++) { 1302 struct sockaddr *sa; 1303 1304 if ((sa = rtinfo->rti_info[i]) == NULL) 1305 continue; 1306 rtinfo->rti_addrs |= (1 << i); 1307 #ifdef COMPAT_FREEBSD32 1308 if (compat32) 1309 dlen = SA_SIZE32(sa); 1310 else 1311 #endif 1312 dlen = SA_SIZE(sa); 1313 if (cp != NULL && buflen >= dlen) { 1314 #ifdef INET6 1315 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1316 sin6 = (struct sockaddr_in6 *)&ss; 1317 bcopy(sa, sin6, sizeof(*sin6)); 1318 if (sa6_recoverscope(sin6) == 0) 1319 sa = (struct sockaddr *)sin6; 1320 } 1321 #endif 1322 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1323 cp += dlen; 1324 buflen -= dlen; 1325 } else if (cp != NULL) { 1326 /* 1327 * Buffer too small. Count needed size 1328 * and return with error. 1329 */ 1330 cp = NULL; 1331 } 1332 1333 len += dlen; 1334 } 1335 1336 if (cp != NULL) { 1337 dlen = ALIGN(len) - len; 1338 if (buflen < dlen) 1339 cp = NULL; 1340 else { 1341 bzero(cp, dlen); 1342 cp += dlen; 1343 buflen -= dlen; 1344 } 1345 } 1346 len = ALIGN(len); 1347 1348 if (cp != NULL) { 1349 /* fill header iff buffer is large enough */ 1350 rtm->rtm_version = RTM_VERSION; 1351 rtm->rtm_type = type; 1352 rtm->rtm_msglen = len; 1353 } 1354 1355 *plen = len; 1356 1357 if (w != NULL && cp == NULL) 1358 return (ENOBUFS); 1359 1360 return (0); 1361 } 1362 1363 /* 1364 * This routine is called to generate a message from the routing 1365 * socket indicating that a redirect has occurred, a routing lookup 1366 * has failed, or that a protocol has detected timeouts to a particular 1367 * destination. 1368 */ 1369 void 1370 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1371 int fibnum) 1372 { 1373 struct rt_msghdr *rtm; 1374 struct mbuf *m; 1375 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1376 1377 if (V_route_cb.any_count == 0) 1378 return; 1379 m = rtsock_msg_mbuf(type, rtinfo); 1380 if (m == NULL) 1381 return; 1382 1383 if (fibnum != RT_ALL_FIBS) { 1384 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1385 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1386 M_SETFIB(m, fibnum); 1387 m->m_flags |= RTS_FILTER_FIB; 1388 } 1389 1390 rtm = mtod(m, struct rt_msghdr *); 1391 rtm->rtm_flags = RTF_DONE | flags; 1392 rtm->rtm_errno = error; 1393 rtm->rtm_addrs = rtinfo->rti_addrs; 1394 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1395 } 1396 1397 void 1398 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1399 { 1400 1401 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1402 } 1403 1404 /* 1405 * This routine is called to generate a message from the routing 1406 * socket indicating that the status of a network interface has changed. 1407 */ 1408 void 1409 rt_ifmsg(struct ifnet *ifp) 1410 { 1411 struct if_msghdr *ifm; 1412 struct mbuf *m; 1413 struct rt_addrinfo info; 1414 1415 if (V_route_cb.any_count == 0) 1416 return; 1417 bzero((caddr_t)&info, sizeof(info)); 1418 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1419 if (m == NULL) 1420 return; 1421 ifm = mtod(m, struct if_msghdr *); 1422 ifm->ifm_index = ifp->if_index; 1423 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1424 if_data_copy(ifp, &ifm->ifm_data); 1425 ifm->ifm_addrs = 0; 1426 rt_dispatch(m, AF_UNSPEC); 1427 } 1428 1429 /* 1430 * Announce interface address arrival/withdraw. 1431 * Please do not call directly, use rt_addrmsg(). 1432 * Assume input data to be valid. 1433 * Returns 0 on success. 1434 */ 1435 int 1436 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1437 { 1438 struct rt_addrinfo info; 1439 struct sockaddr *sa; 1440 int ncmd; 1441 struct mbuf *m; 1442 struct ifa_msghdr *ifam; 1443 struct ifnet *ifp = ifa->ifa_ifp; 1444 struct sockaddr_storage ss; 1445 1446 if (V_route_cb.any_count == 0) 1447 return (0); 1448 1449 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1450 1451 bzero((caddr_t)&info, sizeof(info)); 1452 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1453 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1454 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1455 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 1456 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1457 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1458 return (ENOBUFS); 1459 ifam = mtod(m, struct ifa_msghdr *); 1460 ifam->ifam_index = ifp->if_index; 1461 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1462 ifam->ifam_flags = ifa->ifa_flags; 1463 ifam->ifam_addrs = info.rti_addrs; 1464 1465 if (fibnum != RT_ALL_FIBS) { 1466 M_SETFIB(m, fibnum); 1467 m->m_flags |= RTS_FILTER_FIB; 1468 } 1469 1470 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1471 1472 return (0); 1473 } 1474 1475 /* 1476 * Announce route addition/removal to rtsock based on @rt data. 1477 * Callers are advives to use rt_routemsg() instead of using this 1478 * function directly. 1479 * Assume @rt data is consistent. 1480 * 1481 * Returns 0 on success. 1482 */ 1483 int 1484 rtsock_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs, 1485 int fibnum) 1486 { 1487 struct sockaddr_storage ss; 1488 struct rt_addrinfo info; 1489 1490 if (V_route_cb.any_count == 0) 1491 return (0); 1492 1493 bzero((caddr_t)&info, sizeof(info)); 1494 info.rti_info[RTAX_DST] = rt_key(rt); 1495 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), rt_mask(rt), &ss); 1496 info.rti_info[RTAX_GATEWAY] = &rt->rt_nhop->gw_sa; 1497 info.rti_flags = rt->rt_flags; 1498 info.rti_ifp = ifp; 1499 1500 return (rtsock_routemsg_info(cmd, &info, fibnum)); 1501 } 1502 1503 int 1504 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 1505 { 1506 struct rt_msghdr *rtm; 1507 struct sockaddr *sa; 1508 struct mbuf *m; 1509 1510 if (V_route_cb.any_count == 0) 1511 return (0); 1512 1513 if (info->rti_flags & RTF_HOST) 1514 info->rti_info[RTAX_NETMASK] = NULL; 1515 1516 m = rtsock_msg_mbuf(cmd, info); 1517 if (m == NULL) 1518 return (ENOBUFS); 1519 1520 if (fibnum != RT_ALL_FIBS) { 1521 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1522 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1523 M_SETFIB(m, fibnum); 1524 m->m_flags |= RTS_FILTER_FIB; 1525 } 1526 1527 rtm = mtod(m, struct rt_msghdr *); 1528 rtm->rtm_addrs = info->rti_addrs; 1529 if (info->rti_ifp != NULL) 1530 rtm->rtm_index = info->rti_ifp->if_index; 1531 /* Add RTF_DONE to indicate command 'completion' required by API */ 1532 info->rti_flags |= RTF_DONE; 1533 /* Reported routes has to be up */ 1534 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 1535 info->rti_flags |= RTF_UP; 1536 rtm->rtm_flags = info->rti_flags; 1537 1538 sa = info->rti_info[RTAX_DST]; 1539 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1540 1541 return (0); 1542 } 1543 1544 /* 1545 * This is the analogue to the rt_newaddrmsg which performs the same 1546 * function but for multicast group memberhips. This is easier since 1547 * there is no route state to worry about. 1548 */ 1549 void 1550 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1551 { 1552 struct rt_addrinfo info; 1553 struct mbuf *m = NULL; 1554 struct ifnet *ifp = ifma->ifma_ifp; 1555 struct ifma_msghdr *ifmam; 1556 1557 if (V_route_cb.any_count == 0) 1558 return; 1559 1560 bzero((caddr_t)&info, sizeof(info)); 1561 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1562 if (ifp && ifp->if_addr) 1563 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1564 else 1565 info.rti_info[RTAX_IFP] = NULL; 1566 /* 1567 * If a link-layer address is present, present it as a ``gateway'' 1568 * (similarly to how ARP entries, e.g., are presented). 1569 */ 1570 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1571 m = rtsock_msg_mbuf(cmd, &info); 1572 if (m == NULL) 1573 return; 1574 ifmam = mtod(m, struct ifma_msghdr *); 1575 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1576 __func__)); 1577 ifmam->ifmam_index = ifp->if_index; 1578 ifmam->ifmam_addrs = info.rti_addrs; 1579 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1580 } 1581 1582 static struct mbuf * 1583 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1584 struct rt_addrinfo *info) 1585 { 1586 struct if_announcemsghdr *ifan; 1587 struct mbuf *m; 1588 1589 if (V_route_cb.any_count == 0) 1590 return NULL; 1591 bzero((caddr_t)info, sizeof(*info)); 1592 m = rtsock_msg_mbuf(type, info); 1593 if (m != NULL) { 1594 ifan = mtod(m, struct if_announcemsghdr *); 1595 ifan->ifan_index = ifp->if_index; 1596 strlcpy(ifan->ifan_name, ifp->if_xname, 1597 sizeof(ifan->ifan_name)); 1598 ifan->ifan_what = what; 1599 } 1600 return m; 1601 } 1602 1603 /* 1604 * This is called to generate routing socket messages indicating 1605 * IEEE80211 wireless events. 1606 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1607 */ 1608 void 1609 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1610 { 1611 struct mbuf *m; 1612 struct rt_addrinfo info; 1613 1614 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1615 if (m != NULL) { 1616 /* 1617 * Append the ieee80211 data. Try to stick it in the 1618 * mbuf containing the ifannounce msg; otherwise allocate 1619 * a new mbuf and append. 1620 * 1621 * NB: we assume m is a single mbuf. 1622 */ 1623 if (data_len > M_TRAILINGSPACE(m)) { 1624 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1625 if (n == NULL) { 1626 m_freem(m); 1627 return; 1628 } 1629 bcopy(data, mtod(n, void *), data_len); 1630 n->m_len = data_len; 1631 m->m_next = n; 1632 } else if (data_len > 0) { 1633 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1634 m->m_len += data_len; 1635 } 1636 if (m->m_flags & M_PKTHDR) 1637 m->m_pkthdr.len += data_len; 1638 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1639 rt_dispatch(m, AF_UNSPEC); 1640 } 1641 } 1642 1643 /* 1644 * This is called to generate routing socket messages indicating 1645 * network interface arrival and departure. 1646 */ 1647 void 1648 rt_ifannouncemsg(struct ifnet *ifp, int what) 1649 { 1650 struct mbuf *m; 1651 struct rt_addrinfo info; 1652 1653 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1654 if (m != NULL) 1655 rt_dispatch(m, AF_UNSPEC); 1656 } 1657 1658 static void 1659 rt_dispatch(struct mbuf *m, sa_family_t saf) 1660 { 1661 struct m_tag *tag; 1662 1663 /* 1664 * Preserve the family from the sockaddr, if any, in an m_tag for 1665 * use when injecting the mbuf into the routing socket buffer from 1666 * the netisr. 1667 */ 1668 if (saf != AF_UNSPEC) { 1669 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1670 M_NOWAIT); 1671 if (tag == NULL) { 1672 m_freem(m); 1673 return; 1674 } 1675 *(unsigned short *)(tag + 1) = saf; 1676 m_tag_prepend(m, tag); 1677 } 1678 #ifdef VIMAGE 1679 if (V_loif) 1680 m->m_pkthdr.rcvif = V_loif; 1681 else { 1682 m_freem(m); 1683 return; 1684 } 1685 #endif 1686 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1687 } 1688 1689 /* 1690 * Checks if rte can be exported v.r.t jails/vnets. 1691 * 1692 * Returns 1 if it can, 0 otherwise. 1693 */ 1694 static int 1695 can_export_rte(struct ucred *td_ucred, const struct rtentry *rt) 1696 { 1697 1698 if ((rt->rt_flags & RTF_HOST) == 0 1699 ? jailed_without_vnet(td_ucred) 1700 : prison_if(td_ucred, rt_key_const(rt)) != 0) 1701 return (0); 1702 return (1); 1703 } 1704 1705 /* 1706 * This is used in dumping the kernel table via sysctl(). 1707 */ 1708 static int 1709 sysctl_dumpentry(struct radix_node *rn, void *vw) 1710 { 1711 struct walkarg *w = vw; 1712 struct rtentry *rt = (struct rtentry *)rn; 1713 struct nhop_object *nh; 1714 int error = 0, size; 1715 struct rt_addrinfo info; 1716 struct sockaddr_storage ss; 1717 1718 NET_EPOCH_ASSERT(); 1719 1720 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1721 return 0; 1722 if (!can_export_rte(w->w_req->td->td_ucred, rt)) 1723 return (0); 1724 bzero((caddr_t)&info, sizeof(info)); 1725 info.rti_info[RTAX_DST] = rt_key(rt); 1726 info.rti_info[RTAX_GATEWAY] = &rt->rt_nhop->gw_sa; 1727 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1728 rt_mask(rt), &ss); 1729 info.rti_info[RTAX_GENMASK] = 0; 1730 nh = rt->rt_nhop; 1731 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 1732 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 1733 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 1734 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 1735 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 1736 } 1737 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1738 return (error); 1739 if (w->w_req && w->w_tmem) { 1740 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1741 1742 bzero(&rtm->rtm_index, 1743 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 1744 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1745 rtm->rtm_flags = RTF_GATEWAY | 1746 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1747 else 1748 rtm->rtm_flags = rt->rt_flags; 1749 rtm->rtm_flags |= nhop_get_rtflags(nh); 1750 rt_getmetrics(rt, &rtm->rtm_rmx); 1751 rtm->rtm_index = nh->nh_ifp->if_index; 1752 rtm->rtm_addrs = info.rti_addrs; 1753 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1754 return (error); 1755 } 1756 return (error); 1757 } 1758 1759 static int 1760 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1761 struct rt_addrinfo *info, struct walkarg *w, int len) 1762 { 1763 struct if_msghdrl *ifm; 1764 struct if_data *ifd; 1765 1766 ifm = (struct if_msghdrl *)w->w_tmem; 1767 1768 #ifdef COMPAT_FREEBSD32 1769 if (w->w_req->flags & SCTL_MASK32) { 1770 struct if_msghdrl32 *ifm32; 1771 1772 ifm32 = (struct if_msghdrl32 *)ifm; 1773 ifm32->ifm_addrs = info->rti_addrs; 1774 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1775 ifm32->ifm_index = ifp->if_index; 1776 ifm32->_ifm_spare1 = 0; 1777 ifm32->ifm_len = sizeof(*ifm32); 1778 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1779 ifm32->_ifm_spare2 = 0; 1780 ifd = &ifm32->ifm_data; 1781 } else 1782 #endif 1783 { 1784 ifm->ifm_addrs = info->rti_addrs; 1785 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1786 ifm->ifm_index = ifp->if_index; 1787 ifm->_ifm_spare1 = 0; 1788 ifm->ifm_len = sizeof(*ifm); 1789 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1790 ifm->_ifm_spare2 = 0; 1791 ifd = &ifm->ifm_data; 1792 } 1793 1794 memcpy(ifd, src_ifd, sizeof(*ifd)); 1795 1796 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1797 } 1798 1799 static int 1800 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 1801 struct rt_addrinfo *info, struct walkarg *w, int len) 1802 { 1803 struct if_msghdr *ifm; 1804 struct if_data *ifd; 1805 1806 ifm = (struct if_msghdr *)w->w_tmem; 1807 1808 #ifdef COMPAT_FREEBSD32 1809 if (w->w_req->flags & SCTL_MASK32) { 1810 struct if_msghdr32 *ifm32; 1811 1812 ifm32 = (struct if_msghdr32 *)ifm; 1813 ifm32->ifm_addrs = info->rti_addrs; 1814 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1815 ifm32->ifm_index = ifp->if_index; 1816 ifm32->_ifm_spare1 = 0; 1817 ifd = &ifm32->ifm_data; 1818 } else 1819 #endif 1820 { 1821 ifm->ifm_addrs = info->rti_addrs; 1822 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1823 ifm->ifm_index = ifp->if_index; 1824 ifm->_ifm_spare1 = 0; 1825 ifd = &ifm->ifm_data; 1826 } 1827 1828 memcpy(ifd, src_ifd, sizeof(*ifd)); 1829 1830 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1831 } 1832 1833 static int 1834 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1835 struct walkarg *w, int len) 1836 { 1837 struct ifa_msghdrl *ifam; 1838 struct if_data *ifd; 1839 1840 ifam = (struct ifa_msghdrl *)w->w_tmem; 1841 1842 #ifdef COMPAT_FREEBSD32 1843 if (w->w_req->flags & SCTL_MASK32) { 1844 struct ifa_msghdrl32 *ifam32; 1845 1846 ifam32 = (struct ifa_msghdrl32 *)ifam; 1847 ifam32->ifam_addrs = info->rti_addrs; 1848 ifam32->ifam_flags = ifa->ifa_flags; 1849 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1850 ifam32->_ifam_spare1 = 0; 1851 ifam32->ifam_len = sizeof(*ifam32); 1852 ifam32->ifam_data_off = 1853 offsetof(struct ifa_msghdrl32, ifam_data); 1854 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1855 ifd = &ifam32->ifam_data; 1856 } else 1857 #endif 1858 { 1859 ifam->ifam_addrs = info->rti_addrs; 1860 ifam->ifam_flags = ifa->ifa_flags; 1861 ifam->ifam_index = ifa->ifa_ifp->if_index; 1862 ifam->_ifam_spare1 = 0; 1863 ifam->ifam_len = sizeof(*ifam); 1864 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1865 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1866 ifd = &ifam->ifam_data; 1867 } 1868 1869 bzero(ifd, sizeof(*ifd)); 1870 ifd->ifi_datalen = sizeof(struct if_data); 1871 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1872 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1873 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1874 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1875 1876 /* Fixup if_data carp(4) vhid. */ 1877 if (carp_get_vhid_p != NULL) 1878 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1879 1880 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1881 } 1882 1883 static int 1884 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1885 struct walkarg *w, int len) 1886 { 1887 struct ifa_msghdr *ifam; 1888 1889 ifam = (struct ifa_msghdr *)w->w_tmem; 1890 ifam->ifam_addrs = info->rti_addrs; 1891 ifam->ifam_flags = ifa->ifa_flags; 1892 ifam->ifam_index = ifa->ifa_ifp->if_index; 1893 ifam->_ifam_spare1 = 0; 1894 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1895 1896 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1897 } 1898 1899 static int 1900 sysctl_iflist(int af, struct walkarg *w) 1901 { 1902 struct ifnet *ifp; 1903 struct ifaddr *ifa; 1904 struct if_data ifd; 1905 struct rt_addrinfo info; 1906 int len, error = 0; 1907 struct sockaddr_storage ss; 1908 1909 bzero((caddr_t)&info, sizeof(info)); 1910 bzero(&ifd, sizeof(ifd)); 1911 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1912 if (w->w_arg && w->w_arg != ifp->if_index) 1913 continue; 1914 if_data_copy(ifp, &ifd); 1915 ifa = ifp->if_addr; 1916 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1917 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1918 if (error != 0) 1919 goto done; 1920 info.rti_info[RTAX_IFP] = NULL; 1921 if (w->w_req && w->w_tmem) { 1922 if (w->w_op == NET_RT_IFLISTL) 1923 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 1924 len); 1925 else 1926 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 1927 len); 1928 if (error) 1929 goto done; 1930 } 1931 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 1932 if (af && af != ifa->ifa_addr->sa_family) 1933 continue; 1934 if (prison_if(w->w_req->td->td_ucred, 1935 ifa->ifa_addr) != 0) 1936 continue; 1937 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1938 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1939 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1940 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1941 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1942 if (error != 0) 1943 goto done; 1944 if (w->w_req && w->w_tmem) { 1945 if (w->w_op == NET_RT_IFLISTL) 1946 error = sysctl_iflist_ifaml(ifa, &info, 1947 w, len); 1948 else 1949 error = sysctl_iflist_ifam(ifa, &info, 1950 w, len); 1951 if (error) 1952 goto done; 1953 } 1954 } 1955 info.rti_info[RTAX_IFA] = NULL; 1956 info.rti_info[RTAX_NETMASK] = NULL; 1957 info.rti_info[RTAX_BRD] = NULL; 1958 } 1959 done: 1960 return (error); 1961 } 1962 1963 static int 1964 sysctl_ifmalist(int af, struct walkarg *w) 1965 { 1966 struct rt_addrinfo info; 1967 struct ifaddr *ifa; 1968 struct ifmultiaddr *ifma; 1969 struct ifnet *ifp; 1970 int error, len; 1971 1972 NET_EPOCH_ASSERT(); 1973 1974 error = 0; 1975 bzero((caddr_t)&info, sizeof(info)); 1976 1977 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1978 if (w->w_arg && w->w_arg != ifp->if_index) 1979 continue; 1980 ifa = ifp->if_addr; 1981 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1982 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1983 if (af && af != ifma->ifma_addr->sa_family) 1984 continue; 1985 if (prison_if(w->w_req->td->td_ucred, 1986 ifma->ifma_addr) != 0) 1987 continue; 1988 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1989 info.rti_info[RTAX_GATEWAY] = 1990 (ifma->ifma_addr->sa_family != AF_LINK) ? 1991 ifma->ifma_lladdr : NULL; 1992 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1993 if (error != 0) 1994 break; 1995 if (w->w_req && w->w_tmem) { 1996 struct ifma_msghdr *ifmam; 1997 1998 ifmam = (struct ifma_msghdr *)w->w_tmem; 1999 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 2000 ifmam->ifmam_flags = 0; 2001 ifmam->ifmam_addrs = info.rti_addrs; 2002 ifmam->_ifmam_spare1 = 0; 2003 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 2004 if (error != 0) 2005 break; 2006 } 2007 } 2008 if (error != 0) 2009 break; 2010 } 2011 return (error); 2012 } 2013 2014 static int 2015 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2016 { 2017 RIB_RLOCK_TRACKER; 2018 struct epoch_tracker et; 2019 int *name = (int *)arg1; 2020 u_int namelen = arg2; 2021 struct rib_head *rnh = NULL; /* silence compiler. */ 2022 int i, lim, error = EINVAL; 2023 int fib = 0; 2024 u_char af; 2025 struct walkarg w; 2026 2027 name ++; 2028 namelen--; 2029 if (req->newptr) 2030 return (EPERM); 2031 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP) { 2032 if (namelen == 3) 2033 fib = req->td->td_proc->p_fibnum; 2034 else if (namelen == 4) 2035 fib = (name[3] == RT_ALL_FIBS) ? 2036 req->td->td_proc->p_fibnum : name[3]; 2037 else 2038 return ((namelen < 3) ? EISDIR : ENOTDIR); 2039 if (fib < 0 || fib >= rt_numfibs) 2040 return (EINVAL); 2041 } else if (namelen != 3) 2042 return ((namelen < 3) ? EISDIR : ENOTDIR); 2043 af = name[0]; 2044 if (af > AF_MAX) 2045 return (EINVAL); 2046 bzero(&w, sizeof(w)); 2047 w.w_op = name[1]; 2048 w.w_arg = name[2]; 2049 w.w_req = req; 2050 2051 error = sysctl_wire_old_buffer(req, 0); 2052 if (error) 2053 return (error); 2054 2055 /* 2056 * Allocate reply buffer in advance. 2057 * All rtsock messages has maximum length of u_short. 2058 */ 2059 w.w_tmemsize = 65536; 2060 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2061 2062 NET_EPOCH_ENTER(et); 2063 switch (w.w_op) { 2064 case NET_RT_DUMP: 2065 case NET_RT_FLAGS: 2066 if (af == 0) { /* dump all tables */ 2067 i = 1; 2068 lim = AF_MAX; 2069 } else /* dump only one table */ 2070 i = lim = af; 2071 2072 /* 2073 * take care of llinfo entries, the caller must 2074 * specify an AF 2075 */ 2076 if (w.w_op == NET_RT_FLAGS && 2077 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2078 if (af != 0) 2079 error = lltable_sysctl_dumparp(af, w.w_req); 2080 else 2081 error = EINVAL; 2082 break; 2083 } 2084 /* 2085 * take care of routing entries 2086 */ 2087 for (error = 0; error == 0 && i <= lim; i++) { 2088 rnh = rt_tables_get_rnh(fib, i); 2089 if (rnh != NULL) { 2090 RIB_RLOCK(rnh); 2091 error = rnh->rnh_walktree(&rnh->head, 2092 sysctl_dumpentry, &w); 2093 RIB_RUNLOCK(rnh); 2094 } else if (af != 0) 2095 error = EAFNOSUPPORT; 2096 } 2097 break; 2098 case NET_RT_NHOP: 2099 /* Allow dumping one specific af/fib at a time */ 2100 if (namelen < 4) { 2101 error = EINVAL; 2102 break; 2103 } 2104 fib = name[3]; 2105 if (fib < 0 || fib > rt_numfibs) { 2106 error = EINVAL; 2107 break; 2108 } 2109 rnh = rt_tables_get_rnh(fib, af); 2110 if (rnh == NULL) { 2111 error = EAFNOSUPPORT; 2112 break; 2113 } 2114 if (w.w_op == NET_RT_NHOP) 2115 error = nhops_dump_sysctl(rnh, w.w_req); 2116 break; 2117 case NET_RT_IFLIST: 2118 case NET_RT_IFLISTL: 2119 error = sysctl_iflist(af, &w); 2120 break; 2121 2122 case NET_RT_IFMALIST: 2123 error = sysctl_ifmalist(af, &w); 2124 break; 2125 } 2126 NET_EPOCH_EXIT(et); 2127 2128 free(w.w_tmem, M_TEMP); 2129 return (error); 2130 } 2131 2132 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2133 sysctl_rtsock, "Return route tables and interface/address lists"); 2134 2135 /* 2136 * Definitions of protocols supported in the ROUTE domain. 2137 */ 2138 2139 static struct domain routedomain; /* or at least forward */ 2140 2141 static struct protosw routesw[] = { 2142 { 2143 .pr_type = SOCK_RAW, 2144 .pr_domain = &routedomain, 2145 .pr_flags = PR_ATOMIC|PR_ADDR, 2146 .pr_output = route_output, 2147 .pr_ctlinput = raw_ctlinput, 2148 .pr_init = raw_init, 2149 .pr_usrreqs = &route_usrreqs 2150 } 2151 }; 2152 2153 static struct domain routedomain = { 2154 .dom_family = PF_ROUTE, 2155 .dom_name = "route", 2156 .dom_protosw = routesw, 2157 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 2158 }; 2159 2160 VNET_DOMAIN_SET(route); 2161 2162