1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_ddb.h" 35 #include "opt_mpath.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/domain.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/rmlock.h> 50 #include <sys/rwlock.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 57 #ifdef DDB 58 #include <ddb/ddb.h> 59 #include <ddb/db_lex.h> 60 #endif 61 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_dl.h> 65 #include <net/if_llatbl.h> 66 #include <net/if_types.h> 67 #include <net/netisr.h> 68 #include <net/raw_cb.h> 69 #include <net/route.h> 70 #include <net/route_var.h> 71 #include <net/vnet.h> 72 73 #include <netinet/in.h> 74 #include <netinet/if_ether.h> 75 #include <netinet/ip_carp.h> 76 #ifdef INET6 77 #include <netinet6/ip6_var.h> 78 #include <netinet6/scope6_var.h> 79 #endif 80 81 #ifdef COMPAT_FREEBSD32 82 #include <sys/mount.h> 83 #include <compat/freebsd32/freebsd32.h> 84 85 struct if_msghdr32 { 86 uint16_t ifm_msglen; 87 uint8_t ifm_version; 88 uint8_t ifm_type; 89 int32_t ifm_addrs; 90 int32_t ifm_flags; 91 uint16_t ifm_index; 92 uint16_t _ifm_spare1; 93 struct if_data ifm_data; 94 }; 95 96 struct if_msghdrl32 { 97 uint16_t ifm_msglen; 98 uint8_t ifm_version; 99 uint8_t ifm_type; 100 int32_t ifm_addrs; 101 int32_t ifm_flags; 102 uint16_t ifm_index; 103 uint16_t _ifm_spare1; 104 uint16_t ifm_len; 105 uint16_t ifm_data_off; 106 uint32_t _ifm_spare2; 107 struct if_data ifm_data; 108 }; 109 110 struct ifa_msghdrl32 { 111 uint16_t ifam_msglen; 112 uint8_t ifam_version; 113 uint8_t ifam_type; 114 int32_t ifam_addrs; 115 int32_t ifam_flags; 116 uint16_t ifam_index; 117 uint16_t _ifam_spare1; 118 uint16_t ifam_len; 119 uint16_t ifam_data_off; 120 int32_t ifam_metric; 121 struct if_data ifam_data; 122 }; 123 124 #define SA_SIZE32(sa) \ 125 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 126 sizeof(int) : \ 127 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 128 129 #endif /* COMPAT_FREEBSD32 */ 130 131 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 132 133 /* NB: these are not modified */ 134 static struct sockaddr route_src = { 2, PF_ROUTE, }; 135 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 136 137 /* These are external hooks for CARP. */ 138 int (*carp_get_vhid_p)(struct ifaddr *); 139 140 /* 141 * Used by rtsock/raw_input callback code to decide whether to filter the update 142 * notification to a socket bound to a particular FIB. 143 */ 144 #define RTS_FILTER_FIB M_PROTO8 145 146 typedef struct { 147 int ip_count; /* attached w/ AF_INET */ 148 int ip6_count; /* attached w/ AF_INET6 */ 149 int any_count; /* total attached */ 150 } route_cb_t; 151 VNET_DEFINE_STATIC(route_cb_t, route_cb); 152 #define V_route_cb VNET(route_cb) 153 154 struct mtx rtsock_mtx; 155 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 156 157 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 158 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 159 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 160 161 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 162 163 struct walkarg { 164 int w_tmemsize; 165 int w_op, w_arg; 166 caddr_t w_tmem; 167 struct sysctl_req *w_req; 168 }; 169 170 static void rts_input(struct mbuf *m); 171 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 172 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 173 struct walkarg *w, int *plen); 174 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 175 struct rt_addrinfo *rtinfo); 176 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 177 static int sysctl_iflist(int af, struct walkarg *w); 178 static int sysctl_ifmalist(int af, struct walkarg *w); 179 static int route_output(struct mbuf *m, struct socket *so, ...); 180 static void rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out); 181 static void rt_dispatch(struct mbuf *, sa_family_t); 182 static struct sockaddr *rtsock_fix_netmask(struct sockaddr *dst, 183 struct sockaddr *smask, struct sockaddr_storage *dmask); 184 185 static struct netisr_handler rtsock_nh = { 186 .nh_name = "rtsock", 187 .nh_handler = rts_input, 188 .nh_proto = NETISR_ROUTE, 189 .nh_policy = NETISR_POLICY_SOURCE, 190 }; 191 192 static int 193 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 194 { 195 int error, qlimit; 196 197 netisr_getqlimit(&rtsock_nh, &qlimit); 198 error = sysctl_handle_int(oidp, &qlimit, 0, req); 199 if (error || !req->newptr) 200 return (error); 201 if (qlimit < 1) 202 return (EINVAL); 203 return (netisr_setqlimit(&rtsock_nh, qlimit)); 204 } 205 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 206 0, 0, sysctl_route_netisr_maxqlen, "I", 207 "maximum routing socket dispatch queue length"); 208 209 static void 210 vnet_rts_init(void) 211 { 212 int tmp; 213 214 if (IS_DEFAULT_VNET(curvnet)) { 215 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 216 rtsock_nh.nh_qlimit = tmp; 217 netisr_register(&rtsock_nh); 218 } 219 #ifdef VIMAGE 220 else 221 netisr_register_vnet(&rtsock_nh); 222 #endif 223 } 224 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 225 vnet_rts_init, 0); 226 227 #ifdef VIMAGE 228 static void 229 vnet_rts_uninit(void) 230 { 231 232 netisr_unregister_vnet(&rtsock_nh); 233 } 234 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 235 vnet_rts_uninit, 0); 236 #endif 237 238 static int 239 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 240 struct rawcb *rp) 241 { 242 int fibnum; 243 244 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 245 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 246 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 247 248 /* No filtering requested. */ 249 if ((m->m_flags & RTS_FILTER_FIB) == 0) 250 return (0); 251 252 /* Check if it is a rts and the fib matches the one of the socket. */ 253 fibnum = M_GETFIB(m); 254 if (proto->sp_family != PF_ROUTE || 255 rp->rcb_socket == NULL || 256 rp->rcb_socket->so_fibnum == fibnum) 257 return (0); 258 259 /* Filtering requested and no match, the socket shall be skipped. */ 260 return (1); 261 } 262 263 static void 264 rts_input(struct mbuf *m) 265 { 266 struct sockproto route_proto; 267 unsigned short *family; 268 struct m_tag *tag; 269 270 route_proto.sp_family = PF_ROUTE; 271 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 272 if (tag != NULL) { 273 family = (unsigned short *)(tag + 1); 274 route_proto.sp_protocol = *family; 275 m_tag_delete(m, tag); 276 } else 277 route_proto.sp_protocol = 0; 278 279 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 280 } 281 282 /* 283 * It really doesn't make any sense at all for this code to share much 284 * with raw_usrreq.c, since its functionality is so restricted. XXX 285 */ 286 static void 287 rts_abort(struct socket *so) 288 { 289 290 raw_usrreqs.pru_abort(so); 291 } 292 293 static void 294 rts_close(struct socket *so) 295 { 296 297 raw_usrreqs.pru_close(so); 298 } 299 300 /* pru_accept is EOPNOTSUPP */ 301 302 static int 303 rts_attach(struct socket *so, int proto, struct thread *td) 304 { 305 struct rawcb *rp; 306 int error; 307 308 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 309 310 /* XXX */ 311 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 312 313 so->so_pcb = (caddr_t)rp; 314 so->so_fibnum = td->td_proc->p_fibnum; 315 error = raw_attach(so, proto); 316 rp = sotorawcb(so); 317 if (error) { 318 so->so_pcb = NULL; 319 free(rp, M_PCB); 320 return error; 321 } 322 RTSOCK_LOCK(); 323 switch(rp->rcb_proto.sp_protocol) { 324 case AF_INET: 325 V_route_cb.ip_count++; 326 break; 327 case AF_INET6: 328 V_route_cb.ip6_count++; 329 break; 330 } 331 V_route_cb.any_count++; 332 RTSOCK_UNLOCK(); 333 soisconnected(so); 334 so->so_options |= SO_USELOOPBACK; 335 return 0; 336 } 337 338 static int 339 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 340 { 341 342 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 343 } 344 345 static int 346 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 347 { 348 349 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 350 } 351 352 /* pru_connect2 is EOPNOTSUPP */ 353 /* pru_control is EOPNOTSUPP */ 354 355 static void 356 rts_detach(struct socket *so) 357 { 358 struct rawcb *rp = sotorawcb(so); 359 360 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 361 362 RTSOCK_LOCK(); 363 switch(rp->rcb_proto.sp_protocol) { 364 case AF_INET: 365 V_route_cb.ip_count--; 366 break; 367 case AF_INET6: 368 V_route_cb.ip6_count--; 369 break; 370 } 371 V_route_cb.any_count--; 372 RTSOCK_UNLOCK(); 373 raw_usrreqs.pru_detach(so); 374 } 375 376 static int 377 rts_disconnect(struct socket *so) 378 { 379 380 return (raw_usrreqs.pru_disconnect(so)); 381 } 382 383 /* pru_listen is EOPNOTSUPP */ 384 385 static int 386 rts_peeraddr(struct socket *so, struct sockaddr **nam) 387 { 388 389 return (raw_usrreqs.pru_peeraddr(so, nam)); 390 } 391 392 /* pru_rcvd is EOPNOTSUPP */ 393 /* pru_rcvoob is EOPNOTSUPP */ 394 395 static int 396 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 397 struct mbuf *control, struct thread *td) 398 { 399 400 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 401 } 402 403 /* pru_sense is null */ 404 405 static int 406 rts_shutdown(struct socket *so) 407 { 408 409 return (raw_usrreqs.pru_shutdown(so)); 410 } 411 412 static int 413 rts_sockaddr(struct socket *so, struct sockaddr **nam) 414 { 415 416 return (raw_usrreqs.pru_sockaddr(so, nam)); 417 } 418 419 static struct pr_usrreqs route_usrreqs = { 420 .pru_abort = rts_abort, 421 .pru_attach = rts_attach, 422 .pru_bind = rts_bind, 423 .pru_connect = rts_connect, 424 .pru_detach = rts_detach, 425 .pru_disconnect = rts_disconnect, 426 .pru_peeraddr = rts_peeraddr, 427 .pru_send = rts_send, 428 .pru_shutdown = rts_shutdown, 429 .pru_sockaddr = rts_sockaddr, 430 .pru_close = rts_close, 431 }; 432 433 #ifndef _SOCKADDR_UNION_DEFINED 434 #define _SOCKADDR_UNION_DEFINED 435 /* 436 * The union of all possible address formats we handle. 437 */ 438 union sockaddr_union { 439 struct sockaddr sa; 440 struct sockaddr_in sin; 441 struct sockaddr_in6 sin6; 442 }; 443 #endif /* _SOCKADDR_UNION_DEFINED */ 444 445 static int 446 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 447 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 448 { 449 #if defined(INET) || defined(INET6) 450 struct epoch_tracker et; 451 #endif 452 453 /* First, see if the returned address is part of the jail. */ 454 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 455 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 456 return (0); 457 } 458 459 switch (info->rti_info[RTAX_DST]->sa_family) { 460 #ifdef INET 461 case AF_INET: 462 { 463 struct in_addr ia; 464 struct ifaddr *ifa; 465 int found; 466 467 found = 0; 468 /* 469 * Try to find an address on the given outgoing interface 470 * that belongs to the jail. 471 */ 472 NET_EPOCH_ENTER(et); 473 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 474 struct sockaddr *sa; 475 sa = ifa->ifa_addr; 476 if (sa->sa_family != AF_INET) 477 continue; 478 ia = ((struct sockaddr_in *)sa)->sin_addr; 479 if (prison_check_ip4(cred, &ia) == 0) { 480 found = 1; 481 break; 482 } 483 } 484 NET_EPOCH_EXIT(et); 485 if (!found) { 486 /* 487 * As a last resort return the 'default' jail address. 488 */ 489 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 490 sin_addr; 491 if (prison_get_ip4(cred, &ia) != 0) 492 return (ESRCH); 493 } 494 bzero(&saun->sin, sizeof(struct sockaddr_in)); 495 saun->sin.sin_len = sizeof(struct sockaddr_in); 496 saun->sin.sin_family = AF_INET; 497 saun->sin.sin_addr.s_addr = ia.s_addr; 498 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 499 break; 500 } 501 #endif 502 #ifdef INET6 503 case AF_INET6: 504 { 505 struct in6_addr ia6; 506 struct ifaddr *ifa; 507 int found; 508 509 found = 0; 510 /* 511 * Try to find an address on the given outgoing interface 512 * that belongs to the jail. 513 */ 514 NET_EPOCH_ENTER(et); 515 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 516 struct sockaddr *sa; 517 sa = ifa->ifa_addr; 518 if (sa->sa_family != AF_INET6) 519 continue; 520 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 521 &ia6, sizeof(struct in6_addr)); 522 if (prison_check_ip6(cred, &ia6) == 0) { 523 found = 1; 524 break; 525 } 526 } 527 NET_EPOCH_EXIT(et); 528 if (!found) { 529 /* 530 * As a last resort return the 'default' jail address. 531 */ 532 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 533 sin6_addr; 534 if (prison_get_ip6(cred, &ia6) != 0) 535 return (ESRCH); 536 } 537 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 538 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 539 saun->sin6.sin6_family = AF_INET6; 540 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 541 if (sa6_recoverscope(&saun->sin6) != 0) 542 return (ESRCH); 543 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 544 break; 545 } 546 #endif 547 default: 548 return (ESRCH); 549 } 550 return (0); 551 } 552 553 /*ARGSUSED*/ 554 static int 555 route_output(struct mbuf *m, struct socket *so, ...) 556 { 557 RIB_RLOCK_TRACKER; 558 struct rt_msghdr *rtm = NULL; 559 struct rtentry *rt = NULL; 560 struct rib_head *rnh; 561 struct rt_addrinfo info; 562 struct sockaddr_storage ss; 563 struct epoch_tracker et; 564 #ifdef INET6 565 struct sockaddr_in6 *sin6; 566 int i, rti_need_deembed = 0; 567 #endif 568 int alloc_len = 0, len, error = 0, fibnum; 569 struct ifnet *ifp = NULL; 570 union sockaddr_union saun; 571 sa_family_t saf = AF_UNSPEC; 572 struct rawcb *rp = NULL; 573 struct walkarg w; 574 575 fibnum = so->so_fibnum; 576 577 #define senderr(e) { error = e; goto flush;} 578 if (m == NULL || ((m->m_len < sizeof(long)) && 579 (m = m_pullup(m, sizeof(long))) == NULL)) 580 return (ENOBUFS); 581 if ((m->m_flags & M_PKTHDR) == 0) 582 panic("route_output"); 583 NET_EPOCH_ENTER(et); 584 len = m->m_pkthdr.len; 585 if (len < sizeof(*rtm) || 586 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 587 senderr(EINVAL); 588 589 /* 590 * Most of current messages are in range 200-240 bytes, 591 * minimize possible re-allocation on reply using larger size 592 * buffer aligned on 1k boundaty. 593 */ 594 alloc_len = roundup2(len, 1024); 595 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 596 senderr(ENOBUFS); 597 598 m_copydata(m, 0, len, (caddr_t)rtm); 599 bzero(&info, sizeof(info)); 600 bzero(&w, sizeof(w)); 601 602 if (rtm->rtm_version != RTM_VERSION) { 603 /* Do not touch message since format is unknown */ 604 free(rtm, M_TEMP); 605 rtm = NULL; 606 senderr(EPROTONOSUPPORT); 607 } 608 609 /* 610 * Starting from here, it is possible 611 * to alter original message and insert 612 * caller PID and error value. 613 */ 614 615 rtm->rtm_pid = curproc->p_pid; 616 info.rti_addrs = rtm->rtm_addrs; 617 618 info.rti_mflags = rtm->rtm_inits; 619 info.rti_rmx = &rtm->rtm_rmx; 620 621 /* 622 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 623 * link-local address because rtrequest requires addresses with 624 * embedded scope id. 625 */ 626 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) 627 senderr(EINVAL); 628 629 if (rtm->rtm_flags & RTF_RNH_LOCKED) 630 senderr(EINVAL); 631 info.rti_flags = rtm->rtm_flags; 632 if (info.rti_info[RTAX_DST] == NULL || 633 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 634 (info.rti_info[RTAX_GATEWAY] != NULL && 635 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 636 senderr(EINVAL); 637 saf = info.rti_info[RTAX_DST]->sa_family; 638 /* 639 * Verify that the caller has the appropriate privilege; RTM_GET 640 * is the only operation the non-superuser is allowed. 641 */ 642 if (rtm->rtm_type != RTM_GET) { 643 error = priv_check(curthread, PRIV_NET_ROUTE); 644 if (error) 645 senderr(error); 646 } 647 648 /* 649 * The given gateway address may be an interface address. 650 * For example, issuing a "route change" command on a route 651 * entry that was created from a tunnel, and the gateway 652 * address given is the local end point. In this case the 653 * RTF_GATEWAY flag must be cleared or the destination will 654 * not be reachable even though there is no error message. 655 */ 656 if (info.rti_info[RTAX_GATEWAY] != NULL && 657 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 658 struct rt_addrinfo ginfo; 659 struct sockaddr *gdst; 660 661 bzero(&ginfo, sizeof(ginfo)); 662 bzero(&ss, sizeof(ss)); 663 ss.ss_len = sizeof(ss); 664 665 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 666 gdst = info.rti_info[RTAX_GATEWAY]; 667 668 /* 669 * A host route through the loopback interface is 670 * installed for each interface adddress. In pre 8.0 671 * releases the interface address of a PPP link type 672 * is not reachable locally. This behavior is fixed as 673 * part of the new L2/L3 redesign and rewrite work. The 674 * signature of this interface address route is the 675 * AF_LINK sa_family type of the rt_gateway, and the 676 * rt_ifp has the IFF_LOOPBACK flag set. 677 */ 678 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 679 if (ss.ss_family == AF_LINK && 680 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 681 info.rti_flags &= ~RTF_GATEWAY; 682 info.rti_flags |= RTF_GWFLAG_COMPAT; 683 } 684 rib_free_info(&ginfo); 685 } 686 } 687 688 switch (rtm->rtm_type) { 689 struct rtentry *saved_nrt; 690 691 case RTM_ADD: 692 case RTM_CHANGE: 693 if (rtm->rtm_type == RTM_ADD) { 694 if (info.rti_info[RTAX_GATEWAY] == NULL) 695 senderr(EINVAL); 696 } 697 saved_nrt = NULL; 698 699 /* support for new ARP code */ 700 if (info.rti_info[RTAX_GATEWAY] != NULL && 701 info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 702 (rtm->rtm_flags & RTF_LLDATA) != 0) { 703 error = lla_rt_output(rtm, &info); 704 #ifdef INET6 705 if (error == 0) 706 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 707 #endif 708 break; 709 } 710 error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt, 711 fibnum); 712 if (error == 0 && saved_nrt != NULL) { 713 #ifdef INET6 714 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 715 #endif 716 RT_LOCK(saved_nrt); 717 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 718 RT_REMREF(saved_nrt); 719 RT_UNLOCK(saved_nrt); 720 } 721 break; 722 723 case RTM_DELETE: 724 saved_nrt = NULL; 725 /* support for new ARP code */ 726 if (info.rti_info[RTAX_GATEWAY] && 727 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 728 (rtm->rtm_flags & RTF_LLDATA) != 0) { 729 error = lla_rt_output(rtm, &info); 730 #ifdef INET6 731 if (error == 0) 732 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 733 #endif 734 break; 735 } 736 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum); 737 if (error == 0) { 738 RT_LOCK(saved_nrt); 739 rt = saved_nrt; 740 goto report; 741 } 742 #ifdef INET6 743 /* rt_msg2() will not be used when RTM_DELETE fails. */ 744 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 745 #endif 746 break; 747 748 case RTM_GET: 749 rnh = rt_tables_get_rnh(fibnum, saf); 750 if (rnh == NULL) 751 senderr(EAFNOSUPPORT); 752 753 RIB_RLOCK(rnh); 754 755 if (info.rti_info[RTAX_NETMASK] == NULL && 756 rtm->rtm_type == RTM_GET) { 757 /* 758 * Provide longest prefix match for 759 * address lookup (no mask). 760 * 'route -n get addr' 761 */ 762 rt = (struct rtentry *) rnh->rnh_matchaddr( 763 info.rti_info[RTAX_DST], &rnh->head); 764 } else 765 rt = (struct rtentry *) rnh->rnh_lookup( 766 info.rti_info[RTAX_DST], 767 info.rti_info[RTAX_NETMASK], &rnh->head); 768 769 if (rt == NULL) { 770 RIB_RUNLOCK(rnh); 771 senderr(ESRCH); 772 } 773 #ifdef RADIX_MPATH 774 /* 775 * for RTM_CHANGE/LOCK, if we got multipath routes, 776 * we require users to specify a matching RTAX_GATEWAY. 777 * 778 * for RTM_GET, gate is optional even with multipath. 779 * if gate == NULL the first match is returned. 780 * (no need to call rt_mpath_matchgate if gate == NULL) 781 */ 782 if (rt_mpath_capable(rnh) && 783 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 784 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 785 if (!rt) { 786 RIB_RUNLOCK(rnh); 787 senderr(ESRCH); 788 } 789 } 790 #endif 791 /* 792 * If performing proxied L2 entry insertion, and 793 * the actual PPP host entry is found, perform 794 * another search to retrieve the prefix route of 795 * the local end point of the PPP link. 796 */ 797 if (rtm->rtm_flags & RTF_ANNOUNCE) { 798 struct sockaddr laddr; 799 800 if (rt->rt_ifp != NULL && 801 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 802 struct epoch_tracker et; 803 struct ifaddr *ifa; 804 805 NET_EPOCH_ENTER(et); 806 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1, 807 RT_ALL_FIBS); 808 NET_EPOCH_EXIT(et); 809 if (ifa != NULL) 810 rt_maskedcopy(ifa->ifa_addr, 811 &laddr, 812 ifa->ifa_netmask); 813 } else 814 rt_maskedcopy(rt->rt_ifa->ifa_addr, 815 &laddr, 816 rt->rt_ifa->ifa_netmask); 817 /* 818 * refactor rt and no lock operation necessary 819 */ 820 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 821 &rnh->head); 822 if (rt == NULL) { 823 RIB_RUNLOCK(rnh); 824 senderr(ESRCH); 825 } 826 } 827 RT_LOCK(rt); 828 RT_ADDREF(rt); 829 RIB_RUNLOCK(rnh); 830 831 report: 832 RT_LOCK_ASSERT(rt); 833 if ((rt->rt_flags & RTF_HOST) == 0 834 ? jailed_without_vnet(curthread->td_ucred) 835 : prison_if(curthread->td_ucred, 836 rt_key(rt)) != 0) { 837 RT_UNLOCK(rt); 838 senderr(ESRCH); 839 } 840 info.rti_info[RTAX_DST] = rt_key(rt); 841 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 842 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 843 rt_mask(rt), &ss); 844 info.rti_info[RTAX_GENMASK] = 0; 845 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 846 ifp = rt->rt_ifp; 847 if (ifp) { 848 info.rti_info[RTAX_IFP] = 849 ifp->if_addr->ifa_addr; 850 error = rtm_get_jailed(&info, ifp, rt, 851 &saun, curthread->td_ucred); 852 if (error != 0) { 853 RT_UNLOCK(rt); 854 senderr(error); 855 } 856 if (ifp->if_flags & IFF_POINTOPOINT) 857 info.rti_info[RTAX_BRD] = 858 rt->rt_ifa->ifa_dstaddr; 859 rtm->rtm_index = ifp->if_index; 860 } else { 861 info.rti_info[RTAX_IFP] = NULL; 862 info.rti_info[RTAX_IFA] = NULL; 863 } 864 } else if ((ifp = rt->rt_ifp) != NULL) { 865 rtm->rtm_index = ifp->if_index; 866 } 867 868 /* Check if we need to realloc storage */ 869 rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len); 870 if (len > alloc_len) { 871 struct rt_msghdr *new_rtm; 872 new_rtm = malloc(len, M_TEMP, M_NOWAIT); 873 if (new_rtm == NULL) { 874 RT_UNLOCK(rt); 875 senderr(ENOBUFS); 876 } 877 bcopy(rtm, new_rtm, rtm->rtm_msglen); 878 free(rtm, M_TEMP); 879 rtm = new_rtm; 880 alloc_len = len; 881 } 882 883 w.w_tmem = (caddr_t)rtm; 884 w.w_tmemsize = alloc_len; 885 rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len); 886 887 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 888 rtm->rtm_flags = RTF_GATEWAY | 889 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 890 else 891 rtm->rtm_flags = rt->rt_flags; 892 rt_getmetrics(rt, &rtm->rtm_rmx); 893 rtm->rtm_addrs = info.rti_addrs; 894 895 RT_UNLOCK(rt); 896 break; 897 898 default: 899 senderr(EOPNOTSUPP); 900 } 901 902 flush: 903 NET_EPOCH_EXIT(et); 904 if (rt != NULL) 905 RTFREE(rt); 906 /* 907 * Check to see if we don't want our own messages. 908 */ 909 if ((so->so_options & SO_USELOOPBACK) == 0) { 910 if (V_route_cb.any_count <= 1) { 911 if (rtm != NULL) 912 free(rtm, M_TEMP); 913 m_freem(m); 914 return (error); 915 } 916 /* There is another listener, so construct message */ 917 rp = sotorawcb(so); 918 } 919 920 if (rtm != NULL) { 921 #ifdef INET6 922 if (rti_need_deembed) { 923 /* sin6_scope_id is recovered before sending rtm. */ 924 sin6 = (struct sockaddr_in6 *)&ss; 925 for (i = 0; i < RTAX_MAX; i++) { 926 if (info.rti_info[i] == NULL) 927 continue; 928 if (info.rti_info[i]->sa_family != AF_INET6) 929 continue; 930 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 931 if (sa6_recoverscope(sin6) == 0) 932 bcopy(sin6, info.rti_info[i], 933 sizeof(*sin6)); 934 } 935 } 936 #endif 937 if (error != 0) 938 rtm->rtm_errno = error; 939 else 940 rtm->rtm_flags |= RTF_DONE; 941 942 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 943 if (m->m_pkthdr.len < rtm->rtm_msglen) { 944 m_freem(m); 945 m = NULL; 946 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 947 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 948 949 free(rtm, M_TEMP); 950 } 951 if (m != NULL) { 952 M_SETFIB(m, fibnum); 953 m->m_flags |= RTS_FILTER_FIB; 954 if (rp) { 955 /* 956 * XXX insure we don't get a copy by 957 * invalidating our protocol 958 */ 959 unsigned short family = rp->rcb_proto.sp_family; 960 rp->rcb_proto.sp_family = 0; 961 rt_dispatch(m, saf); 962 rp->rcb_proto.sp_family = family; 963 } else 964 rt_dispatch(m, saf); 965 } 966 967 return (error); 968 } 969 970 static void 971 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 972 { 973 974 bzero(out, sizeof(*out)); 975 out->rmx_mtu = rt->rt_mtu; 976 out->rmx_weight = rt->rt_weight; 977 out->rmx_pksent = counter_u64_fetch(rt->rt_pksent); 978 /* Kernel -> userland timebase conversion. */ 979 out->rmx_expire = rt->rt_expire ? 980 rt->rt_expire - time_uptime + time_second : 0; 981 } 982 983 /* 984 * Extract the addresses of the passed sockaddrs. 985 * Do a little sanity checking so as to avoid bad memory references. 986 * This data is derived straight from userland. 987 */ 988 static int 989 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 990 { 991 struct sockaddr *sa; 992 int i; 993 994 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 995 if ((rtinfo->rti_addrs & (1 << i)) == 0) 996 continue; 997 sa = (struct sockaddr *)cp; 998 /* 999 * It won't fit. 1000 */ 1001 if (cp + sa->sa_len > cplim) 1002 return (EINVAL); 1003 /* 1004 * there are no more.. quit now 1005 * If there are more bits, they are in error. 1006 * I've seen this. route(1) can evidently generate these. 1007 * This causes kernel to core dump. 1008 * for compatibility, If we see this, point to a safe address. 1009 */ 1010 if (sa->sa_len == 0) { 1011 rtinfo->rti_info[i] = &sa_zero; 1012 return (0); /* should be EINVAL but for compat */ 1013 } 1014 /* accept it */ 1015 #ifdef INET6 1016 if (sa->sa_family == AF_INET6) 1017 sa6_embedscope((struct sockaddr_in6 *)sa, 1018 V_ip6_use_defzone); 1019 #endif 1020 rtinfo->rti_info[i] = sa; 1021 cp += SA_SIZE(sa); 1022 } 1023 return (0); 1024 } 1025 1026 /* 1027 * Fill in @dmask with valid netmask leaving original @smask 1028 * intact. Mostly used with radix netmasks. 1029 */ 1030 static struct sockaddr * 1031 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask, 1032 struct sockaddr_storage *dmask) 1033 { 1034 if (dst == NULL || smask == NULL) 1035 return (NULL); 1036 1037 memset(dmask, 0, dst->sa_len); 1038 memcpy(dmask, smask, smask->sa_len); 1039 dmask->ss_len = dst->sa_len; 1040 dmask->ss_family = dst->sa_family; 1041 1042 return ((struct sockaddr *)dmask); 1043 } 1044 1045 /* 1046 * Writes information related to @rtinfo object to newly-allocated mbuf. 1047 * Assumes MCLBYTES is enough to construct any message. 1048 * Used for OS notifications of vaious events (if/ifa announces,etc) 1049 * 1050 * Returns allocated mbuf or NULL on failure. 1051 */ 1052 static struct mbuf * 1053 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1054 { 1055 struct rt_msghdr *rtm; 1056 struct mbuf *m; 1057 int i; 1058 struct sockaddr *sa; 1059 #ifdef INET6 1060 struct sockaddr_storage ss; 1061 struct sockaddr_in6 *sin6; 1062 #endif 1063 int len, dlen; 1064 1065 switch (type) { 1066 1067 case RTM_DELADDR: 1068 case RTM_NEWADDR: 1069 len = sizeof(struct ifa_msghdr); 1070 break; 1071 1072 case RTM_DELMADDR: 1073 case RTM_NEWMADDR: 1074 len = sizeof(struct ifma_msghdr); 1075 break; 1076 1077 case RTM_IFINFO: 1078 len = sizeof(struct if_msghdr); 1079 break; 1080 1081 case RTM_IFANNOUNCE: 1082 case RTM_IEEE80211: 1083 len = sizeof(struct if_announcemsghdr); 1084 break; 1085 1086 default: 1087 len = sizeof(struct rt_msghdr); 1088 } 1089 1090 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1091 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1092 if (len > MHLEN) 1093 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1094 else 1095 m = m_gethdr(M_NOWAIT, MT_DATA); 1096 if (m == NULL) 1097 return (m); 1098 1099 m->m_pkthdr.len = m->m_len = len; 1100 rtm = mtod(m, struct rt_msghdr *); 1101 bzero((caddr_t)rtm, len); 1102 for (i = 0; i < RTAX_MAX; i++) { 1103 if ((sa = rtinfo->rti_info[i]) == NULL) 1104 continue; 1105 rtinfo->rti_addrs |= (1 << i); 1106 dlen = SA_SIZE(sa); 1107 #ifdef INET6 1108 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1109 sin6 = (struct sockaddr_in6 *)&ss; 1110 bcopy(sa, sin6, sizeof(*sin6)); 1111 if (sa6_recoverscope(sin6) == 0) 1112 sa = (struct sockaddr *)sin6; 1113 } 1114 #endif 1115 m_copyback(m, len, dlen, (caddr_t)sa); 1116 len += dlen; 1117 } 1118 if (m->m_pkthdr.len != len) { 1119 m_freem(m); 1120 return (NULL); 1121 } 1122 rtm->rtm_msglen = len; 1123 rtm->rtm_version = RTM_VERSION; 1124 rtm->rtm_type = type; 1125 return (m); 1126 } 1127 1128 /* 1129 * Writes information related to @rtinfo object to preallocated buffer. 1130 * Stores needed size in @plen. If @w is NULL, calculates size without 1131 * writing. 1132 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1133 * 1134 * Returns 0 on success. 1135 * 1136 */ 1137 static int 1138 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1139 { 1140 int i; 1141 int len, buflen = 0, dlen; 1142 caddr_t cp = NULL; 1143 struct rt_msghdr *rtm = NULL; 1144 #ifdef INET6 1145 struct sockaddr_storage ss; 1146 struct sockaddr_in6 *sin6; 1147 #endif 1148 #ifdef COMPAT_FREEBSD32 1149 bool compat32 = false; 1150 #endif 1151 1152 switch (type) { 1153 1154 case RTM_DELADDR: 1155 case RTM_NEWADDR: 1156 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1157 #ifdef COMPAT_FREEBSD32 1158 if (w->w_req->flags & SCTL_MASK32) { 1159 len = sizeof(struct ifa_msghdrl32); 1160 compat32 = true; 1161 } else 1162 #endif 1163 len = sizeof(struct ifa_msghdrl); 1164 } else 1165 len = sizeof(struct ifa_msghdr); 1166 break; 1167 1168 case RTM_IFINFO: 1169 #ifdef COMPAT_FREEBSD32 1170 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1171 if (w->w_op == NET_RT_IFLISTL) 1172 len = sizeof(struct if_msghdrl32); 1173 else 1174 len = sizeof(struct if_msghdr32); 1175 compat32 = true; 1176 break; 1177 } 1178 #endif 1179 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1180 len = sizeof(struct if_msghdrl); 1181 else 1182 len = sizeof(struct if_msghdr); 1183 break; 1184 1185 case RTM_NEWMADDR: 1186 len = sizeof(struct ifma_msghdr); 1187 break; 1188 1189 default: 1190 len = sizeof(struct rt_msghdr); 1191 } 1192 1193 if (w != NULL) { 1194 rtm = (struct rt_msghdr *)w->w_tmem; 1195 buflen = w->w_tmemsize - len; 1196 cp = (caddr_t)w->w_tmem + len; 1197 } 1198 1199 rtinfo->rti_addrs = 0; 1200 for (i = 0; i < RTAX_MAX; i++) { 1201 struct sockaddr *sa; 1202 1203 if ((sa = rtinfo->rti_info[i]) == NULL) 1204 continue; 1205 rtinfo->rti_addrs |= (1 << i); 1206 #ifdef COMPAT_FREEBSD32 1207 if (compat32) 1208 dlen = SA_SIZE32(sa); 1209 else 1210 #endif 1211 dlen = SA_SIZE(sa); 1212 if (cp != NULL && buflen >= dlen) { 1213 #ifdef INET6 1214 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1215 sin6 = (struct sockaddr_in6 *)&ss; 1216 bcopy(sa, sin6, sizeof(*sin6)); 1217 if (sa6_recoverscope(sin6) == 0) 1218 sa = (struct sockaddr *)sin6; 1219 } 1220 #endif 1221 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1222 cp += dlen; 1223 buflen -= dlen; 1224 } else if (cp != NULL) { 1225 /* 1226 * Buffer too small. Count needed size 1227 * and return with error. 1228 */ 1229 cp = NULL; 1230 } 1231 1232 len += dlen; 1233 } 1234 1235 if (cp != NULL) { 1236 dlen = ALIGN(len) - len; 1237 if (buflen < dlen) 1238 cp = NULL; 1239 else { 1240 bzero(cp, dlen); 1241 cp += dlen; 1242 buflen -= dlen; 1243 } 1244 } 1245 len = ALIGN(len); 1246 1247 if (cp != NULL) { 1248 /* fill header iff buffer is large enough */ 1249 rtm->rtm_version = RTM_VERSION; 1250 rtm->rtm_type = type; 1251 rtm->rtm_msglen = len; 1252 } 1253 1254 *plen = len; 1255 1256 if (w != NULL && cp == NULL) 1257 return (ENOBUFS); 1258 1259 return (0); 1260 } 1261 1262 /* 1263 * This routine is called to generate a message from the routing 1264 * socket indicating that a redirect has occurred, a routing lookup 1265 * has failed, or that a protocol has detected timeouts to a particular 1266 * destination. 1267 */ 1268 void 1269 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1270 int fibnum) 1271 { 1272 struct rt_msghdr *rtm; 1273 struct mbuf *m; 1274 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1275 1276 if (V_route_cb.any_count == 0) 1277 return; 1278 m = rtsock_msg_mbuf(type, rtinfo); 1279 if (m == NULL) 1280 return; 1281 1282 if (fibnum != RT_ALL_FIBS) { 1283 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1284 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1285 M_SETFIB(m, fibnum); 1286 m->m_flags |= RTS_FILTER_FIB; 1287 } 1288 1289 rtm = mtod(m, struct rt_msghdr *); 1290 rtm->rtm_flags = RTF_DONE | flags; 1291 rtm->rtm_errno = error; 1292 rtm->rtm_addrs = rtinfo->rti_addrs; 1293 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1294 } 1295 1296 void 1297 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1298 { 1299 1300 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1301 } 1302 1303 /* 1304 * This routine is called to generate a message from the routing 1305 * socket indicating that the status of a network interface has changed. 1306 */ 1307 void 1308 rt_ifmsg(struct ifnet *ifp) 1309 { 1310 struct if_msghdr *ifm; 1311 struct mbuf *m; 1312 struct rt_addrinfo info; 1313 1314 if (V_route_cb.any_count == 0) 1315 return; 1316 bzero((caddr_t)&info, sizeof(info)); 1317 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1318 if (m == NULL) 1319 return; 1320 ifm = mtod(m, struct if_msghdr *); 1321 ifm->ifm_index = ifp->if_index; 1322 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1323 if_data_copy(ifp, &ifm->ifm_data); 1324 ifm->ifm_addrs = 0; 1325 rt_dispatch(m, AF_UNSPEC); 1326 } 1327 1328 /* 1329 * Announce interface address arrival/withdraw. 1330 * Please do not call directly, use rt_addrmsg(). 1331 * Assume input data to be valid. 1332 * Returns 0 on success. 1333 */ 1334 int 1335 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1336 { 1337 struct rt_addrinfo info; 1338 struct sockaddr *sa; 1339 int ncmd; 1340 struct mbuf *m; 1341 struct ifa_msghdr *ifam; 1342 struct ifnet *ifp = ifa->ifa_ifp; 1343 struct sockaddr_storage ss; 1344 1345 if (V_route_cb.any_count == 0) 1346 return (0); 1347 1348 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1349 1350 bzero((caddr_t)&info, sizeof(info)); 1351 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1352 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1353 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1354 info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss); 1355 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1356 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1357 return (ENOBUFS); 1358 ifam = mtod(m, struct ifa_msghdr *); 1359 ifam->ifam_index = ifp->if_index; 1360 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1361 ifam->ifam_flags = ifa->ifa_flags; 1362 ifam->ifam_addrs = info.rti_addrs; 1363 1364 if (fibnum != RT_ALL_FIBS) { 1365 M_SETFIB(m, fibnum); 1366 m->m_flags |= RTS_FILTER_FIB; 1367 } 1368 1369 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1370 1371 return (0); 1372 } 1373 1374 /* 1375 * Announce route addition/removal. 1376 * Please do not call directly, use rt_routemsg(). 1377 * Note that @rt data MAY be inconsistent/invalid: 1378 * if some userland app sends us "invalid" route message (invalid mask, 1379 * no dst, wrong address families, etc...) we need to pass it back 1380 * to app (and any other rtsock consumers) with rtm_errno field set to 1381 * non-zero value. 1382 * 1383 * Returns 0 on success. 1384 */ 1385 int 1386 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 1387 int fibnum) 1388 { 1389 struct rt_addrinfo info; 1390 struct sockaddr *sa; 1391 struct mbuf *m; 1392 struct rt_msghdr *rtm; 1393 struct sockaddr_storage ss; 1394 1395 if (V_route_cb.any_count == 0) 1396 return (0); 1397 1398 bzero((caddr_t)&info, sizeof(info)); 1399 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1400 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss); 1401 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1402 if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL) 1403 return (ENOBUFS); 1404 rtm = mtod(m, struct rt_msghdr *); 1405 rtm->rtm_index = ifp->if_index; 1406 rtm->rtm_flags |= rt->rt_flags; 1407 rtm->rtm_errno = error; 1408 rtm->rtm_addrs = info.rti_addrs; 1409 1410 if (fibnum != RT_ALL_FIBS) { 1411 M_SETFIB(m, fibnum); 1412 m->m_flags |= RTS_FILTER_FIB; 1413 } 1414 1415 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1416 1417 return (0); 1418 } 1419 1420 /* 1421 * This is the analogue to the rt_newaddrmsg which performs the same 1422 * function but for multicast group memberhips. This is easier since 1423 * there is no route state to worry about. 1424 */ 1425 void 1426 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1427 { 1428 struct rt_addrinfo info; 1429 struct mbuf *m = NULL; 1430 struct ifnet *ifp = ifma->ifma_ifp; 1431 struct ifma_msghdr *ifmam; 1432 1433 if (V_route_cb.any_count == 0) 1434 return; 1435 1436 bzero((caddr_t)&info, sizeof(info)); 1437 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1438 if (ifp && ifp->if_addr) 1439 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1440 else 1441 info.rti_info[RTAX_IFP] = NULL; 1442 /* 1443 * If a link-layer address is present, present it as a ``gateway'' 1444 * (similarly to how ARP entries, e.g., are presented). 1445 */ 1446 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1447 m = rtsock_msg_mbuf(cmd, &info); 1448 if (m == NULL) 1449 return; 1450 ifmam = mtod(m, struct ifma_msghdr *); 1451 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1452 __func__)); 1453 ifmam->ifmam_index = ifp->if_index; 1454 ifmam->ifmam_addrs = info.rti_addrs; 1455 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1456 } 1457 1458 static struct mbuf * 1459 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1460 struct rt_addrinfo *info) 1461 { 1462 struct if_announcemsghdr *ifan; 1463 struct mbuf *m; 1464 1465 if (V_route_cb.any_count == 0) 1466 return NULL; 1467 bzero((caddr_t)info, sizeof(*info)); 1468 m = rtsock_msg_mbuf(type, info); 1469 if (m != NULL) { 1470 ifan = mtod(m, struct if_announcemsghdr *); 1471 ifan->ifan_index = ifp->if_index; 1472 strlcpy(ifan->ifan_name, ifp->if_xname, 1473 sizeof(ifan->ifan_name)); 1474 ifan->ifan_what = what; 1475 } 1476 return m; 1477 } 1478 1479 /* 1480 * This is called to generate routing socket messages indicating 1481 * IEEE80211 wireless events. 1482 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1483 */ 1484 void 1485 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1486 { 1487 struct mbuf *m; 1488 struct rt_addrinfo info; 1489 1490 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1491 if (m != NULL) { 1492 /* 1493 * Append the ieee80211 data. Try to stick it in the 1494 * mbuf containing the ifannounce msg; otherwise allocate 1495 * a new mbuf and append. 1496 * 1497 * NB: we assume m is a single mbuf. 1498 */ 1499 if (data_len > M_TRAILINGSPACE(m)) { 1500 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1501 if (n == NULL) { 1502 m_freem(m); 1503 return; 1504 } 1505 bcopy(data, mtod(n, void *), data_len); 1506 n->m_len = data_len; 1507 m->m_next = n; 1508 } else if (data_len > 0) { 1509 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1510 m->m_len += data_len; 1511 } 1512 if (m->m_flags & M_PKTHDR) 1513 m->m_pkthdr.len += data_len; 1514 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1515 rt_dispatch(m, AF_UNSPEC); 1516 } 1517 } 1518 1519 /* 1520 * This is called to generate routing socket messages indicating 1521 * network interface arrival and departure. 1522 */ 1523 void 1524 rt_ifannouncemsg(struct ifnet *ifp, int what) 1525 { 1526 struct mbuf *m; 1527 struct rt_addrinfo info; 1528 1529 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1530 if (m != NULL) 1531 rt_dispatch(m, AF_UNSPEC); 1532 } 1533 1534 static void 1535 rt_dispatch(struct mbuf *m, sa_family_t saf) 1536 { 1537 struct m_tag *tag; 1538 1539 /* 1540 * Preserve the family from the sockaddr, if any, in an m_tag for 1541 * use when injecting the mbuf into the routing socket buffer from 1542 * the netisr. 1543 */ 1544 if (saf != AF_UNSPEC) { 1545 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1546 M_NOWAIT); 1547 if (tag == NULL) { 1548 m_freem(m); 1549 return; 1550 } 1551 *(unsigned short *)(tag + 1) = saf; 1552 m_tag_prepend(m, tag); 1553 } 1554 #ifdef VIMAGE 1555 if (V_loif) 1556 m->m_pkthdr.rcvif = V_loif; 1557 else { 1558 m_freem(m); 1559 return; 1560 } 1561 #endif 1562 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1563 } 1564 1565 /* 1566 * This is used in dumping the kernel table via sysctl(). 1567 */ 1568 static int 1569 sysctl_dumpentry(struct radix_node *rn, void *vw) 1570 { 1571 struct walkarg *w = vw; 1572 struct rtentry *rt = (struct rtentry *)rn; 1573 int error = 0, size; 1574 struct rt_addrinfo info; 1575 struct sockaddr_storage ss; 1576 1577 NET_EPOCH_ASSERT(); 1578 1579 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1580 return 0; 1581 if ((rt->rt_flags & RTF_HOST) == 0 1582 ? jailed_without_vnet(w->w_req->td->td_ucred) 1583 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1584 return (0); 1585 bzero((caddr_t)&info, sizeof(info)); 1586 info.rti_info[RTAX_DST] = rt_key(rt); 1587 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1588 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1589 rt_mask(rt), &ss); 1590 info.rti_info[RTAX_GENMASK] = 0; 1591 if (rt->rt_ifp && !(rt->rt_ifp->if_flags & IFF_DYING)) { 1592 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1593 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1594 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1595 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1596 } 1597 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1598 return (error); 1599 if (w->w_req && w->w_tmem) { 1600 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1601 1602 bzero(&rtm->rtm_index, 1603 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 1604 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1605 rtm->rtm_flags = RTF_GATEWAY | 1606 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1607 else 1608 rtm->rtm_flags = rt->rt_flags; 1609 rt_getmetrics(rt, &rtm->rtm_rmx); 1610 rtm->rtm_index = rt->rt_ifp->if_index; 1611 rtm->rtm_addrs = info.rti_addrs; 1612 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1613 return (error); 1614 } 1615 return (error); 1616 } 1617 1618 static int 1619 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1620 struct rt_addrinfo *info, struct walkarg *w, int len) 1621 { 1622 struct if_msghdrl *ifm; 1623 struct if_data *ifd; 1624 1625 ifm = (struct if_msghdrl *)w->w_tmem; 1626 1627 #ifdef COMPAT_FREEBSD32 1628 if (w->w_req->flags & SCTL_MASK32) { 1629 struct if_msghdrl32 *ifm32; 1630 1631 ifm32 = (struct if_msghdrl32 *)ifm; 1632 ifm32->ifm_addrs = info->rti_addrs; 1633 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1634 ifm32->ifm_index = ifp->if_index; 1635 ifm32->_ifm_spare1 = 0; 1636 ifm32->ifm_len = sizeof(*ifm32); 1637 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1638 ifm32->_ifm_spare2 = 0; 1639 ifd = &ifm32->ifm_data; 1640 } else 1641 #endif 1642 { 1643 ifm->ifm_addrs = info->rti_addrs; 1644 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1645 ifm->ifm_index = ifp->if_index; 1646 ifm->_ifm_spare1 = 0; 1647 ifm->ifm_len = sizeof(*ifm); 1648 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1649 ifm->_ifm_spare2 = 0; 1650 ifd = &ifm->ifm_data; 1651 } 1652 1653 memcpy(ifd, src_ifd, sizeof(*ifd)); 1654 1655 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1656 } 1657 1658 static int 1659 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 1660 struct rt_addrinfo *info, struct walkarg *w, int len) 1661 { 1662 struct if_msghdr *ifm; 1663 struct if_data *ifd; 1664 1665 ifm = (struct if_msghdr *)w->w_tmem; 1666 1667 #ifdef COMPAT_FREEBSD32 1668 if (w->w_req->flags & SCTL_MASK32) { 1669 struct if_msghdr32 *ifm32; 1670 1671 ifm32 = (struct if_msghdr32 *)ifm; 1672 ifm32->ifm_addrs = info->rti_addrs; 1673 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1674 ifm32->ifm_index = ifp->if_index; 1675 ifm32->_ifm_spare1 = 0; 1676 ifd = &ifm32->ifm_data; 1677 } else 1678 #endif 1679 { 1680 ifm->ifm_addrs = info->rti_addrs; 1681 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1682 ifm->ifm_index = ifp->if_index; 1683 ifm->_ifm_spare1 = 0; 1684 ifd = &ifm->ifm_data; 1685 } 1686 1687 memcpy(ifd, src_ifd, sizeof(*ifd)); 1688 1689 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1690 } 1691 1692 static int 1693 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1694 struct walkarg *w, int len) 1695 { 1696 struct ifa_msghdrl *ifam; 1697 struct if_data *ifd; 1698 1699 ifam = (struct ifa_msghdrl *)w->w_tmem; 1700 1701 #ifdef COMPAT_FREEBSD32 1702 if (w->w_req->flags & SCTL_MASK32) { 1703 struct ifa_msghdrl32 *ifam32; 1704 1705 ifam32 = (struct ifa_msghdrl32 *)ifam; 1706 ifam32->ifam_addrs = info->rti_addrs; 1707 ifam32->ifam_flags = ifa->ifa_flags; 1708 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1709 ifam32->_ifam_spare1 = 0; 1710 ifam32->ifam_len = sizeof(*ifam32); 1711 ifam32->ifam_data_off = 1712 offsetof(struct ifa_msghdrl32, ifam_data); 1713 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1714 ifd = &ifam32->ifam_data; 1715 } else 1716 #endif 1717 { 1718 ifam->ifam_addrs = info->rti_addrs; 1719 ifam->ifam_flags = ifa->ifa_flags; 1720 ifam->ifam_index = ifa->ifa_ifp->if_index; 1721 ifam->_ifam_spare1 = 0; 1722 ifam->ifam_len = sizeof(*ifam); 1723 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1724 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1725 ifd = &ifam->ifam_data; 1726 } 1727 1728 bzero(ifd, sizeof(*ifd)); 1729 ifd->ifi_datalen = sizeof(struct if_data); 1730 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1731 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1732 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1733 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1734 1735 /* Fixup if_data carp(4) vhid. */ 1736 if (carp_get_vhid_p != NULL) 1737 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1738 1739 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1740 } 1741 1742 static int 1743 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1744 struct walkarg *w, int len) 1745 { 1746 struct ifa_msghdr *ifam; 1747 1748 ifam = (struct ifa_msghdr *)w->w_tmem; 1749 ifam->ifam_addrs = info->rti_addrs; 1750 ifam->ifam_flags = ifa->ifa_flags; 1751 ifam->ifam_index = ifa->ifa_ifp->if_index; 1752 ifam->_ifam_spare1 = 0; 1753 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1754 1755 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1756 } 1757 1758 static int 1759 sysctl_iflist(int af, struct walkarg *w) 1760 { 1761 struct ifnet *ifp; 1762 struct ifaddr *ifa; 1763 struct if_data ifd; 1764 struct rt_addrinfo info; 1765 int len, error = 0; 1766 struct sockaddr_storage ss; 1767 1768 bzero((caddr_t)&info, sizeof(info)); 1769 bzero(&ifd, sizeof(ifd)); 1770 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1771 if (w->w_arg && w->w_arg != ifp->if_index) 1772 continue; 1773 if_data_copy(ifp, &ifd); 1774 ifa = ifp->if_addr; 1775 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1776 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1777 if (error != 0) 1778 goto done; 1779 info.rti_info[RTAX_IFP] = NULL; 1780 if (w->w_req && w->w_tmem) { 1781 if (w->w_op == NET_RT_IFLISTL) 1782 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 1783 len); 1784 else 1785 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 1786 len); 1787 if (error) 1788 goto done; 1789 } 1790 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 1791 if (af && af != ifa->ifa_addr->sa_family) 1792 continue; 1793 if (prison_if(w->w_req->td->td_ucred, 1794 ifa->ifa_addr) != 0) 1795 continue; 1796 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1797 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1798 ifa->ifa_addr, ifa->ifa_netmask, &ss); 1799 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1800 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 1801 if (error != 0) 1802 goto done; 1803 if (w->w_req && w->w_tmem) { 1804 if (w->w_op == NET_RT_IFLISTL) 1805 error = sysctl_iflist_ifaml(ifa, &info, 1806 w, len); 1807 else 1808 error = sysctl_iflist_ifam(ifa, &info, 1809 w, len); 1810 if (error) 1811 goto done; 1812 } 1813 } 1814 info.rti_info[RTAX_IFA] = NULL; 1815 info.rti_info[RTAX_NETMASK] = NULL; 1816 info.rti_info[RTAX_BRD] = NULL; 1817 } 1818 done: 1819 return (error); 1820 } 1821 1822 static int 1823 sysctl_ifmalist(int af, struct walkarg *w) 1824 { 1825 struct rt_addrinfo info; 1826 struct ifaddr *ifa; 1827 struct ifmultiaddr *ifma; 1828 struct ifnet *ifp; 1829 int error, len; 1830 1831 NET_EPOCH_ASSERT(); 1832 1833 error = 0; 1834 bzero((caddr_t)&info, sizeof(info)); 1835 1836 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1837 if (w->w_arg && w->w_arg != ifp->if_index) 1838 continue; 1839 ifa = ifp->if_addr; 1840 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1841 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1842 if (af && af != ifma->ifma_addr->sa_family) 1843 continue; 1844 if (prison_if(w->w_req->td->td_ucred, 1845 ifma->ifma_addr) != 0) 1846 continue; 1847 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1848 info.rti_info[RTAX_GATEWAY] = 1849 (ifma->ifma_addr->sa_family != AF_LINK) ? 1850 ifma->ifma_lladdr : NULL; 1851 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 1852 if (error != 0) 1853 break; 1854 if (w->w_req && w->w_tmem) { 1855 struct ifma_msghdr *ifmam; 1856 1857 ifmam = (struct ifma_msghdr *)w->w_tmem; 1858 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1859 ifmam->ifmam_flags = 0; 1860 ifmam->ifmam_addrs = info.rti_addrs; 1861 ifmam->_ifmam_spare1 = 0; 1862 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1863 if (error != 0) 1864 break; 1865 } 1866 } 1867 if (error != 0) 1868 break; 1869 } 1870 return (error); 1871 } 1872 1873 static int 1874 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1875 { 1876 RIB_RLOCK_TRACKER; 1877 struct epoch_tracker et; 1878 int *name = (int *)arg1; 1879 u_int namelen = arg2; 1880 struct rib_head *rnh = NULL; /* silence compiler. */ 1881 int i, lim, error = EINVAL; 1882 int fib = 0; 1883 u_char af; 1884 struct walkarg w; 1885 1886 name ++; 1887 namelen--; 1888 if (req->newptr) 1889 return (EPERM); 1890 if (name[1] == NET_RT_DUMP) { 1891 if (namelen == 3) 1892 fib = req->td->td_proc->p_fibnum; 1893 else if (namelen == 4) 1894 fib = (name[3] == RT_ALL_FIBS) ? 1895 req->td->td_proc->p_fibnum : name[3]; 1896 else 1897 return ((namelen < 3) ? EISDIR : ENOTDIR); 1898 if (fib < 0 || fib >= rt_numfibs) 1899 return (EINVAL); 1900 } else if (namelen != 3) 1901 return ((namelen < 3) ? EISDIR : ENOTDIR); 1902 af = name[0]; 1903 if (af > AF_MAX) 1904 return (EINVAL); 1905 bzero(&w, sizeof(w)); 1906 w.w_op = name[1]; 1907 w.w_arg = name[2]; 1908 w.w_req = req; 1909 1910 error = sysctl_wire_old_buffer(req, 0); 1911 if (error) 1912 return (error); 1913 1914 /* 1915 * Allocate reply buffer in advance. 1916 * All rtsock messages has maximum length of u_short. 1917 */ 1918 w.w_tmemsize = 65536; 1919 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 1920 1921 NET_EPOCH_ENTER(et); 1922 switch (w.w_op) { 1923 case NET_RT_DUMP: 1924 case NET_RT_FLAGS: 1925 if (af == 0) { /* dump all tables */ 1926 i = 1; 1927 lim = AF_MAX; 1928 } else /* dump only one table */ 1929 i = lim = af; 1930 1931 /* 1932 * take care of llinfo entries, the caller must 1933 * specify an AF 1934 */ 1935 if (w.w_op == NET_RT_FLAGS && 1936 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1937 if (af != 0) 1938 error = lltable_sysctl_dumparp(af, w.w_req); 1939 else 1940 error = EINVAL; 1941 break; 1942 } 1943 /* 1944 * take care of routing entries 1945 */ 1946 for (error = 0; error == 0 && i <= lim; i++) { 1947 rnh = rt_tables_get_rnh(fib, i); 1948 if (rnh != NULL) { 1949 RIB_RLOCK(rnh); 1950 error = rnh->rnh_walktree(&rnh->head, 1951 sysctl_dumpentry, &w); 1952 RIB_RUNLOCK(rnh); 1953 } else if (af != 0) 1954 error = EAFNOSUPPORT; 1955 } 1956 break; 1957 1958 case NET_RT_IFLIST: 1959 case NET_RT_IFLISTL: 1960 error = sysctl_iflist(af, &w); 1961 break; 1962 1963 case NET_RT_IFMALIST: 1964 error = sysctl_ifmalist(af, &w); 1965 break; 1966 } 1967 NET_EPOCH_EXIT(et); 1968 1969 free(w.w_tmem, M_TEMP); 1970 return (error); 1971 } 1972 1973 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 1974 sysctl_rtsock, "Return route tables and interface/address lists"); 1975 1976 /* 1977 * Definitions of protocols supported in the ROUTE domain. 1978 */ 1979 1980 static struct domain routedomain; /* or at least forward */ 1981 1982 static struct protosw routesw[] = { 1983 { 1984 .pr_type = SOCK_RAW, 1985 .pr_domain = &routedomain, 1986 .pr_flags = PR_ATOMIC|PR_ADDR, 1987 .pr_output = route_output, 1988 .pr_ctlinput = raw_ctlinput, 1989 .pr_init = raw_init, 1990 .pr_usrreqs = &route_usrreqs 1991 } 1992 }; 1993 1994 static struct domain routedomain = { 1995 .dom_family = PF_ROUTE, 1996 .dom_name = "route", 1997 .dom_protosw = routesw, 1998 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 1999 }; 2000 2001 VNET_DOMAIN_SET(route); 2002 2003 #ifdef DDB 2004 /* 2005 * Unfortunately, RTF_ values are expressed as raw masks rather than powers of 2006 * 2, so we cannot use them as nice C99 initializer indices below. 2007 */ 2008 static const char * const rtf_flag_strings[] = { 2009 "UP", 2010 "GATEWAY", 2011 "HOST", 2012 "REJECT", 2013 "DYNAMIC", 2014 "MODIFIED", 2015 "DONE", 2016 "UNUSED_0x80", 2017 "UNUSED_0x100", 2018 "XRESOLVE", 2019 "LLDATA", 2020 "STATIC", 2021 "BLACKHOLE", 2022 "UNUSED_0x2000", 2023 "PROTO2", 2024 "PROTO1", 2025 "UNUSED_0x10000", 2026 "UNUSED_0x20000", 2027 "PROTO3", 2028 "FIXEDMTU", 2029 "PINNED", 2030 "LOCAL", 2031 "BROADCAST", 2032 "MULTICAST", 2033 /* Big gap. */ 2034 [28] = "STICKY", 2035 [30] = "RNH_LOCKED", 2036 [31] = "GWFLAG_COMPAT", 2037 }; 2038 2039 static const char * __pure 2040 rt_flag_name(unsigned idx) 2041 { 2042 if (idx >= nitems(rtf_flag_strings)) 2043 return ("INVALID_FLAG"); 2044 if (rtf_flag_strings[idx] == NULL) 2045 return ("UNKNOWN"); 2046 return (rtf_flag_strings[idx]); 2047 } 2048 2049 static void 2050 rt_dumpaddr_ddb(const char *name, const struct sockaddr *sa) 2051 { 2052 char buf[INET6_ADDRSTRLEN], *res; 2053 2054 res = NULL; 2055 if (sa == NULL) 2056 res = "NULL"; 2057 else if (sa->sa_family == AF_INET) { 2058 res = inet_ntop(AF_INET, 2059 &((const struct sockaddr_in *)sa)->sin_addr, 2060 buf, sizeof(buf)); 2061 } else if (sa->sa_family == AF_INET6) { 2062 res = inet_ntop(AF_INET6, 2063 &((const struct sockaddr_in6 *)sa)->sin6_addr, 2064 buf, sizeof(buf)); 2065 } else if (sa->sa_family == AF_LINK) { 2066 res = "on link"; 2067 } 2068 2069 if (res != NULL) { 2070 db_printf("%s <%s> ", name, res); 2071 return; 2072 } 2073 2074 db_printf("%s <af:%d> ", name, sa->sa_family); 2075 } 2076 2077 static int 2078 rt_dumpentry_ddb(struct radix_node *rn, void *arg __unused) 2079 { 2080 struct sockaddr_storage ss; 2081 struct rtentry *rt; 2082 int flags, idx; 2083 2084 /* If RNTORT is important, put it in a header. */ 2085 rt = (void *)rn; 2086 2087 rt_dumpaddr_ddb("dst", rt_key(rt)); 2088 rt_dumpaddr_ddb("gateway", rt->rt_gateway); 2089 rt_dumpaddr_ddb("netmask", rtsock_fix_netmask(rt_key(rt), rt_mask(rt), 2090 &ss)); 2091 if (rt->rt_ifp != NULL && (rt->rt_ifp->if_flags & IFF_DYING) == 0) { 2092 rt_dumpaddr_ddb("ifp", rt->rt_ifp->if_addr->ifa_addr); 2093 rt_dumpaddr_ddb("ifa", rt->rt_ifa->ifa_addr); 2094 } 2095 2096 db_printf("flags "); 2097 flags = rt->rt_flags; 2098 if (flags == 0) 2099 db_printf("none"); 2100 2101 while ((idx = ffs(flags)) > 0) { 2102 idx--; 2103 2104 if (flags != rt->rt_flags) 2105 db_printf(","); 2106 db_printf("%s", rt_flag_name(idx)); 2107 2108 flags &= ~(1ul << idx); 2109 } 2110 2111 db_printf("\n"); 2112 return (0); 2113 } 2114 2115 DB_SHOW_COMMAND(routetable, db_show_routetable_cmd) 2116 { 2117 struct rib_head *rnh; 2118 int error, i, lim; 2119 2120 if (have_addr) 2121 i = lim = addr; 2122 else { 2123 i = 1; 2124 lim = AF_MAX; 2125 } 2126 2127 for (; i <= lim; i++) { 2128 rnh = rt_tables_get_rnh(0, i); 2129 if (rnh == NULL) { 2130 if (have_addr) { 2131 db_printf("%s: AF %d not supported?\n", 2132 __func__, i); 2133 break; 2134 } 2135 continue; 2136 } 2137 2138 if (!have_addr && i > 1) 2139 db_printf("\n"); 2140 2141 db_printf("Route table for AF %d%s%s%s:\n", i, 2142 (i == AF_INET || i == AF_INET6) ? " (" : "", 2143 (i == AF_INET) ? "INET" : (i == AF_INET6) ? "INET6" : "", 2144 (i == AF_INET || i == AF_INET6) ? ")" : ""); 2145 2146 error = rnh->rnh_walktree(&rnh->head, rt_dumpentry_ddb, NULL); 2147 if (error != 0) 2148 db_printf("%s: walktree(%d): %d\n", __func__, i, 2149 error); 2150 } 2151 } 2152 2153 _DB_FUNC(_show, route, db_show_route_cmd, db_show_table, CS_OWN, NULL) 2154 { 2155 char buf[INET6_ADDRSTRLEN], *bp; 2156 const void *dst_addrp; 2157 struct sockaddr *dstp; 2158 struct rtentry *rt; 2159 union { 2160 struct sockaddr_in dest_sin; 2161 struct sockaddr_in6 dest_sin6; 2162 } u; 2163 uint16_t hextets[8]; 2164 unsigned i, tets; 2165 int t, af, exp, tokflags; 2166 2167 /* 2168 * Undecoded address family. No double-colon expansion seen yet. 2169 */ 2170 af = -1; 2171 exp = -1; 2172 /* Assume INET6 to start; we can work back if guess was wrong. */ 2173 tokflags = DRT_WSPACE | DRT_HEX | DRT_HEXADECIMAL; 2174 2175 /* 2176 * db_command has lexed 'show route' for us. 2177 */ 2178 t = db_read_token_flags(tokflags); 2179 if (t == tWSPACE) 2180 t = db_read_token_flags(tokflags); 2181 2182 /* 2183 * tEOL: Just 'show route' isn't a valid mode. 2184 * tMINUS: It's either '-h' or some invalid option. Regardless, usage. 2185 */ 2186 if (t == tEOL || t == tMINUS) 2187 goto usage; 2188 2189 db_unread_token(t); 2190 2191 tets = nitems(hextets); 2192 2193 /* 2194 * Each loop iteration, we expect to read one octet (v4) or hextet 2195 * (v6), followed by an appropriate field separator ('.' or ':' or 2196 * '::'). 2197 * 2198 * At the start of each loop, we're looking for a number (octet or 2199 * hextet). 2200 * 2201 * INET6 addresses have a special case where they may begin with '::'. 2202 */ 2203 for (i = 0; i < tets; i++) { 2204 t = db_read_token_flags(tokflags); 2205 2206 if (t == tCOLONCOLON) { 2207 /* INET6 with leading '::' or invalid. */ 2208 if (i != 0) { 2209 db_printf("Parse error: unexpected extra " 2210 "colons.\n"); 2211 goto exit; 2212 } 2213 2214 af = AF_INET6; 2215 exp = i; 2216 hextets[i] = 0; 2217 continue; 2218 } else if (t == tNUMBER) { 2219 /* 2220 * Lexer separates out '-' as tMINUS, but make the 2221 * assumption explicit here. 2222 */ 2223 MPASS(db_tok_number >= 0); 2224 2225 if (af == AF_INET && db_tok_number > UINT8_MAX) { 2226 db_printf("Not a valid v4 octet: %ld\n", 2227 (long)db_tok_number); 2228 goto exit; 2229 } 2230 hextets[i] = db_tok_number; 2231 } else if (t == tEOL) { 2232 /* 2233 * We can only detect the end of an IPv6 address in 2234 * compact representation with EOL. 2235 */ 2236 if (af != AF_INET6 || exp < 0) { 2237 db_printf("Parse failed. Got unexpected EOF " 2238 "when the address is not a compact-" 2239 "representation IPv6 address.\n"); 2240 goto exit; 2241 } 2242 break; 2243 } else { 2244 db_printf("Parse failed. Unexpected token %d.\n", t); 2245 goto exit; 2246 } 2247 2248 /* Next, look for a separator, if appropriate. */ 2249 if (i == tets - 1) 2250 continue; 2251 2252 t = db_read_token_flags(tokflags); 2253 if (af < 0) { 2254 if (t == tCOLON) { 2255 af = AF_INET6; 2256 continue; 2257 } 2258 if (t == tCOLONCOLON) { 2259 af = AF_INET6; 2260 i++; 2261 hextets[i] = 0; 2262 exp = i; 2263 continue; 2264 } 2265 if (t == tDOT) { 2266 unsigned hn, dn; 2267 2268 af = AF_INET; 2269 /* Need to fixup the first parsed number. */ 2270 if (hextets[0] > 0x255 || 2271 (hextets[0] & 0xf0) > 0x90 || 2272 (hextets[0] & 0xf) > 9) { 2273 db_printf("Not a valid v4 octet: %x\n", 2274 hextets[0]); 2275 goto exit; 2276 } 2277 2278 hn = hextets[0]; 2279 dn = (hn >> 8) * 100 + 2280 ((hn >> 4) & 0xf) * 10 + 2281 (hn & 0xf); 2282 2283 hextets[0] = dn; 2284 2285 /* Switch to decimal for remaining octets. */ 2286 tokflags &= ~DRT_RADIX_MASK; 2287 tokflags |= DRT_DECIMAL; 2288 2289 tets = 4; 2290 continue; 2291 } 2292 2293 db_printf("Parse error. Unexpected token %d.\n", t); 2294 goto exit; 2295 } else if (af == AF_INET) { 2296 if (t == tDOT) 2297 continue; 2298 db_printf("Expected '.' (%d) between octets but got " 2299 "(%d).\n", tDOT, t); 2300 goto exit; 2301 2302 } else if (af == AF_INET6) { 2303 if (t == tCOLON) 2304 continue; 2305 if (t == tCOLONCOLON) { 2306 if (exp < 0) { 2307 i++; 2308 hextets[i] = 0; 2309 exp = i; 2310 continue; 2311 } 2312 db_printf("Got bogus second '::' in v6 " 2313 "address.\n"); 2314 goto exit; 2315 } 2316 if (t == tEOL) { 2317 /* 2318 * Handle in the earlier part of the loop 2319 * because we need to handle trailing :: too. 2320 */ 2321 db_unread_token(t); 2322 continue; 2323 } 2324 2325 db_printf("Expected ':' (%d) or '::' (%d) between " 2326 "hextets but got (%d).\n", tCOLON, tCOLONCOLON, t); 2327 goto exit; 2328 } 2329 } 2330 2331 /* Check for trailing garbage. */ 2332 if (i == tets) { 2333 t = db_read_token_flags(tokflags); 2334 if (t != tEOL) { 2335 db_printf("Got unexpected garbage after address " 2336 "(%d).\n", t); 2337 goto exit; 2338 } 2339 } 2340 2341 /* 2342 * Need to expand compact INET6 addresses. 2343 * 2344 * Technically '::' for a single ':0:' is MUST NOT but just in case, 2345 * don't bother expanding that form (exp >= 0 && i == tets case). 2346 */ 2347 if (af == AF_INET6 && exp >= 0 && i < tets) { 2348 if (exp + 1 < i) { 2349 memmove(&hextets[exp + 1 + (nitems(hextets) - i)], 2350 &hextets[exp + 1], 2351 (i - (exp + 1)) * sizeof(hextets[0])); 2352 } 2353 memset(&hextets[exp + 1], 0, (nitems(hextets) - i) * 2354 sizeof(hextets[0])); 2355 } 2356 2357 memset(&u, 0, sizeof(u)); 2358 if (af == AF_INET) { 2359 u.dest_sin.sin_family = AF_INET; 2360 u.dest_sin.sin_len = sizeof(u.dest_sin); 2361 u.dest_sin.sin_addr.s_addr = htonl( 2362 ((uint32_t)hextets[0] << 24) | 2363 ((uint32_t)hextets[1] << 16) | 2364 ((uint32_t)hextets[2] << 8) | 2365 (uint32_t)hextets[3]); 2366 dstp = (void *)&u.dest_sin; 2367 dst_addrp = &u.dest_sin.sin_addr; 2368 } else if (af == AF_INET6) { 2369 u.dest_sin6.sin6_family = AF_INET6; 2370 u.dest_sin6.sin6_len = sizeof(u.dest_sin6); 2371 for (i = 0; i < nitems(hextets); i++) 2372 u.dest_sin6.sin6_addr.s6_addr16[i] = htons(hextets[i]); 2373 dstp = (void *)&u.dest_sin6; 2374 dst_addrp = &u.dest_sin6.sin6_addr; 2375 } else { 2376 MPASS(false); 2377 /* UNREACHABLE */ 2378 /* Appease Clang false positive: */ 2379 dstp = NULL; 2380 } 2381 2382 bp = inet_ntop(af, dst_addrp, buf, sizeof(buf)); 2383 if (bp != NULL) 2384 db_printf("Looking up route to destination '%s'\n", bp); 2385 2386 CURVNET_SET(vnet0); 2387 rt = rtalloc1(dstp, 0, RTF_RNH_LOCKED); 2388 CURVNET_RESTORE(); 2389 2390 if (rt == NULL) { 2391 db_printf("Could not get route for that server.\n"); 2392 return; 2393 } 2394 2395 rt_dumpentry_ddb((void *)rt, NULL); 2396 RTFREE_LOCKED(rt); 2397 2398 return; 2399 usage: 2400 db_printf("Usage: 'show route <address>'\n" 2401 " Currently accepts only dotted-decimal INET or colon-separated\n" 2402 " hextet INET6 addresses.\n"); 2403 exit: 2404 db_skip_to_eol(); 2405 } 2406 #endif 2407