1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_compat.h" 33 #include "opt_sctp.h" 34 #include "opt_mpath.h" 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/jail.h> 40 #include <sys/kernel.h> 41 #include <sys/domain.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/rwlock.h> 49 #include <sys/signalvar.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <net/if.h> 56 #include <net/if_dl.h> 57 #include <net/if_llatbl.h> 58 #include <net/if_types.h> 59 #include <net/netisr.h> 60 #include <net/raw_cb.h> 61 #include <net/route.h> 62 #include <net/vnet.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 #include <netinet/ip_carp.h> 67 #ifdef INET6 68 #include <netinet6/ip6_var.h> 69 #include <netinet6/scope6_var.h> 70 #endif 71 72 #if defined(INET) || defined(INET6) 73 #ifdef SCTP 74 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 75 #endif /* SCTP */ 76 #endif 77 78 #ifdef COMPAT_FREEBSD32 79 #include <sys/mount.h> 80 #include <compat/freebsd32/freebsd32.h> 81 82 struct if_data32 { 83 uint8_t ifi_type; 84 uint8_t ifi_physical; 85 uint8_t ifi_addrlen; 86 uint8_t ifi_hdrlen; 87 uint8_t ifi_link_state; 88 uint8_t ifi_vhid; 89 uint8_t ifi_baudrate_pf; 90 uint8_t ifi_datalen; 91 uint32_t ifi_mtu; 92 uint32_t ifi_metric; 93 uint32_t ifi_baudrate; 94 uint32_t ifi_ipackets; 95 uint32_t ifi_ierrors; 96 uint32_t ifi_opackets; 97 uint32_t ifi_oerrors; 98 uint32_t ifi_collisions; 99 uint32_t ifi_ibytes; 100 uint32_t ifi_obytes; 101 uint32_t ifi_imcasts; 102 uint32_t ifi_omcasts; 103 uint32_t ifi_iqdrops; 104 uint32_t ifi_noproto; 105 uint32_t ifi_hwassist; 106 int32_t ifi_epoch; 107 struct timeval32 ifi_lastchange; 108 }; 109 110 struct if_msghdr32 { 111 uint16_t ifm_msglen; 112 uint8_t ifm_version; 113 uint8_t ifm_type; 114 int32_t ifm_addrs; 115 int32_t ifm_flags; 116 uint16_t ifm_index; 117 struct if_data32 ifm_data; 118 }; 119 120 struct if_msghdrl32 { 121 uint16_t ifm_msglen; 122 uint8_t ifm_version; 123 uint8_t ifm_type; 124 int32_t ifm_addrs; 125 int32_t ifm_flags; 126 uint16_t ifm_index; 127 uint16_t _ifm_spare1; 128 uint16_t ifm_len; 129 uint16_t ifm_data_off; 130 struct if_data32 ifm_data; 131 }; 132 133 struct ifa_msghdrl32 { 134 uint16_t ifam_msglen; 135 uint8_t ifam_version; 136 uint8_t ifam_type; 137 int32_t ifam_addrs; 138 int32_t ifam_flags; 139 uint16_t ifam_index; 140 uint16_t _ifam_spare1; 141 uint16_t ifam_len; 142 uint16_t ifam_data_off; 143 int32_t ifam_metric; 144 struct if_data32 ifam_data; 145 }; 146 #endif /* COMPAT_FREEBSD32 */ 147 148 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 149 150 /* NB: these are not modified */ 151 static struct sockaddr route_src = { 2, PF_ROUTE, }; 152 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 153 154 /* These are external hooks for CARP. */ 155 int (*carp_get_vhid_p)(struct ifaddr *); 156 157 /* 158 * Used by rtsock/raw_input callback code to decide whether to filter the update 159 * notification to a socket bound to a particular FIB. 160 */ 161 #define RTS_FILTER_FIB M_PROTO8 162 #define RTS_ALLFIBS -1 163 164 static struct { 165 int ip_count; /* attached w/ AF_INET */ 166 int ip6_count; /* attached w/ AF_INET6 */ 167 int ipx_count; /* attached w/ AF_IPX */ 168 int any_count; /* total attached */ 169 } route_cb; 170 171 struct mtx rtsock_mtx; 172 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 173 174 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 175 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 176 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 177 178 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 179 180 struct walkarg { 181 int w_tmemsize; 182 int w_op, w_arg; 183 caddr_t w_tmem; 184 struct sysctl_req *w_req; 185 }; 186 187 static void rts_input(struct mbuf *m); 188 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 189 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 190 caddr_t cp, struct walkarg *w); 191 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 192 struct rt_addrinfo *rtinfo); 193 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 194 static int sysctl_iflist(int af, struct walkarg *w); 195 static int sysctl_ifmalist(int af, struct walkarg *w); 196 static int route_output(struct mbuf *m, struct socket *so); 197 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 198 struct rt_metrics_lite *out); 199 static void rt_getmetrics(const struct rt_metrics_lite *in, 200 struct rt_metrics *out); 201 static void rt_dispatch(struct mbuf *, sa_family_t); 202 203 static struct netisr_handler rtsock_nh = { 204 .nh_name = "rtsock", 205 .nh_handler = rts_input, 206 .nh_proto = NETISR_ROUTE, 207 .nh_policy = NETISR_POLICY_SOURCE, 208 }; 209 210 static int 211 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 212 { 213 int error, qlimit; 214 215 netisr_getqlimit(&rtsock_nh, &qlimit); 216 error = sysctl_handle_int(oidp, &qlimit, 0, req); 217 if (error || !req->newptr) 218 return (error); 219 if (qlimit < 1) 220 return (EINVAL); 221 return (netisr_setqlimit(&rtsock_nh, qlimit)); 222 } 223 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 224 0, 0, sysctl_route_netisr_maxqlen, "I", 225 "maximum routing socket dispatch queue length"); 226 227 static void 228 rts_init(void) 229 { 230 int tmp; 231 232 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 233 rtsock_nh.nh_qlimit = tmp; 234 netisr_register(&rtsock_nh); 235 } 236 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 237 238 static int 239 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 240 struct rawcb *rp) 241 { 242 int fibnum; 243 244 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 245 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 246 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 247 248 /* No filtering requested. */ 249 if ((m->m_flags & RTS_FILTER_FIB) == 0) 250 return (0); 251 252 /* Check if it is a rts and the fib matches the one of the socket. */ 253 fibnum = M_GETFIB(m); 254 if (proto->sp_family != PF_ROUTE || 255 rp->rcb_socket == NULL || 256 rp->rcb_socket->so_fibnum == fibnum) 257 return (0); 258 259 /* Filtering requested and no match, the socket shall be skipped. */ 260 return (1); 261 } 262 263 static void 264 rts_input(struct mbuf *m) 265 { 266 struct sockproto route_proto; 267 unsigned short *family; 268 struct m_tag *tag; 269 270 route_proto.sp_family = PF_ROUTE; 271 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 272 if (tag != NULL) { 273 family = (unsigned short *)(tag + 1); 274 route_proto.sp_protocol = *family; 275 m_tag_delete(m, tag); 276 } else 277 route_proto.sp_protocol = 0; 278 279 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 280 } 281 282 /* 283 * It really doesn't make any sense at all for this code to share much 284 * with raw_usrreq.c, since its functionality is so restricted. XXX 285 */ 286 static void 287 rts_abort(struct socket *so) 288 { 289 290 raw_usrreqs.pru_abort(so); 291 } 292 293 static void 294 rts_close(struct socket *so) 295 { 296 297 raw_usrreqs.pru_close(so); 298 } 299 300 /* pru_accept is EOPNOTSUPP */ 301 302 static int 303 rts_attach(struct socket *so, int proto, struct thread *td) 304 { 305 struct rawcb *rp; 306 int error; 307 308 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 309 310 /* XXX */ 311 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 312 if (rp == NULL) 313 return ENOBUFS; 314 315 so->so_pcb = (caddr_t)rp; 316 so->so_fibnum = td->td_proc->p_fibnum; 317 error = raw_attach(so, proto); 318 rp = sotorawcb(so); 319 if (error) { 320 so->so_pcb = NULL; 321 free(rp, M_PCB); 322 return error; 323 } 324 RTSOCK_LOCK(); 325 switch(rp->rcb_proto.sp_protocol) { 326 case AF_INET: 327 route_cb.ip_count++; 328 break; 329 case AF_INET6: 330 route_cb.ip6_count++; 331 break; 332 case AF_IPX: 333 route_cb.ipx_count++; 334 break; 335 } 336 route_cb.any_count++; 337 RTSOCK_UNLOCK(); 338 soisconnected(so); 339 so->so_options |= SO_USELOOPBACK; 340 return 0; 341 } 342 343 static int 344 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 345 { 346 347 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 348 } 349 350 static int 351 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 352 { 353 354 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 355 } 356 357 /* pru_connect2 is EOPNOTSUPP */ 358 /* pru_control is EOPNOTSUPP */ 359 360 static void 361 rts_detach(struct socket *so) 362 { 363 struct rawcb *rp = sotorawcb(so); 364 365 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 366 367 RTSOCK_LOCK(); 368 switch(rp->rcb_proto.sp_protocol) { 369 case AF_INET: 370 route_cb.ip_count--; 371 break; 372 case AF_INET6: 373 route_cb.ip6_count--; 374 break; 375 case AF_IPX: 376 route_cb.ipx_count--; 377 break; 378 } 379 route_cb.any_count--; 380 RTSOCK_UNLOCK(); 381 raw_usrreqs.pru_detach(so); 382 } 383 384 static int 385 rts_disconnect(struct socket *so) 386 { 387 388 return (raw_usrreqs.pru_disconnect(so)); 389 } 390 391 /* pru_listen is EOPNOTSUPP */ 392 393 static int 394 rts_peeraddr(struct socket *so, struct sockaddr **nam) 395 { 396 397 return (raw_usrreqs.pru_peeraddr(so, nam)); 398 } 399 400 /* pru_rcvd is EOPNOTSUPP */ 401 /* pru_rcvoob is EOPNOTSUPP */ 402 403 static int 404 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 405 struct mbuf *control, struct thread *td) 406 { 407 408 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 409 } 410 411 /* pru_sense is null */ 412 413 static int 414 rts_shutdown(struct socket *so) 415 { 416 417 return (raw_usrreqs.pru_shutdown(so)); 418 } 419 420 static int 421 rts_sockaddr(struct socket *so, struct sockaddr **nam) 422 { 423 424 return (raw_usrreqs.pru_sockaddr(so, nam)); 425 } 426 427 static struct pr_usrreqs route_usrreqs = { 428 .pru_abort = rts_abort, 429 .pru_attach = rts_attach, 430 .pru_bind = rts_bind, 431 .pru_connect = rts_connect, 432 .pru_detach = rts_detach, 433 .pru_disconnect = rts_disconnect, 434 .pru_peeraddr = rts_peeraddr, 435 .pru_send = rts_send, 436 .pru_shutdown = rts_shutdown, 437 .pru_sockaddr = rts_sockaddr, 438 .pru_close = rts_close, 439 }; 440 441 #ifndef _SOCKADDR_UNION_DEFINED 442 #define _SOCKADDR_UNION_DEFINED 443 /* 444 * The union of all possible address formats we handle. 445 */ 446 union sockaddr_union { 447 struct sockaddr sa; 448 struct sockaddr_in sin; 449 struct sockaddr_in6 sin6; 450 }; 451 #endif /* _SOCKADDR_UNION_DEFINED */ 452 453 static int 454 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 455 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 456 { 457 458 /* First, see if the returned address is part of the jail. */ 459 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 460 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 461 return (0); 462 } 463 464 switch (info->rti_info[RTAX_DST]->sa_family) { 465 #ifdef INET 466 case AF_INET: 467 { 468 struct in_addr ia; 469 struct ifaddr *ifa; 470 int found; 471 472 found = 0; 473 /* 474 * Try to find an address on the given outgoing interface 475 * that belongs to the jail. 476 */ 477 IF_ADDR_RLOCK(ifp); 478 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 479 struct sockaddr *sa; 480 sa = ifa->ifa_addr; 481 if (sa->sa_family != AF_INET) 482 continue; 483 ia = ((struct sockaddr_in *)sa)->sin_addr; 484 if (prison_check_ip4(cred, &ia) == 0) { 485 found = 1; 486 break; 487 } 488 } 489 IF_ADDR_RUNLOCK(ifp); 490 if (!found) { 491 /* 492 * As a last resort return the 'default' jail address. 493 */ 494 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 495 sin_addr; 496 if (prison_get_ip4(cred, &ia) != 0) 497 return (ESRCH); 498 } 499 bzero(&saun->sin, sizeof(struct sockaddr_in)); 500 saun->sin.sin_len = sizeof(struct sockaddr_in); 501 saun->sin.sin_family = AF_INET; 502 saun->sin.sin_addr.s_addr = ia.s_addr; 503 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 504 break; 505 } 506 #endif 507 #ifdef INET6 508 case AF_INET6: 509 { 510 struct in6_addr ia6; 511 struct ifaddr *ifa; 512 int found; 513 514 found = 0; 515 /* 516 * Try to find an address on the given outgoing interface 517 * that belongs to the jail. 518 */ 519 IF_ADDR_RLOCK(ifp); 520 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 521 struct sockaddr *sa; 522 sa = ifa->ifa_addr; 523 if (sa->sa_family != AF_INET6) 524 continue; 525 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 526 &ia6, sizeof(struct in6_addr)); 527 if (prison_check_ip6(cred, &ia6) == 0) { 528 found = 1; 529 break; 530 } 531 } 532 IF_ADDR_RUNLOCK(ifp); 533 if (!found) { 534 /* 535 * As a last resort return the 'default' jail address. 536 */ 537 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 538 sin6_addr; 539 if (prison_get_ip6(cred, &ia6) != 0) 540 return (ESRCH); 541 } 542 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 543 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 544 saun->sin6.sin6_family = AF_INET6; 545 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 546 if (sa6_recoverscope(&saun->sin6) != 0) 547 return (ESRCH); 548 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 549 break; 550 } 551 #endif 552 default: 553 return (ESRCH); 554 } 555 return (0); 556 } 557 558 /*ARGSUSED*/ 559 static int 560 route_output(struct mbuf *m, struct socket *so) 561 { 562 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 563 struct rt_msghdr *rtm = NULL; 564 struct rtentry *rt = NULL; 565 struct radix_node_head *rnh; 566 struct rt_addrinfo info; 567 #ifdef INET6 568 struct sockaddr_storage ss; 569 struct sockaddr_in6 *sin6; 570 int i, rti_need_deembed = 0; 571 #endif 572 int len, error = 0; 573 struct ifnet *ifp = NULL; 574 union sockaddr_union saun; 575 sa_family_t saf = AF_UNSPEC; 576 577 #define senderr(e) { error = e; goto flush;} 578 if (m == NULL || ((m->m_len < sizeof(long)) && 579 (m = m_pullup(m, sizeof(long))) == NULL)) 580 return (ENOBUFS); 581 if ((m->m_flags & M_PKTHDR) == 0) 582 panic("route_output"); 583 len = m->m_pkthdr.len; 584 if (len < sizeof(*rtm) || 585 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 586 info.rti_info[RTAX_DST] = NULL; 587 senderr(EINVAL); 588 } 589 R_Malloc(rtm, struct rt_msghdr *, len); 590 if (rtm == NULL) { 591 info.rti_info[RTAX_DST] = NULL; 592 senderr(ENOBUFS); 593 } 594 m_copydata(m, 0, len, (caddr_t)rtm); 595 if (rtm->rtm_version != RTM_VERSION) { 596 info.rti_info[RTAX_DST] = NULL; 597 senderr(EPROTONOSUPPORT); 598 } 599 rtm->rtm_pid = curproc->p_pid; 600 bzero(&info, sizeof(info)); 601 info.rti_addrs = rtm->rtm_addrs; 602 /* 603 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 604 * link-local address because rtrequest requires addresses with 605 * embedded scope id. 606 */ 607 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 608 info.rti_info[RTAX_DST] = NULL; 609 senderr(EINVAL); 610 } 611 info.rti_flags = rtm->rtm_flags; 612 if (info.rti_info[RTAX_DST] == NULL || 613 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 614 (info.rti_info[RTAX_GATEWAY] != NULL && 615 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 616 senderr(EINVAL); 617 saf = info.rti_info[RTAX_DST]->sa_family; 618 /* 619 * Verify that the caller has the appropriate privilege; RTM_GET 620 * is the only operation the non-superuser is allowed. 621 */ 622 if (rtm->rtm_type != RTM_GET) { 623 error = priv_check(curthread, PRIV_NET_ROUTE); 624 if (error) 625 senderr(error); 626 } 627 628 /* 629 * The given gateway address may be an interface address. 630 * For example, issuing a "route change" command on a route 631 * entry that was created from a tunnel, and the gateway 632 * address given is the local end point. In this case the 633 * RTF_GATEWAY flag must be cleared or the destination will 634 * not be reachable even though there is no error message. 635 */ 636 if (info.rti_info[RTAX_GATEWAY] != NULL && 637 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 638 struct route gw_ro; 639 640 bzero(&gw_ro, sizeof(gw_ro)); 641 gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY]; 642 rtalloc_ign_fib(&gw_ro, 0, so->so_fibnum); 643 /* 644 * A host route through the loopback interface is 645 * installed for each interface adddress. In pre 8.0 646 * releases the interface address of a PPP link type 647 * is not reachable locally. This behavior is fixed as 648 * part of the new L2/L3 redesign and rewrite work. The 649 * signature of this interface address route is the 650 * AF_LINK sa_family type of the rt_gateway, and the 651 * rt_ifp has the IFF_LOOPBACK flag set. 652 */ 653 if (gw_ro.ro_rt != NULL && 654 gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK && 655 gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) { 656 info.rti_flags &= ~RTF_GATEWAY; 657 info.rti_flags |= RTF_GWFLAG_COMPAT; 658 } 659 if (gw_ro.ro_rt != NULL) 660 RTFREE(gw_ro.ro_rt); 661 } 662 663 switch (rtm->rtm_type) { 664 struct rtentry *saved_nrt; 665 666 case RTM_ADD: 667 if (info.rti_info[RTAX_GATEWAY] == NULL) 668 senderr(EINVAL); 669 saved_nrt = NULL; 670 671 /* support for new ARP code */ 672 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 673 (rtm->rtm_flags & RTF_LLDATA) != 0) { 674 error = lla_rt_output(rtm, &info); 675 #ifdef INET6 676 if (error == 0) 677 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 678 #endif 679 break; 680 } 681 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 682 so->so_fibnum); 683 if (error == 0 && saved_nrt) { 684 #ifdef INET6 685 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 686 #endif 687 RT_LOCK(saved_nrt); 688 rt_setmetrics(rtm->rtm_inits, 689 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 690 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 691 RT_REMREF(saved_nrt); 692 RT_UNLOCK(saved_nrt); 693 } 694 break; 695 696 case RTM_DELETE: 697 saved_nrt = NULL; 698 /* support for new ARP code */ 699 if (info.rti_info[RTAX_GATEWAY] && 700 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 701 (rtm->rtm_flags & RTF_LLDATA) != 0) { 702 error = lla_rt_output(rtm, &info); 703 #ifdef INET6 704 if (error == 0) 705 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 706 #endif 707 break; 708 } 709 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 710 so->so_fibnum); 711 if (error == 0) { 712 RT_LOCK(saved_nrt); 713 rt = saved_nrt; 714 goto report; 715 } 716 #ifdef INET6 717 /* rt_msg2() will not be used when RTM_DELETE fails. */ 718 rti_need_deembed = (V_deembed_scopeid) ? 1 : 0; 719 #endif 720 break; 721 722 case RTM_GET: 723 case RTM_CHANGE: 724 case RTM_LOCK: 725 rnh = rt_tables_get_rnh(so->so_fibnum, 726 info.rti_info[RTAX_DST]->sa_family); 727 if (rnh == NULL) 728 senderr(EAFNOSUPPORT); 729 RADIX_NODE_HEAD_RLOCK(rnh); 730 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 731 info.rti_info[RTAX_NETMASK], rnh); 732 if (rt == NULL) { /* XXX looks bogus */ 733 RADIX_NODE_HEAD_RUNLOCK(rnh); 734 senderr(ESRCH); 735 } 736 #ifdef RADIX_MPATH 737 /* 738 * for RTM_CHANGE/LOCK, if we got multipath routes, 739 * we require users to specify a matching RTAX_GATEWAY. 740 * 741 * for RTM_GET, gate is optional even with multipath. 742 * if gate == NULL the first match is returned. 743 * (no need to call rt_mpath_matchgate if gate == NULL) 744 */ 745 if (rn_mpath_capable(rnh) && 746 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 747 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 748 if (!rt) { 749 RADIX_NODE_HEAD_RUNLOCK(rnh); 750 senderr(ESRCH); 751 } 752 } 753 #endif 754 /* 755 * If performing proxied L2 entry insertion, and 756 * the actual PPP host entry is found, perform 757 * another search to retrieve the prefix route of 758 * the local end point of the PPP link. 759 */ 760 if (rtm->rtm_flags & RTF_ANNOUNCE) { 761 struct sockaddr laddr; 762 763 if (rt->rt_ifp != NULL && 764 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 765 struct ifaddr *ifa; 766 767 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1); 768 if (ifa != NULL) 769 rt_maskedcopy(ifa->ifa_addr, 770 &laddr, 771 ifa->ifa_netmask); 772 } else 773 rt_maskedcopy(rt->rt_ifa->ifa_addr, 774 &laddr, 775 rt->rt_ifa->ifa_netmask); 776 /* 777 * refactor rt and no lock operation necessary 778 */ 779 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh); 780 if (rt == NULL) { 781 RADIX_NODE_HEAD_RUNLOCK(rnh); 782 senderr(ESRCH); 783 } 784 } 785 RT_LOCK(rt); 786 RT_ADDREF(rt); 787 RADIX_NODE_HEAD_RUNLOCK(rnh); 788 789 /* 790 * Fix for PR: 82974 791 * 792 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 793 * returns a perfect match in case a netmask is 794 * specified. For host routes only a longest prefix 795 * match is returned so it is necessary to compare the 796 * existence of the netmask. If both have a netmask 797 * rnh_lookup() did a perfect match and if none of them 798 * have a netmask both are host routes which is also a 799 * perfect match. 800 */ 801 802 if (rtm->rtm_type != RTM_GET && 803 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 804 RT_UNLOCK(rt); 805 senderr(ESRCH); 806 } 807 808 switch(rtm->rtm_type) { 809 810 case RTM_GET: 811 report: 812 RT_LOCK_ASSERT(rt); 813 if ((rt->rt_flags & RTF_HOST) == 0 814 ? jailed_without_vnet(curthread->td_ucred) 815 : prison_if(curthread->td_ucred, 816 rt_key(rt)) != 0) { 817 RT_UNLOCK(rt); 818 senderr(ESRCH); 819 } 820 info.rti_info[RTAX_DST] = rt_key(rt); 821 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 822 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 823 info.rti_info[RTAX_GENMASK] = 0; 824 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 825 ifp = rt->rt_ifp; 826 if (ifp) { 827 info.rti_info[RTAX_IFP] = 828 ifp->if_addr->ifa_addr; 829 error = rtm_get_jailed(&info, ifp, rt, 830 &saun, curthread->td_ucred); 831 if (error != 0) { 832 RT_UNLOCK(rt); 833 senderr(error); 834 } 835 if (ifp->if_flags & IFF_POINTOPOINT) 836 info.rti_info[RTAX_BRD] = 837 rt->rt_ifa->ifa_dstaddr; 838 rtm->rtm_index = ifp->if_index; 839 } else { 840 info.rti_info[RTAX_IFP] = NULL; 841 info.rti_info[RTAX_IFA] = NULL; 842 } 843 } else if ((ifp = rt->rt_ifp) != NULL) { 844 rtm->rtm_index = ifp->if_index; 845 } 846 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 847 if (len > rtm->rtm_msglen) { 848 struct rt_msghdr *new_rtm; 849 R_Malloc(new_rtm, struct rt_msghdr *, len); 850 if (new_rtm == NULL) { 851 RT_UNLOCK(rt); 852 senderr(ENOBUFS); 853 } 854 bcopy(rtm, new_rtm, rtm->rtm_msglen); 855 Free(rtm); rtm = new_rtm; 856 } 857 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 858 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 859 rtm->rtm_flags = RTF_GATEWAY | 860 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 861 else 862 rtm->rtm_flags = rt->rt_flags; 863 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 864 rtm->rtm_addrs = info.rti_addrs; 865 break; 866 867 case RTM_CHANGE: 868 /* 869 * New gateway could require new ifaddr, ifp; 870 * flags may also be different; ifp may be specified 871 * by ll sockaddr when protocol address is ambiguous 872 */ 873 if (((rt->rt_flags & RTF_GATEWAY) && 874 info.rti_info[RTAX_GATEWAY] != NULL) || 875 info.rti_info[RTAX_IFP] != NULL || 876 (info.rti_info[RTAX_IFA] != NULL && 877 !sa_equal(info.rti_info[RTAX_IFA], 878 rt->rt_ifa->ifa_addr))) { 879 RT_UNLOCK(rt); 880 RADIX_NODE_HEAD_LOCK(rnh); 881 error = rt_getifa_fib(&info, rt->rt_fibnum); 882 /* 883 * XXXRW: Really we should release this 884 * reference later, but this maintains 885 * historical behavior. 886 */ 887 if (info.rti_ifa != NULL) 888 ifa_free(info.rti_ifa); 889 RADIX_NODE_HEAD_UNLOCK(rnh); 890 if (error != 0) 891 senderr(error); 892 RT_LOCK(rt); 893 } 894 if (info.rti_ifa != NULL && 895 info.rti_ifa != rt->rt_ifa && 896 rt->rt_ifa != NULL && 897 rt->rt_ifa->ifa_rtrequest != NULL) { 898 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 899 &info); 900 ifa_free(rt->rt_ifa); 901 } 902 if (info.rti_info[RTAX_GATEWAY] != NULL) { 903 RT_UNLOCK(rt); 904 RADIX_NODE_HEAD_LOCK(rnh); 905 RT_LOCK(rt); 906 907 error = rt_setgate(rt, rt_key(rt), 908 info.rti_info[RTAX_GATEWAY]); 909 RADIX_NODE_HEAD_UNLOCK(rnh); 910 if (error != 0) { 911 RT_UNLOCK(rt); 912 senderr(error); 913 } 914 rt->rt_flags &= ~RTF_GATEWAY; 915 rt->rt_flags |= (RTF_GATEWAY & info.rti_flags); 916 } 917 if (info.rti_ifa != NULL && 918 info.rti_ifa != rt->rt_ifa) { 919 ifa_ref(info.rti_ifa); 920 rt->rt_ifa = info.rti_ifa; 921 rt->rt_ifp = info.rti_ifp; 922 } 923 /* Allow some flags to be toggled on change. */ 924 rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) | 925 (rtm->rtm_flags & RTF_FMASK); 926 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 927 &rt->rt_rmx); 928 rtm->rtm_index = rt->rt_ifp->if_index; 929 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 930 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 931 /* FALLTHROUGH */ 932 case RTM_LOCK: 933 /* We don't support locks anymore */ 934 break; 935 } 936 RT_UNLOCK(rt); 937 break; 938 939 default: 940 senderr(EOPNOTSUPP); 941 } 942 943 flush: 944 if (rtm) { 945 if (error) 946 rtm->rtm_errno = error; 947 else 948 rtm->rtm_flags |= RTF_DONE; 949 } 950 if (rt) /* XXX can this be true? */ 951 RTFREE(rt); 952 { 953 struct rawcb *rp = NULL; 954 /* 955 * Check to see if we don't want our own messages. 956 */ 957 if ((so->so_options & SO_USELOOPBACK) == 0) { 958 if (route_cb.any_count <= 1) { 959 if (rtm) 960 Free(rtm); 961 m_freem(m); 962 return (error); 963 } 964 /* There is another listener, so construct message */ 965 rp = sotorawcb(so); 966 } 967 if (rtm) { 968 #ifdef INET6 969 if (rti_need_deembed) { 970 /* sin6_scope_id is recovered before sending rtm. */ 971 sin6 = (struct sockaddr_in6 *)&ss; 972 for (i = 0; i < RTAX_MAX; i++) { 973 if (info.rti_info[i] == NULL) 974 continue; 975 if (info.rti_info[i]->sa_family != AF_INET6) 976 continue; 977 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 978 if (sa6_recoverscope(sin6) == 0) 979 bcopy(sin6, info.rti_info[i], 980 sizeof(*sin6)); 981 } 982 } 983 #endif 984 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 985 if (m->m_pkthdr.len < rtm->rtm_msglen) { 986 m_freem(m); 987 m = NULL; 988 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 989 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 990 } 991 if (m) { 992 M_SETFIB(m, so->so_fibnum); 993 m->m_flags |= RTS_FILTER_FIB; 994 if (rp) { 995 /* 996 * XXX insure we don't get a copy by 997 * invalidating our protocol 998 */ 999 unsigned short family = rp->rcb_proto.sp_family; 1000 rp->rcb_proto.sp_family = 0; 1001 rt_dispatch(m, saf); 1002 rp->rcb_proto.sp_family = family; 1003 } else 1004 rt_dispatch(m, saf); 1005 } 1006 /* info.rti_info[RTAX_DST] (used above) can point inside of rtm */ 1007 if (rtm) 1008 Free(rtm); 1009 } 1010 return (error); 1011 #undef sa_equal 1012 } 1013 1014 static void 1015 rt_setmetrics(u_long which, const struct rt_metrics *in, 1016 struct rt_metrics_lite *out) 1017 { 1018 #define metric(f, e) if (which & (f)) out->e = in->e; 1019 /* 1020 * Only these are stored in the routing entry since introduction 1021 * of tcp hostcache. The rest is ignored. 1022 */ 1023 metric(RTV_MTU, rmx_mtu); 1024 metric(RTV_WEIGHT, rmx_weight); 1025 /* Userland -> kernel timebase conversion. */ 1026 if (which & RTV_EXPIRE) 1027 out->rmx_expire = in->rmx_expire ? 1028 in->rmx_expire - time_second + time_uptime : 0; 1029 #undef metric 1030 } 1031 1032 static void 1033 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 1034 { 1035 #define metric(e) out->e = in->e; 1036 bzero(out, sizeof(*out)); 1037 metric(rmx_mtu); 1038 metric(rmx_weight); 1039 /* Kernel -> userland timebase conversion. */ 1040 out->rmx_expire = in->rmx_expire ? 1041 in->rmx_expire - time_uptime + time_second : 0; 1042 #undef metric 1043 } 1044 1045 /* 1046 * Extract the addresses of the passed sockaddrs. 1047 * Do a little sanity checking so as to avoid bad memory references. 1048 * This data is derived straight from userland. 1049 */ 1050 static int 1051 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1052 { 1053 struct sockaddr *sa; 1054 int i; 1055 1056 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1057 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1058 continue; 1059 sa = (struct sockaddr *)cp; 1060 /* 1061 * It won't fit. 1062 */ 1063 if (cp + sa->sa_len > cplim) 1064 return (EINVAL); 1065 /* 1066 * there are no more.. quit now 1067 * If there are more bits, they are in error. 1068 * I've seen this. route(1) can evidently generate these. 1069 * This causes kernel to core dump. 1070 * for compatibility, If we see this, point to a safe address. 1071 */ 1072 if (sa->sa_len == 0) { 1073 rtinfo->rti_info[i] = &sa_zero; 1074 return (0); /* should be EINVAL but for compat */ 1075 } 1076 /* accept it */ 1077 #ifdef INET6 1078 if (sa->sa_family == AF_INET6) 1079 sa6_embedscope((struct sockaddr_in6 *)sa, 1080 V_ip6_use_defzone); 1081 #endif 1082 rtinfo->rti_info[i] = sa; 1083 cp += SA_SIZE(sa); 1084 } 1085 return (0); 1086 } 1087 1088 /* 1089 * Used by the routing socket. 1090 */ 1091 static struct mbuf * 1092 rt_msg1(int type, struct rt_addrinfo *rtinfo) 1093 { 1094 struct rt_msghdr *rtm; 1095 struct mbuf *m; 1096 int i; 1097 struct sockaddr *sa; 1098 #ifdef INET6 1099 struct sockaddr_storage ss; 1100 struct sockaddr_in6 *sin6; 1101 #endif 1102 int len, dlen; 1103 1104 switch (type) { 1105 1106 case RTM_DELADDR: 1107 case RTM_NEWADDR: 1108 len = sizeof(struct ifa_msghdr); 1109 break; 1110 1111 case RTM_DELMADDR: 1112 case RTM_NEWMADDR: 1113 len = sizeof(struct ifma_msghdr); 1114 break; 1115 1116 case RTM_IFINFO: 1117 len = sizeof(struct if_msghdr); 1118 break; 1119 1120 case RTM_IFANNOUNCE: 1121 case RTM_IEEE80211: 1122 len = sizeof(struct if_announcemsghdr); 1123 break; 1124 1125 default: 1126 len = sizeof(struct rt_msghdr); 1127 } 1128 1129 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1130 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1131 if (len > MHLEN) 1132 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1133 else 1134 m = m_gethdr(M_NOWAIT, MT_DATA); 1135 if (m == NULL) 1136 return (m); 1137 1138 m->m_pkthdr.len = m->m_len = len; 1139 rtm = mtod(m, struct rt_msghdr *); 1140 bzero((caddr_t)rtm, len); 1141 for (i = 0; i < RTAX_MAX; i++) { 1142 if ((sa = rtinfo->rti_info[i]) == NULL) 1143 continue; 1144 rtinfo->rti_addrs |= (1 << i); 1145 dlen = SA_SIZE(sa); 1146 #ifdef INET6 1147 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1148 sin6 = (struct sockaddr_in6 *)&ss; 1149 bcopy(sa, sin6, sizeof(*sin6)); 1150 if (sa6_recoverscope(sin6) == 0) 1151 sa = (struct sockaddr *)sin6; 1152 } 1153 #endif 1154 m_copyback(m, len, dlen, (caddr_t)sa); 1155 len += dlen; 1156 } 1157 if (m->m_pkthdr.len != len) { 1158 m_freem(m); 1159 return (NULL); 1160 } 1161 rtm->rtm_msglen = len; 1162 rtm->rtm_version = RTM_VERSION; 1163 rtm->rtm_type = type; 1164 return (m); 1165 } 1166 1167 /* 1168 * Used by the sysctl code and routing socket. 1169 */ 1170 static int 1171 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 1172 { 1173 int i; 1174 int len, dlen, second_time = 0; 1175 caddr_t cp0; 1176 #ifdef INET6 1177 struct sockaddr_storage ss; 1178 struct sockaddr_in6 *sin6; 1179 #endif 1180 1181 rtinfo->rti_addrs = 0; 1182 again: 1183 switch (type) { 1184 1185 case RTM_DELADDR: 1186 case RTM_NEWADDR: 1187 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1188 #ifdef COMPAT_FREEBSD32 1189 if (w->w_req->flags & SCTL_MASK32) 1190 len = sizeof(struct ifa_msghdrl32); 1191 else 1192 #endif 1193 len = sizeof(struct ifa_msghdrl); 1194 } else 1195 len = sizeof(struct ifa_msghdr); 1196 break; 1197 1198 case RTM_IFINFO: 1199 #ifdef COMPAT_FREEBSD32 1200 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1201 if (w->w_op == NET_RT_IFLISTL) 1202 len = sizeof(struct if_msghdrl32); 1203 else 1204 len = sizeof(struct if_msghdr32); 1205 break; 1206 } 1207 #endif 1208 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1209 len = sizeof(struct if_msghdrl); 1210 else 1211 len = sizeof(struct if_msghdr); 1212 break; 1213 1214 case RTM_NEWMADDR: 1215 len = sizeof(struct ifma_msghdr); 1216 break; 1217 1218 default: 1219 len = sizeof(struct rt_msghdr); 1220 } 1221 cp0 = cp; 1222 if (cp0) 1223 cp += len; 1224 for (i = 0; i < RTAX_MAX; i++) { 1225 struct sockaddr *sa; 1226 1227 if ((sa = rtinfo->rti_info[i]) == NULL) 1228 continue; 1229 rtinfo->rti_addrs |= (1 << i); 1230 dlen = SA_SIZE(sa); 1231 if (cp) { 1232 #ifdef INET6 1233 if (V_deembed_scopeid && sa->sa_family == AF_INET6) { 1234 sin6 = (struct sockaddr_in6 *)&ss; 1235 bcopy(sa, sin6, sizeof(*sin6)); 1236 if (sa6_recoverscope(sin6) == 0) 1237 sa = (struct sockaddr *)sin6; 1238 } 1239 #endif 1240 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1241 cp += dlen; 1242 } 1243 len += dlen; 1244 } 1245 len = ALIGN(len); 1246 if (cp == NULL && w != NULL && !second_time) { 1247 struct walkarg *rw = w; 1248 1249 if (rw->w_req) { 1250 if (rw->w_tmemsize < len) { 1251 if (rw->w_tmem) 1252 free(rw->w_tmem, M_RTABLE); 1253 rw->w_tmem = (caddr_t) 1254 malloc(len, M_RTABLE, M_NOWAIT); 1255 if (rw->w_tmem) 1256 rw->w_tmemsize = len; 1257 } 1258 if (rw->w_tmem) { 1259 cp = rw->w_tmem; 1260 second_time = 1; 1261 goto again; 1262 } 1263 } 1264 } 1265 if (cp) { 1266 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 1267 1268 rtm->rtm_version = RTM_VERSION; 1269 rtm->rtm_type = type; 1270 rtm->rtm_msglen = len; 1271 } 1272 return (len); 1273 } 1274 1275 /* 1276 * This routine is called to generate a message from the routing 1277 * socket indicating that a redirect has occured, a routing lookup 1278 * has failed, or that a protocol has detected timeouts to a particular 1279 * destination. 1280 */ 1281 void 1282 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1283 int fibnum) 1284 { 1285 struct rt_msghdr *rtm; 1286 struct mbuf *m; 1287 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1288 1289 if (route_cb.any_count == 0) 1290 return; 1291 m = rt_msg1(type, rtinfo); 1292 if (m == NULL) 1293 return; 1294 1295 if (fibnum != RTS_ALLFIBS) { 1296 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1297 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1298 M_SETFIB(m, fibnum); 1299 m->m_flags |= RTS_FILTER_FIB; 1300 } 1301 1302 rtm = mtod(m, struct rt_msghdr *); 1303 rtm->rtm_flags = RTF_DONE | flags; 1304 rtm->rtm_errno = error; 1305 rtm->rtm_addrs = rtinfo->rti_addrs; 1306 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1307 } 1308 1309 void 1310 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1311 { 1312 1313 rt_missmsg_fib(type, rtinfo, flags, error, RTS_ALLFIBS); 1314 } 1315 1316 /* 1317 * This routine is called to generate a message from the routing 1318 * socket indicating that the status of a network interface has changed. 1319 */ 1320 void 1321 rt_ifmsg(struct ifnet *ifp) 1322 { 1323 struct if_msghdr *ifm; 1324 struct mbuf *m; 1325 struct rt_addrinfo info; 1326 1327 if (route_cb.any_count == 0) 1328 return; 1329 bzero((caddr_t)&info, sizeof(info)); 1330 m = rt_msg1(RTM_IFINFO, &info); 1331 if (m == NULL) 1332 return; 1333 ifm = mtod(m, struct if_msghdr *); 1334 ifm->ifm_index = ifp->if_index; 1335 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1336 ifm->ifm_data = ifp->if_data; 1337 ifm->ifm_addrs = 0; 1338 rt_dispatch(m, AF_UNSPEC); 1339 } 1340 1341 /* 1342 * This is called to generate messages from the routing socket 1343 * indicating a network interface has had addresses associated with it. 1344 * if we ever reverse the logic and replace messages TO the routing 1345 * socket indicate a request to configure interfaces, then it will 1346 * be unnecessary as the routing socket will automatically generate 1347 * copies of it. 1348 */ 1349 void 1350 rt_newaddrmsg_fib(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt, 1351 int fibnum) 1352 { 1353 struct rt_addrinfo info; 1354 struct sockaddr *sa = NULL; 1355 int pass; 1356 struct mbuf *m = NULL; 1357 struct ifnet *ifp = ifa->ifa_ifp; 1358 1359 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 1360 ("unexpected cmd %u", cmd)); 1361 #if defined(INET) || defined(INET6) 1362 #ifdef SCTP 1363 /* 1364 * notify the SCTP stack 1365 * this will only get called when an address is added/deleted 1366 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 1367 */ 1368 sctp_addr_change(ifa, cmd); 1369 #endif /* SCTP */ 1370 #endif 1371 if (route_cb.any_count == 0) 1372 return; 1373 for (pass = 1; pass < 3; pass++) { 1374 bzero((caddr_t)&info, sizeof(info)); 1375 if ((cmd == RTM_ADD && pass == 1) || 1376 (cmd == RTM_DELETE && pass == 2)) { 1377 struct ifa_msghdr *ifam; 1378 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1379 1380 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1381 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1382 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1383 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1384 if ((m = rt_msg1(ncmd, &info)) == NULL) 1385 continue; 1386 ifam = mtod(m, struct ifa_msghdr *); 1387 ifam->ifam_index = ifp->if_index; 1388 ifam->ifam_metric = ifa->ifa_metric; 1389 ifam->ifam_flags = ifa->ifa_flags; 1390 ifam->ifam_addrs = info.rti_addrs; 1391 } 1392 if ((cmd == RTM_ADD && pass == 2) || 1393 (cmd == RTM_DELETE && pass == 1)) { 1394 struct rt_msghdr *rtm; 1395 1396 if (rt == NULL) 1397 continue; 1398 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1399 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1400 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1401 if ((m = rt_msg1(cmd, &info)) == NULL) 1402 continue; 1403 rtm = mtod(m, struct rt_msghdr *); 1404 rtm->rtm_index = ifp->if_index; 1405 rtm->rtm_flags |= rt->rt_flags; 1406 rtm->rtm_errno = error; 1407 rtm->rtm_addrs = info.rti_addrs; 1408 } 1409 if (fibnum != RTS_ALLFIBS) { 1410 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: " 1411 "fibnum out of range 0 <= %d < %d", __func__, 1412 fibnum, rt_numfibs)); 1413 M_SETFIB(m, fibnum); 1414 m->m_flags |= RTS_FILTER_FIB; 1415 } 1416 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1417 } 1418 } 1419 1420 void 1421 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 1422 { 1423 1424 rt_newaddrmsg_fib(cmd, ifa, error, rt, RTS_ALLFIBS); 1425 } 1426 1427 /* 1428 * This is the analogue to the rt_newaddrmsg which performs the same 1429 * function but for multicast group memberhips. This is easier since 1430 * there is no route state to worry about. 1431 */ 1432 void 1433 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1434 { 1435 struct rt_addrinfo info; 1436 struct mbuf *m = NULL; 1437 struct ifnet *ifp = ifma->ifma_ifp; 1438 struct ifma_msghdr *ifmam; 1439 1440 if (route_cb.any_count == 0) 1441 return; 1442 1443 bzero((caddr_t)&info, sizeof(info)); 1444 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1445 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1446 /* 1447 * If a link-layer address is present, present it as a ``gateway'' 1448 * (similarly to how ARP entries, e.g., are presented). 1449 */ 1450 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1451 m = rt_msg1(cmd, &info); 1452 if (m == NULL) 1453 return; 1454 ifmam = mtod(m, struct ifma_msghdr *); 1455 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1456 __func__)); 1457 ifmam->ifmam_index = ifp->if_index; 1458 ifmam->ifmam_addrs = info.rti_addrs; 1459 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1460 } 1461 1462 static struct mbuf * 1463 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1464 struct rt_addrinfo *info) 1465 { 1466 struct if_announcemsghdr *ifan; 1467 struct mbuf *m; 1468 1469 if (route_cb.any_count == 0) 1470 return NULL; 1471 bzero((caddr_t)info, sizeof(*info)); 1472 m = rt_msg1(type, info); 1473 if (m != NULL) { 1474 ifan = mtod(m, struct if_announcemsghdr *); 1475 ifan->ifan_index = ifp->if_index; 1476 strlcpy(ifan->ifan_name, ifp->if_xname, 1477 sizeof(ifan->ifan_name)); 1478 ifan->ifan_what = what; 1479 } 1480 return m; 1481 } 1482 1483 /* 1484 * This is called to generate routing socket messages indicating 1485 * IEEE80211 wireless events. 1486 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1487 */ 1488 void 1489 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1490 { 1491 struct mbuf *m; 1492 struct rt_addrinfo info; 1493 1494 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1495 if (m != NULL) { 1496 /* 1497 * Append the ieee80211 data. Try to stick it in the 1498 * mbuf containing the ifannounce msg; otherwise allocate 1499 * a new mbuf and append. 1500 * 1501 * NB: we assume m is a single mbuf. 1502 */ 1503 if (data_len > M_TRAILINGSPACE(m)) { 1504 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1505 if (n == NULL) { 1506 m_freem(m); 1507 return; 1508 } 1509 bcopy(data, mtod(n, void *), data_len); 1510 n->m_len = data_len; 1511 m->m_next = n; 1512 } else if (data_len > 0) { 1513 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1514 m->m_len += data_len; 1515 } 1516 if (m->m_flags & M_PKTHDR) 1517 m->m_pkthdr.len += data_len; 1518 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1519 rt_dispatch(m, AF_UNSPEC); 1520 } 1521 } 1522 1523 /* 1524 * This is called to generate routing socket messages indicating 1525 * network interface arrival and departure. 1526 */ 1527 void 1528 rt_ifannouncemsg(struct ifnet *ifp, int what) 1529 { 1530 struct mbuf *m; 1531 struct rt_addrinfo info; 1532 1533 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1534 if (m != NULL) 1535 rt_dispatch(m, AF_UNSPEC); 1536 } 1537 1538 static void 1539 rt_dispatch(struct mbuf *m, sa_family_t saf) 1540 { 1541 struct m_tag *tag; 1542 1543 /* 1544 * Preserve the family from the sockaddr, if any, in an m_tag for 1545 * use when injecting the mbuf into the routing socket buffer from 1546 * the netisr. 1547 */ 1548 if (saf != AF_UNSPEC) { 1549 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1550 M_NOWAIT); 1551 if (tag == NULL) { 1552 m_freem(m); 1553 return; 1554 } 1555 *(unsigned short *)(tag + 1) = saf; 1556 m_tag_prepend(m, tag); 1557 } 1558 #ifdef VIMAGE 1559 if (V_loif) 1560 m->m_pkthdr.rcvif = V_loif; 1561 else { 1562 m_freem(m); 1563 return; 1564 } 1565 #endif 1566 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1567 } 1568 1569 /* 1570 * This is used in dumping the kernel table via sysctl(). 1571 */ 1572 static int 1573 sysctl_dumpentry(struct radix_node *rn, void *vw) 1574 { 1575 struct walkarg *w = vw; 1576 struct rtentry *rt = (struct rtentry *)rn; 1577 int error = 0, size; 1578 struct rt_addrinfo info; 1579 1580 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1581 return 0; 1582 if ((rt->rt_flags & RTF_HOST) == 0 1583 ? jailed_without_vnet(w->w_req->td->td_ucred) 1584 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1585 return (0); 1586 bzero((caddr_t)&info, sizeof(info)); 1587 info.rti_info[RTAX_DST] = rt_key(rt); 1588 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1589 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1590 info.rti_info[RTAX_GENMASK] = 0; 1591 if (rt->rt_ifp) { 1592 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1593 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1594 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1595 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1596 } 1597 size = rt_msg2(RTM_GET, &info, NULL, w); 1598 if (w->w_req && w->w_tmem) { 1599 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1600 1601 if (rt->rt_flags & RTF_GWFLAG_COMPAT) 1602 rtm->rtm_flags = RTF_GATEWAY | 1603 (rt->rt_flags & ~RTF_GWFLAG_COMPAT); 1604 else 1605 rtm->rtm_flags = rt->rt_flags; 1606 /* 1607 * let's be honest about this being a retarded hack 1608 */ 1609 rtm->rtm_fmask = rt->rt_rmx.rmx_pksent; 1610 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1611 rtm->rtm_index = rt->rt_ifp->if_index; 1612 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1613 rtm->rtm_addrs = info.rti_addrs; 1614 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1615 return (error); 1616 } 1617 return (error); 1618 } 1619 1620 #ifdef COMPAT_FREEBSD32 1621 static void 1622 copy_ifdata32(struct if_data *src, struct if_data32 *dst) 1623 { 1624 1625 bzero(dst, sizeof(*dst)); 1626 CP(*src, *dst, ifi_type); 1627 CP(*src, *dst, ifi_physical); 1628 CP(*src, *dst, ifi_addrlen); 1629 CP(*src, *dst, ifi_hdrlen); 1630 CP(*src, *dst, ifi_link_state); 1631 CP(*src, *dst, ifi_vhid); 1632 CP(*src, *dst, ifi_baudrate_pf); 1633 dst->ifi_datalen = sizeof(struct if_data32); 1634 CP(*src, *dst, ifi_mtu); 1635 CP(*src, *dst, ifi_metric); 1636 CP(*src, *dst, ifi_baudrate); 1637 CP(*src, *dst, ifi_ipackets); 1638 CP(*src, *dst, ifi_ierrors); 1639 CP(*src, *dst, ifi_opackets); 1640 CP(*src, *dst, ifi_oerrors); 1641 CP(*src, *dst, ifi_collisions); 1642 CP(*src, *dst, ifi_ibytes); 1643 CP(*src, *dst, ifi_obytes); 1644 CP(*src, *dst, ifi_imcasts); 1645 CP(*src, *dst, ifi_omcasts); 1646 CP(*src, *dst, ifi_iqdrops); 1647 CP(*src, *dst, ifi_noproto); 1648 CP(*src, *dst, ifi_hwassist); 1649 CP(*src, *dst, ifi_epoch); 1650 TV_CP(*src, *dst, ifi_lastchange); 1651 } 1652 #endif 1653 1654 static int 1655 sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info, 1656 struct walkarg *w, int len) 1657 { 1658 struct if_msghdrl *ifm; 1659 1660 #ifdef COMPAT_FREEBSD32 1661 if (w->w_req->flags & SCTL_MASK32) { 1662 struct if_msghdrl32 *ifm32; 1663 1664 ifm32 = (struct if_msghdrl32 *)w->w_tmem; 1665 ifm32->ifm_addrs = info->rti_addrs; 1666 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1667 ifm32->ifm_index = ifp->if_index; 1668 ifm32->_ifm_spare1 = 0; 1669 ifm32->ifm_len = sizeof(*ifm32); 1670 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1671 1672 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1673 /* Fixup if_data carp(4) vhid. */ 1674 if (carp_get_vhid_p != NULL) 1675 ifm32->ifm_data.ifi_vhid = 1676 (*carp_get_vhid_p)(ifp->if_addr); 1677 1678 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len)); 1679 } 1680 #endif 1681 ifm = (struct if_msghdrl *)w->w_tmem; 1682 ifm->ifm_addrs = info->rti_addrs; 1683 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1684 ifm->ifm_index = ifp->if_index; 1685 ifm->_ifm_spare1 = 0; 1686 ifm->ifm_len = sizeof(*ifm); 1687 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1688 1689 ifm->ifm_data = ifp->if_data; 1690 /* Fixup if_data carp(4) vhid. */ 1691 if (carp_get_vhid_p != NULL) 1692 ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr); 1693 1694 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1695 } 1696 1697 static int 1698 sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info, 1699 struct walkarg *w, int len) 1700 { 1701 struct if_msghdr *ifm; 1702 1703 #ifdef COMPAT_FREEBSD32 1704 if (w->w_req->flags & SCTL_MASK32) { 1705 struct if_msghdr32 *ifm32; 1706 1707 ifm32 = (struct if_msghdr32 *)w->w_tmem; 1708 ifm32->ifm_addrs = info->rti_addrs; 1709 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1710 ifm32->ifm_index = ifp->if_index; 1711 1712 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1713 /* Fixup if_data carp(4) vhid. */ 1714 if (carp_get_vhid_p != NULL) 1715 ifm32->ifm_data.ifi_vhid = 1716 (*carp_get_vhid_p)(ifp->if_addr); 1717 1718 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len)); 1719 } 1720 #endif 1721 ifm = (struct if_msghdr *)w->w_tmem; 1722 ifm->ifm_addrs = info->rti_addrs; 1723 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1724 ifm->ifm_index = ifp->if_index; 1725 1726 ifm->ifm_data = ifp->if_data; 1727 /* Fixup if_data carp(4) vhid. */ 1728 if (carp_get_vhid_p != NULL) 1729 ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr); 1730 1731 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1732 } 1733 1734 static int 1735 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1736 struct walkarg *w, int len) 1737 { 1738 struct ifa_msghdrl *ifam; 1739 1740 #ifdef COMPAT_FREEBSD32 1741 if (w->w_req->flags & SCTL_MASK32) { 1742 struct ifa_msghdrl32 *ifam32; 1743 1744 ifam32 = (struct ifa_msghdrl32 *)w->w_tmem; 1745 ifam32->ifam_addrs = info->rti_addrs; 1746 ifam32->ifam_flags = ifa->ifa_flags; 1747 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1748 ifam32->_ifam_spare1 = 0; 1749 ifam32->ifam_len = sizeof(*ifam32); 1750 ifam32->ifam_data_off = 1751 offsetof(struct ifa_msghdrl32, ifam_data); 1752 ifam32->ifam_metric = ifa->ifa_metric; 1753 1754 copy_ifdata32(&ifa->ifa_ifp->if_data, &ifam32->ifam_data); 1755 /* Fixup if_data carp(4) vhid. */ 1756 if (carp_get_vhid_p != NULL) 1757 ifam32->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa); 1758 1759 return (SYSCTL_OUT(w->w_req, (caddr_t)ifam32, len)); 1760 } 1761 #endif 1762 1763 ifam = (struct ifa_msghdrl *)w->w_tmem; 1764 ifam->ifam_addrs = info->rti_addrs; 1765 ifam->ifam_flags = ifa->ifa_flags; 1766 ifam->ifam_index = ifa->ifa_ifp->if_index; 1767 ifam->_ifam_spare1 = 0; 1768 ifam->ifam_len = sizeof(*ifam); 1769 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1770 ifam->ifam_metric = ifa->ifa_metric; 1771 1772 ifam->ifam_data = ifa->if_data; 1773 /* Fixup if_data carp(4) vhid. */ 1774 if (carp_get_vhid_p != NULL) 1775 ifam->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa); 1776 1777 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1778 } 1779 1780 static int 1781 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1782 struct walkarg *w, int len) 1783 { 1784 struct ifa_msghdr *ifam; 1785 1786 ifam = (struct ifa_msghdr *)w->w_tmem; 1787 ifam->ifam_addrs = info->rti_addrs; 1788 ifam->ifam_flags = ifa->ifa_flags; 1789 ifam->ifam_index = ifa->ifa_ifp->if_index; 1790 ifam->ifam_metric = ifa->ifa_metric; 1791 1792 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1793 } 1794 1795 static int 1796 sysctl_iflist(int af, struct walkarg *w) 1797 { 1798 struct ifnet *ifp; 1799 struct ifaddr *ifa; 1800 struct rt_addrinfo info; 1801 int len, error = 0; 1802 1803 bzero((caddr_t)&info, sizeof(info)); 1804 IFNET_RLOCK_NOSLEEP(); 1805 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1806 if (w->w_arg && w->w_arg != ifp->if_index) 1807 continue; 1808 IF_ADDR_RLOCK(ifp); 1809 ifa = ifp->if_addr; 1810 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1811 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1812 info.rti_info[RTAX_IFP] = NULL; 1813 if (w->w_req && w->w_tmem) { 1814 if (w->w_op == NET_RT_IFLISTL) 1815 error = sysctl_iflist_ifml(ifp, &info, w, len); 1816 else 1817 error = sysctl_iflist_ifm(ifp, &info, w, len); 1818 if (error) 1819 goto done; 1820 } 1821 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1822 if (af && af != ifa->ifa_addr->sa_family) 1823 continue; 1824 if (prison_if(w->w_req->td->td_ucred, 1825 ifa->ifa_addr) != 0) 1826 continue; 1827 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1828 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1829 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1830 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1831 if (w->w_req && w->w_tmem) { 1832 if (w->w_op == NET_RT_IFLISTL) 1833 error = sysctl_iflist_ifaml(ifa, &info, 1834 w, len); 1835 else 1836 error = sysctl_iflist_ifam(ifa, &info, 1837 w, len); 1838 if (error) 1839 goto done; 1840 } 1841 } 1842 IF_ADDR_RUNLOCK(ifp); 1843 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1844 info.rti_info[RTAX_BRD] = NULL; 1845 } 1846 done: 1847 if (ifp != NULL) 1848 IF_ADDR_RUNLOCK(ifp); 1849 IFNET_RUNLOCK_NOSLEEP(); 1850 return (error); 1851 } 1852 1853 static int 1854 sysctl_ifmalist(int af, struct walkarg *w) 1855 { 1856 struct ifnet *ifp; 1857 struct ifmultiaddr *ifma; 1858 struct rt_addrinfo info; 1859 int len, error = 0; 1860 struct ifaddr *ifa; 1861 1862 bzero((caddr_t)&info, sizeof(info)); 1863 IFNET_RLOCK_NOSLEEP(); 1864 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1865 if (w->w_arg && w->w_arg != ifp->if_index) 1866 continue; 1867 ifa = ifp->if_addr; 1868 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1869 IF_ADDR_RLOCK(ifp); 1870 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1871 if (af && af != ifma->ifma_addr->sa_family) 1872 continue; 1873 if (prison_if(w->w_req->td->td_ucred, 1874 ifma->ifma_addr) != 0) 1875 continue; 1876 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1877 info.rti_info[RTAX_GATEWAY] = 1878 (ifma->ifma_addr->sa_family != AF_LINK) ? 1879 ifma->ifma_lladdr : NULL; 1880 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1881 if (w->w_req && w->w_tmem) { 1882 struct ifma_msghdr *ifmam; 1883 1884 ifmam = (struct ifma_msghdr *)w->w_tmem; 1885 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1886 ifmam->ifmam_flags = 0; 1887 ifmam->ifmam_addrs = info.rti_addrs; 1888 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1889 if (error) { 1890 IF_ADDR_RUNLOCK(ifp); 1891 goto done; 1892 } 1893 } 1894 } 1895 IF_ADDR_RUNLOCK(ifp); 1896 } 1897 done: 1898 IFNET_RUNLOCK_NOSLEEP(); 1899 return (error); 1900 } 1901 1902 static int 1903 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1904 { 1905 int *name = (int *)arg1; 1906 u_int namelen = arg2; 1907 struct radix_node_head *rnh = NULL; /* silence compiler. */ 1908 int i, lim, error = EINVAL; 1909 int fib = 0; 1910 u_char af; 1911 struct walkarg w; 1912 1913 name ++; 1914 namelen--; 1915 if (req->newptr) 1916 return (EPERM); 1917 if (name[1] == NET_RT_DUMP) { 1918 if (namelen == 3) 1919 fib = req->td->td_proc->p_fibnum; 1920 else if (namelen == 4) 1921 fib = (name[3] == -1) ? 1922 req->td->td_proc->p_fibnum : name[3]; 1923 else 1924 return ((namelen < 3) ? EISDIR : ENOTDIR); 1925 if (fib < 0 || fib >= rt_numfibs) 1926 return (EINVAL); 1927 } else if (namelen != 3) 1928 return ((namelen < 3) ? EISDIR : ENOTDIR); 1929 af = name[0]; 1930 if (af > AF_MAX) 1931 return (EINVAL); 1932 bzero(&w, sizeof(w)); 1933 w.w_op = name[1]; 1934 w.w_arg = name[2]; 1935 w.w_req = req; 1936 1937 error = sysctl_wire_old_buffer(req, 0); 1938 if (error) 1939 return (error); 1940 switch (w.w_op) { 1941 1942 case NET_RT_DUMP: 1943 case NET_RT_FLAGS: 1944 if (af == 0) { /* dump all tables */ 1945 i = 1; 1946 lim = AF_MAX; 1947 } else /* dump only one table */ 1948 i = lim = af; 1949 1950 /* 1951 * take care of llinfo entries, the caller must 1952 * specify an AF 1953 */ 1954 if (w.w_op == NET_RT_FLAGS && 1955 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1956 if (af != 0) 1957 error = lltable_sysctl_dumparp(af, w.w_req); 1958 else 1959 error = EINVAL; 1960 break; 1961 } 1962 /* 1963 * take care of routing entries 1964 */ 1965 for (error = 0; error == 0 && i <= lim; i++) { 1966 rnh = rt_tables_get_rnh(fib, i); 1967 if (rnh != NULL) { 1968 RADIX_NODE_HEAD_RLOCK(rnh); 1969 error = rnh->rnh_walktree(rnh, 1970 sysctl_dumpentry, &w); 1971 RADIX_NODE_HEAD_RUNLOCK(rnh); 1972 } else if (af != 0) 1973 error = EAFNOSUPPORT; 1974 } 1975 break; 1976 1977 case NET_RT_IFLIST: 1978 case NET_RT_IFLISTL: 1979 error = sysctl_iflist(af, &w); 1980 break; 1981 1982 case NET_RT_IFMALIST: 1983 error = sysctl_ifmalist(af, &w); 1984 break; 1985 } 1986 if (w.w_tmem) 1987 free(w.w_tmem, M_RTABLE); 1988 return (error); 1989 } 1990 1991 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1992 1993 /* 1994 * Definitions of protocols supported in the ROUTE domain. 1995 */ 1996 1997 static struct domain routedomain; /* or at least forward */ 1998 1999 static struct protosw routesw[] = { 2000 { 2001 .pr_type = SOCK_RAW, 2002 .pr_domain = &routedomain, 2003 .pr_flags = PR_ATOMIC|PR_ADDR, 2004 .pr_output = route_output, 2005 .pr_ctlinput = raw_ctlinput, 2006 .pr_init = raw_init, 2007 .pr_usrreqs = &route_usrreqs 2008 } 2009 }; 2010 2011 static struct domain routedomain = { 2012 .dom_family = PF_ROUTE, 2013 .dom_name = "route", 2014 .dom_protosw = routesw, 2015 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 2016 }; 2017 2018 VNET_DOMAIN_SET(route); 2019