xref: /freebsd/sys/net/rtsock.c (revision 3b8f08459569bf0faa21473e5cec2491e95c9349)
1 /*-
2  * Copyright (c) 1988, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
30  * $FreeBSD$
31  */
32 #include "opt_compat.h"
33 #include "opt_mpath.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 
37 #include <sys/param.h>
38 #include <sys/jail.h>
39 #include <sys/kernel.h>
40 #include <sys/domain.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/priv.h>
45 #include <sys/proc.h>
46 #include <sys/protosw.h>
47 #include <sys/rwlock.h>
48 #include <sys/signalvar.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/sysctl.h>
52 #include <sys/systm.h>
53 
54 #include <net/if.h>
55 #include <net/if_var.h>
56 #include <net/if_dl.h>
57 #include <net/if_llatbl.h>
58 #include <net/if_types.h>
59 #include <net/netisr.h>
60 #include <net/raw_cb.h>
61 #include <net/route.h>
62 #include <net/vnet.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/if_ether.h>
66 #include <netinet/ip_carp.h>
67 #ifdef INET6
68 #include <netinet6/ip6_var.h>
69 #include <netinet6/scope6_var.h>
70 #endif
71 
72 #ifdef COMPAT_FREEBSD32
73 #include <sys/mount.h>
74 #include <compat/freebsd32/freebsd32.h>
75 
76 struct if_msghdr32 {
77 	uint16_t ifm_msglen;
78 	uint8_t	ifm_version;
79 	uint8_t	ifm_type;
80 	int32_t	ifm_addrs;
81 	int32_t	ifm_flags;
82 	uint16_t ifm_index;
83 	struct	if_data ifm_data;
84 };
85 
86 struct if_msghdrl32 {
87 	uint16_t ifm_msglen;
88 	uint8_t	ifm_version;
89 	uint8_t	ifm_type;
90 	int32_t	ifm_addrs;
91 	int32_t	ifm_flags;
92 	uint16_t ifm_index;
93 	uint16_t _ifm_spare1;
94 	uint16_t ifm_len;
95 	uint16_t ifm_data_off;
96 	struct	if_data ifm_data;
97 };
98 
99 struct ifa_msghdrl32 {
100 	uint16_t ifam_msglen;
101 	uint8_t	ifam_version;
102 	uint8_t	ifam_type;
103 	int32_t	ifam_addrs;
104 	int32_t	ifam_flags;
105 	uint16_t ifam_index;
106 	uint16_t _ifam_spare1;
107 	uint16_t ifam_len;
108 	uint16_t ifam_data_off;
109 	int32_t	ifam_metric;
110 	struct	if_data ifam_data;
111 };
112 #endif /* COMPAT_FREEBSD32 */
113 
114 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
115 
116 /* NB: these are not modified */
117 static struct	sockaddr route_src = { 2, PF_ROUTE, };
118 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
119 
120 /* These are external hooks for CARP. */
121 int	(*carp_get_vhid_p)(struct ifaddr *);
122 
123 /*
124  * Used by rtsock/raw_input callback code to decide whether to filter the update
125  * notification to a socket bound to a particular FIB.
126  */
127 #define	RTS_FILTER_FIB	M_PROTO8
128 
129 typedef struct {
130 	int	ip_count;	/* attached w/ AF_INET */
131 	int	ip6_count;	/* attached w/ AF_INET6 */
132 	int	any_count;	/* total attached */
133 } route_cb_t;
134 static VNET_DEFINE(route_cb_t, route_cb);
135 #define	V_route_cb VNET(route_cb)
136 
137 struct mtx rtsock_mtx;
138 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
139 
140 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
141 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
142 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
143 
144 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
145 
146 struct walkarg {
147 	int	w_tmemsize;
148 	int	w_op, w_arg;
149 	caddr_t	w_tmem;
150 	struct sysctl_req *w_req;
151 };
152 
153 static void	rts_input(struct mbuf *m);
154 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo);
155 static int	rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
156 			struct walkarg *w, int *plen);
157 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
158 			struct rt_addrinfo *rtinfo);
159 static int	sysctl_dumpentry(struct radix_node *rn, void *vw);
160 static int	sysctl_iflist(int af, struct walkarg *w);
161 static int	sysctl_ifmalist(int af, struct walkarg *w);
162 static int	route_output(struct mbuf *m, struct socket *so);
163 static void	rt_setmetrics(const struct rt_msghdr *rtm, struct rtentry *rt);
164 static void	rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out);
165 static void	rt_dispatch(struct mbuf *, sa_family_t);
166 
167 static struct netisr_handler rtsock_nh = {
168 	.nh_name = "rtsock",
169 	.nh_handler = rts_input,
170 	.nh_proto = NETISR_ROUTE,
171 	.nh_policy = NETISR_POLICY_SOURCE,
172 };
173 
174 static int
175 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
176 {
177 	int error, qlimit;
178 
179 	netisr_getqlimit(&rtsock_nh, &qlimit);
180 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
181         if (error || !req->newptr)
182                 return (error);
183 	if (qlimit < 1)
184 		return (EINVAL);
185 	return (netisr_setqlimit(&rtsock_nh, qlimit));
186 }
187 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW,
188     0, 0, sysctl_route_netisr_maxqlen, "I",
189     "maximum routing socket dispatch queue length");
190 
191 static void
192 rts_init(void)
193 {
194 	int tmp;
195 
196 	if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
197 		rtsock_nh.nh_qlimit = tmp;
198 	netisr_register(&rtsock_nh);
199 }
200 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0);
201 
202 static int
203 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
204     struct rawcb *rp)
205 {
206 	int fibnum;
207 
208 	KASSERT(m != NULL, ("%s: m is NULL", __func__));
209 	KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
210 	KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
211 
212 	/* No filtering requested. */
213 	if ((m->m_flags & RTS_FILTER_FIB) == 0)
214 		return (0);
215 
216 	/* Check if it is a rts and the fib matches the one of the socket. */
217 	fibnum = M_GETFIB(m);
218 	if (proto->sp_family != PF_ROUTE ||
219 	    rp->rcb_socket == NULL ||
220 	    rp->rcb_socket->so_fibnum == fibnum)
221 		return (0);
222 
223 	/* Filtering requested and no match, the socket shall be skipped. */
224 	return (1);
225 }
226 
227 static void
228 rts_input(struct mbuf *m)
229 {
230 	struct sockproto route_proto;
231 	unsigned short *family;
232 	struct m_tag *tag;
233 
234 	route_proto.sp_family = PF_ROUTE;
235 	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
236 	if (tag != NULL) {
237 		family = (unsigned short *)(tag + 1);
238 		route_proto.sp_protocol = *family;
239 		m_tag_delete(m, tag);
240 	} else
241 		route_proto.sp_protocol = 0;
242 
243 	raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
244 }
245 
246 /*
247  * It really doesn't make any sense at all for this code to share much
248  * with raw_usrreq.c, since its functionality is so restricted.  XXX
249  */
250 static void
251 rts_abort(struct socket *so)
252 {
253 
254 	raw_usrreqs.pru_abort(so);
255 }
256 
257 static void
258 rts_close(struct socket *so)
259 {
260 
261 	raw_usrreqs.pru_close(so);
262 }
263 
264 /* pru_accept is EOPNOTSUPP */
265 
266 static int
267 rts_attach(struct socket *so, int proto, struct thread *td)
268 {
269 	struct rawcb *rp;
270 	int error;
271 
272 	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
273 
274 	/* XXX */
275 	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
276 	if (rp == NULL)
277 		return ENOBUFS;
278 
279 	so->so_pcb = (caddr_t)rp;
280 	so->so_fibnum = td->td_proc->p_fibnum;
281 	error = raw_attach(so, proto);
282 	rp = sotorawcb(so);
283 	if (error) {
284 		so->so_pcb = NULL;
285 		free(rp, M_PCB);
286 		return error;
287 	}
288 	RTSOCK_LOCK();
289 	switch(rp->rcb_proto.sp_protocol) {
290 	case AF_INET:
291 		V_route_cb.ip_count++;
292 		break;
293 	case AF_INET6:
294 		V_route_cb.ip6_count++;
295 		break;
296 	}
297 	V_route_cb.any_count++;
298 	RTSOCK_UNLOCK();
299 	soisconnected(so);
300 	so->so_options |= SO_USELOOPBACK;
301 	return 0;
302 }
303 
304 static int
305 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
306 {
307 
308 	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
309 }
310 
311 static int
312 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
313 {
314 
315 	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
316 }
317 
318 /* pru_connect2 is EOPNOTSUPP */
319 /* pru_control is EOPNOTSUPP */
320 
321 static void
322 rts_detach(struct socket *so)
323 {
324 	struct rawcb *rp = sotorawcb(so);
325 
326 	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
327 
328 	RTSOCK_LOCK();
329 	switch(rp->rcb_proto.sp_protocol) {
330 	case AF_INET:
331 		V_route_cb.ip_count--;
332 		break;
333 	case AF_INET6:
334 		V_route_cb.ip6_count--;
335 		break;
336 	}
337 	V_route_cb.any_count--;
338 	RTSOCK_UNLOCK();
339 	raw_usrreqs.pru_detach(so);
340 }
341 
342 static int
343 rts_disconnect(struct socket *so)
344 {
345 
346 	return (raw_usrreqs.pru_disconnect(so));
347 }
348 
349 /* pru_listen is EOPNOTSUPP */
350 
351 static int
352 rts_peeraddr(struct socket *so, struct sockaddr **nam)
353 {
354 
355 	return (raw_usrreqs.pru_peeraddr(so, nam));
356 }
357 
358 /* pru_rcvd is EOPNOTSUPP */
359 /* pru_rcvoob is EOPNOTSUPP */
360 
361 static int
362 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
363 	 struct mbuf *control, struct thread *td)
364 {
365 
366 	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
367 }
368 
369 /* pru_sense is null */
370 
371 static int
372 rts_shutdown(struct socket *so)
373 {
374 
375 	return (raw_usrreqs.pru_shutdown(so));
376 }
377 
378 static int
379 rts_sockaddr(struct socket *so, struct sockaddr **nam)
380 {
381 
382 	return (raw_usrreqs.pru_sockaddr(so, nam));
383 }
384 
385 static struct pr_usrreqs route_usrreqs = {
386 	.pru_abort =		rts_abort,
387 	.pru_attach =		rts_attach,
388 	.pru_bind =		rts_bind,
389 	.pru_connect =		rts_connect,
390 	.pru_detach =		rts_detach,
391 	.pru_disconnect =	rts_disconnect,
392 	.pru_peeraddr =		rts_peeraddr,
393 	.pru_send =		rts_send,
394 	.pru_shutdown =		rts_shutdown,
395 	.pru_sockaddr =		rts_sockaddr,
396 	.pru_close =		rts_close,
397 };
398 
399 #ifndef _SOCKADDR_UNION_DEFINED
400 #define	_SOCKADDR_UNION_DEFINED
401 /*
402  * The union of all possible address formats we handle.
403  */
404 union sockaddr_union {
405 	struct sockaddr		sa;
406 	struct sockaddr_in	sin;
407 	struct sockaddr_in6	sin6;
408 };
409 #endif /* _SOCKADDR_UNION_DEFINED */
410 
411 static int
412 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
413     struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
414 {
415 
416 	/* First, see if the returned address is part of the jail. */
417 	if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
418 		info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
419 		return (0);
420 	}
421 
422 	switch (info->rti_info[RTAX_DST]->sa_family) {
423 #ifdef INET
424 	case AF_INET:
425 	{
426 		struct in_addr ia;
427 		struct ifaddr *ifa;
428 		int found;
429 
430 		found = 0;
431 		/*
432 		 * Try to find an address on the given outgoing interface
433 		 * that belongs to the jail.
434 		 */
435 		IF_ADDR_RLOCK(ifp);
436 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
437 			struct sockaddr *sa;
438 			sa = ifa->ifa_addr;
439 			if (sa->sa_family != AF_INET)
440 				continue;
441 			ia = ((struct sockaddr_in *)sa)->sin_addr;
442 			if (prison_check_ip4(cred, &ia) == 0) {
443 				found = 1;
444 				break;
445 			}
446 		}
447 		IF_ADDR_RUNLOCK(ifp);
448 		if (!found) {
449 			/*
450 			 * As a last resort return the 'default' jail address.
451 			 */
452 			ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->
453 			    sin_addr;
454 			if (prison_get_ip4(cred, &ia) != 0)
455 				return (ESRCH);
456 		}
457 		bzero(&saun->sin, sizeof(struct sockaddr_in));
458 		saun->sin.sin_len = sizeof(struct sockaddr_in);
459 		saun->sin.sin_family = AF_INET;
460 		saun->sin.sin_addr.s_addr = ia.s_addr;
461 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
462 		break;
463 	}
464 #endif
465 #ifdef INET6
466 	case AF_INET6:
467 	{
468 		struct in6_addr ia6;
469 		struct ifaddr *ifa;
470 		int found;
471 
472 		found = 0;
473 		/*
474 		 * Try to find an address on the given outgoing interface
475 		 * that belongs to the jail.
476 		 */
477 		IF_ADDR_RLOCK(ifp);
478 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
479 			struct sockaddr *sa;
480 			sa = ifa->ifa_addr;
481 			if (sa->sa_family != AF_INET6)
482 				continue;
483 			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
484 			    &ia6, sizeof(struct in6_addr));
485 			if (prison_check_ip6(cred, &ia6) == 0) {
486 				found = 1;
487 				break;
488 			}
489 		}
490 		IF_ADDR_RUNLOCK(ifp);
491 		if (!found) {
492 			/*
493 			 * As a last resort return the 'default' jail address.
494 			 */
495 			ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->
496 			    sin6_addr;
497 			if (prison_get_ip6(cred, &ia6) != 0)
498 				return (ESRCH);
499 		}
500 		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
501 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
502 		saun->sin6.sin6_family = AF_INET6;
503 		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
504 		if (sa6_recoverscope(&saun->sin6) != 0)
505 			return (ESRCH);
506 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
507 		break;
508 	}
509 #endif
510 	default:
511 		return (ESRCH);
512 	}
513 	return (0);
514 }
515 
516 /*ARGSUSED*/
517 static int
518 route_output(struct mbuf *m, struct socket *so)
519 {
520 	struct rt_msghdr *rtm = NULL;
521 	struct rtentry *rt = NULL;
522 	struct radix_node_head *rnh;
523 	struct rt_addrinfo info;
524 #ifdef INET6
525 	struct sockaddr_storage ss;
526 	struct sockaddr_in6 *sin6;
527 	int i, rti_need_deembed = 0;
528 #endif
529 	int alloc_len = 0, len, error = 0, fibnum;
530 	struct ifnet *ifp = NULL;
531 	union sockaddr_union saun;
532 	sa_family_t saf = AF_UNSPEC;
533 	struct rawcb *rp = NULL;
534 	struct walkarg w;
535 	char msgbuf[512];
536 
537 	fibnum = so->so_fibnum;
538 
539 #define senderr(e) { error = e; goto flush;}
540 	if (m == NULL || ((m->m_len < sizeof(long)) &&
541 		       (m = m_pullup(m, sizeof(long))) == NULL))
542 		return (ENOBUFS);
543 	if ((m->m_flags & M_PKTHDR) == 0)
544 		panic("route_output");
545 	len = m->m_pkthdr.len;
546 	if (len < sizeof(*rtm) ||
547 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
548 		senderr(EINVAL);
549 
550 	/*
551 	 * Most of current messages are in range 200-240 bytes,
552 	 * minimize possible failures by using on-stack buffer
553 	 * which should fit for most messages.
554 	 * However, use stable memory if we need to handle
555 	 * something large.
556 	 */
557 	if (len < sizeof(msgbuf)) {
558 		alloc_len = sizeof(msgbuf);
559 		rtm = (struct rt_msghdr *)msgbuf;
560 	} else {
561 		alloc_len = roundup2(len, 1024);
562 		rtm = malloc(alloc_len, M_TEMP, M_NOWAIT);
563 		if (rtm == NULL)
564 			senderr(ENOBUFS);
565 	}
566 
567 	m_copydata(m, 0, len, (caddr_t)rtm);
568 	bzero(&info, sizeof(info));
569 	bzero(&w, sizeof(w));
570 
571 	if (rtm->rtm_version != RTM_VERSION) {
572 		/* Do not touch message since format is unknown */
573 		if ((char *)rtm != msgbuf)
574 			free(rtm, M_TEMP);
575 		rtm = NULL;
576 		senderr(EPROTONOSUPPORT);
577 	}
578 
579 	/*
580 	 * Starting from here, it is possible
581 	 * to alter original message and insert
582 	 * caller PID and error value.
583 	 */
584 
585 	rtm->rtm_pid = curproc->p_pid;
586 	info.rti_addrs = rtm->rtm_addrs;
587 	/*
588 	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
589 	 * link-local address because rtrequest requires addresses with
590 	 * embedded scope id.
591 	 */
592 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info))
593 		senderr(EINVAL);
594 
595 	info.rti_flags = rtm->rtm_flags;
596 	if (info.rti_info[RTAX_DST] == NULL ||
597 	    info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
598 	    (info.rti_info[RTAX_GATEWAY] != NULL &&
599 	     info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
600 		senderr(EINVAL);
601 	saf = info.rti_info[RTAX_DST]->sa_family;
602 	/*
603 	 * Verify that the caller has the appropriate privilege; RTM_GET
604 	 * is the only operation the non-superuser is allowed.
605 	 */
606 	if (rtm->rtm_type != RTM_GET) {
607 		error = priv_check(curthread, PRIV_NET_ROUTE);
608 		if (error)
609 			senderr(error);
610 	}
611 
612 	/*
613 	 * The given gateway address may be an interface address.
614 	 * For example, issuing a "route change" command on a route
615 	 * entry that was created from a tunnel, and the gateway
616 	 * address given is the local end point. In this case the
617 	 * RTF_GATEWAY flag must be cleared or the destination will
618 	 * not be reachable even though there is no error message.
619 	 */
620 	if (info.rti_info[RTAX_GATEWAY] != NULL &&
621 	    info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
622 		struct route gw_ro;
623 
624 		bzero(&gw_ro, sizeof(gw_ro));
625 		gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY];
626 		rtalloc_ign_fib(&gw_ro, 0, fibnum);
627 		/*
628 		 * A host route through the loopback interface is
629 		 * installed for each interface adddress. In pre 8.0
630 		 * releases the interface address of a PPP link type
631 		 * is not reachable locally. This behavior is fixed as
632 		 * part of the new L2/L3 redesign and rewrite work. The
633 		 * signature of this interface address route is the
634 		 * AF_LINK sa_family type of the rt_gateway, and the
635 		 * rt_ifp has the IFF_LOOPBACK flag set.
636 		 */
637 		if (gw_ro.ro_rt != NULL &&
638 		    gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK &&
639 		    gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) {
640 			info.rti_flags &= ~RTF_GATEWAY;
641 			info.rti_flags |= RTF_GWFLAG_COMPAT;
642 		}
643 		if (gw_ro.ro_rt != NULL)
644 			RTFREE(gw_ro.ro_rt);
645 	}
646 
647 	switch (rtm->rtm_type) {
648 		struct rtentry *saved_nrt;
649 
650 	case RTM_ADD:
651 	case RTM_CHANGE:
652 		if (info.rti_info[RTAX_GATEWAY] == NULL)
653 			senderr(EINVAL);
654 		saved_nrt = NULL;
655 
656 		/* support for new ARP code */
657 		if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK &&
658 		    (rtm->rtm_flags & RTF_LLDATA) != 0) {
659 			error = lla_rt_output(rtm, &info);
660 #ifdef INET6
661 			if (error == 0)
662 				rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
663 #endif
664 			break;
665 		}
666 		error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt,
667 		    fibnum);
668 		if (error == 0 && saved_nrt != NULL) {
669 #ifdef INET6
670 			rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
671 #endif
672 			RT_LOCK(saved_nrt);
673 			rt_setmetrics(rtm, saved_nrt);
674 			rtm->rtm_index = saved_nrt->rt_ifp->if_index;
675 			RT_REMREF(saved_nrt);
676 			RT_UNLOCK(saved_nrt);
677 		}
678 		break;
679 
680 	case RTM_DELETE:
681 		saved_nrt = NULL;
682 		/* support for new ARP code */
683 		if (info.rti_info[RTAX_GATEWAY] &&
684 		    (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) &&
685 		    (rtm->rtm_flags & RTF_LLDATA) != 0) {
686 			error = lla_rt_output(rtm, &info);
687 #ifdef INET6
688 			if (error == 0)
689 				rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
690 #endif
691 			break;
692 		}
693 		error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum);
694 		if (error == 0) {
695 			RT_LOCK(saved_nrt);
696 			rt = saved_nrt;
697 			goto report;
698 		}
699 #ifdef INET6
700 		/* rt_msg2() will not be used when RTM_DELETE fails. */
701 		rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
702 #endif
703 		break;
704 
705 	case RTM_GET:
706 		rnh = rt_tables_get_rnh(fibnum, saf);
707 		if (rnh == NULL)
708 			senderr(EAFNOSUPPORT);
709 
710 		RADIX_NODE_HEAD_RLOCK(rnh);
711 
712 		if (info.rti_info[RTAX_NETMASK] == NULL &&
713 		    rtm->rtm_type == RTM_GET) {
714 			/*
715 			 * Provide logest prefix match for
716 			 * address lookup (no mask).
717 			 * 'route -n get addr'
718 			 */
719 			rt = (struct rtentry *) rnh->rnh_matchaddr(
720 			    info.rti_info[RTAX_DST], rnh);
721 		} else
722 			rt = (struct rtentry *) rnh->rnh_lookup(
723 			    info.rti_info[RTAX_DST],
724 			    info.rti_info[RTAX_NETMASK], rnh);
725 
726 		if (rt == NULL) {
727 			RADIX_NODE_HEAD_RUNLOCK(rnh);
728 			senderr(ESRCH);
729 		}
730 #ifdef RADIX_MPATH
731 		/*
732 		 * for RTM_CHANGE/LOCK, if we got multipath routes,
733 		 * we require users to specify a matching RTAX_GATEWAY.
734 		 *
735 		 * for RTM_GET, gate is optional even with multipath.
736 		 * if gate == NULL the first match is returned.
737 		 * (no need to call rt_mpath_matchgate if gate == NULL)
738 		 */
739 		if (rn_mpath_capable(rnh) &&
740 		    (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) {
741 			rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]);
742 			if (!rt) {
743 				RADIX_NODE_HEAD_RUNLOCK(rnh);
744 				senderr(ESRCH);
745 			}
746 		}
747 #endif
748 		/*
749 		 * If performing proxied L2 entry insertion, and
750 		 * the actual PPP host entry is found, perform
751 		 * another search to retrieve the prefix route of
752 		 * the local end point of the PPP link.
753 		 */
754 		if (rtm->rtm_flags & RTF_ANNOUNCE) {
755 			struct sockaddr laddr;
756 
757 			if (rt->rt_ifp != NULL &&
758 			    rt->rt_ifp->if_type == IFT_PROPVIRTUAL) {
759 				struct ifaddr *ifa;
760 
761 				ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1,
762 				    RT_DEFAULT_FIB);
763 				if (ifa != NULL)
764 					rt_maskedcopy(ifa->ifa_addr,
765 						      &laddr,
766 						      ifa->ifa_netmask);
767 			} else
768 				rt_maskedcopy(rt->rt_ifa->ifa_addr,
769 					      &laddr,
770 					      rt->rt_ifa->ifa_netmask);
771 			/*
772 			 * refactor rt and no lock operation necessary
773 			 */
774 			rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh);
775 			if (rt == NULL) {
776 				RADIX_NODE_HEAD_RUNLOCK(rnh);
777 				senderr(ESRCH);
778 			}
779 		}
780 		RT_LOCK(rt);
781 		RT_ADDREF(rt);
782 		RADIX_NODE_HEAD_RUNLOCK(rnh);
783 
784 report:
785 		RT_LOCK_ASSERT(rt);
786 		if ((rt->rt_flags & RTF_HOST) == 0
787 		    ? jailed_without_vnet(curthread->td_ucred)
788 		    : prison_if(curthread->td_ucred,
789 		    rt_key(rt)) != 0) {
790 			RT_UNLOCK(rt);
791 			senderr(ESRCH);
792 		}
793 		info.rti_info[RTAX_DST] = rt_key(rt);
794 		info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
795 		info.rti_info[RTAX_NETMASK] = rt_mask(rt);
796 		info.rti_info[RTAX_GENMASK] = 0;
797 		if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
798 			ifp = rt->rt_ifp;
799 			if (ifp) {
800 				info.rti_info[RTAX_IFP] =
801 				    ifp->if_addr->ifa_addr;
802 				error = rtm_get_jailed(&info, ifp, rt,
803 				    &saun, curthread->td_ucred);
804 				if (error != 0) {
805 					RT_UNLOCK(rt);
806 					senderr(error);
807 				}
808 				if (ifp->if_flags & IFF_POINTOPOINT)
809 					info.rti_info[RTAX_BRD] =
810 					    rt->rt_ifa->ifa_dstaddr;
811 				rtm->rtm_index = ifp->if_index;
812 			} else {
813 				info.rti_info[RTAX_IFP] = NULL;
814 				info.rti_info[RTAX_IFA] = NULL;
815 			}
816 		} else if ((ifp = rt->rt_ifp) != NULL) {
817 			rtm->rtm_index = ifp->if_index;
818 		}
819 
820 		/* Check if we need to realloc storage */
821 		rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len);
822 		if (len > alloc_len) {
823 			struct rt_msghdr *new_rtm;
824 			new_rtm = malloc(len, M_TEMP, M_NOWAIT);
825 			if (new_rtm == NULL) {
826 				RT_UNLOCK(rt);
827 				senderr(ENOBUFS);
828 			}
829 			bcopy(rtm, new_rtm, rtm->rtm_msglen);
830 			free(rtm, M_TEMP);
831 			rtm = new_rtm;
832 			alloc_len = len;
833 		}
834 
835 		w.w_tmem = (caddr_t)rtm;
836 		w.w_tmemsize = alloc_len;
837 		rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len);
838 
839 		if (rt->rt_flags & RTF_GWFLAG_COMPAT)
840 			rtm->rtm_flags = RTF_GATEWAY |
841 				(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
842 		else
843 			rtm->rtm_flags = rt->rt_flags;
844 		rt_getmetrics(rt, &rtm->rtm_rmx);
845 		rtm->rtm_addrs = info.rti_addrs;
846 
847 		RT_UNLOCK(rt);
848 		break;
849 
850 	default:
851 		senderr(EOPNOTSUPP);
852 	}
853 
854 flush:
855 	if (rt != NULL)
856 		RTFREE(rt);
857 	/*
858 	 * Check to see if we don't want our own messages.
859 	 */
860 	if ((so->so_options & SO_USELOOPBACK) == 0) {
861 		if (V_route_cb.any_count <= 1) {
862 			if (rtm != NULL && (char *)rtm != msgbuf)
863 				free(rtm, M_TEMP);
864 			m_freem(m);
865 			return (error);
866 		}
867 		/* There is another listener, so construct message */
868 		rp = sotorawcb(so);
869 	}
870 
871 	if (rtm != NULL) {
872 #ifdef INET6
873 		if (rti_need_deembed) {
874 			/* sin6_scope_id is recovered before sending rtm. */
875 			sin6 = (struct sockaddr_in6 *)&ss;
876 			for (i = 0; i < RTAX_MAX; i++) {
877 				if (info.rti_info[i] == NULL)
878 					continue;
879 				if (info.rti_info[i]->sa_family != AF_INET6)
880 					continue;
881 				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
882 				if (sa6_recoverscope(sin6) == 0)
883 					bcopy(sin6, info.rti_info[i],
884 						    sizeof(*sin6));
885 			}
886 		}
887 #endif
888 		if (error != 0)
889 			rtm->rtm_errno = error;
890 		else
891 			rtm->rtm_flags |= RTF_DONE;
892 
893 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
894 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
895 			m_freem(m);
896 			m = NULL;
897 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
898 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
899 
900 		if ((char *)rtm != msgbuf)
901 			free(rtm, M_TEMP);
902 	}
903 	if (m != NULL) {
904 		M_SETFIB(m, fibnum);
905 		m->m_flags |= RTS_FILTER_FIB;
906 		if (rp) {
907 			/*
908 			 * XXX insure we don't get a copy by
909 			 * invalidating our protocol
910 			 */
911 			unsigned short family = rp->rcb_proto.sp_family;
912 			rp->rcb_proto.sp_family = 0;
913 			rt_dispatch(m, saf);
914 			rp->rcb_proto.sp_family = family;
915 		} else
916 			rt_dispatch(m, saf);
917 	}
918 
919 	return (error);
920 }
921 
922 static void
923 rt_setmetrics(const struct rt_msghdr *rtm, struct rtentry *rt)
924 {
925 
926 	if (rtm->rtm_inits & RTV_MTU)
927 		rt->rt_mtu = rtm->rtm_rmx.rmx_mtu;
928 	if (rtm->rtm_inits & RTV_WEIGHT)
929 		rt->rt_weight = rtm->rtm_rmx.rmx_weight;
930 	/* Kernel -> userland timebase conversion. */
931 	if (rtm->rtm_inits & RTV_EXPIRE)
932 		rt->rt_expire = rtm->rtm_rmx.rmx_expire ?
933 		    rtm->rtm_rmx.rmx_expire - time_second + time_uptime : 0;
934 }
935 
936 static void
937 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out)
938 {
939 
940 	bzero(out, sizeof(*out));
941 	out->rmx_mtu = rt->rt_mtu;
942 	out->rmx_weight = rt->rt_weight;
943 	out->rmx_pksent = counter_u64_fetch(rt->rt_pksent);
944 	/* Kernel -> userland timebase conversion. */
945 	out->rmx_expire = rt->rt_expire ?
946 	    rt->rt_expire - time_uptime + time_second : 0;
947 }
948 
949 /*
950  * Extract the addresses of the passed sockaddrs.
951  * Do a little sanity checking so as to avoid bad memory references.
952  * This data is derived straight from userland.
953  */
954 static int
955 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
956 {
957 	struct sockaddr *sa;
958 	int i;
959 
960 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
961 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
962 			continue;
963 		sa = (struct sockaddr *)cp;
964 		/*
965 		 * It won't fit.
966 		 */
967 		if (cp + sa->sa_len > cplim)
968 			return (EINVAL);
969 		/*
970 		 * there are no more.. quit now
971 		 * If there are more bits, they are in error.
972 		 * I've seen this. route(1) can evidently generate these.
973 		 * This causes kernel to core dump.
974 		 * for compatibility, If we see this, point to a safe address.
975 		 */
976 		if (sa->sa_len == 0) {
977 			rtinfo->rti_info[i] = &sa_zero;
978 			return (0); /* should be EINVAL but for compat */
979 		}
980 		/* accept it */
981 #ifdef INET6
982 		if (sa->sa_family == AF_INET6)
983 			sa6_embedscope((struct sockaddr_in6 *)sa,
984 			    V_ip6_use_defzone);
985 #endif
986 		rtinfo->rti_info[i] = sa;
987 		cp += SA_SIZE(sa);
988 	}
989 	return (0);
990 }
991 
992 /*
993  * Used by the routing socket.
994  */
995 static struct mbuf *
996 rt_msg1(int type, struct rt_addrinfo *rtinfo)
997 {
998 	struct rt_msghdr *rtm;
999 	struct mbuf *m;
1000 	int i;
1001 	struct sockaddr *sa;
1002 #ifdef INET6
1003 	struct sockaddr_storage ss;
1004 	struct sockaddr_in6 *sin6;
1005 #endif
1006 	int len, dlen;
1007 
1008 	switch (type) {
1009 
1010 	case RTM_DELADDR:
1011 	case RTM_NEWADDR:
1012 		len = sizeof(struct ifa_msghdr);
1013 		break;
1014 
1015 	case RTM_DELMADDR:
1016 	case RTM_NEWMADDR:
1017 		len = sizeof(struct ifma_msghdr);
1018 		break;
1019 
1020 	case RTM_IFINFO:
1021 		len = sizeof(struct if_msghdr);
1022 		break;
1023 
1024 	case RTM_IFANNOUNCE:
1025 	case RTM_IEEE80211:
1026 		len = sizeof(struct if_announcemsghdr);
1027 		break;
1028 
1029 	default:
1030 		len = sizeof(struct rt_msghdr);
1031 	}
1032 
1033 	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
1034 	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1035 	if (len > MHLEN)
1036 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1037 	else
1038 		m = m_gethdr(M_NOWAIT, MT_DATA);
1039 	if (m == NULL)
1040 		return (m);
1041 
1042 	m->m_pkthdr.len = m->m_len = len;
1043 	rtm = mtod(m, struct rt_msghdr *);
1044 	bzero((caddr_t)rtm, len);
1045 	for (i = 0; i < RTAX_MAX; i++) {
1046 		if ((sa = rtinfo->rti_info[i]) == NULL)
1047 			continue;
1048 		rtinfo->rti_addrs |= (1 << i);
1049 		dlen = SA_SIZE(sa);
1050 #ifdef INET6
1051 		if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1052 			sin6 = (struct sockaddr_in6 *)&ss;
1053 			bcopy(sa, sin6, sizeof(*sin6));
1054 			if (sa6_recoverscope(sin6) == 0)
1055 				sa = (struct sockaddr *)sin6;
1056 		}
1057 #endif
1058 		m_copyback(m, len, dlen, (caddr_t)sa);
1059 		len += dlen;
1060 	}
1061 	if (m->m_pkthdr.len != len) {
1062 		m_freem(m);
1063 		return (NULL);
1064 	}
1065 	rtm->rtm_msglen = len;
1066 	rtm->rtm_version = RTM_VERSION;
1067 	rtm->rtm_type = type;
1068 	return (m);
1069 }
1070 
1071 /*
1072  * Writes information related to @rtinfo object to preallocated buffer.
1073  * Stores needed size in @plen. If @w is NULL, calculates size without
1074  * writing.
1075  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1076  *
1077  * Returns 0 on success.
1078  *
1079  */
1080 static int
1081 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1082 {
1083 	int i;
1084 	int len, buflen = 0, dlen;
1085 	caddr_t cp = NULL;
1086 	struct rt_msghdr *rtm = NULL;
1087 #ifdef INET6
1088 	struct sockaddr_storage ss;
1089 	struct sockaddr_in6 *sin6;
1090 #endif
1091 
1092 	switch (type) {
1093 
1094 	case RTM_DELADDR:
1095 	case RTM_NEWADDR:
1096 		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1097 #ifdef COMPAT_FREEBSD32
1098 			if (w->w_req->flags & SCTL_MASK32)
1099 				len = sizeof(struct ifa_msghdrl32);
1100 			else
1101 #endif
1102 				len = sizeof(struct ifa_msghdrl);
1103 		} else
1104 			len = sizeof(struct ifa_msghdr);
1105 		break;
1106 
1107 	case RTM_IFINFO:
1108 #ifdef COMPAT_FREEBSD32
1109 		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1110 			if (w->w_op == NET_RT_IFLISTL)
1111 				len = sizeof(struct if_msghdrl32);
1112 			else
1113 				len = sizeof(struct if_msghdr32);
1114 			break;
1115 		}
1116 #endif
1117 		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1118 			len = sizeof(struct if_msghdrl);
1119 		else
1120 			len = sizeof(struct if_msghdr);
1121 		break;
1122 
1123 	case RTM_NEWMADDR:
1124 		len = sizeof(struct ifma_msghdr);
1125 		break;
1126 
1127 	default:
1128 		len = sizeof(struct rt_msghdr);
1129 	}
1130 
1131 	if (w != NULL) {
1132 		rtm = (struct rt_msghdr *)w->w_tmem;
1133 		buflen = w->w_tmemsize - len;
1134 		cp = (caddr_t)w->w_tmem + len;
1135 	}
1136 
1137 	rtinfo->rti_addrs = 0;
1138 	for (i = 0; i < RTAX_MAX; i++) {
1139 		struct sockaddr *sa;
1140 
1141 		if ((sa = rtinfo->rti_info[i]) == NULL)
1142 			continue;
1143 		rtinfo->rti_addrs |= (1 << i);
1144 		dlen = SA_SIZE(sa);
1145 		if (cp != NULL && buflen >= dlen) {
1146 #ifdef INET6
1147 			if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1148 				sin6 = (struct sockaddr_in6 *)&ss;
1149 				bcopy(sa, sin6, sizeof(*sin6));
1150 				if (sa6_recoverscope(sin6) == 0)
1151 					sa = (struct sockaddr *)sin6;
1152 			}
1153 #endif
1154 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1155 			cp += dlen;
1156 			buflen -= dlen;
1157 		} else if (cp != NULL) {
1158 			/*
1159 			 * Buffer too small. Count needed size
1160 			 * and return with error.
1161 			 */
1162 			cp = NULL;
1163 		}
1164 
1165 		len += dlen;
1166 	}
1167 
1168 	if (cp != NULL) {
1169 		dlen = ALIGN(len) - len;
1170 		if (buflen < dlen)
1171 			cp = NULL;
1172 		else
1173 			buflen -= dlen;
1174 	}
1175 	len = ALIGN(len);
1176 
1177 	if (cp != NULL) {
1178 		/* fill header iff buffer is large enough */
1179 		rtm->rtm_version = RTM_VERSION;
1180 		rtm->rtm_type = type;
1181 		rtm->rtm_msglen = len;
1182 	}
1183 
1184 	*plen = len;
1185 
1186 	if (w != NULL && cp == NULL)
1187 		return (ENOBUFS);
1188 
1189 	return (0);
1190 }
1191 
1192 /*
1193  * This routine is called to generate a message from the routing
1194  * socket indicating that a redirect has occured, a routing lookup
1195  * has failed, or that a protocol has detected timeouts to a particular
1196  * destination.
1197  */
1198 void
1199 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1200     int fibnum)
1201 {
1202 	struct rt_msghdr *rtm;
1203 	struct mbuf *m;
1204 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1205 
1206 	if (V_route_cb.any_count == 0)
1207 		return;
1208 	m = rt_msg1(type, rtinfo);
1209 	if (m == NULL)
1210 		return;
1211 
1212 	if (fibnum != RT_ALL_FIBS) {
1213 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1214 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1215 		M_SETFIB(m, fibnum);
1216 		m->m_flags |= RTS_FILTER_FIB;
1217 	}
1218 
1219 	rtm = mtod(m, struct rt_msghdr *);
1220 	rtm->rtm_flags = RTF_DONE | flags;
1221 	rtm->rtm_errno = error;
1222 	rtm->rtm_addrs = rtinfo->rti_addrs;
1223 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1224 }
1225 
1226 void
1227 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1228 {
1229 
1230 	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1231 }
1232 
1233 /*
1234  * This routine is called to generate a message from the routing
1235  * socket indicating that the status of a network interface has changed.
1236  */
1237 void
1238 rt_ifmsg(struct ifnet *ifp)
1239 {
1240 	struct if_msghdr *ifm;
1241 	struct mbuf *m;
1242 	struct rt_addrinfo info;
1243 
1244 	if (V_route_cb.any_count == 0)
1245 		return;
1246 	bzero((caddr_t)&info, sizeof(info));
1247 	m = rt_msg1(RTM_IFINFO, &info);
1248 	if (m == NULL)
1249 		return;
1250 	ifm = mtod(m, struct if_msghdr *);
1251 	ifm->ifm_index = ifp->if_index;
1252 	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1253 	ifm->ifm_data = ifp->if_data;
1254 	ifm->ifm_addrs = 0;
1255 	rt_dispatch(m, AF_UNSPEC);
1256 }
1257 
1258 /*
1259  * Announce interface address arrival/withdraw.
1260  * Please do not call directly, use rt_addrmsg().
1261  * Assume input data to be valid.
1262  * Returns 0 on success.
1263  */
1264 int
1265 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1266 {
1267 	struct rt_addrinfo info;
1268 	struct sockaddr *sa;
1269 	int ncmd;
1270 	struct mbuf *m;
1271 	struct ifa_msghdr *ifam;
1272 	struct ifnet *ifp = ifa->ifa_ifp;
1273 
1274 	if (V_route_cb.any_count == 0)
1275 		return (0);
1276 
1277 	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1278 
1279 	bzero((caddr_t)&info, sizeof(info));
1280 	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1281 	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1282 	info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1283 	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1284 	if ((m = rt_msg1(ncmd, &info)) == NULL)
1285 		return (ENOBUFS);
1286 	ifam = mtod(m, struct ifa_msghdr *);
1287 	ifam->ifam_index = ifp->if_index;
1288 	ifam->ifam_metric = ifa->ifa_metric;
1289 	ifam->ifam_flags = ifa->ifa_flags;
1290 	ifam->ifam_addrs = info.rti_addrs;
1291 
1292 	if (fibnum != RT_ALL_FIBS) {
1293 		M_SETFIB(m, fibnum);
1294 		m->m_flags |= RTS_FILTER_FIB;
1295 	}
1296 
1297 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1298 
1299 	return (0);
1300 }
1301 
1302 /*
1303  * Announce route addition/removal.
1304  * Please do not call directly, use rt_routemsg().
1305  * Note that @rt data MAY be inconsistent/invalid:
1306  * if some userland app sends us "invalid" route message (invalid mask,
1307  * no dst, wrong address families, etc...) we need to pass it back
1308  * to app (and any other rtsock consumers) with rtm_errno field set to
1309  * non-zero value.
1310  *
1311  * Returns 0 on success.
1312  */
1313 int
1314 rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt,
1315     int fibnum)
1316 {
1317 	struct rt_addrinfo info;
1318 	struct sockaddr *sa;
1319 	struct mbuf *m;
1320 	struct rt_msghdr *rtm;
1321 
1322 	if (V_route_cb.any_count == 0)
1323 		return (0);
1324 
1325 	bzero((caddr_t)&info, sizeof(info));
1326 	info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1327 	info.rti_info[RTAX_DST] = sa = rt_key(rt);
1328 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1329 	if ((m = rt_msg1(cmd, &info)) == NULL)
1330 		return (ENOBUFS);
1331 	rtm = mtod(m, struct rt_msghdr *);
1332 	rtm->rtm_index = ifp->if_index;
1333 	rtm->rtm_flags |= rt->rt_flags;
1334 	rtm->rtm_errno = error;
1335 	rtm->rtm_addrs = info.rti_addrs;
1336 
1337 	if (fibnum != RT_ALL_FIBS) {
1338 		M_SETFIB(m, fibnum);
1339 		m->m_flags |= RTS_FILTER_FIB;
1340 	}
1341 
1342 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1343 
1344 	return (0);
1345 }
1346 
1347 /*
1348  * This is the analogue to the rt_newaddrmsg which performs the same
1349  * function but for multicast group memberhips.  This is easier since
1350  * there is no route state to worry about.
1351  */
1352 void
1353 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1354 {
1355 	struct rt_addrinfo info;
1356 	struct mbuf *m = NULL;
1357 	struct ifnet *ifp = ifma->ifma_ifp;
1358 	struct ifma_msghdr *ifmam;
1359 
1360 	if (V_route_cb.any_count == 0)
1361 		return;
1362 
1363 	bzero((caddr_t)&info, sizeof(info));
1364 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1365 	info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL;
1366 	/*
1367 	 * If a link-layer address is present, present it as a ``gateway''
1368 	 * (similarly to how ARP entries, e.g., are presented).
1369 	 */
1370 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1371 	m = rt_msg1(cmd, &info);
1372 	if (m == NULL)
1373 		return;
1374 	ifmam = mtod(m, struct ifma_msghdr *);
1375 	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1376 	    __func__));
1377 	ifmam->ifmam_index = ifp->if_index;
1378 	ifmam->ifmam_addrs = info.rti_addrs;
1379 	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1380 }
1381 
1382 static struct mbuf *
1383 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1384 	struct rt_addrinfo *info)
1385 {
1386 	struct if_announcemsghdr *ifan;
1387 	struct mbuf *m;
1388 
1389 	if (V_route_cb.any_count == 0)
1390 		return NULL;
1391 	bzero((caddr_t)info, sizeof(*info));
1392 	m = rt_msg1(type, info);
1393 	if (m != NULL) {
1394 		ifan = mtod(m, struct if_announcemsghdr *);
1395 		ifan->ifan_index = ifp->if_index;
1396 		strlcpy(ifan->ifan_name, ifp->if_xname,
1397 			sizeof(ifan->ifan_name));
1398 		ifan->ifan_what = what;
1399 	}
1400 	return m;
1401 }
1402 
1403 /*
1404  * This is called to generate routing socket messages indicating
1405  * IEEE80211 wireless events.
1406  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1407  */
1408 void
1409 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1410 {
1411 	struct mbuf *m;
1412 	struct rt_addrinfo info;
1413 
1414 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1415 	if (m != NULL) {
1416 		/*
1417 		 * Append the ieee80211 data.  Try to stick it in the
1418 		 * mbuf containing the ifannounce msg; otherwise allocate
1419 		 * a new mbuf and append.
1420 		 *
1421 		 * NB: we assume m is a single mbuf.
1422 		 */
1423 		if (data_len > M_TRAILINGSPACE(m)) {
1424 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1425 			if (n == NULL) {
1426 				m_freem(m);
1427 				return;
1428 			}
1429 			bcopy(data, mtod(n, void *), data_len);
1430 			n->m_len = data_len;
1431 			m->m_next = n;
1432 		} else if (data_len > 0) {
1433 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1434 			m->m_len += data_len;
1435 		}
1436 		if (m->m_flags & M_PKTHDR)
1437 			m->m_pkthdr.len += data_len;
1438 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1439 		rt_dispatch(m, AF_UNSPEC);
1440 	}
1441 }
1442 
1443 /*
1444  * This is called to generate routing socket messages indicating
1445  * network interface arrival and departure.
1446  */
1447 void
1448 rt_ifannouncemsg(struct ifnet *ifp, int what)
1449 {
1450 	struct mbuf *m;
1451 	struct rt_addrinfo info;
1452 
1453 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1454 	if (m != NULL)
1455 		rt_dispatch(m, AF_UNSPEC);
1456 }
1457 
1458 static void
1459 rt_dispatch(struct mbuf *m, sa_family_t saf)
1460 {
1461 	struct m_tag *tag;
1462 
1463 	/*
1464 	 * Preserve the family from the sockaddr, if any, in an m_tag for
1465 	 * use when injecting the mbuf into the routing socket buffer from
1466 	 * the netisr.
1467 	 */
1468 	if (saf != AF_UNSPEC) {
1469 		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1470 		    M_NOWAIT);
1471 		if (tag == NULL) {
1472 			m_freem(m);
1473 			return;
1474 		}
1475 		*(unsigned short *)(tag + 1) = saf;
1476 		m_tag_prepend(m, tag);
1477 	}
1478 #ifdef VIMAGE
1479 	if (V_loif)
1480 		m->m_pkthdr.rcvif = V_loif;
1481 	else {
1482 		m_freem(m);
1483 		return;
1484 	}
1485 #endif
1486 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
1487 }
1488 
1489 /*
1490  * This is used in dumping the kernel table via sysctl().
1491  */
1492 static int
1493 sysctl_dumpentry(struct radix_node *rn, void *vw)
1494 {
1495 	struct walkarg *w = vw;
1496 	struct rtentry *rt = (struct rtentry *)rn;
1497 	int error = 0, size;
1498 	struct rt_addrinfo info;
1499 
1500 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1501 		return 0;
1502 	if ((rt->rt_flags & RTF_HOST) == 0
1503 	    ? jailed_without_vnet(w->w_req->td->td_ucred)
1504 	    : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0)
1505 		return (0);
1506 	bzero((caddr_t)&info, sizeof(info));
1507 	info.rti_info[RTAX_DST] = rt_key(rt);
1508 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1509 	info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1510 	info.rti_info[RTAX_GENMASK] = 0;
1511 	if (rt->rt_ifp) {
1512 		info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1513 		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1514 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1515 			info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1516 	}
1517 	if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
1518 		return (error);
1519 	if (w->w_req && w->w_tmem) {
1520 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1521 
1522 		if (rt->rt_flags & RTF_GWFLAG_COMPAT)
1523 			rtm->rtm_flags = RTF_GATEWAY |
1524 				(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
1525 		else
1526 			rtm->rtm_flags = rt->rt_flags;
1527 		rt_getmetrics(rt, &rtm->rtm_rmx);
1528 		rtm->rtm_index = rt->rt_ifp->if_index;
1529 		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1530 		rtm->rtm_addrs = info.rti_addrs;
1531 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1532 		return (error);
1533 	}
1534 	return (error);
1535 }
1536 
1537 static int
1538 sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info,
1539     struct walkarg *w, int len)
1540 {
1541 	struct if_msghdrl *ifm;
1542 	struct if_data *ifd;
1543 
1544 	ifm = (struct if_msghdrl *)w->w_tmem;
1545 
1546 #ifdef COMPAT_FREEBSD32
1547 	if (w->w_req->flags & SCTL_MASK32) {
1548 		struct if_msghdrl32 *ifm32;
1549 
1550 		ifm32 = (struct if_msghdrl32 *)ifm;
1551 		ifm32->ifm_addrs = info->rti_addrs;
1552 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1553 		ifm32->ifm_index = ifp->if_index;
1554 		ifm32->_ifm_spare1 = 0;
1555 		ifm32->ifm_len = sizeof(*ifm32);
1556 		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1557 		ifd = &ifm32->ifm_data;
1558 	} else
1559 #endif
1560 	{
1561 		ifm->ifm_addrs = info->rti_addrs;
1562 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1563 		ifm->ifm_index = ifp->if_index;
1564 		ifm->_ifm_spare1 = 0;
1565 		ifm->ifm_len = sizeof(*ifm);
1566 		ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1567 		ifd = &ifm->ifm_data;
1568 	}
1569 
1570 	*ifd = ifp->if_data;
1571 
1572 	/* Some drivers still use ifqueue(9), add its stats. */
1573 	ifd->ifi_oqdrops += ifp->if_snd.ifq_drops;
1574 
1575 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1576 }
1577 
1578 static int
1579 sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info,
1580     struct walkarg *w, int len)
1581 {
1582 	struct if_msghdr *ifm;
1583 	struct if_data *ifd;
1584 
1585 	ifm = (struct if_msghdr *)w->w_tmem;
1586 
1587 #ifdef COMPAT_FREEBSD32
1588 	if (w->w_req->flags & SCTL_MASK32) {
1589 		struct if_msghdr32 *ifm32;
1590 
1591 		ifm32 = (struct if_msghdr32 *)ifm;
1592 		ifm32->ifm_addrs = info->rti_addrs;
1593 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1594 		ifm32->ifm_index = ifp->if_index;
1595 		ifd = &ifm32->ifm_data;
1596 	} else
1597 #endif
1598 	{
1599 		ifm->ifm_addrs = info->rti_addrs;
1600 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1601 		ifm->ifm_index = ifp->if_index;
1602 		ifd = &ifm->ifm_data;
1603 	}
1604 
1605 	*ifd = ifp->if_data;
1606 
1607 	/* Some drivers still use ifqueue(9), add its stats. */
1608 	ifd->ifi_oqdrops += ifp->if_snd.ifq_drops;
1609 
1610 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1611 }
1612 
1613 static int
1614 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1615     struct walkarg *w, int len)
1616 {
1617 	struct ifa_msghdrl *ifam;
1618 	struct if_data *ifd;
1619 
1620 	ifam = (struct ifa_msghdrl *)w->w_tmem;
1621 
1622 #ifdef COMPAT_FREEBSD32
1623 	if (w->w_req->flags & SCTL_MASK32) {
1624 		struct ifa_msghdrl32 *ifam32;
1625 
1626 		ifam32 = (struct ifa_msghdrl32 *)ifam;
1627 		ifam32->ifam_addrs = info->rti_addrs;
1628 		ifam32->ifam_flags = ifa->ifa_flags;
1629 		ifam32->ifam_index = ifa->ifa_ifp->if_index;
1630 		ifam32->_ifam_spare1 = 0;
1631 		ifam32->ifam_len = sizeof(*ifam32);
1632 		ifam32->ifam_data_off =
1633 		    offsetof(struct ifa_msghdrl32, ifam_data);
1634 		ifam32->ifam_metric = ifa->ifa_metric;
1635 		ifd = &ifam32->ifam_data;
1636 	} else
1637 #endif
1638 	{
1639 		ifam->ifam_addrs = info->rti_addrs;
1640 		ifam->ifam_flags = ifa->ifa_flags;
1641 		ifam->ifam_index = ifa->ifa_ifp->if_index;
1642 		ifam->_ifam_spare1 = 0;
1643 		ifam->ifam_len = sizeof(*ifam);
1644 		ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
1645 		ifam->ifam_metric = ifa->ifa_metric;
1646 		ifd = &ifam->ifam_data;
1647 	}
1648 
1649 	bzero(ifd, sizeof(*ifd));
1650 	ifd->ifi_datalen = sizeof(struct if_data);
1651 	ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
1652 	ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
1653 	ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
1654 	ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
1655 
1656 	/* Fixup if_data carp(4) vhid. */
1657 	if (carp_get_vhid_p != NULL)
1658 		ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
1659 
1660 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1661 }
1662 
1663 static int
1664 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
1665     struct walkarg *w, int len)
1666 {
1667 	struct ifa_msghdr *ifam;
1668 
1669 	ifam = (struct ifa_msghdr *)w->w_tmem;
1670 	ifam->ifam_addrs = info->rti_addrs;
1671 	ifam->ifam_flags = ifa->ifa_flags;
1672 	ifam->ifam_index = ifa->ifa_ifp->if_index;
1673 	ifam->ifam_metric = ifa->ifa_metric;
1674 
1675 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1676 }
1677 
1678 static int
1679 sysctl_iflist(int af, struct walkarg *w)
1680 {
1681 	struct ifnet *ifp;
1682 	struct ifaddr *ifa;
1683 	struct rt_addrinfo info;
1684 	int len, error = 0;
1685 
1686 	bzero((caddr_t)&info, sizeof(info));
1687 	IFNET_RLOCK_NOSLEEP();
1688 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1689 		if (w->w_arg && w->w_arg != ifp->if_index)
1690 			continue;
1691 		IF_ADDR_RLOCK(ifp);
1692 		ifa = ifp->if_addr;
1693 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1694 		error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
1695 		if (error != 0)
1696 			goto done;
1697 		info.rti_info[RTAX_IFP] = NULL;
1698 		if (w->w_req && w->w_tmem) {
1699 			if (w->w_op == NET_RT_IFLISTL)
1700 				error = sysctl_iflist_ifml(ifp, &info, w, len);
1701 			else
1702 				error = sysctl_iflist_ifm(ifp, &info, w, len);
1703 			if (error)
1704 				goto done;
1705 		}
1706 		while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
1707 			if (af && af != ifa->ifa_addr->sa_family)
1708 				continue;
1709 			if (prison_if(w->w_req->td->td_ucred,
1710 			    ifa->ifa_addr) != 0)
1711 				continue;
1712 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1713 			info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1714 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1715 			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
1716 			if (error != 0)
1717 				goto done;
1718 			if (w->w_req && w->w_tmem) {
1719 				if (w->w_op == NET_RT_IFLISTL)
1720 					error = sysctl_iflist_ifaml(ifa, &info,
1721 					    w, len);
1722 				else
1723 					error = sysctl_iflist_ifam(ifa, &info,
1724 					    w, len);
1725 				if (error)
1726 					goto done;
1727 			}
1728 		}
1729 		IF_ADDR_RUNLOCK(ifp);
1730 		info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1731 			info.rti_info[RTAX_BRD] = NULL;
1732 	}
1733 done:
1734 	if (ifp != NULL)
1735 		IF_ADDR_RUNLOCK(ifp);
1736 	IFNET_RUNLOCK_NOSLEEP();
1737 	return (error);
1738 }
1739 
1740 static int
1741 sysctl_ifmalist(int af, struct walkarg *w)
1742 {
1743 	struct ifnet *ifp;
1744 	struct ifmultiaddr *ifma;
1745 	struct	rt_addrinfo info;
1746 	int	len, error = 0;
1747 	struct ifaddr *ifa;
1748 
1749 	bzero((caddr_t)&info, sizeof(info));
1750 	IFNET_RLOCK_NOSLEEP();
1751 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1752 		if (w->w_arg && w->w_arg != ifp->if_index)
1753 			continue;
1754 		ifa = ifp->if_addr;
1755 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1756 		IF_ADDR_RLOCK(ifp);
1757 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1758 			if (af && af != ifma->ifma_addr->sa_family)
1759 				continue;
1760 			if (prison_if(w->w_req->td->td_ucred,
1761 			    ifma->ifma_addr) != 0)
1762 				continue;
1763 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1764 			info.rti_info[RTAX_GATEWAY] =
1765 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
1766 			    ifma->ifma_lladdr : NULL;
1767 			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
1768 			if (error != 0)
1769 				goto done;
1770 			if (w->w_req && w->w_tmem) {
1771 				struct ifma_msghdr *ifmam;
1772 
1773 				ifmam = (struct ifma_msghdr *)w->w_tmem;
1774 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1775 				ifmam->ifmam_flags = 0;
1776 				ifmam->ifmam_addrs = info.rti_addrs;
1777 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1778 				if (error) {
1779 					IF_ADDR_RUNLOCK(ifp);
1780 					goto done;
1781 				}
1782 			}
1783 		}
1784 		IF_ADDR_RUNLOCK(ifp);
1785 	}
1786 done:
1787 	IFNET_RUNLOCK_NOSLEEP();
1788 	return (error);
1789 }
1790 
1791 static int
1792 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1793 {
1794 	int	*name = (int *)arg1;
1795 	u_int	namelen = arg2;
1796 	struct radix_node_head *rnh = NULL; /* silence compiler. */
1797 	int	i, lim, error = EINVAL;
1798 	int	fib = 0;
1799 	u_char	af;
1800 	struct	walkarg w;
1801 
1802 	name ++;
1803 	namelen--;
1804 	if (req->newptr)
1805 		return (EPERM);
1806 	if (name[1] == NET_RT_DUMP) {
1807 		if (namelen == 3)
1808 			fib = req->td->td_proc->p_fibnum;
1809 		else if (namelen == 4)
1810 			fib = (name[3] == RT_ALL_FIBS) ?
1811 			    req->td->td_proc->p_fibnum : name[3];
1812 		else
1813 			return ((namelen < 3) ? EISDIR : ENOTDIR);
1814 		if (fib < 0 || fib >= rt_numfibs)
1815 			return (EINVAL);
1816 	} else if (namelen != 3)
1817 		return ((namelen < 3) ? EISDIR : ENOTDIR);
1818 	af = name[0];
1819 	if (af > AF_MAX)
1820 		return (EINVAL);
1821 	bzero(&w, sizeof(w));
1822 	w.w_op = name[1];
1823 	w.w_arg = name[2];
1824 	w.w_req = req;
1825 
1826 	error = sysctl_wire_old_buffer(req, 0);
1827 	if (error)
1828 		return (error);
1829 
1830 	/*
1831 	 * Allocate reply buffer in advance.
1832 	 * All rtsock messages has maximum length of u_short.
1833 	 */
1834 	w.w_tmemsize = 65536;
1835 	w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
1836 
1837 	switch (w.w_op) {
1838 
1839 	case NET_RT_DUMP:
1840 	case NET_RT_FLAGS:
1841 		if (af == 0) {			/* dump all tables */
1842 			i = 1;
1843 			lim = AF_MAX;
1844 		} else				/* dump only one table */
1845 			i = lim = af;
1846 
1847 		/*
1848 		 * take care of llinfo entries, the caller must
1849 		 * specify an AF
1850 		 */
1851 		if (w.w_op == NET_RT_FLAGS &&
1852 		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
1853 			if (af != 0)
1854 				error = lltable_sysctl_dumparp(af, w.w_req);
1855 			else
1856 				error = EINVAL;
1857 			break;
1858 		}
1859 		/*
1860 		 * take care of routing entries
1861 		 */
1862 		for (error = 0; error == 0 && i <= lim; i++) {
1863 			rnh = rt_tables_get_rnh(fib, i);
1864 			if (rnh != NULL) {
1865 				RADIX_NODE_HEAD_RLOCK(rnh);
1866 			    	error = rnh->rnh_walktree(rnh,
1867 				    sysctl_dumpentry, &w);
1868 				RADIX_NODE_HEAD_RUNLOCK(rnh);
1869 			} else if (af != 0)
1870 				error = EAFNOSUPPORT;
1871 		}
1872 		break;
1873 
1874 	case NET_RT_IFLIST:
1875 	case NET_RT_IFLISTL:
1876 		error = sysctl_iflist(af, &w);
1877 		break;
1878 
1879 	case NET_RT_IFMALIST:
1880 		error = sysctl_ifmalist(af, &w);
1881 		break;
1882 	}
1883 
1884 	free(w.w_tmem, M_TEMP);
1885 	return (error);
1886 }
1887 
1888 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1889 
1890 /*
1891  * Definitions of protocols supported in the ROUTE domain.
1892  */
1893 
1894 static struct domain routedomain;		/* or at least forward */
1895 
1896 static struct protosw routesw[] = {
1897 {
1898 	.pr_type =		SOCK_RAW,
1899 	.pr_domain =		&routedomain,
1900 	.pr_flags =		PR_ATOMIC|PR_ADDR,
1901 	.pr_output =		route_output,
1902 	.pr_ctlinput =		raw_ctlinput,
1903 	.pr_init =		raw_init,
1904 	.pr_usrreqs =		&route_usrreqs
1905 }
1906 };
1907 
1908 static struct domain routedomain = {
1909 	.dom_family =		PF_ROUTE,
1910 	.dom_name =		 "route",
1911 	.dom_protosw =		routesw,
1912 	.dom_protoswNPROTOSW =	&routesw[sizeof(routesw)/sizeof(routesw[0])]
1913 };
1914 
1915 VNET_DOMAIN_SET(route);
1916