1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_ddb.h" 35 #include "opt_route.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/eventhandler.h> 43 #include <sys/domain.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/priv.h> 48 #include <sys/proc.h> 49 #include <sys/protosw.h> 50 #include <sys/rmlock.h> 51 #include <sys/rwlock.h> 52 #include <sys/signalvar.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/sysctl.h> 56 #include <sys/systm.h> 57 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #include <net/if_private.h> 61 #include <net/if_dl.h> 62 #include <net/if_llatbl.h> 63 #include <net/if_types.h> 64 #include <net/netisr.h> 65 #include <net/route.h> 66 #include <net/route/route_ctl.h> 67 #include <net/route/route_var.h> 68 #include <net/vnet.h> 69 70 #include <netinet/in.h> 71 #include <netinet/if_ether.h> 72 #include <netinet/ip_carp.h> 73 #ifdef INET6 74 #include <netinet6/in6_var.h> 75 #include <netinet6/ip6_var.h> 76 #include <netinet6/scope6_var.h> 77 #endif 78 #include <net/route/nhop.h> 79 80 #define DEBUG_MOD_NAME rtsock 81 #define DEBUG_MAX_LEVEL LOG_DEBUG 82 #include <net/route/route_debug.h> 83 _DECLARE_DEBUG(LOG_INFO); 84 85 #ifdef COMPAT_FREEBSD32 86 #include <sys/mount.h> 87 #include <compat/freebsd32/freebsd32.h> 88 89 struct if_msghdr32 { 90 uint16_t ifm_msglen; 91 uint8_t ifm_version; 92 uint8_t ifm_type; 93 int32_t ifm_addrs; 94 int32_t ifm_flags; 95 uint16_t ifm_index; 96 uint16_t _ifm_spare1; 97 struct if_data ifm_data; 98 }; 99 100 struct if_msghdrl32 { 101 uint16_t ifm_msglen; 102 uint8_t ifm_version; 103 uint8_t ifm_type; 104 int32_t ifm_addrs; 105 int32_t ifm_flags; 106 uint16_t ifm_index; 107 uint16_t _ifm_spare1; 108 uint16_t ifm_len; 109 uint16_t ifm_data_off; 110 uint32_t _ifm_spare2; 111 struct if_data ifm_data; 112 }; 113 114 struct ifa_msghdrl32 { 115 uint16_t ifam_msglen; 116 uint8_t ifam_version; 117 uint8_t ifam_type; 118 int32_t ifam_addrs; 119 int32_t ifam_flags; 120 uint16_t ifam_index; 121 uint16_t _ifam_spare1; 122 uint16_t ifam_len; 123 uint16_t ifam_data_off; 124 int32_t ifam_metric; 125 struct if_data ifam_data; 126 }; 127 128 #define SA_SIZE32(sa) \ 129 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 130 sizeof(int) : \ 131 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 132 133 #endif /* COMPAT_FREEBSD32 */ 134 135 struct linear_buffer { 136 char *base; /* Base allocated memory pointer */ 137 uint32_t offset; /* Currently used offset */ 138 uint32_t size; /* Total buffer size */ 139 }; 140 #define SCRATCH_BUFFER_SIZE 1024 141 142 #define RTS_PID_LOG(_l, _fmt, ...) RT_LOG_##_l(_l, "PID %d: " _fmt, curproc ? curproc->p_pid : 0, ## __VA_ARGS__) 143 144 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 145 146 /* NB: these are not modified */ 147 static struct sockaddr route_src = { 2, PF_ROUTE, }; 148 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 149 150 /* These are external hooks for CARP. */ 151 int (*carp_get_vhid_p)(struct ifaddr *); 152 153 /* 154 * Used by rtsock callback code to decide whether to filter the update 155 * notification to a socket bound to a particular FIB. 156 */ 157 #define RTS_FILTER_FIB M_PROTO8 158 /* 159 * Used to store address family of the notification. 160 */ 161 #define m_rtsock_family m_pkthdr.PH_loc.eight[0] 162 163 struct rcb { 164 LIST_ENTRY(rcb) list; 165 struct socket *rcb_socket; 166 sa_family_t rcb_family; 167 }; 168 169 typedef struct { 170 LIST_HEAD(, rcb) cblist; 171 int ip_count; /* attached w/ AF_INET */ 172 int ip6_count; /* attached w/ AF_INET6 */ 173 int any_count; /* total attached */ 174 } route_cb_t; 175 VNET_DEFINE_STATIC(route_cb_t, route_cb); 176 #define V_route_cb VNET(route_cb) 177 178 struct mtx rtsock_mtx; 179 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 180 181 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 182 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 183 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 184 185 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 186 187 struct walkarg { 188 int family; 189 int w_tmemsize; 190 int w_op, w_arg; 191 caddr_t w_tmem; 192 struct sysctl_req *w_req; 193 struct sockaddr *dst; 194 struct sockaddr *mask; 195 }; 196 197 static void rts_input(struct mbuf *m); 198 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 199 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 200 struct walkarg *w, int *plen); 201 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 202 struct rt_addrinfo *rtinfo); 203 static int cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb); 204 static int sysctl_dumpentry(struct rtentry *rt, void *vw); 205 static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, 206 uint32_t weight, struct walkarg *w); 207 static int sysctl_iflist(int af, struct walkarg *w); 208 static int sysctl_ifmalist(int af, struct walkarg *w); 209 static void rt_getmetrics(const struct rtentry *rt, 210 const struct nhop_object *nh, struct rt_metrics *out); 211 static void rt_dispatch(struct mbuf *, sa_family_t); 212 static void rt_ifannouncemsg(struct ifnet *ifp, int what); 213 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 214 struct rt_msghdr *rtm, struct rib_cmd_info *rc); 215 static int update_rtm_from_rc(struct rt_addrinfo *info, 216 struct rt_msghdr **prtm, int alloc_len, 217 struct rib_cmd_info *rc, struct nhop_object *nh); 218 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 219 struct mbuf *m, sa_family_t saf, u_int fibnum, 220 int rtm_errno); 221 static bool can_export_rte(struct ucred *td_ucred, bool rt_is_host, 222 const struct sockaddr *rt_dst); 223 static void rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc); 224 static void rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask); 225 226 static struct netisr_handler rtsock_nh = { 227 .nh_name = "rtsock", 228 .nh_handler = rts_input, 229 .nh_proto = NETISR_ROUTE, 230 .nh_policy = NETISR_POLICY_SOURCE, 231 }; 232 233 static int 234 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 235 { 236 int error, qlimit; 237 238 netisr_getqlimit(&rtsock_nh, &qlimit); 239 error = sysctl_handle_int(oidp, &qlimit, 0, req); 240 if (error || !req->newptr) 241 return (error); 242 if (qlimit < 1) 243 return (EINVAL); 244 return (netisr_setqlimit(&rtsock_nh, qlimit)); 245 } 246 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 247 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 248 0, 0, sysctl_route_netisr_maxqlen, "I", 249 "maximum routing socket dispatch queue length"); 250 251 static void 252 vnet_rts_init(void) 253 { 254 int tmp; 255 256 if (IS_DEFAULT_VNET(curvnet)) { 257 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 258 rtsock_nh.nh_qlimit = tmp; 259 netisr_register(&rtsock_nh); 260 } 261 #ifdef VIMAGE 262 else 263 netisr_register_vnet(&rtsock_nh); 264 #endif 265 } 266 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 267 vnet_rts_init, 0); 268 269 #ifdef VIMAGE 270 static void 271 vnet_rts_uninit(void) 272 { 273 274 netisr_unregister_vnet(&rtsock_nh); 275 } 276 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 277 vnet_rts_uninit, 0); 278 #endif 279 280 static void 281 report_route_event(const struct rib_cmd_info *rc, void *_cbdata) 282 { 283 uint32_t fibnum = (uint32_t)(uintptr_t)_cbdata; 284 struct nhop_object *nh; 285 286 nh = rc->rc_cmd == RTM_DELETE ? rc->rc_nh_old : rc->rc_nh_new; 287 rt_routemsg(rc->rc_cmd, rc->rc_rt, nh, fibnum); 288 } 289 290 static void 291 rts_handle_route_event(uint32_t fibnum, const struct rib_cmd_info *rc) 292 { 293 #ifdef ROUTE_MPATH 294 if ((rc->rc_nh_new && NH_IS_NHGRP(rc->rc_nh_new)) || 295 (rc->rc_nh_old && NH_IS_NHGRP(rc->rc_nh_old))) { 296 rib_decompose_notification(rc, report_route_event, 297 (void *)(uintptr_t)fibnum); 298 } else 299 #endif 300 report_route_event(rc, (void *)(uintptr_t)fibnum); 301 } 302 static struct rtbridge rtsbridge = { 303 .route_f = rts_handle_route_event, 304 .ifmsg_f = rtsock_ifmsg, 305 }; 306 static struct rtbridge *rtsbridge_orig_p; 307 308 static void 309 rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc) 310 { 311 netlink_callback_p->route_f(fibnum, rc); 312 } 313 314 static void 315 rtsock_init(void) 316 { 317 rtsbridge_orig_p = rtsock_callback_p; 318 rtsock_callback_p = &rtsbridge; 319 } 320 SYSINIT(rtsock_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rtsock_init, NULL); 321 322 static void 323 rts_handle_ifnet_arrival(void *arg __unused, struct ifnet *ifp) 324 { 325 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 326 } 327 EVENTHANDLER_DEFINE(ifnet_arrival_event, rts_handle_ifnet_arrival, NULL, 0); 328 329 static void 330 rts_handle_ifnet_departure(void *arg __unused, struct ifnet *ifp) 331 { 332 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 333 } 334 EVENTHANDLER_DEFINE(ifnet_departure_event, rts_handle_ifnet_departure, NULL, 0); 335 336 static void 337 rts_append_data(struct socket *so, struct mbuf *m) 338 { 339 340 if (sbappendaddr(&so->so_rcv, &route_src, m, NULL) == 0) { 341 soroverflow(so); 342 m_freem(m); 343 } else 344 sorwakeup(so); 345 } 346 347 static void 348 rts_input(struct mbuf *m) 349 { 350 struct rcb *rcb; 351 struct socket *last; 352 353 last = NULL; 354 RTSOCK_LOCK(); 355 LIST_FOREACH(rcb, &V_route_cb.cblist, list) { 356 if (rcb->rcb_family != AF_UNSPEC && 357 rcb->rcb_family != m->m_rtsock_family) 358 continue; 359 if ((m->m_flags & RTS_FILTER_FIB) && 360 M_GETFIB(m) != rcb->rcb_socket->so_fibnum) 361 continue; 362 if (last != NULL) { 363 struct mbuf *n; 364 365 n = m_copym(m, 0, M_COPYALL, M_NOWAIT); 366 if (n != NULL) 367 rts_append_data(last, n); 368 } 369 last = rcb->rcb_socket; 370 } 371 if (last != NULL) 372 rts_append_data(last, m); 373 else 374 m_freem(m); 375 RTSOCK_UNLOCK(); 376 } 377 378 static void 379 rts_close(struct socket *so) 380 { 381 382 soisdisconnected(so); 383 } 384 385 static SYSCTL_NODE(_net, OID_AUTO, rtsock, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 386 "Routing socket infrastructure"); 387 static u_long rts_sendspace = 8192; 388 SYSCTL_ULONG(_net_rtsock, OID_AUTO, sendspace, CTLFLAG_RW, &rts_sendspace, 0, 389 "Default routing socket send space"); 390 static u_long rts_recvspace = 8192; 391 SYSCTL_ULONG(_net_rtsock, OID_AUTO, recvspace, CTLFLAG_RW, &rts_recvspace, 0, 392 "Default routing socket receive space"); 393 394 static int 395 rts_attach(struct socket *so, int proto, struct thread *td) 396 { 397 struct rcb *rcb; 398 int error; 399 400 error = soreserve(so, rts_sendspace, rts_recvspace); 401 if (error) 402 return (error); 403 404 rcb = malloc(sizeof(*rcb), M_PCB, M_WAITOK); 405 rcb->rcb_socket = so; 406 rcb->rcb_family = proto; 407 408 so->so_pcb = rcb; 409 so->so_fibnum = td->td_proc->p_fibnum; 410 so->so_options |= SO_USELOOPBACK; 411 412 RTSOCK_LOCK(); 413 LIST_INSERT_HEAD(&V_route_cb.cblist, rcb, list); 414 switch (proto) { 415 case AF_INET: 416 V_route_cb.ip_count++; 417 break; 418 case AF_INET6: 419 V_route_cb.ip6_count++; 420 break; 421 } 422 V_route_cb.any_count++; 423 RTSOCK_UNLOCK(); 424 soisconnected(so); 425 426 return (0); 427 } 428 429 static void 430 rts_detach(struct socket *so) 431 { 432 struct rcb *rcb = so->so_pcb; 433 434 RTSOCK_LOCK(); 435 LIST_REMOVE(rcb, list); 436 switch(rcb->rcb_family) { 437 case AF_INET: 438 V_route_cb.ip_count--; 439 break; 440 case AF_INET6: 441 V_route_cb.ip6_count--; 442 break; 443 } 444 V_route_cb.any_count--; 445 RTSOCK_UNLOCK(); 446 free(rcb, M_PCB); 447 so->so_pcb = NULL; 448 } 449 450 static int 451 rts_disconnect(struct socket *so) 452 { 453 454 return (ENOTCONN); 455 } 456 457 static int 458 rts_shutdown(struct socket *so) 459 { 460 461 socantsendmore(so); 462 return (0); 463 } 464 465 #ifndef _SOCKADDR_UNION_DEFINED 466 #define _SOCKADDR_UNION_DEFINED 467 /* 468 * The union of all possible address formats we handle. 469 */ 470 union sockaddr_union { 471 struct sockaddr sa; 472 struct sockaddr_in sin; 473 struct sockaddr_in6 sin6; 474 }; 475 #endif /* _SOCKADDR_UNION_DEFINED */ 476 477 static int 478 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 479 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 480 { 481 #if defined(INET) || defined(INET6) 482 struct epoch_tracker et; 483 #endif 484 485 /* First, see if the returned address is part of the jail. */ 486 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 487 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 488 return (0); 489 } 490 491 switch (info->rti_info[RTAX_DST]->sa_family) { 492 #ifdef INET 493 case AF_INET: 494 { 495 struct in_addr ia; 496 struct ifaddr *ifa; 497 int found; 498 499 found = 0; 500 /* 501 * Try to find an address on the given outgoing interface 502 * that belongs to the jail. 503 */ 504 NET_EPOCH_ENTER(et); 505 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 506 struct sockaddr *sa; 507 sa = ifa->ifa_addr; 508 if (sa->sa_family != AF_INET) 509 continue; 510 ia = ((struct sockaddr_in *)sa)->sin_addr; 511 if (prison_check_ip4(cred, &ia) == 0) { 512 found = 1; 513 break; 514 } 515 } 516 NET_EPOCH_EXIT(et); 517 if (!found) { 518 /* 519 * As a last resort return the 'default' jail address. 520 */ 521 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 522 sin_addr; 523 if (prison_get_ip4(cred, &ia) != 0) 524 return (ESRCH); 525 } 526 bzero(&saun->sin, sizeof(struct sockaddr_in)); 527 saun->sin.sin_len = sizeof(struct sockaddr_in); 528 saun->sin.sin_family = AF_INET; 529 saun->sin.sin_addr.s_addr = ia.s_addr; 530 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 531 break; 532 } 533 #endif 534 #ifdef INET6 535 case AF_INET6: 536 { 537 struct in6_addr ia6; 538 struct ifaddr *ifa; 539 int found; 540 541 found = 0; 542 /* 543 * Try to find an address on the given outgoing interface 544 * that belongs to the jail. 545 */ 546 NET_EPOCH_ENTER(et); 547 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 548 struct sockaddr *sa; 549 sa = ifa->ifa_addr; 550 if (sa->sa_family != AF_INET6) 551 continue; 552 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 553 &ia6, sizeof(struct in6_addr)); 554 if (prison_check_ip6(cred, &ia6) == 0) { 555 found = 1; 556 break; 557 } 558 } 559 NET_EPOCH_EXIT(et); 560 if (!found) { 561 /* 562 * As a last resort return the 'default' jail address. 563 */ 564 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 565 sin6_addr; 566 if (prison_get_ip6(cred, &ia6) != 0) 567 return (ESRCH); 568 } 569 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 570 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 571 saun->sin6.sin6_family = AF_INET6; 572 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 573 if (sa6_recoverscope(&saun->sin6) != 0) 574 return (ESRCH); 575 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 576 break; 577 } 578 #endif 579 default: 580 return (ESRCH); 581 } 582 return (0); 583 } 584 585 static int 586 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun) 587 { 588 struct ifaddr *ifa; 589 sa_family_t saf; 590 591 if (V_loif == NULL) { 592 RTS_PID_LOG(LOG_INFO, "Unable to add blackhole/reject nhop without loopback"); 593 return (ENOTSUP); 594 } 595 info->rti_ifp = V_loif; 596 597 saf = info->rti_info[RTAX_DST]->sa_family; 598 599 CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) { 600 if (ifa->ifa_addr->sa_family == saf) { 601 info->rti_ifa = ifa; 602 break; 603 } 604 } 605 if (info->rti_ifa == NULL) { 606 RTS_PID_LOG(LOG_INFO, "Unable to find ifa for blackhole/reject nhop"); 607 return (ENOTSUP); 608 } 609 610 bzero(saun, sizeof(union sockaddr_union)); 611 switch (saf) { 612 #ifdef INET 613 case AF_INET: 614 saun->sin.sin_family = AF_INET; 615 saun->sin.sin_len = sizeof(struct sockaddr_in); 616 saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); 617 break; 618 #endif 619 #ifdef INET6 620 case AF_INET6: 621 saun->sin6.sin6_family = AF_INET6; 622 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 623 saun->sin6.sin6_addr = in6addr_loopback; 624 break; 625 #endif 626 default: 627 RTS_PID_LOG(LOG_INFO, "unsupported family: %d", saf); 628 return (ENOTSUP); 629 } 630 info->rti_info[RTAX_GATEWAY] = &saun->sa; 631 info->rti_flags |= RTF_GATEWAY; 632 633 return (0); 634 } 635 636 /* 637 * Fills in @info based on userland-provided @rtm message. 638 * 639 * Returns 0 on success. 640 */ 641 static int 642 fill_addrinfo(struct rt_msghdr *rtm, int len, struct linear_buffer *lb, u_int fibnum, 643 struct rt_addrinfo *info) 644 { 645 int error; 646 647 rtm->rtm_pid = curproc->p_pid; 648 info->rti_addrs = rtm->rtm_addrs; 649 650 info->rti_mflags = rtm->rtm_inits; 651 info->rti_rmx = &rtm->rtm_rmx; 652 653 /* 654 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 655 * link-local address because rtrequest requires addresses with 656 * embedded scope id. 657 */ 658 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 659 return (EINVAL); 660 661 info->rti_flags = rtm->rtm_flags; 662 error = cleanup_xaddrs(info, lb); 663 if (error != 0) 664 return (error); 665 /* 666 * Verify that the caller has the appropriate privilege; RTM_GET 667 * is the only operation the non-superuser is allowed. 668 */ 669 if (rtm->rtm_type != RTM_GET) { 670 error = priv_check(curthread, PRIV_NET_ROUTE); 671 if (error != 0) 672 return (error); 673 } 674 675 /* 676 * The given gateway address may be an interface address. 677 * For example, issuing a "route change" command on a route 678 * entry that was created from a tunnel, and the gateway 679 * address given is the local end point. In this case the 680 * RTF_GATEWAY flag must be cleared or the destination will 681 * not be reachable even though there is no error message. 682 */ 683 if (info->rti_info[RTAX_GATEWAY] != NULL && 684 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 685 struct nhop_object *nh; 686 687 /* 688 * A host route through the loopback interface is 689 * installed for each interface adddress. In pre 8.0 690 * releases the interface address of a PPP link type 691 * is not reachable locally. This behavior is fixed as 692 * part of the new L2/L3 redesign and rewrite work. The 693 * signature of this interface address route is the 694 * AF_LINK sa_family type of the gateway, and the 695 * rt_ifp has the IFF_LOOPBACK flag set. 696 */ 697 nh = rib_lookup(fibnum, info->rti_info[RTAX_GATEWAY], NHR_NONE, 0); 698 if (nh != NULL && nh->gw_sa.sa_family == AF_LINK && 699 nh->nh_ifp->if_flags & IFF_LOOPBACK) { 700 info->rti_flags &= ~RTF_GATEWAY; 701 info->rti_flags |= RTF_GWFLAG_COMPAT; 702 } 703 } 704 705 return (0); 706 } 707 708 static struct nhop_object * 709 select_nhop(struct nhop_object *nh, const struct sockaddr *gw) 710 { 711 if (!NH_IS_NHGRP(nh)) 712 return (nh); 713 #ifdef ROUTE_MPATH 714 const struct weightened_nhop *wn; 715 uint32_t num_nhops; 716 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 717 if (gw == NULL) 718 return (wn[0].nh); 719 for (int i = 0; i < num_nhops; i++) { 720 if (match_nhop_gw(wn[i].nh, gw)) 721 return (wn[i].nh); 722 } 723 #endif 724 return (NULL); 725 } 726 727 /* 728 * Handles RTM_GET message from routing socket, returning matching rt. 729 * 730 * Returns: 731 * 0 on success, with locked and referenced matching rt in @rt_nrt 732 * errno of failure 733 */ 734 static int 735 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 736 struct rt_msghdr *rtm, struct rib_cmd_info *rc) 737 { 738 RIB_RLOCK_TRACKER; 739 struct rib_head *rnh; 740 struct nhop_object *nh; 741 sa_family_t saf; 742 743 saf = info->rti_info[RTAX_DST]->sa_family; 744 745 rnh = rt_tables_get_rnh(fibnum, saf); 746 if (rnh == NULL) 747 return (EAFNOSUPPORT); 748 749 RIB_RLOCK(rnh); 750 751 /* 752 * By (implicit) convention host route (one without netmask) 753 * means longest-prefix-match request and the route with netmask 754 * means exact-match lookup. 755 * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128 756 * prefixes, use original data to check for the netmask presence. 757 */ 758 if ((rtm->rtm_addrs & RTA_NETMASK) == 0) { 759 /* 760 * Provide longest prefix match for 761 * address lookup (no mask). 762 * 'route -n get addr' 763 */ 764 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( 765 info->rti_info[RTAX_DST], &rnh->head); 766 } else 767 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( 768 info->rti_info[RTAX_DST], 769 info->rti_info[RTAX_NETMASK], &rnh->head); 770 771 if (rc->rc_rt == NULL) { 772 RIB_RUNLOCK(rnh); 773 return (ESRCH); 774 } 775 776 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 777 if (nh == NULL) { 778 RIB_RUNLOCK(rnh); 779 return (ESRCH); 780 } 781 /* 782 * If performing proxied L2 entry insertion, and 783 * the actual PPP host entry is found, perform 784 * another search to retrieve the prefix route of 785 * the local end point of the PPP link. 786 * TODO: move this logic to userland. 787 */ 788 if (rtm->rtm_flags & RTF_ANNOUNCE) { 789 struct sockaddr_storage laddr; 790 791 if (nh->nh_ifp != NULL && 792 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 793 struct ifaddr *ifa; 794 795 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 796 RT_ALL_FIBS); 797 if (ifa != NULL) 798 rt_maskedcopy(ifa->ifa_addr, 799 (struct sockaddr *)&laddr, 800 ifa->ifa_netmask); 801 } else 802 rt_maskedcopy(nh->nh_ifa->ifa_addr, 803 (struct sockaddr *)&laddr, 804 nh->nh_ifa->ifa_netmask); 805 /* 806 * refactor rt and no lock operation necessary 807 */ 808 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr( 809 (struct sockaddr *)&laddr, &rnh->head); 810 if (rc->rc_rt == NULL) { 811 RIB_RUNLOCK(rnh); 812 return (ESRCH); 813 } 814 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 815 if (nh == NULL) { 816 RIB_RUNLOCK(rnh); 817 return (ESRCH); 818 } 819 } 820 rc->rc_nh_new = nh; 821 rc->rc_nh_weight = rc->rc_rt->rt_weight; 822 RIB_RUNLOCK(rnh); 823 824 return (0); 825 } 826 827 static void 828 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask) 829 { 830 #ifdef INET 831 if (family == AF_INET) { 832 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 833 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 834 835 bzero(dst4, sizeof(struct sockaddr_in)); 836 bzero(mask4, sizeof(struct sockaddr_in)); 837 838 dst4->sin_family = AF_INET; 839 dst4->sin_len = sizeof(struct sockaddr_in); 840 mask4->sin_family = AF_INET; 841 mask4->sin_len = sizeof(struct sockaddr_in); 842 } 843 #endif 844 #ifdef INET6 845 if (family == AF_INET6) { 846 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 847 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 848 849 bzero(dst6, sizeof(struct sockaddr_in6)); 850 bzero(mask6, sizeof(struct sockaddr_in6)); 851 852 dst6->sin6_family = AF_INET6; 853 dst6->sin6_len = sizeof(struct sockaddr_in6); 854 mask6->sin6_family = AF_INET6; 855 mask6->sin6_len = sizeof(struct sockaddr_in6); 856 } 857 #endif 858 } 859 860 static void 861 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst, 862 struct sockaddr *mask) 863 { 864 #ifdef INET 865 if (dst->sa_family == AF_INET) { 866 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 867 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 868 uint32_t scopeid = 0; 869 rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr, 870 &scopeid); 871 return; 872 } 873 #endif 874 #ifdef INET6 875 if (dst->sa_family == AF_INET6) { 876 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 877 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 878 uint32_t scopeid = 0; 879 rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr, 880 &mask6->sin6_addr, &scopeid); 881 dst6->sin6_scope_id = scopeid; 882 return; 883 } 884 #endif 885 } 886 887 static int 888 update_rtm_from_info(struct rt_addrinfo *info, struct rt_msghdr **prtm, 889 int alloc_len) 890 { 891 struct rt_msghdr *rtm, *orig_rtm = NULL; 892 struct walkarg w; 893 int len; 894 895 rtm = *prtm; 896 /* Check if we need to realloc storage */ 897 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 898 if (len > alloc_len) { 899 struct rt_msghdr *tmp_rtm; 900 901 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 902 if (tmp_rtm == NULL) 903 return (ENOBUFS); 904 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 905 orig_rtm = rtm; 906 rtm = tmp_rtm; 907 alloc_len = len; 908 909 /* 910 * Delay freeing original rtm as info contains 911 * data referencing it. 912 */ 913 } 914 915 w.w_tmem = (caddr_t)rtm; 916 w.w_tmemsize = alloc_len; 917 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 918 rtm->rtm_addrs = info->rti_addrs; 919 920 if (orig_rtm != NULL) 921 free(orig_rtm, M_TEMP); 922 *prtm = rtm; 923 return (0); 924 } 925 926 927 /* 928 * Update sockaddrs, flags, etc in @prtm based on @rc data. 929 * rtm can be reallocated. 930 * 931 * Returns 0 on success, along with pointer to (potentially reallocated) 932 * rtm. 933 * 934 */ 935 static int 936 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, 937 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) 938 { 939 union sockaddr_union saun; 940 struct rt_msghdr *rtm; 941 struct ifnet *ifp; 942 int error; 943 944 rtm = *prtm; 945 union sockaddr_union sa_dst, sa_mask; 946 int family = info->rti_info[RTAX_DST]->sa_family; 947 init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa); 948 export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa); 949 950 info->rti_info[RTAX_DST] = &sa_dst.sa; 951 info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa; 952 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 953 info->rti_info[RTAX_GENMASK] = 0; 954 ifp = nh->nh_ifp; 955 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 956 if (ifp) { 957 info->rti_info[RTAX_IFP] = 958 ifp->if_addr->ifa_addr; 959 error = rtm_get_jailed(info, ifp, nh, 960 &saun, curthread->td_ucred); 961 if (error != 0) 962 return (error); 963 if (ifp->if_flags & IFF_POINTOPOINT) 964 info->rti_info[RTAX_BRD] = 965 nh->nh_ifa->ifa_dstaddr; 966 rtm->rtm_index = ifp->if_index; 967 } else { 968 info->rti_info[RTAX_IFP] = NULL; 969 info->rti_info[RTAX_IFA] = NULL; 970 } 971 } else if (ifp != NULL) 972 rtm->rtm_index = ifp->if_index; 973 974 if ((error = update_rtm_from_info(info, prtm, alloc_len)) != 0) 975 return (error); 976 977 rtm = *prtm; 978 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); 979 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 980 rtm->rtm_flags = RTF_GATEWAY | 981 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 982 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); 983 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; 984 985 return (0); 986 } 987 988 #ifdef ROUTE_MPATH 989 static void 990 save_del_notification(const struct rib_cmd_info *rc, void *_cbdata) 991 { 992 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 993 994 if (rc->rc_cmd == RTM_DELETE) 995 *rc_new = *rc; 996 } 997 998 static void 999 save_add_notification(const struct rib_cmd_info *rc, void *_cbdata) 1000 { 1001 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 1002 1003 if (rc->rc_cmd == RTM_ADD) 1004 *rc_new = *rc; 1005 } 1006 #endif 1007 1008 #if defined(INET6) || defined(INET) 1009 static struct sockaddr * 1010 alloc_sockaddr_aligned(struct linear_buffer *lb, int len) 1011 { 1012 len = roundup2(len, sizeof(uint64_t)); 1013 if (lb->offset + len > lb->size) 1014 return (NULL); 1015 struct sockaddr *sa = (struct sockaddr *)(lb->base + lb->offset); 1016 lb->offset += len; 1017 return (sa); 1018 } 1019 #endif 1020 1021 static int 1022 rts_send(struct socket *so, int flags, struct mbuf *m, 1023 struct sockaddr *nam, struct mbuf *control, struct thread *td) 1024 { 1025 struct rt_msghdr *rtm = NULL; 1026 struct rt_addrinfo info; 1027 struct epoch_tracker et; 1028 #ifdef INET6 1029 struct sockaddr_storage ss; 1030 struct sockaddr_in6 *sin6; 1031 int i, rti_need_deembed = 0; 1032 #endif 1033 int alloc_len = 0, len, error = 0, fibnum; 1034 sa_family_t saf = AF_UNSPEC; 1035 struct rib_cmd_info rc; 1036 struct nhop_object *nh; 1037 1038 if ((flags & PRUS_OOB) || control != NULL) { 1039 m_freem(m); 1040 if (control != NULL) 1041 m_freem(control); 1042 return (EOPNOTSUPP); 1043 } 1044 1045 fibnum = so->so_fibnum; 1046 #define senderr(e) { error = e; goto flush;} 1047 if (m == NULL || ((m->m_len < sizeof(long)) && 1048 (m = m_pullup(m, sizeof(long))) == NULL)) 1049 return (ENOBUFS); 1050 if ((m->m_flags & M_PKTHDR) == 0) 1051 panic("route_output"); 1052 NET_EPOCH_ENTER(et); 1053 len = m->m_pkthdr.len; 1054 if (len < sizeof(*rtm) || 1055 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 1056 senderr(EINVAL); 1057 1058 /* 1059 * Most of current messages are in range 200-240 bytes, 1060 * minimize possible re-allocation on reply using larger size 1061 * buffer aligned on 1k boundaty. 1062 */ 1063 alloc_len = roundup2(len, 1024); 1064 int total_len = alloc_len + SCRATCH_BUFFER_SIZE; 1065 if ((rtm = malloc(total_len, M_TEMP, M_NOWAIT)) == NULL) 1066 senderr(ENOBUFS); 1067 1068 m_copydata(m, 0, len, (caddr_t)rtm); 1069 bzero(&info, sizeof(info)); 1070 nh = NULL; 1071 struct linear_buffer lb = { 1072 .base = (char *)rtm + alloc_len, 1073 .size = SCRATCH_BUFFER_SIZE, 1074 }; 1075 1076 if (rtm->rtm_version != RTM_VERSION) { 1077 /* Do not touch message since format is unknown */ 1078 free(rtm, M_TEMP); 1079 rtm = NULL; 1080 senderr(EPROTONOSUPPORT); 1081 } 1082 1083 /* 1084 * Starting from here, it is possible 1085 * to alter original message and insert 1086 * caller PID and error value. 1087 */ 1088 1089 if ((error = fill_addrinfo(rtm, len, &lb, fibnum, &info)) != 0) { 1090 senderr(error); 1091 } 1092 /* fill_addringo() embeds scope into IPv6 addresses */ 1093 #ifdef INET6 1094 rti_need_deembed = 1; 1095 #endif 1096 1097 saf = info.rti_info[RTAX_DST]->sa_family; 1098 1099 /* support for new ARP code */ 1100 if (rtm->rtm_flags & RTF_LLDATA) { 1101 error = lla_rt_output(rtm, &info); 1102 goto flush; 1103 } 1104 1105 union sockaddr_union gw_saun; 1106 int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT); 1107 if (blackhole_flags != 0) { 1108 if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT)) 1109 error = fill_blackholeinfo(&info, &gw_saun); 1110 else { 1111 RTS_PID_LOG(LOG_DEBUG, "both BLACKHOLE and REJECT flags specifiied"); 1112 error = EINVAL; 1113 } 1114 if (error != 0) 1115 senderr(error); 1116 } 1117 1118 switch (rtm->rtm_type) { 1119 case RTM_ADD: 1120 case RTM_CHANGE: 1121 if (rtm->rtm_type == RTM_ADD) { 1122 if (info.rti_info[RTAX_GATEWAY] == NULL) { 1123 RTS_PID_LOG(LOG_DEBUG, "RTM_ADD w/o gateway"); 1124 senderr(EINVAL); 1125 } 1126 } 1127 error = rib_action(fibnum, rtm->rtm_type, &info, &rc); 1128 if (error == 0) { 1129 rtsock_notify_event(fibnum, &rc); 1130 #ifdef ROUTE_MPATH 1131 if (NH_IS_NHGRP(rc.rc_nh_new) || 1132 (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) { 1133 struct rib_cmd_info rc_simple = {}; 1134 rib_decompose_notification(&rc, 1135 save_add_notification, (void *)&rc_simple); 1136 rc = rc_simple; 1137 } 1138 #endif 1139 /* nh MAY be empty if RTM_CHANGE request is no-op */ 1140 nh = rc.rc_nh_new; 1141 if (nh != NULL) { 1142 rtm->rtm_index = nh->nh_ifp->if_index; 1143 rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh); 1144 } 1145 } 1146 break; 1147 1148 case RTM_DELETE: 1149 error = rib_action(fibnum, RTM_DELETE, &info, &rc); 1150 if (error == 0) { 1151 rtsock_notify_event(fibnum, &rc); 1152 #ifdef ROUTE_MPATH 1153 if (NH_IS_NHGRP(rc.rc_nh_old) || 1154 (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) { 1155 struct rib_cmd_info rc_simple = {}; 1156 rib_decompose_notification(&rc, 1157 save_del_notification, (void *)&rc_simple); 1158 rc = rc_simple; 1159 } 1160 #endif 1161 nh = rc.rc_nh_old; 1162 } 1163 break; 1164 1165 case RTM_GET: 1166 error = handle_rtm_get(&info, fibnum, rtm, &rc); 1167 if (error != 0) 1168 senderr(error); 1169 nh = rc.rc_nh_new; 1170 1171 if (!can_export_rte(curthread->td_ucred, 1172 info.rti_info[RTAX_NETMASK] == NULL, 1173 info.rti_info[RTAX_DST])) { 1174 senderr(ESRCH); 1175 } 1176 break; 1177 1178 default: 1179 senderr(EOPNOTSUPP); 1180 } 1181 1182 if (error == 0 && nh != NULL) { 1183 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); 1184 /* 1185 * Note that some sockaddr pointers may have changed to 1186 * point to memory outsize @rtm. Some may be pointing 1187 * to the on-stack variables. 1188 * Given that, any pointer in @info CANNOT BE USED. 1189 */ 1190 1191 /* 1192 * scopeid deembedding has been performed while 1193 * writing updated rtm in rtsock_msg_buffer(). 1194 * With that in mind, skip deembedding procedure below. 1195 */ 1196 #ifdef INET6 1197 rti_need_deembed = 0; 1198 #endif 1199 } 1200 1201 flush: 1202 NET_EPOCH_EXIT(et); 1203 1204 #ifdef INET6 1205 if (rtm != NULL) { 1206 if (rti_need_deembed) { 1207 /* sin6_scope_id is recovered before sending rtm. */ 1208 sin6 = (struct sockaddr_in6 *)&ss; 1209 for (i = 0; i < RTAX_MAX; i++) { 1210 if (info.rti_info[i] == NULL) 1211 continue; 1212 if (info.rti_info[i]->sa_family != AF_INET6) 1213 continue; 1214 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 1215 if (sa6_recoverscope(sin6) == 0) 1216 bcopy(sin6, info.rti_info[i], 1217 sizeof(*sin6)); 1218 } 1219 if (update_rtm_from_info(&info, &rtm, alloc_len) != 0) { 1220 if (error != 0) 1221 error = ENOBUFS; 1222 } 1223 } 1224 } 1225 #endif 1226 send_rtm_reply(so, rtm, m, saf, fibnum, error); 1227 1228 return (error); 1229 } 1230 1231 /* 1232 * Sends the prepared reply message in @rtm to all rtsock clients. 1233 * Frees @m and @rtm. 1234 * 1235 */ 1236 static void 1237 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1238 sa_family_t saf, u_int fibnum, int rtm_errno) 1239 { 1240 struct rcb *rcb = NULL; 1241 1242 /* 1243 * Check to see if we don't want our own messages. 1244 */ 1245 if ((so->so_options & SO_USELOOPBACK) == 0) { 1246 if (V_route_cb.any_count <= 1) { 1247 if (rtm != NULL) 1248 free(rtm, M_TEMP); 1249 m_freem(m); 1250 return; 1251 } 1252 /* There is another listener, so construct message */ 1253 rcb = so->so_pcb; 1254 } 1255 1256 if (rtm != NULL) { 1257 if (rtm_errno!= 0) 1258 rtm->rtm_errno = rtm_errno; 1259 else 1260 rtm->rtm_flags |= RTF_DONE; 1261 1262 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1263 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1264 m_freem(m); 1265 m = NULL; 1266 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1267 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1268 1269 free(rtm, M_TEMP); 1270 } 1271 if (m != NULL) { 1272 M_SETFIB(m, fibnum); 1273 m->m_flags |= RTS_FILTER_FIB; 1274 if (rcb) { 1275 /* 1276 * XXX insure we don't get a copy by 1277 * invalidating our protocol 1278 */ 1279 sa_family_t family = rcb->rcb_family; 1280 rcb->rcb_family = AF_UNSPEC; 1281 rt_dispatch(m, saf); 1282 rcb->rcb_family = family; 1283 } else 1284 rt_dispatch(m, saf); 1285 } 1286 } 1287 1288 static void 1289 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, 1290 struct rt_metrics *out) 1291 { 1292 1293 bzero(out, sizeof(*out)); 1294 out->rmx_mtu = nh->nh_mtu; 1295 out->rmx_weight = rt->rt_weight; 1296 out->rmx_nhidx = nhop_get_idx(nh); 1297 /* Kernel -> userland timebase conversion. */ 1298 out->rmx_expire = nhop_get_expire(nh) ? 1299 nhop_get_expire(nh) - time_uptime + time_second : 0; 1300 } 1301 1302 /* 1303 * Extract the addresses of the passed sockaddrs. 1304 * Do a little sanity checking so as to avoid bad memory references. 1305 * This data is derived straight from userland. 1306 */ 1307 static int 1308 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1309 { 1310 struct sockaddr *sa; 1311 int i; 1312 1313 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1314 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1315 continue; 1316 sa = (struct sockaddr *)cp; 1317 /* 1318 * It won't fit. 1319 */ 1320 if (cp + sa->sa_len > cplim) { 1321 RTS_PID_LOG(LOG_DEBUG, "sa_len too big for sa type %d", i); 1322 return (EINVAL); 1323 } 1324 /* 1325 * there are no more.. quit now 1326 * If there are more bits, they are in error. 1327 * I've seen this. route(1) can evidently generate these. 1328 * This causes kernel to core dump. 1329 * for compatibility, If we see this, point to a safe address. 1330 */ 1331 if (sa->sa_len == 0) { 1332 rtinfo->rti_info[i] = &sa_zero; 1333 return (0); /* should be EINVAL but for compat */ 1334 } 1335 /* accept it */ 1336 #ifdef INET6 1337 if (sa->sa_family == AF_INET6) 1338 sa6_embedscope((struct sockaddr_in6 *)sa, 1339 V_ip6_use_defzone); 1340 #endif 1341 rtinfo->rti_info[i] = sa; 1342 cp += SA_SIZE(sa); 1343 } 1344 return (0); 1345 } 1346 1347 #ifdef INET 1348 static inline void 1349 fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr) 1350 { 1351 1352 const struct sockaddr_in nsin = { 1353 .sin_family = AF_INET, 1354 .sin_len = sizeof(struct sockaddr_in), 1355 .sin_addr = addr, 1356 }; 1357 *sin = nsin; 1358 } 1359 #endif 1360 1361 #ifdef INET6 1362 static inline void 1363 fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6, 1364 uint32_t scopeid) 1365 { 1366 1367 const struct sockaddr_in6 nsin6 = { 1368 .sin6_family = AF_INET6, 1369 .sin6_len = sizeof(struct sockaddr_in6), 1370 .sin6_addr = *addr6, 1371 .sin6_scope_id = scopeid, 1372 }; 1373 *sin6 = nsin6; 1374 } 1375 #endif 1376 1377 #if defined(INET6) || defined(INET) 1378 /* 1379 * Checks if gateway is suitable for lltable operations. 1380 * Lltable code requires AF_LINK gateway with ifindex 1381 * and mac address specified. 1382 * Returns 0 on success. 1383 */ 1384 static int 1385 cleanup_xaddrs_lladdr(struct rt_addrinfo *info) 1386 { 1387 struct sockaddr_dl *sdl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY]; 1388 1389 if (sdl->sdl_family != AF_LINK) 1390 return (EINVAL); 1391 1392 if (sdl->sdl_index == 0) { 1393 RTS_PID_LOG(LOG_DEBUG, "AF_LINK gateway w/o ifindex"); 1394 return (EINVAL); 1395 } 1396 1397 if (offsetof(struct sockaddr_dl, sdl_data) + sdl->sdl_nlen + sdl->sdl_alen > sdl->sdl_len) { 1398 RTS_PID_LOG(LOG_DEBUG, "AF_LINK gw: sdl_nlen/sdl_alen too large"); 1399 return (EINVAL); 1400 } 1401 1402 return (0); 1403 } 1404 1405 static int 1406 cleanup_xaddrs_gateway(struct rt_addrinfo *info, struct linear_buffer *lb) 1407 { 1408 struct sockaddr *gw = info->rti_info[RTAX_GATEWAY]; 1409 struct sockaddr *sa; 1410 1411 if (info->rti_flags & RTF_LLDATA) 1412 return (cleanup_xaddrs_lladdr(info)); 1413 1414 switch (gw->sa_family) { 1415 #ifdef INET 1416 case AF_INET: 1417 { 1418 struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw; 1419 1420 /* Ensure reads do not go beyoud SA boundary */ 1421 if (SA_SIZE(gw) < offsetof(struct sockaddr_in, sin_zero)) { 1422 RTS_PID_LOG(LOG_DEBUG, "gateway sin_len too small: %d", 1423 gw->sa_len); 1424 return (EINVAL); 1425 } 1426 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_in)); 1427 if (sa == NULL) 1428 return (ENOBUFS); 1429 fill_sockaddr_inet((struct sockaddr_in *)sa, gw_sin->sin_addr); 1430 info->rti_info[RTAX_GATEWAY] = sa; 1431 } 1432 break; 1433 #endif 1434 #ifdef INET6 1435 case AF_INET6: 1436 { 1437 struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw; 1438 if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) { 1439 RTS_PID_LOG(LOG_DEBUG, "gateway sin6_len too small: %d", 1440 gw->sa_len); 1441 return (EINVAL); 1442 } 1443 fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0); 1444 break; 1445 } 1446 #endif 1447 case AF_LINK: 1448 { 1449 struct sockaddr_dl *gw_sdl; 1450 1451 size_t sdl_min_len = offsetof(struct sockaddr_dl, sdl_data); 1452 gw_sdl = (struct sockaddr_dl *)gw; 1453 if (gw_sdl->sdl_len < sdl_min_len) { 1454 RTS_PID_LOG(LOG_DEBUG, "gateway sdl_len too small: %d", 1455 gw_sdl->sdl_len); 1456 return (EINVAL); 1457 } 1458 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_dl_short)); 1459 if (sa == NULL) 1460 return (ENOBUFS); 1461 1462 const struct sockaddr_dl_short sdl = { 1463 .sdl_family = AF_LINK, 1464 .sdl_len = sizeof(struct sockaddr_dl_short), 1465 .sdl_index = gw_sdl->sdl_index, 1466 }; 1467 *((struct sockaddr_dl_short *)sa) = sdl; 1468 info->rti_info[RTAX_GATEWAY] = sa; 1469 break; 1470 } 1471 } 1472 1473 return (0); 1474 } 1475 #endif 1476 1477 static void 1478 remove_netmask(struct rt_addrinfo *info) 1479 { 1480 info->rti_info[RTAX_NETMASK] = NULL; 1481 info->rti_flags |= RTF_HOST; 1482 info->rti_addrs &= ~RTA_NETMASK; 1483 } 1484 1485 #ifdef INET 1486 static int 1487 cleanup_xaddrs_inet(struct rt_addrinfo *info, struct linear_buffer *lb) 1488 { 1489 struct sockaddr_in *dst_sa, *mask_sa; 1490 const int sa_len = sizeof(struct sockaddr_in); 1491 struct in_addr dst, mask; 1492 1493 /* Check & fixup dst/netmask combination first */ 1494 dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST]; 1495 mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK]; 1496 1497 /* Ensure reads do not go beyound the buffer size */ 1498 if (SA_SIZE(dst_sa) < offsetof(struct sockaddr_in, sin_zero)) { 1499 RTS_PID_LOG(LOG_DEBUG, "prefix dst sin_len too small: %d", 1500 dst_sa->sin_len); 1501 return (EINVAL); 1502 } 1503 1504 if ((mask_sa != NULL) && mask_sa->sin_len < sizeof(struct sockaddr_in)) { 1505 /* 1506 * Some older routing software encode mask length into the 1507 * sin_len, thus resulting in "truncated" sockaddr. 1508 */ 1509 int len = mask_sa->sin_len - offsetof(struct sockaddr_in, sin_addr); 1510 if (len >= 0) { 1511 mask.s_addr = 0; 1512 if (len > sizeof(struct in_addr)) 1513 len = sizeof(struct in_addr); 1514 memcpy(&mask, &mask_sa->sin_addr, len); 1515 } else { 1516 RTS_PID_LOG(LOG_DEBUG, "prefix mask sin_len too small: %d", 1517 mask_sa->sin_len); 1518 return (EINVAL); 1519 } 1520 } else 1521 mask.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST; 1522 1523 dst.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr)); 1524 1525 /* Construct new "clean" dst/mask sockaddresses */ 1526 if ((dst_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1527 return (ENOBUFS); 1528 fill_sockaddr_inet(dst_sa, dst); 1529 info->rti_info[RTAX_DST] = (struct sockaddr *)dst_sa; 1530 1531 if (mask.s_addr != INADDR_BROADCAST) { 1532 if ((mask_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1533 return (ENOBUFS); 1534 fill_sockaddr_inet(mask_sa, mask); 1535 info->rti_info[RTAX_NETMASK] = (struct sockaddr *)mask_sa; 1536 info->rti_flags &= ~RTF_HOST; 1537 } else 1538 remove_netmask(info); 1539 1540 /* Check gateway */ 1541 if (info->rti_info[RTAX_GATEWAY] != NULL) 1542 return (cleanup_xaddrs_gateway(info, lb)); 1543 1544 return (0); 1545 } 1546 #endif 1547 1548 #ifdef INET6 1549 static int 1550 cleanup_xaddrs_inet6(struct rt_addrinfo *info, struct linear_buffer *lb) 1551 { 1552 struct sockaddr *sa; 1553 struct sockaddr_in6 *dst_sa, *mask_sa; 1554 struct in6_addr mask, *dst; 1555 const int sa_len = sizeof(struct sockaddr_in6); 1556 1557 /* Check & fixup dst/netmask combination first */ 1558 dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST]; 1559 mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK]; 1560 1561 if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1562 RTS_PID_LOG(LOG_DEBUG, "prefix dst sin6_len too small: %d", 1563 dst_sa->sin6_len); 1564 return (EINVAL); 1565 } 1566 1567 if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1568 /* 1569 * Some older routing software encode mask length into the 1570 * sin6_len, thus resulting in "truncated" sockaddr. 1571 */ 1572 int len = mask_sa->sin6_len - offsetof(struct sockaddr_in6, sin6_addr); 1573 if (len >= 0) { 1574 bzero(&mask, sizeof(mask)); 1575 if (len > sizeof(struct in6_addr)) 1576 len = sizeof(struct in6_addr); 1577 memcpy(&mask, &mask_sa->sin6_addr, len); 1578 } else { 1579 RTS_PID_LOG(LOG_DEBUG, "rtsock: prefix mask sin6_len too small: %d", 1580 mask_sa->sin6_len); 1581 return (EINVAL); 1582 } 1583 } else 1584 mask = mask_sa ? mask_sa->sin6_addr : in6mask128; 1585 1586 dst = &dst_sa->sin6_addr; 1587 IN6_MASK_ADDR(dst, &mask); 1588 1589 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1590 return (ENOBUFS); 1591 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, dst, 0); 1592 info->rti_info[RTAX_DST] = sa; 1593 1594 if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) { 1595 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1596 return (ENOBUFS); 1597 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, &mask, 0); 1598 info->rti_info[RTAX_NETMASK] = sa; 1599 info->rti_flags &= ~RTF_HOST; 1600 } else 1601 remove_netmask(info); 1602 1603 /* Check gateway */ 1604 if (info->rti_info[RTAX_GATEWAY] != NULL) 1605 return (cleanup_xaddrs_gateway(info, lb)); 1606 1607 return (0); 1608 } 1609 #endif 1610 1611 static int 1612 cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb) 1613 { 1614 int error = EAFNOSUPPORT; 1615 1616 if (info->rti_info[RTAX_DST] == NULL) { 1617 RTS_PID_LOG(LOG_DEBUG, "prefix dst is not set"); 1618 return (EINVAL); 1619 } 1620 1621 if (info->rti_flags & RTF_LLDATA) { 1622 /* 1623 * arp(8)/ndp(8) sends RTA_NETMASK for the associated 1624 * prefix along with the actual address in RTA_DST. 1625 * Remove netmask to avoid unnecessary address masking. 1626 */ 1627 remove_netmask(info); 1628 } 1629 1630 switch (info->rti_info[RTAX_DST]->sa_family) { 1631 #ifdef INET 1632 case AF_INET: 1633 error = cleanup_xaddrs_inet(info, lb); 1634 break; 1635 #endif 1636 #ifdef INET6 1637 case AF_INET6: 1638 error = cleanup_xaddrs_inet6(info, lb); 1639 break; 1640 #endif 1641 } 1642 1643 return (error); 1644 } 1645 1646 /* 1647 * Fill in @dmask with valid netmask leaving original @smask 1648 * intact. Mostly used with radix netmasks. 1649 */ 1650 struct sockaddr * 1651 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1652 struct sockaddr_storage *dmask) 1653 { 1654 if (dst == NULL || smask == NULL) 1655 return (NULL); 1656 1657 memset(dmask, 0, dst->sa_len); 1658 memcpy(dmask, smask, smask->sa_len); 1659 dmask->ss_len = dst->sa_len; 1660 dmask->ss_family = dst->sa_family; 1661 1662 return ((struct sockaddr *)dmask); 1663 } 1664 1665 /* 1666 * Writes information related to @rtinfo object to newly-allocated mbuf. 1667 * Assumes MCLBYTES is enough to construct any message. 1668 * Used for OS notifications of vaious events (if/ifa announces,etc) 1669 * 1670 * Returns allocated mbuf or NULL on failure. 1671 */ 1672 static struct mbuf * 1673 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1674 { 1675 struct sockaddr_storage ss; 1676 struct rt_msghdr *rtm; 1677 struct mbuf *m; 1678 int i; 1679 struct sockaddr *sa; 1680 #ifdef INET6 1681 struct sockaddr_in6 *sin6; 1682 #endif 1683 int len, dlen; 1684 1685 switch (type) { 1686 case RTM_DELADDR: 1687 case RTM_NEWADDR: 1688 len = sizeof(struct ifa_msghdr); 1689 break; 1690 1691 case RTM_DELMADDR: 1692 case RTM_NEWMADDR: 1693 len = sizeof(struct ifma_msghdr); 1694 break; 1695 1696 case RTM_IFINFO: 1697 len = sizeof(struct if_msghdr); 1698 break; 1699 1700 case RTM_IFANNOUNCE: 1701 case RTM_IEEE80211: 1702 len = sizeof(struct if_announcemsghdr); 1703 break; 1704 1705 default: 1706 len = sizeof(struct rt_msghdr); 1707 } 1708 1709 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1710 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1711 if (len > MHLEN) 1712 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1713 else 1714 m = m_gethdr(M_NOWAIT, MT_DATA); 1715 if (m == NULL) 1716 return (m); 1717 1718 m->m_pkthdr.len = m->m_len = len; 1719 rtm = mtod(m, struct rt_msghdr *); 1720 bzero((caddr_t)rtm, len); 1721 for (i = 0; i < RTAX_MAX; i++) { 1722 if ((sa = rtinfo->rti_info[i]) == NULL) 1723 continue; 1724 rtinfo->rti_addrs |= (1 << i); 1725 1726 dlen = SA_SIZE(sa); 1727 KASSERT(dlen <= sizeof(ss), 1728 ("%s: sockaddr size overflow", __func__)); 1729 bzero(&ss, sizeof(ss)); 1730 bcopy(sa, &ss, sa->sa_len); 1731 sa = (struct sockaddr *)&ss; 1732 #ifdef INET6 1733 if (sa->sa_family == AF_INET6) { 1734 sin6 = (struct sockaddr_in6 *)sa; 1735 (void)sa6_recoverscope(sin6); 1736 } 1737 #endif 1738 m_copyback(m, len, dlen, (caddr_t)sa); 1739 len += dlen; 1740 } 1741 if (m->m_pkthdr.len != len) { 1742 m_freem(m); 1743 return (NULL); 1744 } 1745 rtm->rtm_msglen = len; 1746 rtm->rtm_version = RTM_VERSION; 1747 rtm->rtm_type = type; 1748 return (m); 1749 } 1750 1751 /* 1752 * Writes information related to @rtinfo object to preallocated buffer. 1753 * Stores needed size in @plen. If @w is NULL, calculates size without 1754 * writing. 1755 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1756 * 1757 * Returns 0 on success. 1758 * 1759 */ 1760 static int 1761 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1762 { 1763 struct sockaddr_storage ss; 1764 int len, buflen = 0, dlen, i; 1765 caddr_t cp = NULL; 1766 struct rt_msghdr *rtm = NULL; 1767 #ifdef INET6 1768 struct sockaddr_in6 *sin6; 1769 #endif 1770 #ifdef COMPAT_FREEBSD32 1771 bool compat32 = false; 1772 #endif 1773 1774 switch (type) { 1775 case RTM_DELADDR: 1776 case RTM_NEWADDR: 1777 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1778 #ifdef COMPAT_FREEBSD32 1779 if (w->w_req->flags & SCTL_MASK32) { 1780 len = sizeof(struct ifa_msghdrl32); 1781 compat32 = true; 1782 } else 1783 #endif 1784 len = sizeof(struct ifa_msghdrl); 1785 } else 1786 len = sizeof(struct ifa_msghdr); 1787 break; 1788 1789 case RTM_IFINFO: 1790 #ifdef COMPAT_FREEBSD32 1791 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1792 if (w->w_op == NET_RT_IFLISTL) 1793 len = sizeof(struct if_msghdrl32); 1794 else 1795 len = sizeof(struct if_msghdr32); 1796 compat32 = true; 1797 break; 1798 } 1799 #endif 1800 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1801 len = sizeof(struct if_msghdrl); 1802 else 1803 len = sizeof(struct if_msghdr); 1804 break; 1805 1806 case RTM_NEWMADDR: 1807 len = sizeof(struct ifma_msghdr); 1808 break; 1809 1810 default: 1811 len = sizeof(struct rt_msghdr); 1812 } 1813 1814 if (w != NULL) { 1815 rtm = (struct rt_msghdr *)w->w_tmem; 1816 buflen = w->w_tmemsize - len; 1817 cp = (caddr_t)w->w_tmem + len; 1818 } 1819 1820 rtinfo->rti_addrs = 0; 1821 for (i = 0; i < RTAX_MAX; i++) { 1822 struct sockaddr *sa; 1823 1824 if ((sa = rtinfo->rti_info[i]) == NULL) 1825 continue; 1826 rtinfo->rti_addrs |= (1 << i); 1827 #ifdef COMPAT_FREEBSD32 1828 if (compat32) 1829 dlen = SA_SIZE32(sa); 1830 else 1831 #endif 1832 dlen = SA_SIZE(sa); 1833 if (cp != NULL && buflen >= dlen) { 1834 KASSERT(dlen <= sizeof(ss), 1835 ("%s: sockaddr size overflow", __func__)); 1836 bzero(&ss, sizeof(ss)); 1837 bcopy(sa, &ss, sa->sa_len); 1838 sa = (struct sockaddr *)&ss; 1839 #ifdef INET6 1840 if (sa->sa_family == AF_INET6) { 1841 sin6 = (struct sockaddr_in6 *)sa; 1842 (void)sa6_recoverscope(sin6); 1843 } 1844 #endif 1845 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1846 cp += dlen; 1847 buflen -= dlen; 1848 } else if (cp != NULL) { 1849 /* 1850 * Buffer too small. Count needed size 1851 * and return with error. 1852 */ 1853 cp = NULL; 1854 } 1855 1856 len += dlen; 1857 } 1858 1859 if (cp != NULL) { 1860 dlen = ALIGN(len) - len; 1861 if (buflen < dlen) 1862 cp = NULL; 1863 else { 1864 bzero(cp, dlen); 1865 cp += dlen; 1866 buflen -= dlen; 1867 } 1868 } 1869 len = ALIGN(len); 1870 1871 if (cp != NULL) { 1872 /* fill header iff buffer is large enough */ 1873 rtm->rtm_version = RTM_VERSION; 1874 rtm->rtm_type = type; 1875 rtm->rtm_msglen = len; 1876 } 1877 1878 *plen = len; 1879 1880 if (w != NULL && cp == NULL) 1881 return (ENOBUFS); 1882 1883 return (0); 1884 } 1885 1886 /* 1887 * This routine is called to generate a message from the routing 1888 * socket indicating that a redirect has occurred, a routing lookup 1889 * has failed, or that a protocol has detected timeouts to a particular 1890 * destination. 1891 */ 1892 void 1893 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1894 int fibnum) 1895 { 1896 struct rt_msghdr *rtm; 1897 struct mbuf *m; 1898 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1899 1900 if (V_route_cb.any_count == 0) 1901 return; 1902 m = rtsock_msg_mbuf(type, rtinfo); 1903 if (m == NULL) 1904 return; 1905 1906 if (fibnum != RT_ALL_FIBS) { 1907 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1908 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1909 M_SETFIB(m, fibnum); 1910 m->m_flags |= RTS_FILTER_FIB; 1911 } 1912 1913 rtm = mtod(m, struct rt_msghdr *); 1914 rtm->rtm_flags = RTF_DONE | flags; 1915 rtm->rtm_errno = error; 1916 rtm->rtm_addrs = rtinfo->rti_addrs; 1917 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1918 } 1919 1920 void 1921 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1922 { 1923 1924 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1925 } 1926 1927 /* 1928 * This routine is called to generate a message from the routing 1929 * socket indicating that the status of a network interface has changed. 1930 */ 1931 static void 1932 rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask __unused) 1933 { 1934 struct if_msghdr *ifm; 1935 struct mbuf *m; 1936 struct rt_addrinfo info; 1937 1938 if (V_route_cb.any_count == 0) 1939 return; 1940 bzero((caddr_t)&info, sizeof(info)); 1941 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1942 if (m == NULL) 1943 return; 1944 ifm = mtod(m, struct if_msghdr *); 1945 ifm->ifm_index = ifp->if_index; 1946 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1947 if_data_copy(ifp, &ifm->ifm_data); 1948 ifm->ifm_addrs = 0; 1949 rt_dispatch(m, AF_UNSPEC); 1950 } 1951 1952 /* 1953 * Announce interface address arrival/withdraw. 1954 * Please do not call directly, use rt_addrmsg(). 1955 * Assume input data to be valid. 1956 * Returns 0 on success. 1957 */ 1958 int 1959 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1960 { 1961 struct rt_addrinfo info; 1962 struct sockaddr *sa; 1963 int ncmd; 1964 struct mbuf *m; 1965 struct ifa_msghdr *ifam; 1966 struct ifnet *ifp = ifa->ifa_ifp; 1967 struct sockaddr_storage ss; 1968 1969 if (V_route_cb.any_count == 0) 1970 return (0); 1971 1972 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1973 1974 bzero((caddr_t)&info, sizeof(info)); 1975 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1976 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1977 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1978 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 1979 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1980 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1981 return (ENOBUFS); 1982 ifam = mtod(m, struct ifa_msghdr *); 1983 ifam->ifam_index = ifp->if_index; 1984 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1985 ifam->ifam_flags = ifa->ifa_flags; 1986 ifam->ifam_addrs = info.rti_addrs; 1987 1988 if (fibnum != RT_ALL_FIBS) { 1989 M_SETFIB(m, fibnum); 1990 m->m_flags |= RTS_FILTER_FIB; 1991 } 1992 1993 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1994 1995 return (0); 1996 } 1997 1998 /* 1999 * Announce route addition/removal to rtsock based on @rt data. 2000 * Callers are advives to use rt_routemsg() instead of using this 2001 * function directly. 2002 * Assume @rt data is consistent. 2003 * 2004 * Returns 0 on success. 2005 */ 2006 int 2007 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh, 2008 int fibnum) 2009 { 2010 union sockaddr_union dst, mask; 2011 struct rt_addrinfo info; 2012 2013 if (V_route_cb.any_count == 0) 2014 return (0); 2015 2016 int family = rt_get_family(rt); 2017 init_sockaddrs_family(family, &dst.sa, &mask.sa); 2018 export_rtaddrs(rt, &dst.sa, &mask.sa); 2019 2020 bzero((caddr_t)&info, sizeof(info)); 2021 info.rti_info[RTAX_DST] = &dst.sa; 2022 info.rti_info[RTAX_NETMASK] = &mask.sa; 2023 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2024 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); 2025 info.rti_ifp = nh->nh_ifp; 2026 2027 return (rtsock_routemsg_info(cmd, &info, fibnum)); 2028 } 2029 2030 int 2031 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 2032 { 2033 struct rt_msghdr *rtm; 2034 struct sockaddr *sa; 2035 struct mbuf *m; 2036 2037 if (V_route_cb.any_count == 0) 2038 return (0); 2039 2040 if (info->rti_flags & RTF_HOST) 2041 info->rti_info[RTAX_NETMASK] = NULL; 2042 2043 m = rtsock_msg_mbuf(cmd, info); 2044 if (m == NULL) 2045 return (ENOBUFS); 2046 2047 if (fibnum != RT_ALL_FIBS) { 2048 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 2049 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 2050 M_SETFIB(m, fibnum); 2051 m->m_flags |= RTS_FILTER_FIB; 2052 } 2053 2054 rtm = mtod(m, struct rt_msghdr *); 2055 rtm->rtm_addrs = info->rti_addrs; 2056 if (info->rti_ifp != NULL) 2057 rtm->rtm_index = info->rti_ifp->if_index; 2058 /* Add RTF_DONE to indicate command 'completion' required by API */ 2059 info->rti_flags |= RTF_DONE; 2060 /* Reported routes has to be up */ 2061 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 2062 info->rti_flags |= RTF_UP; 2063 rtm->rtm_flags = info->rti_flags; 2064 2065 sa = info->rti_info[RTAX_DST]; 2066 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 2067 2068 return (0); 2069 } 2070 2071 /* 2072 * This is the analogue to the rt_newaddrmsg which performs the same 2073 * function but for multicast group memberhips. This is easier since 2074 * there is no route state to worry about. 2075 */ 2076 void 2077 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 2078 { 2079 struct rt_addrinfo info; 2080 struct mbuf *m = NULL; 2081 struct ifnet *ifp = ifma->ifma_ifp; 2082 struct ifma_msghdr *ifmam; 2083 2084 if (V_route_cb.any_count == 0) 2085 return; 2086 2087 bzero((caddr_t)&info, sizeof(info)); 2088 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2089 if (ifp && ifp->if_addr) 2090 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 2091 else 2092 info.rti_info[RTAX_IFP] = NULL; 2093 /* 2094 * If a link-layer address is present, present it as a ``gateway'' 2095 * (similarly to how ARP entries, e.g., are presented). 2096 */ 2097 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 2098 m = rtsock_msg_mbuf(cmd, &info); 2099 if (m == NULL) 2100 return; 2101 ifmam = mtod(m, struct ifma_msghdr *); 2102 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 2103 __func__)); 2104 ifmam->ifmam_index = ifp->if_index; 2105 ifmam->ifmam_addrs = info.rti_addrs; 2106 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 2107 } 2108 2109 static struct mbuf * 2110 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 2111 struct rt_addrinfo *info) 2112 { 2113 struct if_announcemsghdr *ifan; 2114 struct mbuf *m; 2115 2116 if (V_route_cb.any_count == 0) 2117 return NULL; 2118 bzero((caddr_t)info, sizeof(*info)); 2119 m = rtsock_msg_mbuf(type, info); 2120 if (m != NULL) { 2121 ifan = mtod(m, struct if_announcemsghdr *); 2122 ifan->ifan_index = ifp->if_index; 2123 strlcpy(ifan->ifan_name, ifp->if_xname, 2124 sizeof(ifan->ifan_name)); 2125 ifan->ifan_what = what; 2126 } 2127 return m; 2128 } 2129 2130 /* 2131 * This is called to generate routing socket messages indicating 2132 * IEEE80211 wireless events. 2133 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 2134 */ 2135 void 2136 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 2137 { 2138 struct mbuf *m; 2139 struct rt_addrinfo info; 2140 2141 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 2142 if (m != NULL) { 2143 /* 2144 * Append the ieee80211 data. Try to stick it in the 2145 * mbuf containing the ifannounce msg; otherwise allocate 2146 * a new mbuf and append. 2147 * 2148 * NB: we assume m is a single mbuf. 2149 */ 2150 if (data_len > M_TRAILINGSPACE(m)) { 2151 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 2152 if (n == NULL) { 2153 m_freem(m); 2154 return; 2155 } 2156 bcopy(data, mtod(n, void *), data_len); 2157 n->m_len = data_len; 2158 m->m_next = n; 2159 } else if (data_len > 0) { 2160 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 2161 m->m_len += data_len; 2162 } 2163 if (m->m_flags & M_PKTHDR) 2164 m->m_pkthdr.len += data_len; 2165 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 2166 rt_dispatch(m, AF_UNSPEC); 2167 } 2168 } 2169 2170 /* 2171 * This is called to generate routing socket messages indicating 2172 * network interface arrival and departure. 2173 */ 2174 static void 2175 rt_ifannouncemsg(struct ifnet *ifp, int what) 2176 { 2177 struct mbuf *m; 2178 struct rt_addrinfo info; 2179 2180 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 2181 if (m != NULL) 2182 rt_dispatch(m, AF_UNSPEC); 2183 } 2184 2185 static void 2186 rt_dispatch(struct mbuf *m, sa_family_t saf) 2187 { 2188 2189 M_ASSERTPKTHDR(m); 2190 2191 m->m_rtsock_family = saf; 2192 if (V_loif) 2193 m->m_pkthdr.rcvif = V_loif; 2194 else { 2195 m_freem(m); 2196 return; 2197 } 2198 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 2199 } 2200 2201 /* 2202 * Checks if rte can be exported w.r.t jails/vnets. 2203 * 2204 * Returns true if it can, false otherwise. 2205 */ 2206 static bool 2207 can_export_rte(struct ucred *td_ucred, bool rt_is_host, 2208 const struct sockaddr *rt_dst) 2209 { 2210 2211 if ((!rt_is_host) ? jailed_without_vnet(td_ucred) 2212 : prison_if(td_ucred, rt_dst) != 0) 2213 return (false); 2214 return (true); 2215 } 2216 2217 2218 /* 2219 * This is used in dumping the kernel table via sysctl(). 2220 */ 2221 static int 2222 sysctl_dumpentry(struct rtentry *rt, void *vw) 2223 { 2224 struct walkarg *w = vw; 2225 struct nhop_object *nh; 2226 2227 NET_EPOCH_ASSERT(); 2228 2229 export_rtaddrs(rt, w->dst, w->mask); 2230 if (!can_export_rte(w->w_req->td->td_ucred, rt_is_host(rt), w->dst)) 2231 return (0); 2232 nh = rt_get_raw_nhop(rt); 2233 #ifdef ROUTE_MPATH 2234 if (NH_IS_NHGRP(nh)) { 2235 const struct weightened_nhop *wn; 2236 uint32_t num_nhops; 2237 int error; 2238 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 2239 for (int i = 0; i < num_nhops; i++) { 2240 error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w); 2241 if (error != 0) 2242 return (error); 2243 } 2244 } else 2245 #endif 2246 sysctl_dumpnhop(rt, nh, rt->rt_weight, w); 2247 2248 return (0); 2249 } 2250 2251 2252 static int 2253 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, 2254 struct walkarg *w) 2255 { 2256 struct rt_addrinfo info; 2257 int error = 0, size; 2258 uint32_t rtflags; 2259 2260 rtflags = nhop_get_rtflags(nh); 2261 2262 if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg)) 2263 return (0); 2264 2265 bzero((caddr_t)&info, sizeof(info)); 2266 info.rti_info[RTAX_DST] = w->dst; 2267 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2268 info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask; 2269 info.rti_info[RTAX_GENMASK] = 0; 2270 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 2271 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 2272 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 2273 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 2274 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 2275 } 2276 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 2277 return (error); 2278 if (w->w_req && w->w_tmem) { 2279 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 2280 2281 bzero(&rtm->rtm_index, 2282 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 2283 2284 /* 2285 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags) 2286 * and RTF_UP (if entry is linked, which is always true here). 2287 * Given that, use nhop rtflags & add RTF_UP. 2288 */ 2289 rtm->rtm_flags = rtflags | RTF_UP; 2290 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 2291 rtm->rtm_flags = RTF_GATEWAY | 2292 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 2293 rt_getmetrics(rt, nh, &rtm->rtm_rmx); 2294 rtm->rtm_rmx.rmx_weight = weight; 2295 rtm->rtm_index = nh->nh_ifp->if_index; 2296 rtm->rtm_addrs = info.rti_addrs; 2297 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 2298 return (error); 2299 } 2300 return (error); 2301 } 2302 2303 static int 2304 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 2305 struct rt_addrinfo *info, struct walkarg *w, int len) 2306 { 2307 struct if_msghdrl *ifm; 2308 struct if_data *ifd; 2309 2310 ifm = (struct if_msghdrl *)w->w_tmem; 2311 2312 #ifdef COMPAT_FREEBSD32 2313 if (w->w_req->flags & SCTL_MASK32) { 2314 struct if_msghdrl32 *ifm32; 2315 2316 ifm32 = (struct if_msghdrl32 *)ifm; 2317 ifm32->ifm_addrs = info->rti_addrs; 2318 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2319 ifm32->ifm_index = ifp->if_index; 2320 ifm32->_ifm_spare1 = 0; 2321 ifm32->ifm_len = sizeof(*ifm32); 2322 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 2323 ifm32->_ifm_spare2 = 0; 2324 ifd = &ifm32->ifm_data; 2325 } else 2326 #endif 2327 { 2328 ifm->ifm_addrs = info->rti_addrs; 2329 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2330 ifm->ifm_index = ifp->if_index; 2331 ifm->_ifm_spare1 = 0; 2332 ifm->ifm_len = sizeof(*ifm); 2333 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 2334 ifm->_ifm_spare2 = 0; 2335 ifd = &ifm->ifm_data; 2336 } 2337 2338 memcpy(ifd, src_ifd, sizeof(*ifd)); 2339 2340 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2341 } 2342 2343 static int 2344 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 2345 struct rt_addrinfo *info, struct walkarg *w, int len) 2346 { 2347 struct if_msghdr *ifm; 2348 struct if_data *ifd; 2349 2350 ifm = (struct if_msghdr *)w->w_tmem; 2351 2352 #ifdef COMPAT_FREEBSD32 2353 if (w->w_req->flags & SCTL_MASK32) { 2354 struct if_msghdr32 *ifm32; 2355 2356 ifm32 = (struct if_msghdr32 *)ifm; 2357 ifm32->ifm_addrs = info->rti_addrs; 2358 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2359 ifm32->ifm_index = ifp->if_index; 2360 ifm32->_ifm_spare1 = 0; 2361 ifd = &ifm32->ifm_data; 2362 } else 2363 #endif 2364 { 2365 ifm->ifm_addrs = info->rti_addrs; 2366 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2367 ifm->ifm_index = ifp->if_index; 2368 ifm->_ifm_spare1 = 0; 2369 ifd = &ifm->ifm_data; 2370 } 2371 2372 memcpy(ifd, src_ifd, sizeof(*ifd)); 2373 2374 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2375 } 2376 2377 static int 2378 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 2379 struct walkarg *w, int len) 2380 { 2381 struct ifa_msghdrl *ifam; 2382 struct if_data *ifd; 2383 2384 ifam = (struct ifa_msghdrl *)w->w_tmem; 2385 2386 #ifdef COMPAT_FREEBSD32 2387 if (w->w_req->flags & SCTL_MASK32) { 2388 struct ifa_msghdrl32 *ifam32; 2389 2390 ifam32 = (struct ifa_msghdrl32 *)ifam; 2391 ifam32->ifam_addrs = info->rti_addrs; 2392 ifam32->ifam_flags = ifa->ifa_flags; 2393 ifam32->ifam_index = ifa->ifa_ifp->if_index; 2394 ifam32->_ifam_spare1 = 0; 2395 ifam32->ifam_len = sizeof(*ifam32); 2396 ifam32->ifam_data_off = 2397 offsetof(struct ifa_msghdrl32, ifam_data); 2398 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 2399 ifd = &ifam32->ifam_data; 2400 } else 2401 #endif 2402 { 2403 ifam->ifam_addrs = info->rti_addrs; 2404 ifam->ifam_flags = ifa->ifa_flags; 2405 ifam->ifam_index = ifa->ifa_ifp->if_index; 2406 ifam->_ifam_spare1 = 0; 2407 ifam->ifam_len = sizeof(*ifam); 2408 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 2409 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2410 ifd = &ifam->ifam_data; 2411 } 2412 2413 bzero(ifd, sizeof(*ifd)); 2414 ifd->ifi_datalen = sizeof(struct if_data); 2415 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 2416 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 2417 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 2418 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 2419 2420 /* Fixup if_data carp(4) vhid. */ 2421 if (carp_get_vhid_p != NULL) 2422 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 2423 2424 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2425 } 2426 2427 static int 2428 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 2429 struct walkarg *w, int len) 2430 { 2431 struct ifa_msghdr *ifam; 2432 2433 ifam = (struct ifa_msghdr *)w->w_tmem; 2434 ifam->ifam_addrs = info->rti_addrs; 2435 ifam->ifam_flags = ifa->ifa_flags; 2436 ifam->ifam_index = ifa->ifa_ifp->if_index; 2437 ifam->_ifam_spare1 = 0; 2438 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2439 2440 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2441 } 2442 2443 static int 2444 sysctl_iflist(int af, struct walkarg *w) 2445 { 2446 struct ifnet *ifp; 2447 struct ifaddr *ifa; 2448 struct if_data ifd; 2449 struct rt_addrinfo info; 2450 int len, error = 0; 2451 struct sockaddr_storage ss; 2452 2453 bzero((caddr_t)&info, sizeof(info)); 2454 bzero(&ifd, sizeof(ifd)); 2455 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2456 if (w->w_arg && w->w_arg != ifp->if_index) 2457 continue; 2458 if_data_copy(ifp, &ifd); 2459 ifa = ifp->if_addr; 2460 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 2461 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 2462 if (error != 0) 2463 goto done; 2464 info.rti_info[RTAX_IFP] = NULL; 2465 if (w->w_req && w->w_tmem) { 2466 if (w->w_op == NET_RT_IFLISTL) 2467 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 2468 len); 2469 else 2470 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 2471 len); 2472 if (error) 2473 goto done; 2474 } 2475 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 2476 if (af && af != ifa->ifa_addr->sa_family) 2477 continue; 2478 if (prison_if(w->w_req->td->td_ucred, 2479 ifa->ifa_addr) != 0) 2480 continue; 2481 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 2482 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 2483 ifa->ifa_addr, ifa->ifa_netmask, &ss); 2484 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 2485 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 2486 if (error != 0) 2487 goto done; 2488 if (w->w_req && w->w_tmem) { 2489 if (w->w_op == NET_RT_IFLISTL) 2490 error = sysctl_iflist_ifaml(ifa, &info, 2491 w, len); 2492 else 2493 error = sysctl_iflist_ifam(ifa, &info, 2494 w, len); 2495 if (error) 2496 goto done; 2497 } 2498 } 2499 info.rti_info[RTAX_IFA] = NULL; 2500 info.rti_info[RTAX_NETMASK] = NULL; 2501 info.rti_info[RTAX_BRD] = NULL; 2502 } 2503 done: 2504 return (error); 2505 } 2506 2507 static int 2508 sysctl_ifmalist(int af, struct walkarg *w) 2509 { 2510 struct rt_addrinfo info; 2511 struct ifaddr *ifa; 2512 struct ifmultiaddr *ifma; 2513 struct ifnet *ifp; 2514 int error, len; 2515 2516 NET_EPOCH_ASSERT(); 2517 2518 error = 0; 2519 bzero((caddr_t)&info, sizeof(info)); 2520 2521 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2522 if (w->w_arg && w->w_arg != ifp->if_index) 2523 continue; 2524 ifa = ifp->if_addr; 2525 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 2526 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2527 if (af && af != ifma->ifma_addr->sa_family) 2528 continue; 2529 if (prison_if(w->w_req->td->td_ucred, 2530 ifma->ifma_addr) != 0) 2531 continue; 2532 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2533 info.rti_info[RTAX_GATEWAY] = 2534 (ifma->ifma_addr->sa_family != AF_LINK) ? 2535 ifma->ifma_lladdr : NULL; 2536 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 2537 if (error != 0) 2538 break; 2539 if (w->w_req && w->w_tmem) { 2540 struct ifma_msghdr *ifmam; 2541 2542 ifmam = (struct ifma_msghdr *)w->w_tmem; 2543 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 2544 ifmam->ifmam_flags = 0; 2545 ifmam->ifmam_addrs = info.rti_addrs; 2546 ifmam->_ifmam_spare1 = 0; 2547 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 2548 if (error != 0) 2549 break; 2550 } 2551 } 2552 if (error != 0) 2553 break; 2554 } 2555 return (error); 2556 } 2557 2558 static void 2559 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w) 2560 { 2561 union sockaddr_union sa_dst, sa_mask; 2562 2563 w->family = family; 2564 w->dst = (struct sockaddr *)&sa_dst; 2565 w->mask = (struct sockaddr *)&sa_mask; 2566 2567 init_sockaddrs_family(family, w->dst, w->mask); 2568 2569 rib_walk(fibnum, family, false, sysctl_dumpentry, w); 2570 } 2571 2572 static int 2573 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2574 { 2575 struct epoch_tracker et; 2576 int *name = (int *)arg1; 2577 u_int namelen = arg2; 2578 struct rib_head *rnh = NULL; /* silence compiler. */ 2579 int i, lim, error = EINVAL; 2580 int fib = 0; 2581 u_char af; 2582 struct walkarg w; 2583 2584 if (namelen < 3) 2585 return (EINVAL); 2586 2587 name++; 2588 namelen--; 2589 if (req->newptr) 2590 return (EPERM); 2591 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) { 2592 if (namelen == 3) 2593 fib = req->td->td_proc->p_fibnum; 2594 else if (namelen == 4) 2595 fib = (name[3] == RT_ALL_FIBS) ? 2596 req->td->td_proc->p_fibnum : name[3]; 2597 else 2598 return ((namelen < 3) ? EISDIR : ENOTDIR); 2599 if (fib < 0 || fib >= rt_numfibs) 2600 return (EINVAL); 2601 } else if (namelen != 3) 2602 return ((namelen < 3) ? EISDIR : ENOTDIR); 2603 af = name[0]; 2604 if (af > AF_MAX) 2605 return (EINVAL); 2606 bzero(&w, sizeof(w)); 2607 w.w_op = name[1]; 2608 w.w_arg = name[2]; 2609 w.w_req = req; 2610 2611 error = sysctl_wire_old_buffer(req, 0); 2612 if (error) 2613 return (error); 2614 2615 /* 2616 * Allocate reply buffer in advance. 2617 * All rtsock messages has maximum length of u_short. 2618 */ 2619 w.w_tmemsize = 65536; 2620 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2621 2622 NET_EPOCH_ENTER(et); 2623 switch (w.w_op) { 2624 case NET_RT_DUMP: 2625 case NET_RT_FLAGS: 2626 if (af == 0) { /* dump all tables */ 2627 i = 1; 2628 lim = AF_MAX; 2629 } else /* dump only one table */ 2630 i = lim = af; 2631 2632 /* 2633 * take care of llinfo entries, the caller must 2634 * specify an AF 2635 */ 2636 if (w.w_op == NET_RT_FLAGS && 2637 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2638 if (af != 0) 2639 error = lltable_sysctl_dumparp(af, w.w_req); 2640 else 2641 error = EINVAL; 2642 break; 2643 } 2644 /* 2645 * take care of routing entries 2646 */ 2647 for (error = 0; error == 0 && i <= lim; i++) { 2648 rnh = rt_tables_get_rnh(fib, i); 2649 if (rnh != NULL) { 2650 rtable_sysctl_dump(fib, i, &w); 2651 } else if (af != 0) 2652 error = EAFNOSUPPORT; 2653 } 2654 break; 2655 case NET_RT_NHOP: 2656 case NET_RT_NHGRP: 2657 /* Allow dumping one specific af/fib at a time */ 2658 if (namelen < 4) { 2659 error = EINVAL; 2660 break; 2661 } 2662 fib = name[3]; 2663 if (fib < 0 || fib > rt_numfibs) { 2664 error = EINVAL; 2665 break; 2666 } 2667 rnh = rt_tables_get_rnh(fib, af); 2668 if (rnh == NULL) { 2669 error = EAFNOSUPPORT; 2670 break; 2671 } 2672 if (w.w_op == NET_RT_NHOP) 2673 error = nhops_dump_sysctl(rnh, w.w_req); 2674 else 2675 #ifdef ROUTE_MPATH 2676 error = nhgrp_dump_sysctl(rnh, w.w_req); 2677 #else 2678 error = ENOTSUP; 2679 #endif 2680 break; 2681 case NET_RT_IFLIST: 2682 case NET_RT_IFLISTL: 2683 error = sysctl_iflist(af, &w); 2684 break; 2685 2686 case NET_RT_IFMALIST: 2687 error = sysctl_ifmalist(af, &w); 2688 break; 2689 } 2690 NET_EPOCH_EXIT(et); 2691 2692 free(w.w_tmem, M_TEMP); 2693 return (error); 2694 } 2695 2696 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2697 sysctl_rtsock, "Return route tables and interface/address lists"); 2698 2699 /* 2700 * Definitions of protocols supported in the ROUTE domain. 2701 */ 2702 2703 static struct domain routedomain; /* or at least forward */ 2704 2705 static struct protosw routesw = { 2706 .pr_type = SOCK_RAW, 2707 .pr_flags = PR_ATOMIC|PR_ADDR, 2708 .pr_abort = rts_close, 2709 .pr_attach = rts_attach, 2710 .pr_detach = rts_detach, 2711 .pr_send = rts_send, 2712 .pr_shutdown = rts_shutdown, 2713 .pr_disconnect = rts_disconnect, 2714 .pr_close = rts_close, 2715 }; 2716 2717 static struct domain routedomain = { 2718 .dom_family = PF_ROUTE, 2719 .dom_name = "route", 2720 .dom_nprotosw = 1, 2721 .dom_protosw = { &routesw }, 2722 }; 2723 2724 DOMAIN_SET(route); 2725