xref: /freebsd/sys/net/rtsock.c (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
32  * $FreeBSD$
33  */
34 #include "opt_ddb.h"
35 #include "opt_mpath.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 
39 #include <sys/param.h>
40 #include <sys/jail.h>
41 #include <sys/kernel.h>
42 #include <sys/domain.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/protosw.h>
49 #include <sys/rmlock.h>
50 #include <sys/rwlock.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 
57 #ifdef DDB
58 #include <ddb/ddb.h>
59 #include <ddb/db_lex.h>
60 #endif
61 
62 #include <net/if.h>
63 #include <net/if_var.h>
64 #include <net/if_dl.h>
65 #include <net/if_llatbl.h>
66 #include <net/if_types.h>
67 #include <net/netisr.h>
68 #include <net/raw_cb.h>
69 #include <net/route.h>
70 #include <net/route_var.h>
71 #include <net/vnet.h>
72 
73 #include <netinet/in.h>
74 #include <netinet/if_ether.h>
75 #include <netinet/ip_carp.h>
76 #ifdef INET6
77 #include <netinet6/ip6_var.h>
78 #include <netinet6/scope6_var.h>
79 #endif
80 
81 #ifdef COMPAT_FREEBSD32
82 #include <sys/mount.h>
83 #include <compat/freebsd32/freebsd32.h>
84 
85 struct if_msghdr32 {
86 	uint16_t ifm_msglen;
87 	uint8_t	ifm_version;
88 	uint8_t	ifm_type;
89 	int32_t	ifm_addrs;
90 	int32_t	ifm_flags;
91 	uint16_t ifm_index;
92 	uint16_t _ifm_spare1;
93 	struct	if_data ifm_data;
94 };
95 
96 struct if_msghdrl32 {
97 	uint16_t ifm_msglen;
98 	uint8_t	ifm_version;
99 	uint8_t	ifm_type;
100 	int32_t	ifm_addrs;
101 	int32_t	ifm_flags;
102 	uint16_t ifm_index;
103 	uint16_t _ifm_spare1;
104 	uint16_t ifm_len;
105 	uint16_t ifm_data_off;
106 	uint32_t _ifm_spare2;
107 	struct	if_data ifm_data;
108 };
109 
110 struct ifa_msghdrl32 {
111 	uint16_t ifam_msglen;
112 	uint8_t	ifam_version;
113 	uint8_t	ifam_type;
114 	int32_t	ifam_addrs;
115 	int32_t	ifam_flags;
116 	uint16_t ifam_index;
117 	uint16_t _ifam_spare1;
118 	uint16_t ifam_len;
119 	uint16_t ifam_data_off;
120 	int32_t	ifam_metric;
121 	struct	if_data ifam_data;
122 };
123 
124 #define SA_SIZE32(sa)						\
125     (  (((struct sockaddr *)(sa))->sa_len == 0) ?		\
126 	sizeof(int)		:				\
127 	1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
128 
129 #endif /* COMPAT_FREEBSD32 */
130 
131 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
132 
133 /* NB: these are not modified */
134 static struct	sockaddr route_src = { 2, PF_ROUTE, };
135 static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
136 
137 /* These are external hooks for CARP. */
138 int	(*carp_get_vhid_p)(struct ifaddr *);
139 
140 /*
141  * Used by rtsock/raw_input callback code to decide whether to filter the update
142  * notification to a socket bound to a particular FIB.
143  */
144 #define	RTS_FILTER_FIB	M_PROTO8
145 
146 typedef struct {
147 	int	ip_count;	/* attached w/ AF_INET */
148 	int	ip6_count;	/* attached w/ AF_INET6 */
149 	int	any_count;	/* total attached */
150 } route_cb_t;
151 VNET_DEFINE_STATIC(route_cb_t, route_cb);
152 #define	V_route_cb VNET(route_cb)
153 
154 struct mtx rtsock_mtx;
155 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
156 
157 #define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
158 #define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
159 #define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
160 
161 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
162 
163 struct walkarg {
164 	int	w_tmemsize;
165 	int	w_op, w_arg;
166 	caddr_t	w_tmem;
167 	struct sysctl_req *w_req;
168 };
169 
170 static void	rts_input(struct mbuf *m);
171 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
172 static int	rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
173 			struct walkarg *w, int *plen);
174 static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
175 			struct rt_addrinfo *rtinfo);
176 static int	sysctl_dumpentry(struct radix_node *rn, void *vw);
177 static int	sysctl_iflist(int af, struct walkarg *w);
178 static int	sysctl_ifmalist(int af, struct walkarg *w);
179 static int	route_output(struct mbuf *m, struct socket *so, ...);
180 static void	rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out);
181 static void	rt_dispatch(struct mbuf *, sa_family_t);
182 static struct sockaddr	*rtsock_fix_netmask(struct sockaddr *dst,
183 			struct sockaddr *smask, struct sockaddr_storage *dmask);
184 static int	handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
185 			struct rt_msghdr *rtm, struct rtentry **ret_nrt);
186 static int	update_rtm_from_rte(struct rt_addrinfo *info,
187 			struct rt_msghdr **prtm, int alloc_len,
188 			struct rtentry *rt);
189 static void	send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
190 			struct mbuf *m, sa_family_t saf, u_int fibnum,
191 			int rtm_errno);
192 static int	can_export_rte(struct ucred *td_ucred, const struct rtentry *rt);
193 
194 static struct netisr_handler rtsock_nh = {
195 	.nh_name = "rtsock",
196 	.nh_handler = rts_input,
197 	.nh_proto = NETISR_ROUTE,
198 	.nh_policy = NETISR_POLICY_SOURCE,
199 };
200 
201 static int
202 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
203 {
204 	int error, qlimit;
205 
206 	netisr_getqlimit(&rtsock_nh, &qlimit);
207 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
208         if (error || !req->newptr)
209                 return (error);
210 	if (qlimit < 1)
211 		return (EINVAL);
212 	return (netisr_setqlimit(&rtsock_nh, qlimit));
213 }
214 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW,
215     0, 0, sysctl_route_netisr_maxqlen, "I",
216     "maximum routing socket dispatch queue length");
217 
218 static void
219 vnet_rts_init(void)
220 {
221 	int tmp;
222 
223 	if (IS_DEFAULT_VNET(curvnet)) {
224 		if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
225 			rtsock_nh.nh_qlimit = tmp;
226 		netisr_register(&rtsock_nh);
227 	}
228 #ifdef VIMAGE
229 	 else
230 		netisr_register_vnet(&rtsock_nh);
231 #endif
232 }
233 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
234     vnet_rts_init, 0);
235 
236 #ifdef VIMAGE
237 static void
238 vnet_rts_uninit(void)
239 {
240 
241 	netisr_unregister_vnet(&rtsock_nh);
242 }
243 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
244     vnet_rts_uninit, 0);
245 #endif
246 
247 static int
248 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
249     struct rawcb *rp)
250 {
251 	int fibnum;
252 
253 	KASSERT(m != NULL, ("%s: m is NULL", __func__));
254 	KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
255 	KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
256 
257 	/* No filtering requested. */
258 	if ((m->m_flags & RTS_FILTER_FIB) == 0)
259 		return (0);
260 
261 	/* Check if it is a rts and the fib matches the one of the socket. */
262 	fibnum = M_GETFIB(m);
263 	if (proto->sp_family != PF_ROUTE ||
264 	    rp->rcb_socket == NULL ||
265 	    rp->rcb_socket->so_fibnum == fibnum)
266 		return (0);
267 
268 	/* Filtering requested and no match, the socket shall be skipped. */
269 	return (1);
270 }
271 
272 static void
273 rts_input(struct mbuf *m)
274 {
275 	struct sockproto route_proto;
276 	unsigned short *family;
277 	struct m_tag *tag;
278 
279 	route_proto.sp_family = PF_ROUTE;
280 	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
281 	if (tag != NULL) {
282 		family = (unsigned short *)(tag + 1);
283 		route_proto.sp_protocol = *family;
284 		m_tag_delete(m, tag);
285 	} else
286 		route_proto.sp_protocol = 0;
287 
288 	raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
289 }
290 
291 /*
292  * It really doesn't make any sense at all for this code to share much
293  * with raw_usrreq.c, since its functionality is so restricted.  XXX
294  */
295 static void
296 rts_abort(struct socket *so)
297 {
298 
299 	raw_usrreqs.pru_abort(so);
300 }
301 
302 static void
303 rts_close(struct socket *so)
304 {
305 
306 	raw_usrreqs.pru_close(so);
307 }
308 
309 /* pru_accept is EOPNOTSUPP */
310 
311 static int
312 rts_attach(struct socket *so, int proto, struct thread *td)
313 {
314 	struct rawcb *rp;
315 	int error;
316 
317 	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
318 
319 	/* XXX */
320 	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
321 
322 	so->so_pcb = (caddr_t)rp;
323 	so->so_fibnum = td->td_proc->p_fibnum;
324 	error = raw_attach(so, proto);
325 	rp = sotorawcb(so);
326 	if (error) {
327 		so->so_pcb = NULL;
328 		free(rp, M_PCB);
329 		return error;
330 	}
331 	RTSOCK_LOCK();
332 	switch(rp->rcb_proto.sp_protocol) {
333 	case AF_INET:
334 		V_route_cb.ip_count++;
335 		break;
336 	case AF_INET6:
337 		V_route_cb.ip6_count++;
338 		break;
339 	}
340 	V_route_cb.any_count++;
341 	RTSOCK_UNLOCK();
342 	soisconnected(so);
343 	so->so_options |= SO_USELOOPBACK;
344 	return 0;
345 }
346 
347 static int
348 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
349 {
350 
351 	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
352 }
353 
354 static int
355 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
356 {
357 
358 	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
359 }
360 
361 /* pru_connect2 is EOPNOTSUPP */
362 /* pru_control is EOPNOTSUPP */
363 
364 static void
365 rts_detach(struct socket *so)
366 {
367 	struct rawcb *rp = sotorawcb(so);
368 
369 	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
370 
371 	RTSOCK_LOCK();
372 	switch(rp->rcb_proto.sp_protocol) {
373 	case AF_INET:
374 		V_route_cb.ip_count--;
375 		break;
376 	case AF_INET6:
377 		V_route_cb.ip6_count--;
378 		break;
379 	}
380 	V_route_cb.any_count--;
381 	RTSOCK_UNLOCK();
382 	raw_usrreqs.pru_detach(so);
383 }
384 
385 static int
386 rts_disconnect(struct socket *so)
387 {
388 
389 	return (raw_usrreqs.pru_disconnect(so));
390 }
391 
392 /* pru_listen is EOPNOTSUPP */
393 
394 static int
395 rts_peeraddr(struct socket *so, struct sockaddr **nam)
396 {
397 
398 	return (raw_usrreqs.pru_peeraddr(so, nam));
399 }
400 
401 /* pru_rcvd is EOPNOTSUPP */
402 /* pru_rcvoob is EOPNOTSUPP */
403 
404 static int
405 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
406 	 struct mbuf *control, struct thread *td)
407 {
408 
409 	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
410 }
411 
412 /* pru_sense is null */
413 
414 static int
415 rts_shutdown(struct socket *so)
416 {
417 
418 	return (raw_usrreqs.pru_shutdown(so));
419 }
420 
421 static int
422 rts_sockaddr(struct socket *so, struct sockaddr **nam)
423 {
424 
425 	return (raw_usrreqs.pru_sockaddr(so, nam));
426 }
427 
428 static struct pr_usrreqs route_usrreqs = {
429 	.pru_abort =		rts_abort,
430 	.pru_attach =		rts_attach,
431 	.pru_bind =		rts_bind,
432 	.pru_connect =		rts_connect,
433 	.pru_detach =		rts_detach,
434 	.pru_disconnect =	rts_disconnect,
435 	.pru_peeraddr =		rts_peeraddr,
436 	.pru_send =		rts_send,
437 	.pru_shutdown =		rts_shutdown,
438 	.pru_sockaddr =		rts_sockaddr,
439 	.pru_close =		rts_close,
440 };
441 
442 #ifndef _SOCKADDR_UNION_DEFINED
443 #define	_SOCKADDR_UNION_DEFINED
444 /*
445  * The union of all possible address formats we handle.
446  */
447 union sockaddr_union {
448 	struct sockaddr		sa;
449 	struct sockaddr_in	sin;
450 	struct sockaddr_in6	sin6;
451 };
452 #endif /* _SOCKADDR_UNION_DEFINED */
453 
454 static int
455 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
456     struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
457 {
458 #if defined(INET) || defined(INET6)
459 	struct epoch_tracker et;
460 #endif
461 
462 	/* First, see if the returned address is part of the jail. */
463 	if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
464 		info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
465 		return (0);
466 	}
467 
468 	switch (info->rti_info[RTAX_DST]->sa_family) {
469 #ifdef INET
470 	case AF_INET:
471 	{
472 		struct in_addr ia;
473 		struct ifaddr *ifa;
474 		int found;
475 
476 		found = 0;
477 		/*
478 		 * Try to find an address on the given outgoing interface
479 		 * that belongs to the jail.
480 		 */
481 		NET_EPOCH_ENTER(et);
482 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
483 			struct sockaddr *sa;
484 			sa = ifa->ifa_addr;
485 			if (sa->sa_family != AF_INET)
486 				continue;
487 			ia = ((struct sockaddr_in *)sa)->sin_addr;
488 			if (prison_check_ip4(cred, &ia) == 0) {
489 				found = 1;
490 				break;
491 			}
492 		}
493 		NET_EPOCH_EXIT(et);
494 		if (!found) {
495 			/*
496 			 * As a last resort return the 'default' jail address.
497 			 */
498 			ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->
499 			    sin_addr;
500 			if (prison_get_ip4(cred, &ia) != 0)
501 				return (ESRCH);
502 		}
503 		bzero(&saun->sin, sizeof(struct sockaddr_in));
504 		saun->sin.sin_len = sizeof(struct sockaddr_in);
505 		saun->sin.sin_family = AF_INET;
506 		saun->sin.sin_addr.s_addr = ia.s_addr;
507 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
508 		break;
509 	}
510 #endif
511 #ifdef INET6
512 	case AF_INET6:
513 	{
514 		struct in6_addr ia6;
515 		struct ifaddr *ifa;
516 		int found;
517 
518 		found = 0;
519 		/*
520 		 * Try to find an address on the given outgoing interface
521 		 * that belongs to the jail.
522 		 */
523 		NET_EPOCH_ENTER(et);
524 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
525 			struct sockaddr *sa;
526 			sa = ifa->ifa_addr;
527 			if (sa->sa_family != AF_INET6)
528 				continue;
529 			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
530 			    &ia6, sizeof(struct in6_addr));
531 			if (prison_check_ip6(cred, &ia6) == 0) {
532 				found = 1;
533 				break;
534 			}
535 		}
536 		NET_EPOCH_EXIT(et);
537 		if (!found) {
538 			/*
539 			 * As a last resort return the 'default' jail address.
540 			 */
541 			ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->
542 			    sin6_addr;
543 			if (prison_get_ip6(cred, &ia6) != 0)
544 				return (ESRCH);
545 		}
546 		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
547 		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
548 		saun->sin6.sin6_family = AF_INET6;
549 		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
550 		if (sa6_recoverscope(&saun->sin6) != 0)
551 			return (ESRCH);
552 		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
553 		break;
554 	}
555 #endif
556 	default:
557 		return (ESRCH);
558 	}
559 	return (0);
560 }
561 
562 /*
563  * Fills in @info based on userland-provided @rtm message.
564  *
565  * Returns 0 on success.
566  */
567 static int
568 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info)
569 {
570 	int error;
571 	sa_family_t saf;
572 
573 	rtm->rtm_pid = curproc->p_pid;
574 	info->rti_addrs = rtm->rtm_addrs;
575 
576 	info->rti_mflags = rtm->rtm_inits;
577 	info->rti_rmx = &rtm->rtm_rmx;
578 
579 	/*
580 	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
581 	 * link-local address because rtrequest requires addresses with
582 	 * embedded scope id.
583 	 */
584 	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
585 		return (EINVAL);
586 
587 	if (rtm->rtm_flags & RTF_RNH_LOCKED)
588 		return (EINVAL);
589 	info->rti_flags = rtm->rtm_flags;
590 	if (info->rti_info[RTAX_DST] == NULL ||
591 	    info->rti_info[RTAX_DST]->sa_family >= AF_MAX ||
592 	    (info->rti_info[RTAX_GATEWAY] != NULL &&
593 	     info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
594 		return (EINVAL);
595 	saf = info->rti_info[RTAX_DST]->sa_family;
596 	/*
597 	 * Verify that the caller has the appropriate privilege; RTM_GET
598 	 * is the only operation the non-superuser is allowed.
599 	 */
600 	if (rtm->rtm_type != RTM_GET) {
601 		error = priv_check(curthread, PRIV_NET_ROUTE);
602 		if (error != 0)
603 			return (error);
604 	}
605 
606 	/*
607 	 * The given gateway address may be an interface address.
608 	 * For example, issuing a "route change" command on a route
609 	 * entry that was created from a tunnel, and the gateway
610 	 * address given is the local end point. In this case the
611 	 * RTF_GATEWAY flag must be cleared or the destination will
612 	 * not be reachable even though there is no error message.
613 	 */
614 	if (info->rti_info[RTAX_GATEWAY] != NULL &&
615 	    info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
616 		struct rt_addrinfo ginfo;
617 		struct sockaddr *gdst;
618 		struct sockaddr_storage ss;
619 
620 		bzero(&ginfo, sizeof(ginfo));
621 		bzero(&ss, sizeof(ss));
622 		ss.ss_len = sizeof(ss);
623 
624 		ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
625 		gdst = info->rti_info[RTAX_GATEWAY];
626 
627 		/*
628 		 * A host route through the loopback interface is
629 		 * installed for each interface adddress. In pre 8.0
630 		 * releases the interface address of a PPP link type
631 		 * is not reachable locally. This behavior is fixed as
632 		 * part of the new L2/L3 redesign and rewrite work. The
633 		 * signature of this interface address route is the
634 		 * AF_LINK sa_family type of the rt_gateway, and the
635 		 * rt_ifp has the IFF_LOOPBACK flag set.
636 		 */
637 		if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
638 			if (ss.ss_family == AF_LINK &&
639 			    ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
640 				info->rti_flags &= ~RTF_GATEWAY;
641 				info->rti_flags |= RTF_GWFLAG_COMPAT;
642 			}
643 			rib_free_info(&ginfo);
644 		}
645 	}
646 
647 	return (0);
648 }
649 
650 /*
651  * Handles RTM_GET message from routing socket, returning matching rt.
652  *
653  * Returns:
654  * 0 on success, with locked and referenced matching rt in @rt_nrt
655  * errno of failure
656  */
657 static int
658 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
659     struct rt_msghdr *rtm, struct rtentry **ret_nrt)
660 {
661 	RIB_RLOCK_TRACKER;
662 	struct rtentry *rt;
663 	struct rib_head *rnh;
664 	sa_family_t saf;
665 
666 	saf = info->rti_info[RTAX_DST]->sa_family;
667 
668 	rnh = rt_tables_get_rnh(fibnum, saf);
669 	if (rnh == NULL)
670 		return (EAFNOSUPPORT);
671 
672 	RIB_RLOCK(rnh);
673 
674 	if (info->rti_info[RTAX_NETMASK] == NULL) {
675 		/*
676 		 * Provide longest prefix match for
677 		 * address lookup (no mask).
678 		 * 'route -n get addr'
679 		 */
680 		rt = (struct rtentry *) rnh->rnh_matchaddr(
681 		    info->rti_info[RTAX_DST], &rnh->head);
682 	} else
683 		rt = (struct rtentry *) rnh->rnh_lookup(
684 		    info->rti_info[RTAX_DST],
685 		    info->rti_info[RTAX_NETMASK], &rnh->head);
686 
687 	if (rt == NULL) {
688 		RIB_RUNLOCK(rnh);
689 		return (ESRCH);
690 	}
691 #ifdef RADIX_MPATH
692 	/*
693 	 * for RTM_GET, gate is optional even with multipath.
694 	 * if gate == NULL the first match is returned.
695 	 * (no need to call rt_mpath_matchgate if gate == NULL)
696 	 */
697 	if (rt_mpath_capable(rnh) && info->rti_info[RTAX_GATEWAY]) {
698 		rt = rt_mpath_matchgate(rt, info->rti_info[RTAX_GATEWAY]);
699 		if (!rt) {
700 			RIB_RUNLOCK(rnh);
701 			return (ESRCH);
702 		}
703 	}
704 #endif
705 	/*
706 	 * If performing proxied L2 entry insertion, and
707 	 * the actual PPP host entry is found, perform
708 	 * another search to retrieve the prefix route of
709 	 * the local end point of the PPP link.
710 	 */
711 	if (rtm->rtm_flags & RTF_ANNOUNCE) {
712 		struct sockaddr laddr;
713 
714 		if (rt->rt_ifp != NULL &&
715 		    rt->rt_ifp->if_type == IFT_PROPVIRTUAL) {
716 			struct epoch_tracker et;
717 			struct ifaddr *ifa;
718 
719 			NET_EPOCH_ENTER(et);
720 			ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
721 					RT_ALL_FIBS);
722 			NET_EPOCH_EXIT(et);
723 			if (ifa != NULL)
724 				rt_maskedcopy(ifa->ifa_addr,
725 					      &laddr,
726 					      ifa->ifa_netmask);
727 		} else
728 			rt_maskedcopy(rt->rt_ifa->ifa_addr,
729 				      &laddr,
730 				      rt->rt_ifa->ifa_netmask);
731 		/*
732 		 * refactor rt and no lock operation necessary
733 		 */
734 		rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
735 		    &rnh->head);
736 		if (rt == NULL) {
737 			RIB_RUNLOCK(rnh);
738 			return (ESRCH);
739 		}
740 	}
741 	RT_LOCK(rt);
742 	RT_ADDREF(rt);
743 	RIB_RUNLOCK(rnh);
744 
745 	*ret_nrt = rt;
746 
747 	return (0);
748 }
749 
750 /*
751  * Update sockaddrs, flags, etc in @prtm based on @rt data.
752  * Assumes @rt is locked.
753  * rtm can be reallocated.
754  *
755  * Returns 0 on success, along with pointer to (potentially reallocated)
756  *  rtm.
757  *
758  */
759 static int
760 update_rtm_from_rte(struct rt_addrinfo *info, struct rt_msghdr **prtm,
761     int alloc_len, struct rtentry *rt)
762 {
763 	struct sockaddr_storage netmask_ss;
764 	struct walkarg w;
765 	union sockaddr_union saun;
766 	struct rt_msghdr *rtm, *orig_rtm = NULL;
767 	struct ifnet *ifp;
768 	int error, len;
769 
770 	RT_LOCK_ASSERT(rt);
771 
772 	rtm = *prtm;
773 
774 	info->rti_info[RTAX_DST] = rt_key(rt);
775 	info->rti_info[RTAX_GATEWAY] = rt->rt_gateway;
776 	info->rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
777 	    rt_mask(rt), &netmask_ss);
778 	info->rti_info[RTAX_GENMASK] = 0;
779 	ifp = rt->rt_ifp;
780 	if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
781 		if (ifp) {
782 			info->rti_info[RTAX_IFP] =
783 			    ifp->if_addr->ifa_addr;
784 			error = rtm_get_jailed(info, ifp, rt,
785 			    &saun, curthread->td_ucred);
786 			if (error != 0)
787 				return (error);
788 			if (ifp->if_flags & IFF_POINTOPOINT)
789 				info->rti_info[RTAX_BRD] =
790 				    rt->rt_ifa->ifa_dstaddr;
791 			rtm->rtm_index = ifp->if_index;
792 		} else {
793 			info->rti_info[RTAX_IFP] = NULL;
794 			info->rti_info[RTAX_IFA] = NULL;
795 		}
796 	} else if (ifp != NULL)
797 		rtm->rtm_index = ifp->if_index;
798 
799 	/* Check if we need to realloc storage */
800 	rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
801 	if (len > alloc_len) {
802 		struct rt_msghdr *tmp_rtm;
803 
804 		tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
805 		if (tmp_rtm == NULL)
806 			return (ENOBUFS);
807 		bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
808 		orig_rtm = rtm;
809 		rtm = tmp_rtm;
810 		alloc_len = len;
811 
812 		/*
813 		 * Delay freeing original rtm as info contains
814 		 * data referencing it.
815 		 */
816 	}
817 
818 	w.w_tmem = (caddr_t)rtm;
819 	w.w_tmemsize = alloc_len;
820 	rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
821 
822 	if (rt->rt_flags & RTF_GWFLAG_COMPAT)
823 		rtm->rtm_flags = RTF_GATEWAY |
824 			(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
825 	else
826 		rtm->rtm_flags = rt->rt_flags;
827 	rt_getmetrics(rt, &rtm->rtm_rmx);
828 	rtm->rtm_addrs = info->rti_addrs;
829 
830 	if (orig_rtm != NULL)
831 		free(orig_rtm, M_TEMP);
832 	*prtm = rtm;
833 
834 	return (0);
835 }
836 
837 /*ARGSUSED*/
838 static int
839 route_output(struct mbuf *m, struct socket *so, ...)
840 {
841 	struct rt_msghdr *rtm = NULL;
842 	struct rtentry *rt = NULL;
843 	struct rt_addrinfo info;
844 	struct epoch_tracker et;
845 #ifdef INET6
846 	struct sockaddr_storage ss;
847 	struct sockaddr_in6 *sin6;
848 	int i, rti_need_deembed = 0;
849 #endif
850 	int alloc_len = 0, len, error = 0, fibnum;
851 	sa_family_t saf = AF_UNSPEC;
852 	struct walkarg w;
853 
854 	fibnum = so->so_fibnum;
855 
856 #define senderr(e) { error = e; goto flush;}
857 	if (m == NULL || ((m->m_len < sizeof(long)) &&
858 		       (m = m_pullup(m, sizeof(long))) == NULL))
859 		return (ENOBUFS);
860 	if ((m->m_flags & M_PKTHDR) == 0)
861 		panic("route_output");
862 	NET_EPOCH_ENTER(et);
863 	len = m->m_pkthdr.len;
864 	if (len < sizeof(*rtm) ||
865 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
866 		senderr(EINVAL);
867 
868 	/*
869 	 * Most of current messages are in range 200-240 bytes,
870 	 * minimize possible re-allocation on reply using larger size
871 	 * buffer aligned on 1k boundaty.
872 	 */
873 	alloc_len = roundup2(len, 1024);
874 	if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL)
875 		senderr(ENOBUFS);
876 
877 	m_copydata(m, 0, len, (caddr_t)rtm);
878 	bzero(&info, sizeof(info));
879 	bzero(&w, sizeof(w));
880 
881 	if (rtm->rtm_version != RTM_VERSION) {
882 		/* Do not touch message since format is unknown */
883 		free(rtm, M_TEMP);
884 		rtm = NULL;
885 		senderr(EPROTONOSUPPORT);
886 	}
887 
888 	/*
889 	 * Starting from here, it is possible
890 	 * to alter original message and insert
891 	 * caller PID and error value.
892 	 */
893 
894 	if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) {
895 		senderr(error);
896 	}
897 
898 	saf = info.rti_info[RTAX_DST]->sa_family;
899 
900 	/* support for new ARP code */
901 	if (rtm->rtm_flags & RTF_LLDATA) {
902 		error = lla_rt_output(rtm, &info);
903 #ifdef INET6
904 		if (error == 0)
905 			rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
906 #endif
907 		goto flush;
908 	}
909 
910 	switch (rtm->rtm_type) {
911 		struct rtentry *saved_nrt;
912 
913 	case RTM_ADD:
914 	case RTM_CHANGE:
915 		if (rtm->rtm_type == RTM_ADD) {
916 			if (info.rti_info[RTAX_GATEWAY] == NULL)
917 				senderr(EINVAL);
918 		}
919 		saved_nrt = NULL;
920 		error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt,
921 		    fibnum);
922 		if (error == 0 && saved_nrt != NULL) {
923 #ifdef INET6
924 			rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
925 #endif
926 			RT_LOCK(saved_nrt);
927 			rtm->rtm_index = saved_nrt->rt_ifp->if_index;
928 			RT_REMREF(saved_nrt);
929 			RT_UNLOCK(saved_nrt);
930 		}
931 		break;
932 
933 	case RTM_DELETE:
934 		saved_nrt = NULL;
935 		error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum);
936 		if (error == 0) {
937 			RT_LOCK(saved_nrt);
938 			rt = saved_nrt;
939 			goto report;
940 		}
941 #ifdef INET6
942 		/* rt_msg2() will not be used when RTM_DELETE fails. */
943 		rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
944 #endif
945 		break;
946 
947 	case RTM_GET:
948 		error = handle_rtm_get(&info, fibnum, rtm, &rt);
949 		if (error != 0)
950 			senderr(error);
951 
952 report:
953 		RT_LOCK_ASSERT(rt);
954 		if (!can_export_rte(curthread->td_ucred, rt)) {
955 			RT_UNLOCK(rt);
956 			senderr(ESRCH);
957 		}
958 		error = update_rtm_from_rte(&info, &rtm, alloc_len, rt);
959 		/*
960 		 * Note that some sockaddr pointers may have changed to
961 		 * point to memory outsize @rtm. Some may be pointing
962 		 * to the on-stack variables.
963 		 * Given that, any pointer in @info CANNOT BE USED.
964 		 */
965 
966 		/*
967 		 * scopeid deembedding has been performed while
968 		 * writing updated rtm in rtsock_msg_buffer().
969 		 * With that in mind, skip deembedding procedure below.
970 		 */
971 #ifdef INET6
972 		rti_need_deembed = 0;
973 #endif
974 		RT_UNLOCK(rt);
975 		if (error != 0)
976 			senderr(error);
977 		break;
978 
979 	default:
980 		senderr(EOPNOTSUPP);
981 	}
982 
983 flush:
984 	NET_EPOCH_EXIT(et);
985 	if (rt != NULL)
986 		RTFREE(rt);
987 
988 #ifdef INET6
989 	if (rtm != NULL) {
990 		if (rti_need_deembed) {
991 			/* sin6_scope_id is recovered before sending rtm. */
992 			sin6 = (struct sockaddr_in6 *)&ss;
993 			for (i = 0; i < RTAX_MAX; i++) {
994 				if (info.rti_info[i] == NULL)
995 					continue;
996 				if (info.rti_info[i]->sa_family != AF_INET6)
997 					continue;
998 				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
999 				if (sa6_recoverscope(sin6) == 0)
1000 					bcopy(sin6, info.rti_info[i],
1001 						    sizeof(*sin6));
1002 			}
1003 		}
1004 	}
1005 #endif
1006 	send_rtm_reply(so, rtm, m, saf, fibnum, error);
1007 
1008 	return (error);
1009 }
1010 
1011 /*
1012  * Sends the prepared reply message in @rtm to all rtsock clients.
1013  * Frees @m and @rtm.
1014  *
1015  */
1016 static void
1017 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
1018     sa_family_t saf, u_int fibnum, int rtm_errno)
1019 {
1020 	struct rawcb *rp = NULL;
1021 
1022 	/*
1023 	 * Check to see if we don't want our own messages.
1024 	 */
1025 	if ((so->so_options & SO_USELOOPBACK) == 0) {
1026 		if (V_route_cb.any_count <= 1) {
1027 			if (rtm != NULL)
1028 				free(rtm, M_TEMP);
1029 			m_freem(m);
1030 			return;
1031 		}
1032 		/* There is another listener, so construct message */
1033 		rp = sotorawcb(so);
1034 	}
1035 
1036 	if (rtm != NULL) {
1037 		if (rtm_errno!= 0)
1038 			rtm->rtm_errno = rtm_errno;
1039 		else
1040 			rtm->rtm_flags |= RTF_DONE;
1041 
1042 		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
1043 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
1044 			m_freem(m);
1045 			m = NULL;
1046 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
1047 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1048 
1049 		free(rtm, M_TEMP);
1050 	}
1051 	if (m != NULL) {
1052 		M_SETFIB(m, fibnum);
1053 		m->m_flags |= RTS_FILTER_FIB;
1054 		if (rp) {
1055 			/*
1056 			 * XXX insure we don't get a copy by
1057 			 * invalidating our protocol
1058 			 */
1059 			unsigned short family = rp->rcb_proto.sp_family;
1060 			rp->rcb_proto.sp_family = 0;
1061 			rt_dispatch(m, saf);
1062 			rp->rcb_proto.sp_family = family;
1063 		} else
1064 			rt_dispatch(m, saf);
1065 	}
1066 }
1067 
1068 
1069 static void
1070 rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out)
1071 {
1072 
1073 	bzero(out, sizeof(*out));
1074 	out->rmx_mtu = rt->rt_mtu;
1075 	out->rmx_weight = rt->rt_weight;
1076 	out->rmx_pksent = counter_u64_fetch(rt->rt_pksent);
1077 	/* Kernel -> userland timebase conversion. */
1078 	out->rmx_expire = rt->rt_expire ?
1079 	    rt->rt_expire - time_uptime + time_second : 0;
1080 }
1081 
1082 /*
1083  * Extract the addresses of the passed sockaddrs.
1084  * Do a little sanity checking so as to avoid bad memory references.
1085  * This data is derived straight from userland.
1086  */
1087 static int
1088 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1089 {
1090 	struct sockaddr *sa;
1091 	int i;
1092 
1093 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1094 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
1095 			continue;
1096 		sa = (struct sockaddr *)cp;
1097 		/*
1098 		 * It won't fit.
1099 		 */
1100 		if (cp + sa->sa_len > cplim)
1101 			return (EINVAL);
1102 		/*
1103 		 * there are no more.. quit now
1104 		 * If there are more bits, they are in error.
1105 		 * I've seen this. route(1) can evidently generate these.
1106 		 * This causes kernel to core dump.
1107 		 * for compatibility, If we see this, point to a safe address.
1108 		 */
1109 		if (sa->sa_len == 0) {
1110 			rtinfo->rti_info[i] = &sa_zero;
1111 			return (0); /* should be EINVAL but for compat */
1112 		}
1113 		/* accept it */
1114 #ifdef INET6
1115 		if (sa->sa_family == AF_INET6)
1116 			sa6_embedscope((struct sockaddr_in6 *)sa,
1117 			    V_ip6_use_defzone);
1118 #endif
1119 		rtinfo->rti_info[i] = sa;
1120 		cp += SA_SIZE(sa);
1121 	}
1122 	return (0);
1123 }
1124 
1125 /*
1126  * Fill in @dmask with valid netmask leaving original @smask
1127  * intact. Mostly used with radix netmasks.
1128  */
1129 static struct sockaddr *
1130 rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask,
1131     struct sockaddr_storage *dmask)
1132 {
1133 	if (dst == NULL || smask == NULL)
1134 		return (NULL);
1135 
1136 	memset(dmask, 0, dst->sa_len);
1137 	memcpy(dmask, smask, smask->sa_len);
1138 	dmask->ss_len = dst->sa_len;
1139 	dmask->ss_family = dst->sa_family;
1140 
1141 	return ((struct sockaddr *)dmask);
1142 }
1143 
1144 /*
1145  * Writes information related to @rtinfo object to newly-allocated mbuf.
1146  * Assumes MCLBYTES is enough to construct any message.
1147  * Used for OS notifications of vaious events (if/ifa announces,etc)
1148  *
1149  * Returns allocated mbuf or NULL on failure.
1150  */
1151 static struct mbuf *
1152 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1153 {
1154 	struct rt_msghdr *rtm;
1155 	struct mbuf *m;
1156 	int i;
1157 	struct sockaddr *sa;
1158 #ifdef INET6
1159 	struct sockaddr_storage ss;
1160 	struct sockaddr_in6 *sin6;
1161 #endif
1162 	int len, dlen;
1163 
1164 	switch (type) {
1165 
1166 	case RTM_DELADDR:
1167 	case RTM_NEWADDR:
1168 		len = sizeof(struct ifa_msghdr);
1169 		break;
1170 
1171 	case RTM_DELMADDR:
1172 	case RTM_NEWMADDR:
1173 		len = sizeof(struct ifma_msghdr);
1174 		break;
1175 
1176 	case RTM_IFINFO:
1177 		len = sizeof(struct if_msghdr);
1178 		break;
1179 
1180 	case RTM_IFANNOUNCE:
1181 	case RTM_IEEE80211:
1182 		len = sizeof(struct if_announcemsghdr);
1183 		break;
1184 
1185 	default:
1186 		len = sizeof(struct rt_msghdr);
1187 	}
1188 
1189 	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
1190 	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1191 	if (len > MHLEN)
1192 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1193 	else
1194 		m = m_gethdr(M_NOWAIT, MT_DATA);
1195 	if (m == NULL)
1196 		return (m);
1197 
1198 	m->m_pkthdr.len = m->m_len = len;
1199 	rtm = mtod(m, struct rt_msghdr *);
1200 	bzero((caddr_t)rtm, len);
1201 	for (i = 0; i < RTAX_MAX; i++) {
1202 		if ((sa = rtinfo->rti_info[i]) == NULL)
1203 			continue;
1204 		rtinfo->rti_addrs |= (1 << i);
1205 		dlen = SA_SIZE(sa);
1206 #ifdef INET6
1207 		if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1208 			sin6 = (struct sockaddr_in6 *)&ss;
1209 			bcopy(sa, sin6, sizeof(*sin6));
1210 			if (sa6_recoverscope(sin6) == 0)
1211 				sa = (struct sockaddr *)sin6;
1212 		}
1213 #endif
1214 		m_copyback(m, len, dlen, (caddr_t)sa);
1215 		len += dlen;
1216 	}
1217 	if (m->m_pkthdr.len != len) {
1218 		m_freem(m);
1219 		return (NULL);
1220 	}
1221 	rtm->rtm_msglen = len;
1222 	rtm->rtm_version = RTM_VERSION;
1223 	rtm->rtm_type = type;
1224 	return (m);
1225 }
1226 
1227 /*
1228  * Writes information related to @rtinfo object to preallocated buffer.
1229  * Stores needed size in @plen. If @w is NULL, calculates size without
1230  * writing.
1231  * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1232  *
1233  * Returns 0 on success.
1234  *
1235  */
1236 static int
1237 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1238 {
1239 	int i;
1240 	int len, buflen = 0, dlen;
1241 	caddr_t cp = NULL;
1242 	struct rt_msghdr *rtm = NULL;
1243 #ifdef INET6
1244 	struct sockaddr_storage ss;
1245 	struct sockaddr_in6 *sin6;
1246 #endif
1247 #ifdef COMPAT_FREEBSD32
1248 	bool compat32 = false;
1249 #endif
1250 
1251 	switch (type) {
1252 
1253 	case RTM_DELADDR:
1254 	case RTM_NEWADDR:
1255 		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1256 #ifdef COMPAT_FREEBSD32
1257 			if (w->w_req->flags & SCTL_MASK32) {
1258 				len = sizeof(struct ifa_msghdrl32);
1259 				compat32 = true;
1260 			} else
1261 #endif
1262 				len = sizeof(struct ifa_msghdrl);
1263 		} else
1264 			len = sizeof(struct ifa_msghdr);
1265 		break;
1266 
1267 	case RTM_IFINFO:
1268 #ifdef COMPAT_FREEBSD32
1269 		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1270 			if (w->w_op == NET_RT_IFLISTL)
1271 				len = sizeof(struct if_msghdrl32);
1272 			else
1273 				len = sizeof(struct if_msghdr32);
1274 			compat32 = true;
1275 			break;
1276 		}
1277 #endif
1278 		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1279 			len = sizeof(struct if_msghdrl);
1280 		else
1281 			len = sizeof(struct if_msghdr);
1282 		break;
1283 
1284 	case RTM_NEWMADDR:
1285 		len = sizeof(struct ifma_msghdr);
1286 		break;
1287 
1288 	default:
1289 		len = sizeof(struct rt_msghdr);
1290 	}
1291 
1292 	if (w != NULL) {
1293 		rtm = (struct rt_msghdr *)w->w_tmem;
1294 		buflen = w->w_tmemsize - len;
1295 		cp = (caddr_t)w->w_tmem + len;
1296 	}
1297 
1298 	rtinfo->rti_addrs = 0;
1299 	for (i = 0; i < RTAX_MAX; i++) {
1300 		struct sockaddr *sa;
1301 
1302 		if ((sa = rtinfo->rti_info[i]) == NULL)
1303 			continue;
1304 		rtinfo->rti_addrs |= (1 << i);
1305 #ifdef COMPAT_FREEBSD32
1306 		if (compat32)
1307 			dlen = SA_SIZE32(sa);
1308 		else
1309 #endif
1310 			dlen = SA_SIZE(sa);
1311 		if (cp != NULL && buflen >= dlen) {
1312 #ifdef INET6
1313 			if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1314 				sin6 = (struct sockaddr_in6 *)&ss;
1315 				bcopy(sa, sin6, sizeof(*sin6));
1316 				if (sa6_recoverscope(sin6) == 0)
1317 					sa = (struct sockaddr *)sin6;
1318 			}
1319 #endif
1320 			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1321 			cp += dlen;
1322 			buflen -= dlen;
1323 		} else if (cp != NULL) {
1324 			/*
1325 			 * Buffer too small. Count needed size
1326 			 * and return with error.
1327 			 */
1328 			cp = NULL;
1329 		}
1330 
1331 		len += dlen;
1332 	}
1333 
1334 	if (cp != NULL) {
1335 		dlen = ALIGN(len) - len;
1336 		if (buflen < dlen)
1337 			cp = NULL;
1338 		else {
1339 			bzero(cp, dlen);
1340 			cp += dlen;
1341 			buflen -= dlen;
1342 		}
1343 	}
1344 	len = ALIGN(len);
1345 
1346 	if (cp != NULL) {
1347 		/* fill header iff buffer is large enough */
1348 		rtm->rtm_version = RTM_VERSION;
1349 		rtm->rtm_type = type;
1350 		rtm->rtm_msglen = len;
1351 	}
1352 
1353 	*plen = len;
1354 
1355 	if (w != NULL && cp == NULL)
1356 		return (ENOBUFS);
1357 
1358 	return (0);
1359 }
1360 
1361 /*
1362  * This routine is called to generate a message from the routing
1363  * socket indicating that a redirect has occurred, a routing lookup
1364  * has failed, or that a protocol has detected timeouts to a particular
1365  * destination.
1366  */
1367 void
1368 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1369     int fibnum)
1370 {
1371 	struct rt_msghdr *rtm;
1372 	struct mbuf *m;
1373 	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1374 
1375 	if (V_route_cb.any_count == 0)
1376 		return;
1377 	m = rtsock_msg_mbuf(type, rtinfo);
1378 	if (m == NULL)
1379 		return;
1380 
1381 	if (fibnum != RT_ALL_FIBS) {
1382 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1383 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1384 		M_SETFIB(m, fibnum);
1385 		m->m_flags |= RTS_FILTER_FIB;
1386 	}
1387 
1388 	rtm = mtod(m, struct rt_msghdr *);
1389 	rtm->rtm_flags = RTF_DONE | flags;
1390 	rtm->rtm_errno = error;
1391 	rtm->rtm_addrs = rtinfo->rti_addrs;
1392 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1393 }
1394 
1395 void
1396 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1397 {
1398 
1399 	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1400 }
1401 
1402 /*
1403  * This routine is called to generate a message from the routing
1404  * socket indicating that the status of a network interface has changed.
1405  */
1406 void
1407 rt_ifmsg(struct ifnet *ifp)
1408 {
1409 	struct if_msghdr *ifm;
1410 	struct mbuf *m;
1411 	struct rt_addrinfo info;
1412 
1413 	if (V_route_cb.any_count == 0)
1414 		return;
1415 	bzero((caddr_t)&info, sizeof(info));
1416 	m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1417 	if (m == NULL)
1418 		return;
1419 	ifm = mtod(m, struct if_msghdr *);
1420 	ifm->ifm_index = ifp->if_index;
1421 	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1422 	if_data_copy(ifp, &ifm->ifm_data);
1423 	ifm->ifm_addrs = 0;
1424 	rt_dispatch(m, AF_UNSPEC);
1425 }
1426 
1427 /*
1428  * Announce interface address arrival/withdraw.
1429  * Please do not call directly, use rt_addrmsg().
1430  * Assume input data to be valid.
1431  * Returns 0 on success.
1432  */
1433 int
1434 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1435 {
1436 	struct rt_addrinfo info;
1437 	struct sockaddr *sa;
1438 	int ncmd;
1439 	struct mbuf *m;
1440 	struct ifa_msghdr *ifam;
1441 	struct ifnet *ifp = ifa->ifa_ifp;
1442 	struct sockaddr_storage ss;
1443 
1444 	if (V_route_cb.any_count == 0)
1445 		return (0);
1446 
1447 	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1448 
1449 	bzero((caddr_t)&info, sizeof(info));
1450 	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1451 	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1452 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1453 	    info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
1454 	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1455 	if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1456 		return (ENOBUFS);
1457 	ifam = mtod(m, struct ifa_msghdr *);
1458 	ifam->ifam_index = ifp->if_index;
1459 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1460 	ifam->ifam_flags = ifa->ifa_flags;
1461 	ifam->ifam_addrs = info.rti_addrs;
1462 
1463 	if (fibnum != RT_ALL_FIBS) {
1464 		M_SETFIB(m, fibnum);
1465 		m->m_flags |= RTS_FILTER_FIB;
1466 	}
1467 
1468 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1469 
1470 	return (0);
1471 }
1472 
1473 /*
1474  * Announce route addition/removal to rtsock based on @rt data.
1475  * Callers are advives to use rt_routemsg() instead of using this
1476  *  function directly.
1477  * Assume @rt data is consistent.
1478  *
1479  * Returns 0 on success.
1480  */
1481 int
1482 rtsock_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs,
1483     int fibnum)
1484 {
1485 	struct sockaddr_storage ss;
1486 	struct rt_addrinfo info;
1487 
1488 	if (V_route_cb.any_count == 0)
1489 		return (0);
1490 
1491 	bzero((caddr_t)&info, sizeof(info));
1492 	info.rti_info[RTAX_DST] = rt_key(rt);
1493 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), rt_mask(rt), &ss);
1494 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1495 	info.rti_flags = rt->rt_flags;
1496 	info.rti_ifp = ifp;
1497 
1498 	return (rtsock_routemsg_info(cmd, &info, fibnum));
1499 }
1500 
1501 int
1502 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
1503 {
1504 	struct rt_msghdr *rtm;
1505 	struct sockaddr *sa;
1506 	struct mbuf *m;
1507 
1508 	if (V_route_cb.any_count == 0)
1509 		return (0);
1510 
1511 	if (info->rti_flags & RTF_HOST)
1512 		info->rti_info[RTAX_NETMASK] = NULL;
1513 
1514 	m = rtsock_msg_mbuf(cmd, info);
1515 	if (m == NULL)
1516 		return (ENOBUFS);
1517 
1518 	if (fibnum != RT_ALL_FIBS) {
1519 		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1520 		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1521 		M_SETFIB(m, fibnum);
1522 		m->m_flags |= RTS_FILTER_FIB;
1523 	}
1524 
1525 	rtm = mtod(m, struct rt_msghdr *);
1526 	rtm->rtm_addrs = info->rti_addrs;
1527 	if (info->rti_ifp != NULL)
1528 		rtm->rtm_index = info->rti_ifp->if_index;
1529 	/* Add RTF_DONE to indicate command 'completion' required by API */
1530 	info->rti_flags |= RTF_DONE;
1531 	/* Reported routes has to be up */
1532 	if (cmd == RTM_ADD || cmd == RTM_CHANGE)
1533 		info->rti_flags |= RTF_UP;
1534 	rtm->rtm_flags = info->rti_flags;
1535 
1536 	sa = info->rti_info[RTAX_DST];
1537 	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1538 
1539 	return (0);
1540 }
1541 
1542 /*
1543  * This is the analogue to the rt_newaddrmsg which performs the same
1544  * function but for multicast group memberhips.  This is easier since
1545  * there is no route state to worry about.
1546  */
1547 void
1548 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1549 {
1550 	struct rt_addrinfo info;
1551 	struct mbuf *m = NULL;
1552 	struct ifnet *ifp = ifma->ifma_ifp;
1553 	struct ifma_msghdr *ifmam;
1554 
1555 	if (V_route_cb.any_count == 0)
1556 		return;
1557 
1558 	bzero((caddr_t)&info, sizeof(info));
1559 	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1560 	if (ifp && ifp->if_addr)
1561 		info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1562 	else
1563 		info.rti_info[RTAX_IFP] = NULL;
1564 	/*
1565 	 * If a link-layer address is present, present it as a ``gateway''
1566 	 * (similarly to how ARP entries, e.g., are presented).
1567 	 */
1568 	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1569 	m = rtsock_msg_mbuf(cmd, &info);
1570 	if (m == NULL)
1571 		return;
1572 	ifmam = mtod(m, struct ifma_msghdr *);
1573 	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1574 	    __func__));
1575 	ifmam->ifmam_index = ifp->if_index;
1576 	ifmam->ifmam_addrs = info.rti_addrs;
1577 	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1578 }
1579 
1580 static struct mbuf *
1581 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1582 	struct rt_addrinfo *info)
1583 {
1584 	struct if_announcemsghdr *ifan;
1585 	struct mbuf *m;
1586 
1587 	if (V_route_cb.any_count == 0)
1588 		return NULL;
1589 	bzero((caddr_t)info, sizeof(*info));
1590 	m = rtsock_msg_mbuf(type, info);
1591 	if (m != NULL) {
1592 		ifan = mtod(m, struct if_announcemsghdr *);
1593 		ifan->ifan_index = ifp->if_index;
1594 		strlcpy(ifan->ifan_name, ifp->if_xname,
1595 			sizeof(ifan->ifan_name));
1596 		ifan->ifan_what = what;
1597 	}
1598 	return m;
1599 }
1600 
1601 /*
1602  * This is called to generate routing socket messages indicating
1603  * IEEE80211 wireless events.
1604  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1605  */
1606 void
1607 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1608 {
1609 	struct mbuf *m;
1610 	struct rt_addrinfo info;
1611 
1612 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1613 	if (m != NULL) {
1614 		/*
1615 		 * Append the ieee80211 data.  Try to stick it in the
1616 		 * mbuf containing the ifannounce msg; otherwise allocate
1617 		 * a new mbuf and append.
1618 		 *
1619 		 * NB: we assume m is a single mbuf.
1620 		 */
1621 		if (data_len > M_TRAILINGSPACE(m)) {
1622 			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1623 			if (n == NULL) {
1624 				m_freem(m);
1625 				return;
1626 			}
1627 			bcopy(data, mtod(n, void *), data_len);
1628 			n->m_len = data_len;
1629 			m->m_next = n;
1630 		} else if (data_len > 0) {
1631 			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1632 			m->m_len += data_len;
1633 		}
1634 		if (m->m_flags & M_PKTHDR)
1635 			m->m_pkthdr.len += data_len;
1636 		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1637 		rt_dispatch(m, AF_UNSPEC);
1638 	}
1639 }
1640 
1641 /*
1642  * This is called to generate routing socket messages indicating
1643  * network interface arrival and departure.
1644  */
1645 void
1646 rt_ifannouncemsg(struct ifnet *ifp, int what)
1647 {
1648 	struct mbuf *m;
1649 	struct rt_addrinfo info;
1650 
1651 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1652 	if (m != NULL)
1653 		rt_dispatch(m, AF_UNSPEC);
1654 }
1655 
1656 static void
1657 rt_dispatch(struct mbuf *m, sa_family_t saf)
1658 {
1659 	struct m_tag *tag;
1660 
1661 	/*
1662 	 * Preserve the family from the sockaddr, if any, in an m_tag for
1663 	 * use when injecting the mbuf into the routing socket buffer from
1664 	 * the netisr.
1665 	 */
1666 	if (saf != AF_UNSPEC) {
1667 		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1668 		    M_NOWAIT);
1669 		if (tag == NULL) {
1670 			m_freem(m);
1671 			return;
1672 		}
1673 		*(unsigned short *)(tag + 1) = saf;
1674 		m_tag_prepend(m, tag);
1675 	}
1676 #ifdef VIMAGE
1677 	if (V_loif)
1678 		m->m_pkthdr.rcvif = V_loif;
1679 	else {
1680 		m_freem(m);
1681 		return;
1682 	}
1683 #endif
1684 	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
1685 }
1686 
1687 /*
1688  * Checks if rte can be exported v.r.t jails/vnets.
1689  *
1690  * Returns 1 if it can, 0 otherwise.
1691  */
1692 static int
1693 can_export_rte(struct ucred *td_ucred, const struct rtentry *rt)
1694 {
1695 
1696 	if ((rt->rt_flags & RTF_HOST) == 0
1697 	    ? jailed_without_vnet(td_ucred)
1698 	    : prison_if(td_ucred, rt_key_const(rt)) != 0)
1699 		return (0);
1700 	return (1);
1701 }
1702 
1703 /*
1704  * This is used in dumping the kernel table via sysctl().
1705  */
1706 static int
1707 sysctl_dumpentry(struct radix_node *rn, void *vw)
1708 {
1709 	struct walkarg *w = vw;
1710 	struct rtentry *rt = (struct rtentry *)rn;
1711 	int error = 0, size;
1712 	struct rt_addrinfo info;
1713 	struct sockaddr_storage ss;
1714 
1715 	NET_EPOCH_ASSERT();
1716 
1717 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1718 		return 0;
1719 	if (!can_export_rte(w->w_req->td->td_ucred, rt))
1720 		return (0);
1721 	bzero((caddr_t)&info, sizeof(info));
1722 	info.rti_info[RTAX_DST] = rt_key(rt);
1723 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1724 	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
1725 	    rt_mask(rt), &ss);
1726 	info.rti_info[RTAX_GENMASK] = 0;
1727 	if (rt->rt_ifp && !(rt->rt_ifp->if_flags & IFF_DYING)) {
1728 		info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1729 		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1730 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1731 			info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1732 	}
1733 	if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
1734 		return (error);
1735 	if (w->w_req && w->w_tmem) {
1736 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1737 
1738 		bzero(&rtm->rtm_index,
1739 		    sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
1740 		if (rt->rt_flags & RTF_GWFLAG_COMPAT)
1741 			rtm->rtm_flags = RTF_GATEWAY |
1742 				(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
1743 		else
1744 			rtm->rtm_flags = rt->rt_flags;
1745 		rt_getmetrics(rt, &rtm->rtm_rmx);
1746 		rtm->rtm_index = rt->rt_ifp->if_index;
1747 		rtm->rtm_addrs = info.rti_addrs;
1748 		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1749 		return (error);
1750 	}
1751 	return (error);
1752 }
1753 
1754 static int
1755 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
1756     struct rt_addrinfo *info, struct walkarg *w, int len)
1757 {
1758 	struct if_msghdrl *ifm;
1759 	struct if_data *ifd;
1760 
1761 	ifm = (struct if_msghdrl *)w->w_tmem;
1762 
1763 #ifdef COMPAT_FREEBSD32
1764 	if (w->w_req->flags & SCTL_MASK32) {
1765 		struct if_msghdrl32 *ifm32;
1766 
1767 		ifm32 = (struct if_msghdrl32 *)ifm;
1768 		ifm32->ifm_addrs = info->rti_addrs;
1769 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1770 		ifm32->ifm_index = ifp->if_index;
1771 		ifm32->_ifm_spare1 = 0;
1772 		ifm32->ifm_len = sizeof(*ifm32);
1773 		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1774 		ifm32->_ifm_spare2 = 0;
1775 		ifd = &ifm32->ifm_data;
1776 	} else
1777 #endif
1778 	{
1779 		ifm->ifm_addrs = info->rti_addrs;
1780 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1781 		ifm->ifm_index = ifp->if_index;
1782 		ifm->_ifm_spare1 = 0;
1783 		ifm->ifm_len = sizeof(*ifm);
1784 		ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1785 		ifm->_ifm_spare2 = 0;
1786 		ifd = &ifm->ifm_data;
1787 	}
1788 
1789 	memcpy(ifd, src_ifd, sizeof(*ifd));
1790 
1791 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1792 }
1793 
1794 static int
1795 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
1796     struct rt_addrinfo *info, struct walkarg *w, int len)
1797 {
1798 	struct if_msghdr *ifm;
1799 	struct if_data *ifd;
1800 
1801 	ifm = (struct if_msghdr *)w->w_tmem;
1802 
1803 #ifdef COMPAT_FREEBSD32
1804 	if (w->w_req->flags & SCTL_MASK32) {
1805 		struct if_msghdr32 *ifm32;
1806 
1807 		ifm32 = (struct if_msghdr32 *)ifm;
1808 		ifm32->ifm_addrs = info->rti_addrs;
1809 		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1810 		ifm32->ifm_index = ifp->if_index;
1811 		ifm32->_ifm_spare1 = 0;
1812 		ifd = &ifm32->ifm_data;
1813 	} else
1814 #endif
1815 	{
1816 		ifm->ifm_addrs = info->rti_addrs;
1817 		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1818 		ifm->ifm_index = ifp->if_index;
1819 		ifm->_ifm_spare1 = 0;
1820 		ifd = &ifm->ifm_data;
1821 	}
1822 
1823 	memcpy(ifd, src_ifd, sizeof(*ifd));
1824 
1825 	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1826 }
1827 
1828 static int
1829 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1830     struct walkarg *w, int len)
1831 {
1832 	struct ifa_msghdrl *ifam;
1833 	struct if_data *ifd;
1834 
1835 	ifam = (struct ifa_msghdrl *)w->w_tmem;
1836 
1837 #ifdef COMPAT_FREEBSD32
1838 	if (w->w_req->flags & SCTL_MASK32) {
1839 		struct ifa_msghdrl32 *ifam32;
1840 
1841 		ifam32 = (struct ifa_msghdrl32 *)ifam;
1842 		ifam32->ifam_addrs = info->rti_addrs;
1843 		ifam32->ifam_flags = ifa->ifa_flags;
1844 		ifam32->ifam_index = ifa->ifa_ifp->if_index;
1845 		ifam32->_ifam_spare1 = 0;
1846 		ifam32->ifam_len = sizeof(*ifam32);
1847 		ifam32->ifam_data_off =
1848 		    offsetof(struct ifa_msghdrl32, ifam_data);
1849 		ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
1850 		ifd = &ifam32->ifam_data;
1851 	} else
1852 #endif
1853 	{
1854 		ifam->ifam_addrs = info->rti_addrs;
1855 		ifam->ifam_flags = ifa->ifa_flags;
1856 		ifam->ifam_index = ifa->ifa_ifp->if_index;
1857 		ifam->_ifam_spare1 = 0;
1858 		ifam->ifam_len = sizeof(*ifam);
1859 		ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
1860 		ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1861 		ifd = &ifam->ifam_data;
1862 	}
1863 
1864 	bzero(ifd, sizeof(*ifd));
1865 	ifd->ifi_datalen = sizeof(struct if_data);
1866 	ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
1867 	ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
1868 	ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
1869 	ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
1870 
1871 	/* Fixup if_data carp(4) vhid. */
1872 	if (carp_get_vhid_p != NULL)
1873 		ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
1874 
1875 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1876 }
1877 
1878 static int
1879 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
1880     struct walkarg *w, int len)
1881 {
1882 	struct ifa_msghdr *ifam;
1883 
1884 	ifam = (struct ifa_msghdr *)w->w_tmem;
1885 	ifam->ifam_addrs = info->rti_addrs;
1886 	ifam->ifam_flags = ifa->ifa_flags;
1887 	ifam->ifam_index = ifa->ifa_ifp->if_index;
1888 	ifam->_ifam_spare1 = 0;
1889 	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1890 
1891 	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1892 }
1893 
1894 static int
1895 sysctl_iflist(int af, struct walkarg *w)
1896 {
1897 	struct ifnet *ifp;
1898 	struct ifaddr *ifa;
1899 	struct if_data ifd;
1900 	struct rt_addrinfo info;
1901 	int len, error = 0;
1902 	struct sockaddr_storage ss;
1903 
1904 	bzero((caddr_t)&info, sizeof(info));
1905 	bzero(&ifd, sizeof(ifd));
1906 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1907 		if (w->w_arg && w->w_arg != ifp->if_index)
1908 			continue;
1909 		if_data_copy(ifp, &ifd);
1910 		ifa = ifp->if_addr;
1911 		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1912 		error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
1913 		if (error != 0)
1914 			goto done;
1915 		info.rti_info[RTAX_IFP] = NULL;
1916 		if (w->w_req && w->w_tmem) {
1917 			if (w->w_op == NET_RT_IFLISTL)
1918 				error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
1919 				    len);
1920 			else
1921 				error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
1922 				    len);
1923 			if (error)
1924 				goto done;
1925 		}
1926 		while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
1927 			if (af && af != ifa->ifa_addr->sa_family)
1928 				continue;
1929 			if (prison_if(w->w_req->td->td_ucred,
1930 			    ifa->ifa_addr) != 0)
1931 				continue;
1932 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1933 			info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1934 			    ifa->ifa_addr, ifa->ifa_netmask, &ss);
1935 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1936 			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
1937 			if (error != 0)
1938 				goto done;
1939 			if (w->w_req && w->w_tmem) {
1940 				if (w->w_op == NET_RT_IFLISTL)
1941 					error = sysctl_iflist_ifaml(ifa, &info,
1942 					    w, len);
1943 				else
1944 					error = sysctl_iflist_ifam(ifa, &info,
1945 					    w, len);
1946 				if (error)
1947 					goto done;
1948 			}
1949 		}
1950 		info.rti_info[RTAX_IFA] = NULL;
1951 		info.rti_info[RTAX_NETMASK] = NULL;
1952 		info.rti_info[RTAX_BRD] = NULL;
1953 	}
1954 done:
1955 	return (error);
1956 }
1957 
1958 static int
1959 sysctl_ifmalist(int af, struct walkarg *w)
1960 {
1961 	struct rt_addrinfo info;
1962 	struct ifaddr *ifa;
1963 	struct ifmultiaddr *ifma;
1964 	struct ifnet *ifp;
1965 	int error, len;
1966 
1967 	NET_EPOCH_ASSERT();
1968 
1969 	error = 0;
1970 	bzero((caddr_t)&info, sizeof(info));
1971 
1972 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1973 		if (w->w_arg && w->w_arg != ifp->if_index)
1974 			continue;
1975 		ifa = ifp->if_addr;
1976 		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1977 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1978 			if (af && af != ifma->ifma_addr->sa_family)
1979 				continue;
1980 			if (prison_if(w->w_req->td->td_ucred,
1981 			    ifma->ifma_addr) != 0)
1982 				continue;
1983 			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1984 			info.rti_info[RTAX_GATEWAY] =
1985 			    (ifma->ifma_addr->sa_family != AF_LINK) ?
1986 			    ifma->ifma_lladdr : NULL;
1987 			error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
1988 			if (error != 0)
1989 				break;
1990 			if (w->w_req && w->w_tmem) {
1991 				struct ifma_msghdr *ifmam;
1992 
1993 				ifmam = (struct ifma_msghdr *)w->w_tmem;
1994 				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1995 				ifmam->ifmam_flags = 0;
1996 				ifmam->ifmam_addrs = info.rti_addrs;
1997 				ifmam->_ifmam_spare1 = 0;
1998 				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1999 				if (error != 0)
2000 					break;
2001 			}
2002 		}
2003 		if (error != 0)
2004 			break;
2005 	}
2006 	return (error);
2007 }
2008 
2009 static int
2010 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
2011 {
2012 	RIB_RLOCK_TRACKER;
2013 	struct epoch_tracker et;
2014 	int	*name = (int *)arg1;
2015 	u_int	namelen = arg2;
2016 	struct rib_head *rnh = NULL; /* silence compiler. */
2017 	int	i, lim, error = EINVAL;
2018 	int	fib = 0;
2019 	u_char	af;
2020 	struct	walkarg w;
2021 
2022 	name ++;
2023 	namelen--;
2024 	if (req->newptr)
2025 		return (EPERM);
2026 	if (name[1] == NET_RT_DUMP) {
2027 		if (namelen == 3)
2028 			fib = req->td->td_proc->p_fibnum;
2029 		else if (namelen == 4)
2030 			fib = (name[3] == RT_ALL_FIBS) ?
2031 			    req->td->td_proc->p_fibnum : name[3];
2032 		else
2033 			return ((namelen < 3) ? EISDIR : ENOTDIR);
2034 		if (fib < 0 || fib >= rt_numfibs)
2035 			return (EINVAL);
2036 	} else if (namelen != 3)
2037 		return ((namelen < 3) ? EISDIR : ENOTDIR);
2038 	af = name[0];
2039 	if (af > AF_MAX)
2040 		return (EINVAL);
2041 	bzero(&w, sizeof(w));
2042 	w.w_op = name[1];
2043 	w.w_arg = name[2];
2044 	w.w_req = req;
2045 
2046 	error = sysctl_wire_old_buffer(req, 0);
2047 	if (error)
2048 		return (error);
2049 
2050 	/*
2051 	 * Allocate reply buffer in advance.
2052 	 * All rtsock messages has maximum length of u_short.
2053 	 */
2054 	w.w_tmemsize = 65536;
2055 	w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
2056 
2057 	NET_EPOCH_ENTER(et);
2058 	switch (w.w_op) {
2059 	case NET_RT_DUMP:
2060 	case NET_RT_FLAGS:
2061 		if (af == 0) {			/* dump all tables */
2062 			i = 1;
2063 			lim = AF_MAX;
2064 		} else				/* dump only one table */
2065 			i = lim = af;
2066 
2067 		/*
2068 		 * take care of llinfo entries, the caller must
2069 		 * specify an AF
2070 		 */
2071 		if (w.w_op == NET_RT_FLAGS &&
2072 		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
2073 			if (af != 0)
2074 				error = lltable_sysctl_dumparp(af, w.w_req);
2075 			else
2076 				error = EINVAL;
2077 			break;
2078 		}
2079 		/*
2080 		 * take care of routing entries
2081 		 */
2082 		for (error = 0; error == 0 && i <= lim; i++) {
2083 			rnh = rt_tables_get_rnh(fib, i);
2084 			if (rnh != NULL) {
2085 				RIB_RLOCK(rnh);
2086 			    	error = rnh->rnh_walktree(&rnh->head,
2087 				    sysctl_dumpentry, &w);
2088 				RIB_RUNLOCK(rnh);
2089 			} else if (af != 0)
2090 				error = EAFNOSUPPORT;
2091 		}
2092 		break;
2093 
2094 	case NET_RT_IFLIST:
2095 	case NET_RT_IFLISTL:
2096 		error = sysctl_iflist(af, &w);
2097 		break;
2098 
2099 	case NET_RT_IFMALIST:
2100 		error = sysctl_ifmalist(af, &w);
2101 		break;
2102 	}
2103 	NET_EPOCH_EXIT(et);
2104 
2105 	free(w.w_tmem, M_TEMP);
2106 	return (error);
2107 }
2108 
2109 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
2110     sysctl_rtsock, "Return route tables and interface/address lists");
2111 
2112 /*
2113  * Definitions of protocols supported in the ROUTE domain.
2114  */
2115 
2116 static struct domain routedomain;		/* or at least forward */
2117 
2118 static struct protosw routesw[] = {
2119 {
2120 	.pr_type =		SOCK_RAW,
2121 	.pr_domain =		&routedomain,
2122 	.pr_flags =		PR_ATOMIC|PR_ADDR,
2123 	.pr_output =		route_output,
2124 	.pr_ctlinput =		raw_ctlinput,
2125 	.pr_init =		raw_init,
2126 	.pr_usrreqs =		&route_usrreqs
2127 }
2128 };
2129 
2130 static struct domain routedomain = {
2131 	.dom_family =		PF_ROUTE,
2132 	.dom_name =		 "route",
2133 	.dom_protosw =		routesw,
2134 	.dom_protoswNPROTOSW =	&routesw[nitems(routesw)]
2135 };
2136 
2137 VNET_DOMAIN_SET(route);
2138 
2139 #ifdef DDB
2140 /*
2141  * Unfortunately, RTF_ values are expressed as raw masks rather than powers of
2142  * 2, so we cannot use them as nice C99 initializer indices below.
2143  */
2144 static const char * const rtf_flag_strings[] = {
2145 	"UP",
2146 	"GATEWAY",
2147 	"HOST",
2148 	"REJECT",
2149 	"DYNAMIC",
2150 	"MODIFIED",
2151 	"DONE",
2152 	"UNUSED_0x80",
2153 	"UNUSED_0x100",
2154 	"XRESOLVE",
2155 	"LLDATA",
2156 	"STATIC",
2157 	"BLACKHOLE",
2158 	"UNUSED_0x2000",
2159 	"PROTO2",
2160 	"PROTO1",
2161 	"UNUSED_0x10000",
2162 	"UNUSED_0x20000",
2163 	"PROTO3",
2164 	"FIXEDMTU",
2165 	"PINNED",
2166 	"LOCAL",
2167 	"BROADCAST",
2168 	"MULTICAST",
2169 	/* Big gap. */
2170 	[28] = "STICKY",
2171 	[30] = "RNH_LOCKED",
2172 	[31] = "GWFLAG_COMPAT",
2173 };
2174 
2175 static const char * __pure
2176 rt_flag_name(unsigned idx)
2177 {
2178 	if (idx >= nitems(rtf_flag_strings))
2179 		return ("INVALID_FLAG");
2180 	if (rtf_flag_strings[idx] == NULL)
2181 		return ("UNKNOWN");
2182 	return (rtf_flag_strings[idx]);
2183 }
2184 
2185 static void
2186 rt_dumpaddr_ddb(const char *name, const struct sockaddr *sa)
2187 {
2188 	char buf[INET6_ADDRSTRLEN], *res;
2189 
2190 	res = NULL;
2191 	if (sa == NULL)
2192 		res = "NULL";
2193 	else if (sa->sa_family == AF_INET) {
2194 		res = inet_ntop(AF_INET,
2195 		    &((const struct sockaddr_in *)sa)->sin_addr,
2196 		    buf, sizeof(buf));
2197 	} else if (sa->sa_family == AF_INET6) {
2198 		res = inet_ntop(AF_INET6,
2199 		    &((const struct sockaddr_in6 *)sa)->sin6_addr,
2200 		    buf, sizeof(buf));
2201 	} else if (sa->sa_family == AF_LINK) {
2202 		res = "on link";
2203 	}
2204 
2205 	if (res != NULL) {
2206 		db_printf("%s <%s> ", name, res);
2207 		return;
2208 	}
2209 
2210 	db_printf("%s <af:%d> ", name, sa->sa_family);
2211 }
2212 
2213 static int
2214 rt_dumpentry_ddb(struct radix_node *rn, void *arg __unused)
2215 {
2216 	struct sockaddr_storage ss;
2217 	struct rtentry *rt;
2218 	int flags, idx;
2219 
2220 	/* If RNTORT is important, put it in a header. */
2221 	rt = (void *)rn;
2222 
2223 	rt_dumpaddr_ddb("dst", rt_key(rt));
2224 	rt_dumpaddr_ddb("gateway", rt->rt_gateway);
2225 	rt_dumpaddr_ddb("netmask", rtsock_fix_netmask(rt_key(rt), rt_mask(rt),
2226 	    &ss));
2227 	if (rt->rt_ifp != NULL && (rt->rt_ifp->if_flags & IFF_DYING) == 0) {
2228 		rt_dumpaddr_ddb("ifp", rt->rt_ifp->if_addr->ifa_addr);
2229 		rt_dumpaddr_ddb("ifa", rt->rt_ifa->ifa_addr);
2230 	}
2231 
2232 	db_printf("flags ");
2233 	flags = rt->rt_flags;
2234 	if (flags == 0)
2235 		db_printf("none");
2236 
2237 	while ((idx = ffs(flags)) > 0) {
2238 		idx--;
2239 
2240 		if (flags != rt->rt_flags)
2241 			db_printf(",");
2242 		db_printf("%s", rt_flag_name(idx));
2243 
2244 		flags &= ~(1ul << idx);
2245 	}
2246 
2247 	db_printf("\n");
2248 	return (0);
2249 }
2250 
2251 DB_SHOW_COMMAND(routetable, db_show_routetable_cmd)
2252 {
2253 	struct rib_head *rnh;
2254 	int error, i, lim;
2255 
2256 	if (have_addr)
2257 		i = lim = addr;
2258 	else {
2259 		i = 1;
2260 		lim = AF_MAX;
2261 	}
2262 
2263 	for (; i <= lim; i++) {
2264 		rnh = rt_tables_get_rnh(0, i);
2265 		if (rnh == NULL) {
2266 			if (have_addr) {
2267 				db_printf("%s: AF %d not supported?\n",
2268 				    __func__, i);
2269 				break;
2270 			}
2271 			continue;
2272 		}
2273 
2274 		if (!have_addr && i > 1)
2275 			db_printf("\n");
2276 
2277 		db_printf("Route table for AF %d%s%s%s:\n", i,
2278 		    (i == AF_INET || i == AF_INET6) ? " (" : "",
2279 		    (i == AF_INET) ? "INET" : (i == AF_INET6) ? "INET6" : "",
2280 		    (i == AF_INET || i == AF_INET6) ? ")" : "");
2281 
2282 		error = rnh->rnh_walktree(&rnh->head, rt_dumpentry_ddb, NULL);
2283 		if (error != 0)
2284 			db_printf("%s: walktree(%d): %d\n", __func__, i,
2285 			    error);
2286 	}
2287 }
2288 
2289 _DB_FUNC(_show, route, db_show_route_cmd, db_show_table, CS_OWN, NULL)
2290 {
2291 	char buf[INET6_ADDRSTRLEN], *bp;
2292 	const void *dst_addrp;
2293 	struct sockaddr *dstp;
2294 	struct rtentry *rt;
2295 	union {
2296 		struct sockaddr_in dest_sin;
2297 		struct sockaddr_in6 dest_sin6;
2298 	} u;
2299 	uint16_t hextets[8];
2300 	unsigned i, tets;
2301 	int t, af, exp, tokflags;
2302 
2303 	/*
2304 	 * Undecoded address family.  No double-colon expansion seen yet.
2305 	 */
2306 	af = -1;
2307 	exp = -1;
2308 	/* Assume INET6 to start; we can work back if guess was wrong. */
2309 	tokflags = DRT_WSPACE | DRT_HEX | DRT_HEXADECIMAL;
2310 
2311 	/*
2312 	 * db_command has lexed 'show route' for us.
2313 	 */
2314 	t = db_read_token_flags(tokflags);
2315 	if (t == tWSPACE)
2316 		t = db_read_token_flags(tokflags);
2317 
2318 	/*
2319 	 * tEOL: Just 'show route' isn't a valid mode.
2320 	 * tMINUS: It's either '-h' or some invalid option.  Regardless, usage.
2321 	 */
2322 	if (t == tEOL || t == tMINUS)
2323 		goto usage;
2324 
2325 	db_unread_token(t);
2326 
2327 	tets = nitems(hextets);
2328 
2329 	/*
2330 	 * Each loop iteration, we expect to read one octet (v4) or hextet
2331 	 * (v6), followed by an appropriate field separator ('.' or ':' or
2332 	 * '::').
2333 	 *
2334 	 * At the start of each loop, we're looking for a number (octet or
2335 	 * hextet).
2336 	 *
2337 	 * INET6 addresses have a special case where they may begin with '::'.
2338 	 */
2339 	for (i = 0; i < tets; i++) {
2340 		t = db_read_token_flags(tokflags);
2341 
2342 		if (t == tCOLONCOLON) {
2343 			/* INET6 with leading '::' or invalid. */
2344 			if (i != 0) {
2345 				db_printf("Parse error: unexpected extra "
2346 				    "colons.\n");
2347 				goto exit;
2348 			}
2349 
2350 			af = AF_INET6;
2351 			exp = i;
2352 			hextets[i] = 0;
2353 			continue;
2354 		} else if (t == tNUMBER) {
2355 			/*
2356 			 * Lexer separates out '-' as tMINUS, but make the
2357 			 * assumption explicit here.
2358 			 */
2359 			MPASS(db_tok_number >= 0);
2360 
2361 			if (af == AF_INET && db_tok_number > UINT8_MAX) {
2362 				db_printf("Not a valid v4 octet: %ld\n",
2363 				    (long)db_tok_number);
2364 				goto exit;
2365 			}
2366 			hextets[i] = db_tok_number;
2367 		} else if (t == tEOL) {
2368 			/*
2369 			 * We can only detect the end of an IPv6 address in
2370 			 * compact representation with EOL.
2371 			 */
2372 			if (af != AF_INET6 || exp < 0) {
2373 				db_printf("Parse failed.  Got unexpected EOF "
2374 				    "when the address is not a compact-"
2375 				    "representation IPv6 address.\n");
2376 				goto exit;
2377 			}
2378 			break;
2379 		} else {
2380 			db_printf("Parse failed.  Unexpected token %d.\n", t);
2381 			goto exit;
2382 		}
2383 
2384 		/* Next, look for a separator, if appropriate. */
2385 		if (i == tets - 1)
2386 			continue;
2387 
2388 		t = db_read_token_flags(tokflags);
2389 		if (af < 0) {
2390 			if (t == tCOLON) {
2391 				af = AF_INET6;
2392 				continue;
2393 			}
2394 			if (t == tCOLONCOLON) {
2395 				af = AF_INET6;
2396 				i++;
2397 				hextets[i] = 0;
2398 				exp = i;
2399 				continue;
2400 			}
2401 			if (t == tDOT) {
2402 				unsigned hn, dn;
2403 
2404 				af = AF_INET;
2405 				/* Need to fixup the first parsed number. */
2406 				if (hextets[0] > 0x255 ||
2407 				    (hextets[0] & 0xf0) > 0x90 ||
2408 				    (hextets[0] & 0xf) > 9) {
2409 					db_printf("Not a valid v4 octet: %x\n",
2410 					    hextets[0]);
2411 					goto exit;
2412 				}
2413 
2414 				hn = hextets[0];
2415 				dn = (hn >> 8) * 100 +
2416 				    ((hn >> 4) & 0xf) * 10 +
2417 				    (hn & 0xf);
2418 
2419 				hextets[0] = dn;
2420 
2421 				/* Switch to decimal for remaining octets. */
2422 				tokflags &= ~DRT_RADIX_MASK;
2423 				tokflags |= DRT_DECIMAL;
2424 
2425 				tets = 4;
2426 				continue;
2427 			}
2428 
2429 			db_printf("Parse error.  Unexpected token %d.\n", t);
2430 			goto exit;
2431 		} else if (af == AF_INET) {
2432 			if (t == tDOT)
2433 				continue;
2434 			db_printf("Expected '.' (%d) between octets but got "
2435 			    "(%d).\n", tDOT, t);
2436 			goto exit;
2437 
2438 		} else if (af == AF_INET6) {
2439 			if (t == tCOLON)
2440 				continue;
2441 			if (t == tCOLONCOLON) {
2442 				if (exp < 0) {
2443 					i++;
2444 					hextets[i] = 0;
2445 					exp = i;
2446 					continue;
2447 				}
2448 				db_printf("Got bogus second '::' in v6 "
2449 				    "address.\n");
2450 				goto exit;
2451 			}
2452 			if (t == tEOL) {
2453 				/*
2454 				 * Handle in the earlier part of the loop
2455 				 * because we need to handle trailing :: too.
2456 				 */
2457 				db_unread_token(t);
2458 				continue;
2459 			}
2460 
2461 			db_printf("Expected ':' (%d) or '::' (%d) between "
2462 			    "hextets but got (%d).\n", tCOLON, tCOLONCOLON, t);
2463 			goto exit;
2464 		}
2465 	}
2466 
2467 	/* Check for trailing garbage. */
2468 	if (i == tets) {
2469 		t = db_read_token_flags(tokflags);
2470 		if (t != tEOL) {
2471 			db_printf("Got unexpected garbage after address "
2472 			    "(%d).\n", t);
2473 			goto exit;
2474 		}
2475 	}
2476 
2477 	/*
2478 	 * Need to expand compact INET6 addresses.
2479 	 *
2480 	 * Technically '::' for a single ':0:' is MUST NOT but just in case,
2481 	 * don't bother expanding that form (exp >= 0 && i == tets case).
2482 	 */
2483 	if (af == AF_INET6 && exp >= 0 && i < tets) {
2484 		if (exp + 1 < i) {
2485 			memmove(&hextets[exp + 1 + (nitems(hextets) - i)],
2486 			    &hextets[exp + 1],
2487 			    (i - (exp + 1)) * sizeof(hextets[0]));
2488 		}
2489 		memset(&hextets[exp + 1], 0, (nitems(hextets) - i) *
2490 		    sizeof(hextets[0]));
2491 	}
2492 
2493 	memset(&u, 0, sizeof(u));
2494 	if (af == AF_INET) {
2495 		u.dest_sin.sin_family = AF_INET;
2496 		u.dest_sin.sin_len = sizeof(u.dest_sin);
2497 		u.dest_sin.sin_addr.s_addr = htonl(
2498 		    ((uint32_t)hextets[0] << 24) |
2499 		    ((uint32_t)hextets[1] << 16) |
2500 		    ((uint32_t)hextets[2] << 8) |
2501 		    (uint32_t)hextets[3]);
2502 		dstp = (void *)&u.dest_sin;
2503 		dst_addrp = &u.dest_sin.sin_addr;
2504 	} else if (af == AF_INET6) {
2505 		u.dest_sin6.sin6_family = AF_INET6;
2506 		u.dest_sin6.sin6_len = sizeof(u.dest_sin6);
2507 		for (i = 0; i < nitems(hextets); i++)
2508 			u.dest_sin6.sin6_addr.s6_addr16[i] = htons(hextets[i]);
2509 		dstp = (void *)&u.dest_sin6;
2510 		dst_addrp = &u.dest_sin6.sin6_addr;
2511 	} else {
2512 		MPASS(false);
2513 		/* UNREACHABLE */
2514 		/* Appease Clang false positive: */
2515 		dstp = NULL;
2516 	}
2517 
2518 	bp = inet_ntop(af, dst_addrp, buf, sizeof(buf));
2519 	if (bp != NULL)
2520 		db_printf("Looking up route to destination '%s'\n", bp);
2521 
2522 	CURVNET_SET(vnet0);
2523 	rt = rtalloc1(dstp, 0, RTF_RNH_LOCKED);
2524 	CURVNET_RESTORE();
2525 
2526 	if (rt == NULL) {
2527 		db_printf("Could not get route for that server.\n");
2528 		return;
2529 	}
2530 
2531 	rt_dumpentry_ddb((void *)rt, NULL);
2532 	RTFREE_LOCKED(rt);
2533 
2534 	return;
2535 usage:
2536 	db_printf("Usage: 'show route <address>'\n"
2537 	    "  Currently accepts only dotted-decimal INET or colon-separated\n"
2538 	    "  hextet INET6 addresses.\n");
2539 exit:
2540 	db_skip_to_eol();
2541 }
2542 #endif
2543