1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_ddb.h" 35 #include "opt_route.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/domain.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/rmlock.h> 50 #include <sys/rwlock.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_dl.h> 60 #include <net/if_llatbl.h> 61 #include <net/if_types.h> 62 #include <net/netisr.h> 63 #include <net/raw_cb.h> 64 #include <net/route.h> 65 #include <net/route/route_ctl.h> 66 #include <net/route/route_var.h> 67 #include <net/vnet.h> 68 69 #include <netinet/in.h> 70 #include <netinet/if_ether.h> 71 #include <netinet/ip_carp.h> 72 #ifdef INET6 73 #include <netinet6/ip6_var.h> 74 #include <netinet6/scope6_var.h> 75 #endif 76 #include <net/route/nhop.h> 77 78 #ifdef COMPAT_FREEBSD32 79 #include <sys/mount.h> 80 #include <compat/freebsd32/freebsd32.h> 81 82 struct if_msghdr32 { 83 uint16_t ifm_msglen; 84 uint8_t ifm_version; 85 uint8_t ifm_type; 86 int32_t ifm_addrs; 87 int32_t ifm_flags; 88 uint16_t ifm_index; 89 uint16_t _ifm_spare1; 90 struct if_data ifm_data; 91 }; 92 93 struct if_msghdrl32 { 94 uint16_t ifm_msglen; 95 uint8_t ifm_version; 96 uint8_t ifm_type; 97 int32_t ifm_addrs; 98 int32_t ifm_flags; 99 uint16_t ifm_index; 100 uint16_t _ifm_spare1; 101 uint16_t ifm_len; 102 uint16_t ifm_data_off; 103 uint32_t _ifm_spare2; 104 struct if_data ifm_data; 105 }; 106 107 struct ifa_msghdrl32 { 108 uint16_t ifam_msglen; 109 uint8_t ifam_version; 110 uint8_t ifam_type; 111 int32_t ifam_addrs; 112 int32_t ifam_flags; 113 uint16_t ifam_index; 114 uint16_t _ifam_spare1; 115 uint16_t ifam_len; 116 uint16_t ifam_data_off; 117 int32_t ifam_metric; 118 struct if_data ifam_data; 119 }; 120 121 #define SA_SIZE32(sa) \ 122 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 123 sizeof(int) : \ 124 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 125 126 #endif /* COMPAT_FREEBSD32 */ 127 128 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 129 130 /* NB: these are not modified */ 131 static struct sockaddr route_src = { 2, PF_ROUTE, }; 132 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 133 134 /* These are external hooks for CARP. */ 135 int (*carp_get_vhid_p)(struct ifaddr *); 136 137 /* 138 * Used by rtsock/raw_input callback code to decide whether to filter the update 139 * notification to a socket bound to a particular FIB. 140 */ 141 #define RTS_FILTER_FIB M_PROTO8 142 143 typedef struct { 144 int ip_count; /* attached w/ AF_INET */ 145 int ip6_count; /* attached w/ AF_INET6 */ 146 int any_count; /* total attached */ 147 } route_cb_t; 148 VNET_DEFINE_STATIC(route_cb_t, route_cb); 149 #define V_route_cb VNET(route_cb) 150 151 struct mtx rtsock_mtx; 152 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 153 154 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 155 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 156 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 157 158 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 159 160 struct walkarg { 161 int family; 162 int w_tmemsize; 163 int w_op, w_arg; 164 caddr_t w_tmem; 165 struct sysctl_req *w_req; 166 struct sockaddr *dst; 167 struct sockaddr *mask; 168 }; 169 170 static void rts_input(struct mbuf *m); 171 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 172 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 173 struct walkarg *w, int *plen); 174 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 175 struct rt_addrinfo *rtinfo); 176 static int sysctl_dumpentry(struct rtentry *rt, void *vw); 177 static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, 178 uint32_t weight, struct walkarg *w); 179 static int sysctl_iflist(int af, struct walkarg *w); 180 static int sysctl_ifmalist(int af, struct walkarg *w); 181 static int route_output(struct mbuf *m, struct socket *so, ...); 182 static void rt_getmetrics(const struct rtentry *rt, 183 const struct nhop_object *nh, struct rt_metrics *out); 184 static void rt_dispatch(struct mbuf *, sa_family_t); 185 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 186 struct rt_msghdr *rtm, struct rib_cmd_info *rc); 187 static int update_rtm_from_rc(struct rt_addrinfo *info, 188 struct rt_msghdr **prtm, int alloc_len, 189 struct rib_cmd_info *rc, struct nhop_object *nh); 190 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 191 struct mbuf *m, sa_family_t saf, u_int fibnum, 192 int rtm_errno); 193 static bool can_export_rte(struct ucred *td_ucred, bool rt_is_host, 194 const struct sockaddr *rt_dst); 195 196 static struct netisr_handler rtsock_nh = { 197 .nh_name = "rtsock", 198 .nh_handler = rts_input, 199 .nh_proto = NETISR_ROUTE, 200 .nh_policy = NETISR_POLICY_SOURCE, 201 }; 202 203 static int 204 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 205 { 206 int error, qlimit; 207 208 netisr_getqlimit(&rtsock_nh, &qlimit); 209 error = sysctl_handle_int(oidp, &qlimit, 0, req); 210 if (error || !req->newptr) 211 return (error); 212 if (qlimit < 1) 213 return (EINVAL); 214 return (netisr_setqlimit(&rtsock_nh, qlimit)); 215 } 216 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 217 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 218 0, 0, sysctl_route_netisr_maxqlen, "I", 219 "maximum routing socket dispatch queue length"); 220 221 static void 222 vnet_rts_init(void) 223 { 224 int tmp; 225 226 if (IS_DEFAULT_VNET(curvnet)) { 227 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 228 rtsock_nh.nh_qlimit = tmp; 229 netisr_register(&rtsock_nh); 230 } 231 #ifdef VIMAGE 232 else 233 netisr_register_vnet(&rtsock_nh); 234 #endif 235 } 236 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 237 vnet_rts_init, 0); 238 239 #ifdef VIMAGE 240 static void 241 vnet_rts_uninit(void) 242 { 243 244 netisr_unregister_vnet(&rtsock_nh); 245 } 246 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 247 vnet_rts_uninit, 0); 248 #endif 249 250 static int 251 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 252 struct rawcb *rp) 253 { 254 int fibnum; 255 256 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 257 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 258 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 259 260 /* No filtering requested. */ 261 if ((m->m_flags & RTS_FILTER_FIB) == 0) 262 return (0); 263 264 /* Check if it is a rts and the fib matches the one of the socket. */ 265 fibnum = M_GETFIB(m); 266 if (proto->sp_family != PF_ROUTE || 267 rp->rcb_socket == NULL || 268 rp->rcb_socket->so_fibnum == fibnum) 269 return (0); 270 271 /* Filtering requested and no match, the socket shall be skipped. */ 272 return (1); 273 } 274 275 static void 276 rts_input(struct mbuf *m) 277 { 278 struct sockproto route_proto; 279 unsigned short *family; 280 struct m_tag *tag; 281 282 route_proto.sp_family = PF_ROUTE; 283 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 284 if (tag != NULL) { 285 family = (unsigned short *)(tag + 1); 286 route_proto.sp_protocol = *family; 287 m_tag_delete(m, tag); 288 } else 289 route_proto.sp_protocol = 0; 290 291 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 292 } 293 294 /* 295 * It really doesn't make any sense at all for this code to share much 296 * with raw_usrreq.c, since its functionality is so restricted. XXX 297 */ 298 static void 299 rts_abort(struct socket *so) 300 { 301 302 raw_usrreqs.pru_abort(so); 303 } 304 305 static void 306 rts_close(struct socket *so) 307 { 308 309 raw_usrreqs.pru_close(so); 310 } 311 312 /* pru_accept is EOPNOTSUPP */ 313 314 static int 315 rts_attach(struct socket *so, int proto, struct thread *td) 316 { 317 struct rawcb *rp; 318 int error; 319 320 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 321 322 /* XXX */ 323 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 324 325 so->so_pcb = (caddr_t)rp; 326 so->so_fibnum = td->td_proc->p_fibnum; 327 error = raw_attach(so, proto); 328 rp = sotorawcb(so); 329 if (error) { 330 so->so_pcb = NULL; 331 free(rp, M_PCB); 332 return error; 333 } 334 RTSOCK_LOCK(); 335 switch(rp->rcb_proto.sp_protocol) { 336 case AF_INET: 337 V_route_cb.ip_count++; 338 break; 339 case AF_INET6: 340 V_route_cb.ip6_count++; 341 break; 342 } 343 V_route_cb.any_count++; 344 RTSOCK_UNLOCK(); 345 soisconnected(so); 346 so->so_options |= SO_USELOOPBACK; 347 return 0; 348 } 349 350 static int 351 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 352 { 353 354 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 355 } 356 357 static int 358 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 359 { 360 361 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 362 } 363 364 /* pru_connect2 is EOPNOTSUPP */ 365 /* pru_control is EOPNOTSUPP */ 366 367 static void 368 rts_detach(struct socket *so) 369 { 370 struct rawcb *rp = sotorawcb(so); 371 372 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 373 374 RTSOCK_LOCK(); 375 switch(rp->rcb_proto.sp_protocol) { 376 case AF_INET: 377 V_route_cb.ip_count--; 378 break; 379 case AF_INET6: 380 V_route_cb.ip6_count--; 381 break; 382 } 383 V_route_cb.any_count--; 384 RTSOCK_UNLOCK(); 385 raw_usrreqs.pru_detach(so); 386 } 387 388 static int 389 rts_disconnect(struct socket *so) 390 { 391 392 return (raw_usrreqs.pru_disconnect(so)); 393 } 394 395 /* pru_listen is EOPNOTSUPP */ 396 397 static int 398 rts_peeraddr(struct socket *so, struct sockaddr **nam) 399 { 400 401 return (raw_usrreqs.pru_peeraddr(so, nam)); 402 } 403 404 /* pru_rcvd is EOPNOTSUPP */ 405 /* pru_rcvoob is EOPNOTSUPP */ 406 407 static int 408 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 409 struct mbuf *control, struct thread *td) 410 { 411 412 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 413 } 414 415 /* pru_sense is null */ 416 417 static int 418 rts_shutdown(struct socket *so) 419 { 420 421 return (raw_usrreqs.pru_shutdown(so)); 422 } 423 424 static int 425 rts_sockaddr(struct socket *so, struct sockaddr **nam) 426 { 427 428 return (raw_usrreqs.pru_sockaddr(so, nam)); 429 } 430 431 static struct pr_usrreqs route_usrreqs = { 432 .pru_abort = rts_abort, 433 .pru_attach = rts_attach, 434 .pru_bind = rts_bind, 435 .pru_connect = rts_connect, 436 .pru_detach = rts_detach, 437 .pru_disconnect = rts_disconnect, 438 .pru_peeraddr = rts_peeraddr, 439 .pru_send = rts_send, 440 .pru_shutdown = rts_shutdown, 441 .pru_sockaddr = rts_sockaddr, 442 .pru_close = rts_close, 443 }; 444 445 #ifndef _SOCKADDR_UNION_DEFINED 446 #define _SOCKADDR_UNION_DEFINED 447 /* 448 * The union of all possible address formats we handle. 449 */ 450 union sockaddr_union { 451 struct sockaddr sa; 452 struct sockaddr_in sin; 453 struct sockaddr_in6 sin6; 454 }; 455 #endif /* _SOCKADDR_UNION_DEFINED */ 456 457 static int 458 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 459 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 460 { 461 #if defined(INET) || defined(INET6) 462 struct epoch_tracker et; 463 #endif 464 465 /* First, see if the returned address is part of the jail. */ 466 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 467 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 468 return (0); 469 } 470 471 switch (info->rti_info[RTAX_DST]->sa_family) { 472 #ifdef INET 473 case AF_INET: 474 { 475 struct in_addr ia; 476 struct ifaddr *ifa; 477 int found; 478 479 found = 0; 480 /* 481 * Try to find an address on the given outgoing interface 482 * that belongs to the jail. 483 */ 484 NET_EPOCH_ENTER(et); 485 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 486 struct sockaddr *sa; 487 sa = ifa->ifa_addr; 488 if (sa->sa_family != AF_INET) 489 continue; 490 ia = ((struct sockaddr_in *)sa)->sin_addr; 491 if (prison_check_ip4(cred, &ia) == 0) { 492 found = 1; 493 break; 494 } 495 } 496 NET_EPOCH_EXIT(et); 497 if (!found) { 498 /* 499 * As a last resort return the 'default' jail address. 500 */ 501 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 502 sin_addr; 503 if (prison_get_ip4(cred, &ia) != 0) 504 return (ESRCH); 505 } 506 bzero(&saun->sin, sizeof(struct sockaddr_in)); 507 saun->sin.sin_len = sizeof(struct sockaddr_in); 508 saun->sin.sin_family = AF_INET; 509 saun->sin.sin_addr.s_addr = ia.s_addr; 510 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 511 break; 512 } 513 #endif 514 #ifdef INET6 515 case AF_INET6: 516 { 517 struct in6_addr ia6; 518 struct ifaddr *ifa; 519 int found; 520 521 found = 0; 522 /* 523 * Try to find an address on the given outgoing interface 524 * that belongs to the jail. 525 */ 526 NET_EPOCH_ENTER(et); 527 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 528 struct sockaddr *sa; 529 sa = ifa->ifa_addr; 530 if (sa->sa_family != AF_INET6) 531 continue; 532 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 533 &ia6, sizeof(struct in6_addr)); 534 if (prison_check_ip6(cred, &ia6) == 0) { 535 found = 1; 536 break; 537 } 538 } 539 NET_EPOCH_EXIT(et); 540 if (!found) { 541 /* 542 * As a last resort return the 'default' jail address. 543 */ 544 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 545 sin6_addr; 546 if (prison_get_ip6(cred, &ia6) != 0) 547 return (ESRCH); 548 } 549 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 550 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 551 saun->sin6.sin6_family = AF_INET6; 552 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 553 if (sa6_recoverscope(&saun->sin6) != 0) 554 return (ESRCH); 555 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 556 break; 557 } 558 #endif 559 default: 560 return (ESRCH); 561 } 562 return (0); 563 } 564 565 static int 566 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun) 567 { 568 struct ifaddr *ifa; 569 sa_family_t saf; 570 571 if (V_loif == NULL) { 572 printf("Unable to add blackhole/reject nhop without loopback"); 573 return (ENOTSUP); 574 } 575 info->rti_ifp = V_loif; 576 577 saf = info->rti_info[RTAX_DST]->sa_family; 578 579 CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) { 580 if (ifa->ifa_addr->sa_family == saf) { 581 info->rti_ifa = ifa; 582 break; 583 } 584 } 585 if (info->rti_ifa == NULL) 586 return (ENOTSUP); 587 588 bzero(saun, sizeof(union sockaddr_union)); 589 switch (saf) { 590 #ifdef INET 591 case AF_INET: 592 saun->sin.sin_family = AF_INET; 593 saun->sin.sin_len = sizeof(struct sockaddr_in); 594 saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); 595 break; 596 #endif 597 #ifdef INET6 598 case AF_INET6: 599 saun->sin6.sin6_family = AF_INET6; 600 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 601 saun->sin6.sin6_addr = in6addr_loopback; 602 break; 603 #endif 604 default: 605 return (ENOTSUP); 606 } 607 info->rti_info[RTAX_GATEWAY] = &saun->sa; 608 info->rti_flags |= RTF_GATEWAY; 609 610 return (0); 611 } 612 613 /* 614 * Fills in @info based on userland-provided @rtm message. 615 * 616 * Returns 0 on success. 617 */ 618 static int 619 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info) 620 { 621 int error; 622 sa_family_t saf; 623 624 rtm->rtm_pid = curproc->p_pid; 625 info->rti_addrs = rtm->rtm_addrs; 626 627 info->rti_mflags = rtm->rtm_inits; 628 info->rti_rmx = &rtm->rtm_rmx; 629 630 /* 631 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 632 * link-local address because rtrequest requires addresses with 633 * embedded scope id. 634 */ 635 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 636 return (EINVAL); 637 638 info->rti_flags = rtm->rtm_flags; 639 if (info->rti_info[RTAX_DST] == NULL || 640 info->rti_info[RTAX_DST]->sa_family >= AF_MAX || 641 (info->rti_info[RTAX_GATEWAY] != NULL && 642 info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 643 return (EINVAL); 644 saf = info->rti_info[RTAX_DST]->sa_family; 645 /* 646 * Verify that the caller has the appropriate privilege; RTM_GET 647 * is the only operation the non-superuser is allowed. 648 */ 649 if (rtm->rtm_type != RTM_GET) { 650 error = priv_check(curthread, PRIV_NET_ROUTE); 651 if (error != 0) 652 return (error); 653 } 654 655 /* 656 * The given gateway address may be an interface address. 657 * For example, issuing a "route change" command on a route 658 * entry that was created from a tunnel, and the gateway 659 * address given is the local end point. In this case the 660 * RTF_GATEWAY flag must be cleared or the destination will 661 * not be reachable even though there is no error message. 662 */ 663 if (info->rti_info[RTAX_GATEWAY] != NULL && 664 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 665 struct rt_addrinfo ginfo; 666 struct sockaddr *gdst; 667 struct sockaddr_storage ss; 668 669 bzero(&ginfo, sizeof(ginfo)); 670 bzero(&ss, sizeof(ss)); 671 ss.ss_len = sizeof(ss); 672 673 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 674 gdst = info->rti_info[RTAX_GATEWAY]; 675 676 /* 677 * A host route through the loopback interface is 678 * installed for each interface adddress. In pre 8.0 679 * releases the interface address of a PPP link type 680 * is not reachable locally. This behavior is fixed as 681 * part of the new L2/L3 redesign and rewrite work. The 682 * signature of this interface address route is the 683 * AF_LINK sa_family type of the gateway, and the 684 * rt_ifp has the IFF_LOOPBACK flag set. 685 */ 686 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 687 if (ss.ss_family == AF_LINK && 688 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 689 info->rti_flags &= ~RTF_GATEWAY; 690 info->rti_flags |= RTF_GWFLAG_COMPAT; 691 } 692 rib_free_info(&ginfo); 693 } 694 } 695 696 return (0); 697 } 698 699 static struct nhop_object * 700 select_nhop(struct nhop_object *nh, const struct sockaddr *gw) 701 { 702 if (!NH_IS_NHGRP(nh)) 703 return (nh); 704 #ifdef ROUTE_MPATH 705 struct weightened_nhop *wn; 706 uint32_t num_nhops; 707 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 708 if (gw == NULL) 709 return (wn[0].nh); 710 for (int i = 0; i < num_nhops; i++) { 711 if (match_nhop_gw(wn[i].nh, gw)) 712 return (wn[i].nh); 713 } 714 #endif 715 return (NULL); 716 } 717 718 /* 719 * Handles RTM_GET message from routing socket, returning matching rt. 720 * 721 * Returns: 722 * 0 on success, with locked and referenced matching rt in @rt_nrt 723 * errno of failure 724 */ 725 static int 726 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 727 struct rt_msghdr *rtm, struct rib_cmd_info *rc) 728 { 729 RIB_RLOCK_TRACKER; 730 struct rib_head *rnh; 731 struct nhop_object *nh; 732 sa_family_t saf; 733 734 saf = info->rti_info[RTAX_DST]->sa_family; 735 736 rnh = rt_tables_get_rnh(fibnum, saf); 737 if (rnh == NULL) 738 return (EAFNOSUPPORT); 739 740 RIB_RLOCK(rnh); 741 742 if (info->rti_info[RTAX_NETMASK] == NULL) { 743 /* 744 * Provide longest prefix match for 745 * address lookup (no mask). 746 * 'route -n get addr' 747 */ 748 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( 749 info->rti_info[RTAX_DST], &rnh->head); 750 } else 751 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( 752 info->rti_info[RTAX_DST], 753 info->rti_info[RTAX_NETMASK], &rnh->head); 754 755 if (rc->rc_rt == NULL) { 756 RIB_RUNLOCK(rnh); 757 return (ESRCH); 758 } 759 760 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 761 if (nh == NULL) { 762 RIB_RUNLOCK(rnh); 763 return (ESRCH); 764 } 765 /* 766 * If performing proxied L2 entry insertion, and 767 * the actual PPP host entry is found, perform 768 * another search to retrieve the prefix route of 769 * the local end point of the PPP link. 770 * TODO: move this logic to userland. 771 */ 772 if (rtm->rtm_flags & RTF_ANNOUNCE) { 773 struct sockaddr laddr; 774 775 if (nh->nh_ifp != NULL && 776 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 777 struct ifaddr *ifa; 778 779 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 780 RT_ALL_FIBS); 781 if (ifa != NULL) 782 rt_maskedcopy(ifa->ifa_addr, 783 &laddr, 784 ifa->ifa_netmask); 785 } else 786 rt_maskedcopy(nh->nh_ifa->ifa_addr, 787 &laddr, 788 nh->nh_ifa->ifa_netmask); 789 /* 790 * refactor rt and no lock operation necessary 791 */ 792 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 793 &rnh->head); 794 if (rc->rc_rt == NULL) { 795 RIB_RUNLOCK(rnh); 796 return (ESRCH); 797 } 798 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 799 if (nh == NULL) { 800 RIB_RUNLOCK(rnh); 801 return (ESRCH); 802 } 803 } 804 rc->rc_nh_new = nh; 805 rc->rc_nh_weight = rc->rc_rt->rt_weight; 806 RIB_RUNLOCK(rnh); 807 808 return (0); 809 } 810 811 static void 812 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask) 813 { 814 #ifdef INET 815 if (family == AF_INET) { 816 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 817 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 818 819 bzero(dst4, sizeof(struct sockaddr_in)); 820 bzero(mask4, sizeof(struct sockaddr_in)); 821 822 dst4->sin_family = AF_INET; 823 dst4->sin_len = sizeof(struct sockaddr_in); 824 mask4->sin_family = AF_INET; 825 mask4->sin_len = sizeof(struct sockaddr_in); 826 } 827 #endif 828 #ifdef INET6 829 if (family == AF_INET6) { 830 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 831 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 832 833 bzero(dst6, sizeof(struct sockaddr_in6)); 834 bzero(mask6, sizeof(struct sockaddr_in6)); 835 836 dst6->sin6_family = AF_INET6; 837 dst6->sin6_len = sizeof(struct sockaddr_in6); 838 mask6->sin6_family = AF_INET6; 839 mask6->sin6_len = sizeof(struct sockaddr_in6); 840 } 841 #endif 842 } 843 844 static void 845 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst, 846 struct sockaddr *mask) 847 { 848 #ifdef INET 849 if (dst->sa_family == AF_INET) { 850 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 851 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 852 uint32_t scopeid = 0; 853 rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr, 854 &scopeid); 855 return; 856 } 857 #endif 858 #ifdef INET6 859 if (dst->sa_family == AF_INET6) { 860 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 861 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 862 uint32_t scopeid = 0; 863 rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr, 864 &mask6->sin6_addr, &scopeid); 865 dst6->sin6_scope_id = scopeid; 866 return; 867 } 868 #endif 869 } 870 871 872 /* 873 * Update sockaddrs, flags, etc in @prtm based on @rc data. 874 * rtm can be reallocated. 875 * 876 * Returns 0 on success, along with pointer to (potentially reallocated) 877 * rtm. 878 * 879 */ 880 static int 881 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, 882 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) 883 { 884 struct walkarg w; 885 union sockaddr_union saun; 886 struct rt_msghdr *rtm, *orig_rtm = NULL; 887 struct ifnet *ifp; 888 int error, len; 889 890 rtm = *prtm; 891 union sockaddr_union sa_dst, sa_mask; 892 int family = info->rti_info[RTAX_DST]->sa_family; 893 init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa); 894 export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa); 895 896 info->rti_info[RTAX_DST] = &sa_dst.sa; 897 info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa; 898 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 899 info->rti_info[RTAX_GENMASK] = 0; 900 ifp = nh->nh_ifp; 901 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 902 if (ifp) { 903 info->rti_info[RTAX_IFP] = 904 ifp->if_addr->ifa_addr; 905 error = rtm_get_jailed(info, ifp, nh, 906 &saun, curthread->td_ucred); 907 if (error != 0) 908 return (error); 909 if (ifp->if_flags & IFF_POINTOPOINT) 910 info->rti_info[RTAX_BRD] = 911 nh->nh_ifa->ifa_dstaddr; 912 rtm->rtm_index = ifp->if_index; 913 } else { 914 info->rti_info[RTAX_IFP] = NULL; 915 info->rti_info[RTAX_IFA] = NULL; 916 } 917 } else if (ifp != NULL) 918 rtm->rtm_index = ifp->if_index; 919 920 /* Check if we need to realloc storage */ 921 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 922 if (len > alloc_len) { 923 struct rt_msghdr *tmp_rtm; 924 925 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 926 if (tmp_rtm == NULL) 927 return (ENOBUFS); 928 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 929 orig_rtm = rtm; 930 rtm = tmp_rtm; 931 alloc_len = len; 932 933 /* 934 * Delay freeing original rtm as info contains 935 * data referencing it. 936 */ 937 } 938 939 w.w_tmem = (caddr_t)rtm; 940 w.w_tmemsize = alloc_len; 941 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 942 943 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); 944 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 945 rtm->rtm_flags = RTF_GATEWAY | 946 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 947 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); 948 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; 949 rtm->rtm_addrs = info->rti_addrs; 950 951 if (orig_rtm != NULL) 952 free(orig_rtm, M_TEMP); 953 *prtm = rtm; 954 955 return (0); 956 } 957 958 #ifdef ROUTE_MPATH 959 static void 960 save_del_notification(struct rib_cmd_info *rc, void *_cbdata) 961 { 962 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 963 964 if (rc->rc_cmd == RTM_DELETE) 965 *rc_new = *rc; 966 } 967 968 static void 969 save_add_notification(struct rib_cmd_info *rc, void *_cbdata) 970 { 971 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 972 973 if (rc->rc_cmd == RTM_ADD) 974 *rc_new = *rc; 975 } 976 #endif 977 978 /*ARGSUSED*/ 979 static int 980 route_output(struct mbuf *m, struct socket *so, ...) 981 { 982 struct rt_msghdr *rtm = NULL; 983 struct rtentry *rt = NULL; 984 struct rt_addrinfo info; 985 struct epoch_tracker et; 986 #ifdef INET6 987 struct sockaddr_storage ss; 988 struct sockaddr_in6 *sin6; 989 int i, rti_need_deembed = 0; 990 #endif 991 int alloc_len = 0, len, error = 0, fibnum; 992 sa_family_t saf = AF_UNSPEC; 993 struct rib_cmd_info rc; 994 struct nhop_object *nh; 995 996 fibnum = so->so_fibnum; 997 #define senderr(e) { error = e; goto flush;} 998 if (m == NULL || ((m->m_len < sizeof(long)) && 999 (m = m_pullup(m, sizeof(long))) == NULL)) 1000 return (ENOBUFS); 1001 if ((m->m_flags & M_PKTHDR) == 0) 1002 panic("route_output"); 1003 NET_EPOCH_ENTER(et); 1004 len = m->m_pkthdr.len; 1005 if (len < sizeof(*rtm) || 1006 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 1007 senderr(EINVAL); 1008 1009 /* 1010 * Most of current messages are in range 200-240 bytes, 1011 * minimize possible re-allocation on reply using larger size 1012 * buffer aligned on 1k boundaty. 1013 */ 1014 alloc_len = roundup2(len, 1024); 1015 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 1016 senderr(ENOBUFS); 1017 1018 m_copydata(m, 0, len, (caddr_t)rtm); 1019 bzero(&info, sizeof(info)); 1020 nh = NULL; 1021 1022 if (rtm->rtm_version != RTM_VERSION) { 1023 /* Do not touch message since format is unknown */ 1024 free(rtm, M_TEMP); 1025 rtm = NULL; 1026 senderr(EPROTONOSUPPORT); 1027 } 1028 1029 /* 1030 * Starting from here, it is possible 1031 * to alter original message and insert 1032 * caller PID and error value. 1033 */ 1034 1035 if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) { 1036 senderr(error); 1037 } 1038 1039 saf = info.rti_info[RTAX_DST]->sa_family; 1040 1041 /* support for new ARP code */ 1042 if (rtm->rtm_flags & RTF_LLDATA) { 1043 error = lla_rt_output(rtm, &info); 1044 #ifdef INET6 1045 if (error == 0) 1046 rti_need_deembed = 1; 1047 #endif 1048 goto flush; 1049 } 1050 1051 union sockaddr_union gw_saun; 1052 int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT); 1053 if (blackhole_flags != 0) { 1054 if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT)) 1055 error = fill_blackholeinfo(&info, &gw_saun); 1056 else 1057 error = EINVAL; 1058 if (error != 0) 1059 senderr(error); 1060 /* TODO: rebuild rtm from scratch */ 1061 } 1062 1063 switch (rtm->rtm_type) { 1064 case RTM_ADD: 1065 case RTM_CHANGE: 1066 if (rtm->rtm_type == RTM_ADD) { 1067 if (info.rti_info[RTAX_GATEWAY] == NULL) 1068 senderr(EINVAL); 1069 } 1070 error = rib_action(fibnum, rtm->rtm_type, &info, &rc); 1071 if (error == 0) { 1072 #ifdef INET6 1073 rti_need_deembed = 1; 1074 #endif 1075 #ifdef ROUTE_MPATH 1076 if (NH_IS_NHGRP(rc.rc_nh_new) || 1077 (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) { 1078 struct rib_cmd_info rc_simple = {}; 1079 rib_decompose_notification(&rc, 1080 save_add_notification, (void *)&rc_simple); 1081 rc = rc_simple; 1082 } 1083 #endif 1084 nh = rc.rc_nh_new; 1085 rtm->rtm_index = nh->nh_ifp->if_index; 1086 rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh); 1087 } 1088 break; 1089 1090 case RTM_DELETE: 1091 error = rib_action(fibnum, RTM_DELETE, &info, &rc); 1092 if (error == 0) { 1093 #ifdef ROUTE_MPATH 1094 if (NH_IS_NHGRP(rc.rc_nh_old) || 1095 (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) { 1096 struct rib_cmd_info rc_simple = {}; 1097 rib_decompose_notification(&rc, 1098 save_del_notification, (void *)&rc_simple); 1099 rc = rc_simple; 1100 } 1101 #endif 1102 nh = rc.rc_nh_old; 1103 goto report; 1104 } 1105 #ifdef INET6 1106 /* rt_msg2() will not be used when RTM_DELETE fails. */ 1107 rti_need_deembed = 1; 1108 #endif 1109 break; 1110 1111 case RTM_GET: 1112 error = handle_rtm_get(&info, fibnum, rtm, &rc); 1113 if (error != 0) 1114 senderr(error); 1115 nh = rc.rc_nh_new; 1116 1117 report: 1118 if (!can_export_rte(curthread->td_ucred, 1119 info.rti_info[RTAX_NETMASK] == NULL, 1120 info.rti_info[RTAX_DST])) { 1121 senderr(ESRCH); 1122 } 1123 1124 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); 1125 /* 1126 * Note that some sockaddr pointers may have changed to 1127 * point to memory outsize @rtm. Some may be pointing 1128 * to the on-stack variables. 1129 * Given that, any pointer in @info CANNOT BE USED. 1130 */ 1131 1132 /* 1133 * scopeid deembedding has been performed while 1134 * writing updated rtm in rtsock_msg_buffer(). 1135 * With that in mind, skip deembedding procedure below. 1136 */ 1137 #ifdef INET6 1138 rti_need_deembed = 0; 1139 #endif 1140 if (error != 0) 1141 senderr(error); 1142 break; 1143 1144 default: 1145 senderr(EOPNOTSUPP); 1146 } 1147 1148 flush: 1149 NET_EPOCH_EXIT(et); 1150 rt = NULL; 1151 1152 #ifdef INET6 1153 if (rtm != NULL) { 1154 if (rti_need_deembed) { 1155 /* sin6_scope_id is recovered before sending rtm. */ 1156 sin6 = (struct sockaddr_in6 *)&ss; 1157 for (i = 0; i < RTAX_MAX; i++) { 1158 if (info.rti_info[i] == NULL) 1159 continue; 1160 if (info.rti_info[i]->sa_family != AF_INET6) 1161 continue; 1162 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 1163 if (sa6_recoverscope(sin6) == 0) 1164 bcopy(sin6, info.rti_info[i], 1165 sizeof(*sin6)); 1166 } 1167 } 1168 } 1169 #endif 1170 send_rtm_reply(so, rtm, m, saf, fibnum, error); 1171 1172 return (error); 1173 } 1174 1175 /* 1176 * Sends the prepared reply message in @rtm to all rtsock clients. 1177 * Frees @m and @rtm. 1178 * 1179 */ 1180 static void 1181 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1182 sa_family_t saf, u_int fibnum, int rtm_errno) 1183 { 1184 struct rawcb *rp = NULL; 1185 1186 /* 1187 * Check to see if we don't want our own messages. 1188 */ 1189 if ((so->so_options & SO_USELOOPBACK) == 0) { 1190 if (V_route_cb.any_count <= 1) { 1191 if (rtm != NULL) 1192 free(rtm, M_TEMP); 1193 m_freem(m); 1194 return; 1195 } 1196 /* There is another listener, so construct message */ 1197 rp = sotorawcb(so); 1198 } 1199 1200 if (rtm != NULL) { 1201 if (rtm_errno!= 0) 1202 rtm->rtm_errno = rtm_errno; 1203 else 1204 rtm->rtm_flags |= RTF_DONE; 1205 1206 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1207 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1208 m_freem(m); 1209 m = NULL; 1210 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1211 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1212 1213 free(rtm, M_TEMP); 1214 } 1215 if (m != NULL) { 1216 M_SETFIB(m, fibnum); 1217 m->m_flags |= RTS_FILTER_FIB; 1218 if (rp) { 1219 /* 1220 * XXX insure we don't get a copy by 1221 * invalidating our protocol 1222 */ 1223 unsigned short family = rp->rcb_proto.sp_family; 1224 rp->rcb_proto.sp_family = 0; 1225 rt_dispatch(m, saf); 1226 rp->rcb_proto.sp_family = family; 1227 } else 1228 rt_dispatch(m, saf); 1229 } 1230 } 1231 1232 static void 1233 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, 1234 struct rt_metrics *out) 1235 { 1236 1237 bzero(out, sizeof(*out)); 1238 out->rmx_mtu = nh->nh_mtu; 1239 out->rmx_weight = rt->rt_weight; 1240 out->rmx_nhidx = nhop_get_idx(nh); 1241 /* Kernel -> userland timebase conversion. */ 1242 out->rmx_expire = rt->rt_expire ? 1243 rt->rt_expire - time_uptime + time_second : 0; 1244 } 1245 1246 /* 1247 * Extract the addresses of the passed sockaddrs. 1248 * Do a little sanity checking so as to avoid bad memory references. 1249 * This data is derived straight from userland. 1250 */ 1251 static int 1252 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1253 { 1254 struct sockaddr *sa; 1255 int i; 1256 1257 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1258 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1259 continue; 1260 sa = (struct sockaddr *)cp; 1261 /* 1262 * It won't fit. 1263 */ 1264 if (cp + sa->sa_len > cplim) 1265 return (EINVAL); 1266 /* 1267 * there are no more.. quit now 1268 * If there are more bits, they are in error. 1269 * I've seen this. route(1) can evidently generate these. 1270 * This causes kernel to core dump. 1271 * for compatibility, If we see this, point to a safe address. 1272 */ 1273 if (sa->sa_len == 0) { 1274 rtinfo->rti_info[i] = &sa_zero; 1275 return (0); /* should be EINVAL but for compat */ 1276 } 1277 /* accept it */ 1278 #ifdef INET6 1279 if (sa->sa_family == AF_INET6) 1280 sa6_embedscope((struct sockaddr_in6 *)sa, 1281 V_ip6_use_defzone); 1282 #endif 1283 rtinfo->rti_info[i] = sa; 1284 cp += SA_SIZE(sa); 1285 } 1286 return (0); 1287 } 1288 1289 /* 1290 * Fill in @dmask with valid netmask leaving original @smask 1291 * intact. Mostly used with radix netmasks. 1292 */ 1293 struct sockaddr * 1294 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1295 struct sockaddr_storage *dmask) 1296 { 1297 if (dst == NULL || smask == NULL) 1298 return (NULL); 1299 1300 memset(dmask, 0, dst->sa_len); 1301 memcpy(dmask, smask, smask->sa_len); 1302 dmask->ss_len = dst->sa_len; 1303 dmask->ss_family = dst->sa_family; 1304 1305 return ((struct sockaddr *)dmask); 1306 } 1307 1308 /* 1309 * Writes information related to @rtinfo object to newly-allocated mbuf. 1310 * Assumes MCLBYTES is enough to construct any message. 1311 * Used for OS notifications of vaious events (if/ifa announces,etc) 1312 * 1313 * Returns allocated mbuf or NULL on failure. 1314 */ 1315 static struct mbuf * 1316 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1317 { 1318 struct sockaddr_storage ss; 1319 struct rt_msghdr *rtm; 1320 struct mbuf *m; 1321 int i; 1322 struct sockaddr *sa; 1323 #ifdef INET6 1324 struct sockaddr_in6 *sin6; 1325 #endif 1326 int len, dlen; 1327 1328 switch (type) { 1329 case RTM_DELADDR: 1330 case RTM_NEWADDR: 1331 len = sizeof(struct ifa_msghdr); 1332 break; 1333 1334 case RTM_DELMADDR: 1335 case RTM_NEWMADDR: 1336 len = sizeof(struct ifma_msghdr); 1337 break; 1338 1339 case RTM_IFINFO: 1340 len = sizeof(struct if_msghdr); 1341 break; 1342 1343 case RTM_IFANNOUNCE: 1344 case RTM_IEEE80211: 1345 len = sizeof(struct if_announcemsghdr); 1346 break; 1347 1348 default: 1349 len = sizeof(struct rt_msghdr); 1350 } 1351 1352 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1353 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1354 if (len > MHLEN) 1355 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1356 else 1357 m = m_gethdr(M_NOWAIT, MT_DATA); 1358 if (m == NULL) 1359 return (m); 1360 1361 m->m_pkthdr.len = m->m_len = len; 1362 rtm = mtod(m, struct rt_msghdr *); 1363 bzero((caddr_t)rtm, len); 1364 for (i = 0; i < RTAX_MAX; i++) { 1365 if ((sa = rtinfo->rti_info[i]) == NULL) 1366 continue; 1367 rtinfo->rti_addrs |= (1 << i); 1368 1369 dlen = SA_SIZE(sa); 1370 KASSERT(dlen <= sizeof(ss), 1371 ("%s: sockaddr size overflow", __func__)); 1372 bzero(&ss, sizeof(ss)); 1373 bcopy(sa, &ss, sa->sa_len); 1374 sa = (struct sockaddr *)&ss; 1375 #ifdef INET6 1376 if (sa->sa_family == AF_INET6) { 1377 sin6 = (struct sockaddr_in6 *)sa; 1378 (void)sa6_recoverscope(sin6); 1379 } 1380 #endif 1381 m_copyback(m, len, dlen, (caddr_t)sa); 1382 len += dlen; 1383 } 1384 if (m->m_pkthdr.len != len) { 1385 m_freem(m); 1386 return (NULL); 1387 } 1388 rtm->rtm_msglen = len; 1389 rtm->rtm_version = RTM_VERSION; 1390 rtm->rtm_type = type; 1391 return (m); 1392 } 1393 1394 /* 1395 * Writes information related to @rtinfo object to preallocated buffer. 1396 * Stores needed size in @plen. If @w is NULL, calculates size without 1397 * writing. 1398 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1399 * 1400 * Returns 0 on success. 1401 * 1402 */ 1403 static int 1404 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1405 { 1406 struct sockaddr_storage ss; 1407 int len, buflen = 0, dlen, i; 1408 caddr_t cp = NULL; 1409 struct rt_msghdr *rtm = NULL; 1410 #ifdef INET6 1411 struct sockaddr_in6 *sin6; 1412 #endif 1413 #ifdef COMPAT_FREEBSD32 1414 bool compat32 = false; 1415 #endif 1416 1417 switch (type) { 1418 case RTM_DELADDR: 1419 case RTM_NEWADDR: 1420 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1421 #ifdef COMPAT_FREEBSD32 1422 if (w->w_req->flags & SCTL_MASK32) { 1423 len = sizeof(struct ifa_msghdrl32); 1424 compat32 = true; 1425 } else 1426 #endif 1427 len = sizeof(struct ifa_msghdrl); 1428 } else 1429 len = sizeof(struct ifa_msghdr); 1430 break; 1431 1432 case RTM_IFINFO: 1433 #ifdef COMPAT_FREEBSD32 1434 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1435 if (w->w_op == NET_RT_IFLISTL) 1436 len = sizeof(struct if_msghdrl32); 1437 else 1438 len = sizeof(struct if_msghdr32); 1439 compat32 = true; 1440 break; 1441 } 1442 #endif 1443 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1444 len = sizeof(struct if_msghdrl); 1445 else 1446 len = sizeof(struct if_msghdr); 1447 break; 1448 1449 case RTM_NEWMADDR: 1450 len = sizeof(struct ifma_msghdr); 1451 break; 1452 1453 default: 1454 len = sizeof(struct rt_msghdr); 1455 } 1456 1457 if (w != NULL) { 1458 rtm = (struct rt_msghdr *)w->w_tmem; 1459 buflen = w->w_tmemsize - len; 1460 cp = (caddr_t)w->w_tmem + len; 1461 } 1462 1463 rtinfo->rti_addrs = 0; 1464 for (i = 0; i < RTAX_MAX; i++) { 1465 struct sockaddr *sa; 1466 1467 if ((sa = rtinfo->rti_info[i]) == NULL) 1468 continue; 1469 rtinfo->rti_addrs |= (1 << i); 1470 #ifdef COMPAT_FREEBSD32 1471 if (compat32) 1472 dlen = SA_SIZE32(sa); 1473 else 1474 #endif 1475 dlen = SA_SIZE(sa); 1476 if (cp != NULL && buflen >= dlen) { 1477 KASSERT(dlen <= sizeof(ss), 1478 ("%s: sockaddr size overflow", __func__)); 1479 bzero(&ss, sizeof(ss)); 1480 bcopy(sa, &ss, sa->sa_len); 1481 sa = (struct sockaddr *)&ss; 1482 #ifdef INET6 1483 if (sa->sa_family == AF_INET6) { 1484 sin6 = (struct sockaddr_in6 *)sa; 1485 (void)sa6_recoverscope(sin6); 1486 } 1487 #endif 1488 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1489 cp += dlen; 1490 buflen -= dlen; 1491 } else if (cp != NULL) { 1492 /* 1493 * Buffer too small. Count needed size 1494 * and return with error. 1495 */ 1496 cp = NULL; 1497 } 1498 1499 len += dlen; 1500 } 1501 1502 if (cp != NULL) { 1503 dlen = ALIGN(len) - len; 1504 if (buflen < dlen) 1505 cp = NULL; 1506 else { 1507 bzero(cp, dlen); 1508 cp += dlen; 1509 buflen -= dlen; 1510 } 1511 } 1512 len = ALIGN(len); 1513 1514 if (cp != NULL) { 1515 /* fill header iff buffer is large enough */ 1516 rtm->rtm_version = RTM_VERSION; 1517 rtm->rtm_type = type; 1518 rtm->rtm_msglen = len; 1519 } 1520 1521 *plen = len; 1522 1523 if (w != NULL && cp == NULL) 1524 return (ENOBUFS); 1525 1526 return (0); 1527 } 1528 1529 /* 1530 * This routine is called to generate a message from the routing 1531 * socket indicating that a redirect has occurred, a routing lookup 1532 * has failed, or that a protocol has detected timeouts to a particular 1533 * destination. 1534 */ 1535 void 1536 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1537 int fibnum) 1538 { 1539 struct rt_msghdr *rtm; 1540 struct mbuf *m; 1541 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1542 1543 if (V_route_cb.any_count == 0) 1544 return; 1545 m = rtsock_msg_mbuf(type, rtinfo); 1546 if (m == NULL) 1547 return; 1548 1549 if (fibnum != RT_ALL_FIBS) { 1550 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1551 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1552 M_SETFIB(m, fibnum); 1553 m->m_flags |= RTS_FILTER_FIB; 1554 } 1555 1556 rtm = mtod(m, struct rt_msghdr *); 1557 rtm->rtm_flags = RTF_DONE | flags; 1558 rtm->rtm_errno = error; 1559 rtm->rtm_addrs = rtinfo->rti_addrs; 1560 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1561 } 1562 1563 void 1564 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1565 { 1566 1567 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1568 } 1569 1570 /* 1571 * This routine is called to generate a message from the routing 1572 * socket indicating that the status of a network interface has changed. 1573 */ 1574 void 1575 rt_ifmsg(struct ifnet *ifp) 1576 { 1577 struct if_msghdr *ifm; 1578 struct mbuf *m; 1579 struct rt_addrinfo info; 1580 1581 if (V_route_cb.any_count == 0) 1582 return; 1583 bzero((caddr_t)&info, sizeof(info)); 1584 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1585 if (m == NULL) 1586 return; 1587 ifm = mtod(m, struct if_msghdr *); 1588 ifm->ifm_index = ifp->if_index; 1589 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1590 if_data_copy(ifp, &ifm->ifm_data); 1591 ifm->ifm_addrs = 0; 1592 rt_dispatch(m, AF_UNSPEC); 1593 } 1594 1595 /* 1596 * Announce interface address arrival/withdraw. 1597 * Please do not call directly, use rt_addrmsg(). 1598 * Assume input data to be valid. 1599 * Returns 0 on success. 1600 */ 1601 int 1602 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1603 { 1604 struct rt_addrinfo info; 1605 struct sockaddr *sa; 1606 int ncmd; 1607 struct mbuf *m; 1608 struct ifa_msghdr *ifam; 1609 struct ifnet *ifp = ifa->ifa_ifp; 1610 struct sockaddr_storage ss; 1611 1612 if (V_route_cb.any_count == 0) 1613 return (0); 1614 1615 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1616 1617 bzero((caddr_t)&info, sizeof(info)); 1618 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1619 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1620 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1621 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 1622 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1623 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1624 return (ENOBUFS); 1625 ifam = mtod(m, struct ifa_msghdr *); 1626 ifam->ifam_index = ifp->if_index; 1627 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1628 ifam->ifam_flags = ifa->ifa_flags; 1629 ifam->ifam_addrs = info.rti_addrs; 1630 1631 if (fibnum != RT_ALL_FIBS) { 1632 M_SETFIB(m, fibnum); 1633 m->m_flags |= RTS_FILTER_FIB; 1634 } 1635 1636 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1637 1638 return (0); 1639 } 1640 1641 /* 1642 * Announce route addition/removal to rtsock based on @rt data. 1643 * Callers are advives to use rt_routemsg() instead of using this 1644 * function directly. 1645 * Assume @rt data is consistent. 1646 * 1647 * Returns 0 on success. 1648 */ 1649 int 1650 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh, 1651 int fibnum) 1652 { 1653 union sockaddr_union dst, mask; 1654 struct rt_addrinfo info; 1655 1656 if (V_route_cb.any_count == 0) 1657 return (0); 1658 1659 int family = rt_get_family(rt); 1660 init_sockaddrs_family(family, &dst.sa, &mask.sa); 1661 export_rtaddrs(rt, &dst.sa, &mask.sa); 1662 1663 bzero((caddr_t)&info, sizeof(info)); 1664 info.rti_info[RTAX_DST] = &dst.sa; 1665 info.rti_info[RTAX_NETMASK] = &mask.sa; 1666 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 1667 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); 1668 info.rti_ifp = nh->nh_ifp; 1669 1670 return (rtsock_routemsg_info(cmd, &info, fibnum)); 1671 } 1672 1673 int 1674 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 1675 { 1676 struct rt_msghdr *rtm; 1677 struct sockaddr *sa; 1678 struct mbuf *m; 1679 1680 if (V_route_cb.any_count == 0) 1681 return (0); 1682 1683 if (info->rti_flags & RTF_HOST) 1684 info->rti_info[RTAX_NETMASK] = NULL; 1685 1686 m = rtsock_msg_mbuf(cmd, info); 1687 if (m == NULL) 1688 return (ENOBUFS); 1689 1690 if (fibnum != RT_ALL_FIBS) { 1691 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1692 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1693 M_SETFIB(m, fibnum); 1694 m->m_flags |= RTS_FILTER_FIB; 1695 } 1696 1697 rtm = mtod(m, struct rt_msghdr *); 1698 rtm->rtm_addrs = info->rti_addrs; 1699 if (info->rti_ifp != NULL) 1700 rtm->rtm_index = info->rti_ifp->if_index; 1701 /* Add RTF_DONE to indicate command 'completion' required by API */ 1702 info->rti_flags |= RTF_DONE; 1703 /* Reported routes has to be up */ 1704 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 1705 info->rti_flags |= RTF_UP; 1706 rtm->rtm_flags = info->rti_flags; 1707 1708 sa = info->rti_info[RTAX_DST]; 1709 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1710 1711 return (0); 1712 } 1713 1714 /* 1715 * This is the analogue to the rt_newaddrmsg which performs the same 1716 * function but for multicast group memberhips. This is easier since 1717 * there is no route state to worry about. 1718 */ 1719 void 1720 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1721 { 1722 struct rt_addrinfo info; 1723 struct mbuf *m = NULL; 1724 struct ifnet *ifp = ifma->ifma_ifp; 1725 struct ifma_msghdr *ifmam; 1726 1727 if (V_route_cb.any_count == 0) 1728 return; 1729 1730 bzero((caddr_t)&info, sizeof(info)); 1731 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1732 if (ifp && ifp->if_addr) 1733 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1734 else 1735 info.rti_info[RTAX_IFP] = NULL; 1736 /* 1737 * If a link-layer address is present, present it as a ``gateway'' 1738 * (similarly to how ARP entries, e.g., are presented). 1739 */ 1740 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1741 m = rtsock_msg_mbuf(cmd, &info); 1742 if (m == NULL) 1743 return; 1744 ifmam = mtod(m, struct ifma_msghdr *); 1745 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1746 __func__)); 1747 ifmam->ifmam_index = ifp->if_index; 1748 ifmam->ifmam_addrs = info.rti_addrs; 1749 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1750 } 1751 1752 static struct mbuf * 1753 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1754 struct rt_addrinfo *info) 1755 { 1756 struct if_announcemsghdr *ifan; 1757 struct mbuf *m; 1758 1759 if (V_route_cb.any_count == 0) 1760 return NULL; 1761 bzero((caddr_t)info, sizeof(*info)); 1762 m = rtsock_msg_mbuf(type, info); 1763 if (m != NULL) { 1764 ifan = mtod(m, struct if_announcemsghdr *); 1765 ifan->ifan_index = ifp->if_index; 1766 strlcpy(ifan->ifan_name, ifp->if_xname, 1767 sizeof(ifan->ifan_name)); 1768 ifan->ifan_what = what; 1769 } 1770 return m; 1771 } 1772 1773 /* 1774 * This is called to generate routing socket messages indicating 1775 * IEEE80211 wireless events. 1776 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1777 */ 1778 void 1779 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1780 { 1781 struct mbuf *m; 1782 struct rt_addrinfo info; 1783 1784 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1785 if (m != NULL) { 1786 /* 1787 * Append the ieee80211 data. Try to stick it in the 1788 * mbuf containing the ifannounce msg; otherwise allocate 1789 * a new mbuf and append. 1790 * 1791 * NB: we assume m is a single mbuf. 1792 */ 1793 if (data_len > M_TRAILINGSPACE(m)) { 1794 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1795 if (n == NULL) { 1796 m_freem(m); 1797 return; 1798 } 1799 bcopy(data, mtod(n, void *), data_len); 1800 n->m_len = data_len; 1801 m->m_next = n; 1802 } else if (data_len > 0) { 1803 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1804 m->m_len += data_len; 1805 } 1806 if (m->m_flags & M_PKTHDR) 1807 m->m_pkthdr.len += data_len; 1808 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1809 rt_dispatch(m, AF_UNSPEC); 1810 } 1811 } 1812 1813 /* 1814 * This is called to generate routing socket messages indicating 1815 * network interface arrival and departure. 1816 */ 1817 void 1818 rt_ifannouncemsg(struct ifnet *ifp, int what) 1819 { 1820 struct mbuf *m; 1821 struct rt_addrinfo info; 1822 1823 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1824 if (m != NULL) 1825 rt_dispatch(m, AF_UNSPEC); 1826 } 1827 1828 static void 1829 rt_dispatch(struct mbuf *m, sa_family_t saf) 1830 { 1831 struct m_tag *tag; 1832 1833 /* 1834 * Preserve the family from the sockaddr, if any, in an m_tag for 1835 * use when injecting the mbuf into the routing socket buffer from 1836 * the netisr. 1837 */ 1838 if (saf != AF_UNSPEC) { 1839 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1840 M_NOWAIT); 1841 if (tag == NULL) { 1842 m_freem(m); 1843 return; 1844 } 1845 *(unsigned short *)(tag + 1) = saf; 1846 m_tag_prepend(m, tag); 1847 } 1848 #ifdef VIMAGE 1849 if (V_loif) 1850 m->m_pkthdr.rcvif = V_loif; 1851 else { 1852 m_freem(m); 1853 return; 1854 } 1855 #endif 1856 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1857 } 1858 1859 /* 1860 * Checks if rte can be exported v.r.t jails/vnets. 1861 * 1862 * Returns 1 if it can, 0 otherwise. 1863 */ 1864 static bool 1865 can_export_rte(struct ucred *td_ucred, bool rt_is_host, 1866 const struct sockaddr *rt_dst) 1867 { 1868 1869 if ((!rt_is_host) ? jailed_without_vnet(td_ucred) 1870 : prison_if(td_ucred, rt_dst) != 0) 1871 return (false); 1872 return (true); 1873 } 1874 1875 1876 /* 1877 * This is used in dumping the kernel table via sysctl(). 1878 */ 1879 static int 1880 sysctl_dumpentry(struct rtentry *rt, void *vw) 1881 { 1882 struct walkarg *w = vw; 1883 struct nhop_object *nh; 1884 int error = 0; 1885 1886 NET_EPOCH_ASSERT(); 1887 1888 export_rtaddrs(rt, w->dst, w->mask); 1889 if (!can_export_rte(w->w_req->td->td_ucred, rt_is_host(rt), w->dst)) 1890 return (0); 1891 nh = rt_get_raw_nhop(rt); 1892 #ifdef ROUTE_MPATH 1893 if (NH_IS_NHGRP(nh)) { 1894 struct weightened_nhop *wn; 1895 uint32_t num_nhops; 1896 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 1897 for (int i = 0; i < num_nhops; i++) { 1898 error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w); 1899 if (error != 0) 1900 return (error); 1901 } 1902 } else 1903 #endif 1904 error = sysctl_dumpnhop(rt, nh, rt->rt_weight, w); 1905 1906 return (0); 1907 } 1908 1909 1910 static int 1911 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, 1912 struct walkarg *w) 1913 { 1914 struct rt_addrinfo info; 1915 int error = 0, size; 1916 uint32_t rtflags; 1917 1918 rtflags = nhop_get_rtflags(nh); 1919 1920 if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg)) 1921 return (0); 1922 1923 bzero((caddr_t)&info, sizeof(info)); 1924 info.rti_info[RTAX_DST] = w->dst; 1925 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 1926 info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask; 1927 info.rti_info[RTAX_GENMASK] = 0; 1928 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 1929 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 1930 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 1931 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 1932 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 1933 } 1934 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1935 return (error); 1936 if (w->w_req && w->w_tmem) { 1937 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1938 1939 bzero(&rtm->rtm_index, 1940 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 1941 1942 /* 1943 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags) 1944 * and RTF_UP (if entry is linked, which is always true here). 1945 * Given that, use nhop rtflags & add RTF_UP. 1946 */ 1947 rtm->rtm_flags = rtflags | RTF_UP; 1948 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 1949 rtm->rtm_flags = RTF_GATEWAY | 1950 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 1951 rt_getmetrics(rt, nh, &rtm->rtm_rmx); 1952 rtm->rtm_rmx.rmx_weight = weight; 1953 rtm->rtm_index = nh->nh_ifp->if_index; 1954 rtm->rtm_addrs = info.rti_addrs; 1955 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1956 return (error); 1957 } 1958 return (error); 1959 } 1960 1961 static int 1962 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1963 struct rt_addrinfo *info, struct walkarg *w, int len) 1964 { 1965 struct if_msghdrl *ifm; 1966 struct if_data *ifd; 1967 1968 ifm = (struct if_msghdrl *)w->w_tmem; 1969 1970 #ifdef COMPAT_FREEBSD32 1971 if (w->w_req->flags & SCTL_MASK32) { 1972 struct if_msghdrl32 *ifm32; 1973 1974 ifm32 = (struct if_msghdrl32 *)ifm; 1975 ifm32->ifm_addrs = info->rti_addrs; 1976 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1977 ifm32->ifm_index = ifp->if_index; 1978 ifm32->_ifm_spare1 = 0; 1979 ifm32->ifm_len = sizeof(*ifm32); 1980 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1981 ifm32->_ifm_spare2 = 0; 1982 ifd = &ifm32->ifm_data; 1983 } else 1984 #endif 1985 { 1986 ifm->ifm_addrs = info->rti_addrs; 1987 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1988 ifm->ifm_index = ifp->if_index; 1989 ifm->_ifm_spare1 = 0; 1990 ifm->ifm_len = sizeof(*ifm); 1991 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1992 ifm->_ifm_spare2 = 0; 1993 ifd = &ifm->ifm_data; 1994 } 1995 1996 memcpy(ifd, src_ifd, sizeof(*ifd)); 1997 1998 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1999 } 2000 2001 static int 2002 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 2003 struct rt_addrinfo *info, struct walkarg *w, int len) 2004 { 2005 struct if_msghdr *ifm; 2006 struct if_data *ifd; 2007 2008 ifm = (struct if_msghdr *)w->w_tmem; 2009 2010 #ifdef COMPAT_FREEBSD32 2011 if (w->w_req->flags & SCTL_MASK32) { 2012 struct if_msghdr32 *ifm32; 2013 2014 ifm32 = (struct if_msghdr32 *)ifm; 2015 ifm32->ifm_addrs = info->rti_addrs; 2016 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2017 ifm32->ifm_index = ifp->if_index; 2018 ifm32->_ifm_spare1 = 0; 2019 ifd = &ifm32->ifm_data; 2020 } else 2021 #endif 2022 { 2023 ifm->ifm_addrs = info->rti_addrs; 2024 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2025 ifm->ifm_index = ifp->if_index; 2026 ifm->_ifm_spare1 = 0; 2027 ifd = &ifm->ifm_data; 2028 } 2029 2030 memcpy(ifd, src_ifd, sizeof(*ifd)); 2031 2032 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2033 } 2034 2035 static int 2036 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 2037 struct walkarg *w, int len) 2038 { 2039 struct ifa_msghdrl *ifam; 2040 struct if_data *ifd; 2041 2042 ifam = (struct ifa_msghdrl *)w->w_tmem; 2043 2044 #ifdef COMPAT_FREEBSD32 2045 if (w->w_req->flags & SCTL_MASK32) { 2046 struct ifa_msghdrl32 *ifam32; 2047 2048 ifam32 = (struct ifa_msghdrl32 *)ifam; 2049 ifam32->ifam_addrs = info->rti_addrs; 2050 ifam32->ifam_flags = ifa->ifa_flags; 2051 ifam32->ifam_index = ifa->ifa_ifp->if_index; 2052 ifam32->_ifam_spare1 = 0; 2053 ifam32->ifam_len = sizeof(*ifam32); 2054 ifam32->ifam_data_off = 2055 offsetof(struct ifa_msghdrl32, ifam_data); 2056 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 2057 ifd = &ifam32->ifam_data; 2058 } else 2059 #endif 2060 { 2061 ifam->ifam_addrs = info->rti_addrs; 2062 ifam->ifam_flags = ifa->ifa_flags; 2063 ifam->ifam_index = ifa->ifa_ifp->if_index; 2064 ifam->_ifam_spare1 = 0; 2065 ifam->ifam_len = sizeof(*ifam); 2066 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 2067 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2068 ifd = &ifam->ifam_data; 2069 } 2070 2071 bzero(ifd, sizeof(*ifd)); 2072 ifd->ifi_datalen = sizeof(struct if_data); 2073 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 2074 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 2075 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 2076 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 2077 2078 /* Fixup if_data carp(4) vhid. */ 2079 if (carp_get_vhid_p != NULL) 2080 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 2081 2082 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2083 } 2084 2085 static int 2086 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 2087 struct walkarg *w, int len) 2088 { 2089 struct ifa_msghdr *ifam; 2090 2091 ifam = (struct ifa_msghdr *)w->w_tmem; 2092 ifam->ifam_addrs = info->rti_addrs; 2093 ifam->ifam_flags = ifa->ifa_flags; 2094 ifam->ifam_index = ifa->ifa_ifp->if_index; 2095 ifam->_ifam_spare1 = 0; 2096 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2097 2098 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2099 } 2100 2101 static int 2102 sysctl_iflist(int af, struct walkarg *w) 2103 { 2104 struct ifnet *ifp; 2105 struct ifaddr *ifa; 2106 struct if_data ifd; 2107 struct rt_addrinfo info; 2108 int len, error = 0; 2109 struct sockaddr_storage ss; 2110 2111 bzero((caddr_t)&info, sizeof(info)); 2112 bzero(&ifd, sizeof(ifd)); 2113 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2114 if (w->w_arg && w->w_arg != ifp->if_index) 2115 continue; 2116 if_data_copy(ifp, &ifd); 2117 ifa = ifp->if_addr; 2118 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 2119 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 2120 if (error != 0) 2121 goto done; 2122 info.rti_info[RTAX_IFP] = NULL; 2123 if (w->w_req && w->w_tmem) { 2124 if (w->w_op == NET_RT_IFLISTL) 2125 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 2126 len); 2127 else 2128 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 2129 len); 2130 if (error) 2131 goto done; 2132 } 2133 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 2134 if (af && af != ifa->ifa_addr->sa_family) 2135 continue; 2136 if (prison_if(w->w_req->td->td_ucred, 2137 ifa->ifa_addr) != 0) 2138 continue; 2139 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 2140 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 2141 ifa->ifa_addr, ifa->ifa_netmask, &ss); 2142 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 2143 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 2144 if (error != 0) 2145 goto done; 2146 if (w->w_req && w->w_tmem) { 2147 if (w->w_op == NET_RT_IFLISTL) 2148 error = sysctl_iflist_ifaml(ifa, &info, 2149 w, len); 2150 else 2151 error = sysctl_iflist_ifam(ifa, &info, 2152 w, len); 2153 if (error) 2154 goto done; 2155 } 2156 } 2157 info.rti_info[RTAX_IFA] = NULL; 2158 info.rti_info[RTAX_NETMASK] = NULL; 2159 info.rti_info[RTAX_BRD] = NULL; 2160 } 2161 done: 2162 return (error); 2163 } 2164 2165 static int 2166 sysctl_ifmalist(int af, struct walkarg *w) 2167 { 2168 struct rt_addrinfo info; 2169 struct ifaddr *ifa; 2170 struct ifmultiaddr *ifma; 2171 struct ifnet *ifp; 2172 int error, len; 2173 2174 NET_EPOCH_ASSERT(); 2175 2176 error = 0; 2177 bzero((caddr_t)&info, sizeof(info)); 2178 2179 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2180 if (w->w_arg && w->w_arg != ifp->if_index) 2181 continue; 2182 ifa = ifp->if_addr; 2183 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 2184 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2185 if (af && af != ifma->ifma_addr->sa_family) 2186 continue; 2187 if (prison_if(w->w_req->td->td_ucred, 2188 ifma->ifma_addr) != 0) 2189 continue; 2190 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2191 info.rti_info[RTAX_GATEWAY] = 2192 (ifma->ifma_addr->sa_family != AF_LINK) ? 2193 ifma->ifma_lladdr : NULL; 2194 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 2195 if (error != 0) 2196 break; 2197 if (w->w_req && w->w_tmem) { 2198 struct ifma_msghdr *ifmam; 2199 2200 ifmam = (struct ifma_msghdr *)w->w_tmem; 2201 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 2202 ifmam->ifmam_flags = 0; 2203 ifmam->ifmam_addrs = info.rti_addrs; 2204 ifmam->_ifmam_spare1 = 0; 2205 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 2206 if (error != 0) 2207 break; 2208 } 2209 } 2210 if (error != 0) 2211 break; 2212 } 2213 return (error); 2214 } 2215 2216 static void 2217 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w) 2218 { 2219 union sockaddr_union sa_dst, sa_mask; 2220 2221 w->family = family; 2222 w->dst = (struct sockaddr *)&sa_dst; 2223 w->mask = (struct sockaddr *)&sa_mask; 2224 2225 init_sockaddrs_family(family, w->dst, w->mask); 2226 2227 rib_walk(fibnum, family, false, sysctl_dumpentry, w); 2228 } 2229 2230 static int 2231 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2232 { 2233 struct epoch_tracker et; 2234 int *name = (int *)arg1; 2235 u_int namelen = arg2; 2236 struct rib_head *rnh = NULL; /* silence compiler. */ 2237 int i, lim, error = EINVAL; 2238 int fib = 0; 2239 u_char af; 2240 struct walkarg w; 2241 2242 name ++; 2243 namelen--; 2244 if (req->newptr) 2245 return (EPERM); 2246 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) { 2247 if (namelen == 3) 2248 fib = req->td->td_proc->p_fibnum; 2249 else if (namelen == 4) 2250 fib = (name[3] == RT_ALL_FIBS) ? 2251 req->td->td_proc->p_fibnum : name[3]; 2252 else 2253 return ((namelen < 3) ? EISDIR : ENOTDIR); 2254 if (fib < 0 || fib >= rt_numfibs) 2255 return (EINVAL); 2256 } else if (namelen != 3) 2257 return ((namelen < 3) ? EISDIR : ENOTDIR); 2258 af = name[0]; 2259 if (af > AF_MAX) 2260 return (EINVAL); 2261 bzero(&w, sizeof(w)); 2262 w.w_op = name[1]; 2263 w.w_arg = name[2]; 2264 w.w_req = req; 2265 2266 error = sysctl_wire_old_buffer(req, 0); 2267 if (error) 2268 return (error); 2269 2270 /* 2271 * Allocate reply buffer in advance. 2272 * All rtsock messages has maximum length of u_short. 2273 */ 2274 w.w_tmemsize = 65536; 2275 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2276 2277 NET_EPOCH_ENTER(et); 2278 switch (w.w_op) { 2279 case NET_RT_DUMP: 2280 case NET_RT_FLAGS: 2281 if (af == 0) { /* dump all tables */ 2282 i = 1; 2283 lim = AF_MAX; 2284 } else /* dump only one table */ 2285 i = lim = af; 2286 2287 /* 2288 * take care of llinfo entries, the caller must 2289 * specify an AF 2290 */ 2291 if (w.w_op == NET_RT_FLAGS && 2292 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2293 if (af != 0) 2294 error = lltable_sysctl_dumparp(af, w.w_req); 2295 else 2296 error = EINVAL; 2297 break; 2298 } 2299 /* 2300 * take care of routing entries 2301 */ 2302 for (error = 0; error == 0 && i <= lim; i++) { 2303 rnh = rt_tables_get_rnh(fib, i); 2304 if (rnh != NULL) { 2305 rtable_sysctl_dump(fib, i, &w); 2306 } else if (af != 0) 2307 error = EAFNOSUPPORT; 2308 } 2309 break; 2310 case NET_RT_NHOP: 2311 case NET_RT_NHGRP: 2312 /* Allow dumping one specific af/fib at a time */ 2313 if (namelen < 4) { 2314 error = EINVAL; 2315 break; 2316 } 2317 fib = name[3]; 2318 if (fib < 0 || fib > rt_numfibs) { 2319 error = EINVAL; 2320 break; 2321 } 2322 rnh = rt_tables_get_rnh(fib, af); 2323 if (rnh == NULL) { 2324 error = EAFNOSUPPORT; 2325 break; 2326 } 2327 if (w.w_op == NET_RT_NHOP) 2328 error = nhops_dump_sysctl(rnh, w.w_req); 2329 else 2330 #ifdef ROUTE_MPATH 2331 error = nhgrp_dump_sysctl(rnh, w.w_req); 2332 #else 2333 error = ENOTSUP; 2334 #endif 2335 break; 2336 case NET_RT_IFLIST: 2337 case NET_RT_IFLISTL: 2338 error = sysctl_iflist(af, &w); 2339 break; 2340 2341 case NET_RT_IFMALIST: 2342 error = sysctl_ifmalist(af, &w); 2343 break; 2344 } 2345 NET_EPOCH_EXIT(et); 2346 2347 free(w.w_tmem, M_TEMP); 2348 return (error); 2349 } 2350 2351 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2352 sysctl_rtsock, "Return route tables and interface/address lists"); 2353 2354 /* 2355 * Definitions of protocols supported in the ROUTE domain. 2356 */ 2357 2358 static struct domain routedomain; /* or at least forward */ 2359 2360 static struct protosw routesw[] = { 2361 { 2362 .pr_type = SOCK_RAW, 2363 .pr_domain = &routedomain, 2364 .pr_flags = PR_ATOMIC|PR_ADDR, 2365 .pr_output = route_output, 2366 .pr_ctlinput = raw_ctlinput, 2367 .pr_init = raw_init, 2368 .pr_usrreqs = &route_usrreqs 2369 } 2370 }; 2371 2372 static struct domain routedomain = { 2373 .dom_family = PF_ROUTE, 2374 .dom_name = "route", 2375 .dom_protosw = routesw, 2376 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 2377 }; 2378 2379 VNET_DOMAIN_SET(route); 2380