1 /* 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 33 #include <sys/param.h> 34 #include <sys/domain.h> 35 #include <sys/kernel.h> 36 #include <sys/jail.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/proc.h> 40 #include <sys/protosw.h> 41 #include <sys/signalvar.h> 42 #include <sys/socket.h> 43 #include <sys/socketvar.h> 44 #include <sys/sysctl.h> 45 #include <sys/systm.h> 46 47 #include <net/if.h> 48 #include <net/raw_cb.h> 49 #include <net/route.h> 50 51 #include <netinet/in.h> 52 53 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 54 55 /* NB: these are not modified */ 56 static struct sockaddr route_dst = { 2, PF_ROUTE, }; 57 static struct sockaddr route_src = { 2, PF_ROUTE, }; 58 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 59 60 static struct { 61 int ip_count; /* attacked w/ AF_INET */ 62 int ip6_count; /* attached w/ AF_INET6 */ 63 int ipx_count; /* attached w/ AF_IPX */ 64 int any_count; /* total attached */ 65 } route_cb; 66 67 struct mtx rtsock_mtx; 68 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 69 70 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 71 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 72 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 73 74 struct walkarg { 75 int w_tmemsize; 76 int w_op, w_arg; 77 caddr_t w_tmem; 78 struct sysctl_req *w_req; 79 }; 80 81 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 82 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 83 caddr_t cp, struct walkarg *w); 84 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 85 struct rt_addrinfo *rtinfo); 86 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 87 static int sysctl_iflist(int af, struct walkarg *w); 88 static int sysctl_ifmalist(int af, struct walkarg *w); 89 static int route_output(struct mbuf *m, struct socket *so); 90 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 91 struct rt_metrics_lite *out); 92 static void rt_getmetrics(const struct rt_metrics_lite *in, 93 struct rt_metrics *out); 94 static void rt_dispatch(struct mbuf *, const struct sockaddr *); 95 96 /* 97 * It really doesn't make any sense at all for this code to share much 98 * with raw_usrreq.c, since its functionality is so restricted. XXX 99 */ 100 static int 101 rts_abort(struct socket *so) 102 { 103 int s, error; 104 s = splnet(); 105 error = raw_usrreqs.pru_abort(so); 106 splx(s); 107 return error; 108 } 109 110 /* pru_accept is EOPNOTSUPP */ 111 112 static int 113 rts_attach(struct socket *so, int proto, struct thread *td) 114 { 115 struct rawcb *rp; 116 int s, error; 117 118 if (sotorawcb(so) != NULL) 119 return EISCONN; /* XXX panic? */ 120 /* XXX */ 121 MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 122 if (rp == NULL) 123 return ENOBUFS; 124 125 /* 126 * The splnet() is necessary to block protocols from sending 127 * error notifications (like RTM_REDIRECT or RTM_LOSING) while 128 * this PCB is extant but incompletely initialized. 129 * Probably we should try to do more of this work beforehand and 130 * eliminate the spl. 131 */ 132 s = splnet(); 133 so->so_pcb = (caddr_t)rp; 134 error = raw_attach(so, proto); 135 rp = sotorawcb(so); 136 if (error) { 137 splx(s); 138 so->so_pcb = NULL; 139 free(rp, M_PCB); 140 return error; 141 } 142 RTSOCK_LOCK(); 143 switch(rp->rcb_proto.sp_protocol) { 144 case AF_INET: 145 route_cb.ip_count++; 146 break; 147 case AF_INET6: 148 route_cb.ip6_count++; 149 break; 150 case AF_IPX: 151 route_cb.ipx_count++; 152 break; 153 } 154 rp->rcb_faddr = &route_src; 155 route_cb.any_count++; 156 RTSOCK_UNLOCK(); 157 soisconnected(so); 158 so->so_options |= SO_USELOOPBACK; 159 splx(s); 160 return 0; 161 } 162 163 static int 164 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 165 { 166 int s, error; 167 s = splnet(); 168 error = raw_usrreqs.pru_bind(so, nam, td); /* xxx just EINVAL */ 169 splx(s); 170 return error; 171 } 172 173 static int 174 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 175 { 176 int s, error; 177 s = splnet(); 178 error = raw_usrreqs.pru_connect(so, nam, td); /* XXX just EINVAL */ 179 splx(s); 180 return error; 181 } 182 183 /* pru_connect2 is EOPNOTSUPP */ 184 /* pru_control is EOPNOTSUPP */ 185 186 static int 187 rts_detach(struct socket *so) 188 { 189 struct rawcb *rp = sotorawcb(so); 190 int s, error; 191 192 s = splnet(); 193 if (rp != NULL) { 194 RTSOCK_LOCK(); 195 switch(rp->rcb_proto.sp_protocol) { 196 case AF_INET: 197 route_cb.ip_count--; 198 break; 199 case AF_INET6: 200 route_cb.ip6_count--; 201 break; 202 case AF_IPX: 203 route_cb.ipx_count--; 204 break; 205 } 206 route_cb.any_count--; 207 RTSOCK_UNLOCK(); 208 } 209 error = raw_usrreqs.pru_detach(so); 210 splx(s); 211 return error; 212 } 213 214 static int 215 rts_disconnect(struct socket *so) 216 { 217 int s, error; 218 s = splnet(); 219 error = raw_usrreqs.pru_disconnect(so); 220 splx(s); 221 return error; 222 } 223 224 /* pru_listen is EOPNOTSUPP */ 225 226 static int 227 rts_peeraddr(struct socket *so, struct sockaddr **nam) 228 { 229 int s, error; 230 s = splnet(); 231 error = raw_usrreqs.pru_peeraddr(so, nam); 232 splx(s); 233 return error; 234 } 235 236 /* pru_rcvd is EOPNOTSUPP */ 237 /* pru_rcvoob is EOPNOTSUPP */ 238 239 static int 240 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 241 struct mbuf *control, struct thread *td) 242 { 243 int s, error; 244 s = splnet(); 245 error = raw_usrreqs.pru_send(so, flags, m, nam, control, td); 246 splx(s); 247 return error; 248 } 249 250 /* pru_sense is null */ 251 252 static int 253 rts_shutdown(struct socket *so) 254 { 255 int s, error; 256 s = splnet(); 257 error = raw_usrreqs.pru_shutdown(so); 258 splx(s); 259 return error; 260 } 261 262 static int 263 rts_sockaddr(struct socket *so, struct sockaddr **nam) 264 { 265 int s, error; 266 s = splnet(); 267 error = raw_usrreqs.pru_sockaddr(so, nam); 268 splx(s); 269 return error; 270 } 271 272 static struct pr_usrreqs route_usrreqs = { 273 rts_abort, pru_accept_notsupp, rts_attach, rts_bind, rts_connect, 274 pru_connect2_notsupp, pru_control_notsupp, rts_detach, rts_disconnect, 275 pru_listen_notsupp, rts_peeraddr, pru_rcvd_notsupp, pru_rcvoob_notsupp, 276 rts_send, pru_sense_null, rts_shutdown, rts_sockaddr, 277 sosend, soreceive, sopoll, pru_sosetlabel_null 278 }; 279 280 /*ARGSUSED*/ 281 static int 282 route_output(struct mbuf *m, struct socket *so) 283 { 284 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 285 struct rt_msghdr *rtm = NULL; 286 struct rtentry *rt = NULL; 287 struct radix_node_head *rnh; 288 struct rt_addrinfo info; 289 int len, error = 0; 290 struct ifnet *ifp = NULL; 291 struct ifaddr *ifa = NULL; 292 struct sockaddr_in jail; 293 294 #define senderr(e) { error = e; goto flush;} 295 if (m == NULL || ((m->m_len < sizeof(long)) && 296 (m = m_pullup(m, sizeof(long))) == NULL)) 297 return (ENOBUFS); 298 if ((m->m_flags & M_PKTHDR) == 0) 299 panic("route_output"); 300 len = m->m_pkthdr.len; 301 if (len < sizeof(*rtm) || 302 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 303 info.rti_info[RTAX_DST] = NULL; 304 senderr(EINVAL); 305 } 306 R_Malloc(rtm, struct rt_msghdr *, len); 307 if (rtm == NULL) { 308 info.rti_info[RTAX_DST] = NULL; 309 senderr(ENOBUFS); 310 } 311 m_copydata(m, 0, len, (caddr_t)rtm); 312 if (rtm->rtm_version != RTM_VERSION) { 313 info.rti_info[RTAX_DST] = NULL; 314 senderr(EPROTONOSUPPORT); 315 } 316 rtm->rtm_pid = curproc->p_pid; 317 bzero(&info, sizeof(info)); 318 info.rti_addrs = rtm->rtm_addrs; 319 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 320 info.rti_info[RTAX_DST] = NULL; 321 senderr(EINVAL); 322 } 323 info.rti_flags = rtm->rtm_flags; 324 if (info.rti_info[RTAX_DST] == NULL || 325 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 326 (info.rti_info[RTAX_GATEWAY] != NULL && 327 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 328 senderr(EINVAL); 329 if (info.rti_info[RTAX_GENMASK]) { 330 struct radix_node *t; 331 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1); 332 if (t != NULL && 333 bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1, 334 (char *)(void *)t->rn_key + 1, 335 ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0) 336 info.rti_info[RTAX_GENMASK] = 337 (struct sockaddr *)t->rn_key; 338 else 339 senderr(ENOBUFS); 340 } 341 342 /* 343 * Verify that the caller has the appropriate privilege; RTM_GET 344 * is the only operation the non-superuser is allowed. 345 */ 346 if (rtm->rtm_type != RTM_GET && (error = suser(curthread)) != 0) 347 senderr(error); 348 349 switch (rtm->rtm_type) { 350 struct rtentry *saved_nrt; 351 352 case RTM_ADD: 353 if (info.rti_info[RTAX_GATEWAY] == NULL) 354 senderr(EINVAL); 355 saved_nrt = NULL; 356 error = rtrequest1(RTM_ADD, &info, &saved_nrt); 357 if (error == 0 && saved_nrt) { 358 RT_LOCK(saved_nrt); 359 rt_setmetrics(rtm->rtm_inits, 360 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 361 RT_REMREF(saved_nrt); 362 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; 363 RT_UNLOCK(saved_nrt); 364 } 365 break; 366 367 case RTM_DELETE: 368 saved_nrt = NULL; 369 error = rtrequest1(RTM_DELETE, &info, &saved_nrt); 370 if (error == 0) { 371 RT_LOCK(saved_nrt); 372 rt = saved_nrt; 373 goto report; 374 } 375 break; 376 377 case RTM_GET: 378 case RTM_CHANGE: 379 case RTM_LOCK: 380 rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family]; 381 if (rnh == NULL) 382 senderr(EAFNOSUPPORT); 383 RADIX_NODE_HEAD_LOCK(rnh); 384 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 385 info.rti_info[RTAX_NETMASK], rnh); 386 RADIX_NODE_HEAD_UNLOCK(rnh); 387 if (rt == NULL) /* XXX looks bogus */ 388 senderr(ESRCH); 389 RT_LOCK(rt); 390 RT_ADDREF(rt); 391 392 switch(rtm->rtm_type) { 393 394 case RTM_GET: 395 report: 396 RT_LOCK_ASSERT(rt); 397 info.rti_info[RTAX_DST] = rt_key(rt); 398 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 399 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 400 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 401 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 402 ifp = rt->rt_ifp; 403 if (ifp) { 404 info.rti_info[RTAX_IFP] = 405 ifaddr_byindex(ifp->if_index)->ifa_addr; 406 if (jailed(so->so_cred)) { 407 memset(&jail, 0, sizeof(jail)); 408 jail.sin_family = PF_INET; 409 jail.sin_len = sizeof(jail); 410 jail.sin_addr.s_addr = 411 htonl(prison_getip(so->so_cred)); 412 info.rti_info[RTAX_IFA] = 413 (struct sockaddr *)&jail; 414 } else 415 info.rti_info[RTAX_IFA] = 416 rt->rt_ifa->ifa_addr; 417 if (ifp->if_flags & IFF_POINTOPOINT) 418 info.rti_info[RTAX_BRD] = 419 rt->rt_ifa->ifa_dstaddr; 420 rtm->rtm_index = ifp->if_index; 421 } else { 422 info.rti_info[RTAX_IFP] = NULL; 423 info.rti_info[RTAX_IFA] = NULL; 424 } 425 } 426 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 427 if (len > rtm->rtm_msglen) { 428 struct rt_msghdr *new_rtm; 429 R_Malloc(new_rtm, struct rt_msghdr *, len); 430 if (new_rtm == NULL) { 431 RT_UNLOCK(rt); 432 senderr(ENOBUFS); 433 } 434 bcopy(rtm, new_rtm, rtm->rtm_msglen); 435 Free(rtm); rtm = new_rtm; 436 } 437 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 438 rtm->rtm_flags = rt->rt_flags; 439 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 440 rtm->rtm_addrs = info.rti_addrs; 441 break; 442 443 case RTM_CHANGE: 444 /* 445 * New gateway could require new ifaddr, ifp; 446 * flags may also be different; ifp may be specified 447 * by ll sockaddr when protocol address is ambiguous 448 */ 449 if (((rt->rt_flags & RTF_GATEWAY) && 450 info.rti_info[RTAX_GATEWAY] != NULL) || 451 info.rti_info[RTAX_IFP] != NULL || 452 (info.rti_info[RTAX_IFA] != NULL && 453 !sa_equal(info.rti_info[RTAX_IFA], 454 rt->rt_ifa->ifa_addr))) { 455 if ((error = rt_getifa(&info)) != 0) { 456 RT_UNLOCK(rt); 457 senderr(error); 458 } 459 } 460 if (info.rti_info[RTAX_GATEWAY] != NULL && 461 (error = rt_setgate(rt, rt_key(rt), 462 info.rti_info[RTAX_GATEWAY])) != 0) { 463 RT_UNLOCK(rt); 464 senderr(error); 465 } 466 if ((ifa = info.rti_ifa) != NULL) { 467 struct ifaddr *oifa = rt->rt_ifa; 468 if (oifa != ifa) { 469 if (oifa) { 470 if (oifa->ifa_rtrequest) 471 oifa->ifa_rtrequest( 472 RTM_DELETE, rt, 473 &info); 474 IFAFREE(oifa); 475 } 476 IFAREF(ifa); 477 rt->rt_ifa = ifa; 478 rt->rt_ifp = info.rti_ifp; 479 } 480 } 481 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 482 &rt->rt_rmx); 483 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 484 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 485 if (info.rti_info[RTAX_GENMASK]) 486 rt->rt_genmask = info.rti_info[RTAX_GENMASK]; 487 /* FALLTHROUGH */ 488 case RTM_LOCK: 489 /* We don't support locks anymore */ 490 break; 491 } 492 RT_UNLOCK(rt); 493 break; 494 495 default: 496 senderr(EOPNOTSUPP); 497 } 498 499 flush: 500 if (rtm) { 501 if (error) 502 rtm->rtm_errno = error; 503 else 504 rtm->rtm_flags |= RTF_DONE; 505 } 506 if (rt) /* XXX can this be true? */ 507 RTFREE(rt); 508 { 509 struct rawcb *rp = NULL; 510 /* 511 * Check to see if we don't want our own messages. 512 */ 513 if ((so->so_options & SO_USELOOPBACK) == 0) { 514 if (route_cb.any_count <= 1) { 515 if (rtm) 516 Free(rtm); 517 m_freem(m); 518 return (error); 519 } 520 /* There is another listener, so construct message */ 521 rp = sotorawcb(so); 522 } 523 if (rtm) { 524 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 525 if (m->m_pkthdr.len < rtm->rtm_msglen) { 526 m_freem(m); 527 m = NULL; 528 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 529 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 530 Free(rtm); 531 } 532 if (m) { 533 if (rp) { 534 /* 535 * XXX insure we don't get a copy by 536 * invalidating our protocol 537 */ 538 unsigned short family = rp->rcb_proto.sp_family; 539 rp->rcb_proto.sp_family = 0; 540 rt_dispatch(m, info.rti_info[RTAX_DST]); 541 rp->rcb_proto.sp_family = family; 542 } else 543 rt_dispatch(m, info.rti_info[RTAX_DST]); 544 } 545 } 546 return (error); 547 #undef sa_equal 548 } 549 550 static void 551 rt_setmetrics(u_long which, const struct rt_metrics *in, 552 struct rt_metrics_lite *out) 553 { 554 #define metric(f, e) if (which & (f)) out->e = in->e; 555 /* 556 * Only these are stored in the routing entry since introduction 557 * of tcp hostcache. The rest is ignored. 558 */ 559 metric(RTV_MTU, rmx_mtu); 560 metric(RTV_EXPIRE, rmx_expire); 561 #undef metric 562 } 563 564 static void 565 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 566 { 567 #define metric(e) out->e = in->e; 568 bzero(out, sizeof(*out)); 569 metric(rmx_mtu); 570 metric(rmx_expire); 571 #undef metric 572 } 573 574 /* 575 * Extract the addresses of the passed sockaddrs. 576 * Do a little sanity checking so as to avoid bad memory references. 577 * This data is derived straight from userland. 578 */ 579 static int 580 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 581 { 582 struct sockaddr *sa; 583 int i; 584 585 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 586 if ((rtinfo->rti_addrs & (1 << i)) == 0) 587 continue; 588 sa = (struct sockaddr *)cp; 589 /* 590 * It won't fit. 591 */ 592 if (cp + sa->sa_len > cplim) 593 return (EINVAL); 594 /* 595 * there are no more.. quit now 596 * If there are more bits, they are in error. 597 * I've seen this. route(1) can evidently generate these. 598 * This causes kernel to core dump. 599 * for compatibility, If we see this, point to a safe address. 600 */ 601 if (sa->sa_len == 0) { 602 rtinfo->rti_info[i] = &sa_zero; 603 return (0); /* should be EINVAL but for compat */ 604 } 605 /* accept it */ 606 rtinfo->rti_info[i] = sa; 607 cp += SA_SIZE(sa); 608 } 609 return (0); 610 } 611 612 static struct mbuf * 613 rt_msg1(int type, struct rt_addrinfo *rtinfo) 614 { 615 struct rt_msghdr *rtm; 616 struct mbuf *m; 617 int i; 618 struct sockaddr *sa; 619 int len, dlen; 620 621 switch (type) { 622 623 case RTM_DELADDR: 624 case RTM_NEWADDR: 625 len = sizeof(struct ifa_msghdr); 626 break; 627 628 case RTM_DELMADDR: 629 case RTM_NEWMADDR: 630 len = sizeof(struct ifma_msghdr); 631 break; 632 633 case RTM_IFINFO: 634 len = sizeof(struct if_msghdr); 635 break; 636 637 case RTM_IFANNOUNCE: 638 len = sizeof(struct if_announcemsghdr); 639 break; 640 641 default: 642 len = sizeof(struct rt_msghdr); 643 } 644 if (len > MCLBYTES) 645 panic("rt_msg1"); 646 m = m_gethdr(M_DONTWAIT, MT_DATA); 647 if (m && len > MHLEN) { 648 MCLGET(m, M_DONTWAIT); 649 if ((m->m_flags & M_EXT) == 0) { 650 m_free(m); 651 m = NULL; 652 } 653 } 654 if (m == NULL) 655 return (m); 656 m->m_pkthdr.len = m->m_len = len; 657 m->m_pkthdr.rcvif = NULL; 658 rtm = mtod(m, struct rt_msghdr *); 659 bzero((caddr_t)rtm, len); 660 for (i = 0; i < RTAX_MAX; i++) { 661 if ((sa = rtinfo->rti_info[i]) == NULL) 662 continue; 663 rtinfo->rti_addrs |= (1 << i); 664 dlen = SA_SIZE(sa); 665 m_copyback(m, len, dlen, (caddr_t)sa); 666 len += dlen; 667 } 668 if (m->m_pkthdr.len != len) { 669 m_freem(m); 670 return (NULL); 671 } 672 rtm->rtm_msglen = len; 673 rtm->rtm_version = RTM_VERSION; 674 rtm->rtm_type = type; 675 return (m); 676 } 677 678 static int 679 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 680 { 681 int i; 682 int len, dlen, second_time = 0; 683 caddr_t cp0; 684 685 rtinfo->rti_addrs = 0; 686 again: 687 switch (type) { 688 689 case RTM_DELADDR: 690 case RTM_NEWADDR: 691 len = sizeof(struct ifa_msghdr); 692 break; 693 694 case RTM_IFINFO: 695 len = sizeof(struct if_msghdr); 696 break; 697 698 case RTM_NEWMADDR: 699 len = sizeof(struct ifma_msghdr); 700 break; 701 702 default: 703 len = sizeof(struct rt_msghdr); 704 } 705 cp0 = cp; 706 if (cp0) 707 cp += len; 708 for (i = 0; i < RTAX_MAX; i++) { 709 struct sockaddr *sa; 710 711 if ((sa = rtinfo->rti_info[i]) == NULL) 712 continue; 713 rtinfo->rti_addrs |= (1 << i); 714 dlen = SA_SIZE(sa); 715 if (cp) { 716 bcopy((caddr_t)sa, cp, (unsigned)dlen); 717 cp += dlen; 718 } 719 len += dlen; 720 } 721 len = ALIGN(len); 722 if (cp == NULL && w != NULL && !second_time) { 723 struct walkarg *rw = w; 724 725 if (rw->w_req) { 726 if (rw->w_tmemsize < len) { 727 if (rw->w_tmem) 728 free(rw->w_tmem, M_RTABLE); 729 rw->w_tmem = (caddr_t) 730 malloc(len, M_RTABLE, M_NOWAIT); 731 if (rw->w_tmem) 732 rw->w_tmemsize = len; 733 } 734 if (rw->w_tmem) { 735 cp = rw->w_tmem; 736 second_time = 1; 737 goto again; 738 } 739 } 740 } 741 if (cp) { 742 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 743 744 rtm->rtm_version = RTM_VERSION; 745 rtm->rtm_type = type; 746 rtm->rtm_msglen = len; 747 } 748 return (len); 749 } 750 751 /* 752 * This routine is called to generate a message from the routing 753 * socket indicating that a redirect has occured, a routing lookup 754 * has failed, or that a protocol has detected timeouts to a particular 755 * destination. 756 */ 757 void 758 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 759 { 760 struct rt_msghdr *rtm; 761 struct mbuf *m; 762 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 763 764 if (route_cb.any_count == 0) 765 return; 766 m = rt_msg1(type, rtinfo); 767 if (m == NULL) 768 return; 769 rtm = mtod(m, struct rt_msghdr *); 770 rtm->rtm_flags = RTF_DONE | flags; 771 rtm->rtm_errno = error; 772 rtm->rtm_addrs = rtinfo->rti_addrs; 773 rt_dispatch(m, sa); 774 } 775 776 /* 777 * This routine is called to generate a message from the routing 778 * socket indicating that the status of a network interface has changed. 779 */ 780 void 781 rt_ifmsg(struct ifnet *ifp) 782 { 783 struct if_msghdr *ifm; 784 struct mbuf *m; 785 struct rt_addrinfo info; 786 787 if (route_cb.any_count == 0) 788 return; 789 bzero((caddr_t)&info, sizeof(info)); 790 m = rt_msg1(RTM_IFINFO, &info); 791 if (m == NULL) 792 return; 793 ifm = mtod(m, struct if_msghdr *); 794 ifm->ifm_index = ifp->if_index; 795 ifm->ifm_flags = ifp->if_flags; 796 ifm->ifm_data = ifp->if_data; 797 ifm->ifm_addrs = 0; 798 rt_dispatch(m, NULL); 799 } 800 801 /* 802 * This is called to generate messages from the routing socket 803 * indicating a network interface has had addresses associated with it. 804 * if we ever reverse the logic and replace messages TO the routing 805 * socket indicate a request to configure interfaces, then it will 806 * be unnecessary as the routing socket will automatically generate 807 * copies of it. 808 */ 809 void 810 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 811 { 812 struct rt_addrinfo info; 813 struct sockaddr *sa = NULL; 814 int pass; 815 struct mbuf *m = NULL; 816 struct ifnet *ifp = ifa->ifa_ifp; 817 818 if (route_cb.any_count == 0) 819 return; 820 for (pass = 1; pass < 3; pass++) { 821 bzero((caddr_t)&info, sizeof(info)); 822 if ((cmd == RTM_ADD && pass == 1) || 823 (cmd == RTM_DELETE && pass == 2)) { 824 struct ifa_msghdr *ifam; 825 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 826 827 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 828 info.rti_info[RTAX_IFP] = 829 ifaddr_byindex(ifp->if_index)->ifa_addr; 830 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 831 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 832 if ((m = rt_msg1(ncmd, &info)) == NULL) 833 continue; 834 ifam = mtod(m, struct ifa_msghdr *); 835 ifam->ifam_index = ifp->if_index; 836 ifam->ifam_metric = ifa->ifa_metric; 837 ifam->ifam_flags = ifa->ifa_flags; 838 ifam->ifam_addrs = info.rti_addrs; 839 } 840 if ((cmd == RTM_ADD && pass == 2) || 841 (cmd == RTM_DELETE && pass == 1)) { 842 struct rt_msghdr *rtm; 843 844 if (rt == NULL) 845 continue; 846 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 847 info.rti_info[RTAX_DST] = sa = rt_key(rt); 848 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 849 if ((m = rt_msg1(cmd, &info)) == NULL) 850 continue; 851 rtm = mtod(m, struct rt_msghdr *); 852 rtm->rtm_index = ifp->if_index; 853 rtm->rtm_flags |= rt->rt_flags; 854 rtm->rtm_errno = error; 855 rtm->rtm_addrs = info.rti_addrs; 856 } 857 rt_dispatch(m, sa); 858 } 859 } 860 861 /* 862 * This is the analogue to the rt_newaddrmsg which performs the same 863 * function but for multicast group memberhips. This is easier since 864 * there is no route state to worry about. 865 */ 866 void 867 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 868 { 869 struct rt_addrinfo info; 870 struct mbuf *m = NULL; 871 struct ifnet *ifp = ifma->ifma_ifp; 872 struct ifma_msghdr *ifmam; 873 874 if (route_cb.any_count == 0) 875 return; 876 877 bzero((caddr_t)&info, sizeof(info)); 878 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 879 info.rti_info[RTAX_IFP] = 880 ifp ? ifaddr_byindex(ifp->if_index)->ifa_addr : NULL; 881 /* 882 * If a link-layer address is present, present it as a ``gateway'' 883 * (similarly to how ARP entries, e.g., are presented). 884 */ 885 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 886 m = rt_msg1(cmd, &info); 887 if (m == NULL) 888 return; 889 ifmam = mtod(m, struct ifma_msghdr *); 890 ifmam->ifmam_index = ifp->if_index; 891 ifmam->ifmam_addrs = info.rti_addrs; 892 rt_dispatch(m, ifma->ifma_addr); 893 } 894 895 /* 896 * This is called to generate routing socket messages indicating 897 * network interface arrival and departure. 898 */ 899 void 900 rt_ifannouncemsg(struct ifnet *ifp, int what) 901 { 902 struct if_announcemsghdr *ifan; 903 struct mbuf *m; 904 struct rt_addrinfo info; 905 906 if (route_cb.any_count == 0) 907 return; 908 bzero((caddr_t)&info, sizeof(info)); 909 m = rt_msg1(RTM_IFANNOUNCE, &info); 910 if (m == NULL) 911 return; 912 ifan = mtod(m, struct if_announcemsghdr *); 913 ifan->ifan_index = ifp->if_index; 914 strlcpy(ifan->ifan_name, ifp->if_xname, sizeof(ifan->ifan_name)); 915 ifan->ifan_what = what; 916 rt_dispatch(m, NULL); 917 } 918 919 static void 920 rt_dispatch(struct mbuf *m, const struct sockaddr *sa) 921 { 922 struct sockproto route_proto; 923 924 route_proto.sp_family = PF_ROUTE; 925 route_proto.sp_protocol = sa ? sa->sa_family : 0; 926 raw_input(m, &route_proto, &route_src, &route_dst); 927 } 928 929 /* 930 * This is used in dumping the kernel table via sysctl(). 931 */ 932 static int 933 sysctl_dumpentry(struct radix_node *rn, void *vw) 934 { 935 struct walkarg *w = vw; 936 struct rtentry *rt = (struct rtentry *)rn; 937 int error = 0, size; 938 struct rt_addrinfo info; 939 940 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 941 return 0; 942 bzero((caddr_t)&info, sizeof(info)); 943 info.rti_info[RTAX_DST] = rt_key(rt); 944 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 945 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 946 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 947 if (rt->rt_ifp) { 948 info.rti_info[RTAX_IFP] = 949 ifaddr_byindex(rt->rt_ifp->if_index)->ifa_addr; 950 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 951 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 952 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 953 } 954 size = rt_msg2(RTM_GET, &info, NULL, w); 955 if (w->w_req && w->w_tmem) { 956 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 957 958 rtm->rtm_flags = rt->rt_flags; 959 rtm->rtm_use = rt->rt_rmx.rmx_pksent; 960 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 961 rtm->rtm_index = rt->rt_ifp->if_index; 962 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 963 rtm->rtm_addrs = info.rti_addrs; 964 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 965 return (error); 966 } 967 return (error); 968 } 969 970 static int 971 sysctl_iflist(int af, struct walkarg *w) 972 { 973 struct ifnet *ifp; 974 struct ifaddr *ifa; 975 struct rt_addrinfo info; 976 int len, error = 0; 977 978 bzero((caddr_t)&info, sizeof(info)); 979 /* IFNET_RLOCK(); */ /* could sleep XXX */ 980 TAILQ_FOREACH(ifp, &ifnet, if_link) { 981 if (w->w_arg && w->w_arg != ifp->if_index) 982 continue; 983 ifa = ifaddr_byindex(ifp->if_index); 984 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 985 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 986 info.rti_info[RTAX_IFP] = NULL; 987 if (w->w_req && w->w_tmem) { 988 struct if_msghdr *ifm; 989 990 ifm = (struct if_msghdr *)w->w_tmem; 991 ifm->ifm_index = ifp->if_index; 992 ifm->ifm_flags = ifp->if_flags; 993 ifm->ifm_data = ifp->if_data; 994 ifm->ifm_addrs = info.rti_addrs; 995 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); 996 if (error) 997 goto done; 998 } 999 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1000 if (af && af != ifa->ifa_addr->sa_family) 1001 continue; 1002 if (jailed(curthread->td_ucred) && 1003 prison_if(curthread->td_ucred, ifa->ifa_addr)) 1004 continue; 1005 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1006 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1007 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1008 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1009 if (w->w_req && w->w_tmem) { 1010 struct ifa_msghdr *ifam; 1011 1012 ifam = (struct ifa_msghdr *)w->w_tmem; 1013 ifam->ifam_index = ifa->ifa_ifp->if_index; 1014 ifam->ifam_flags = ifa->ifa_flags; 1015 ifam->ifam_metric = ifa->ifa_metric; 1016 ifam->ifam_addrs = info.rti_addrs; 1017 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1018 if (error) 1019 goto done; 1020 } 1021 } 1022 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1023 info.rti_info[RTAX_BRD] = NULL; 1024 } 1025 done: 1026 /* IFNET_RUNLOCK(); */ /* XXX */ 1027 return (error); 1028 } 1029 1030 int 1031 sysctl_ifmalist(int af, struct walkarg *w) 1032 { 1033 struct ifnet *ifp; 1034 struct ifmultiaddr *ifma; 1035 struct rt_addrinfo info; 1036 int len, error = 0; 1037 struct ifaddr *ifa; 1038 1039 bzero((caddr_t)&info, sizeof(info)); 1040 /* IFNET_RLOCK(); */ /* could sleep XXX */ 1041 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1042 if (w->w_arg && w->w_arg != ifp->if_index) 1043 continue; 1044 ifa = ifaddr_byindex(ifp->if_index); 1045 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1046 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1047 if (af && af != ifma->ifma_addr->sa_family) 1048 continue; 1049 if (jailed(curproc->p_ucred) && 1050 prison_if(curproc->p_ucred, ifma->ifma_addr)) 1051 continue; 1052 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1053 info.rti_info[RTAX_GATEWAY] = 1054 (ifma->ifma_addr->sa_family != AF_LINK) ? 1055 ifma->ifma_lladdr : NULL; 1056 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1057 if (w->w_req && w->w_tmem) { 1058 struct ifma_msghdr *ifmam; 1059 1060 ifmam = (struct ifma_msghdr *)w->w_tmem; 1061 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1062 ifmam->ifmam_flags = 0; 1063 ifmam->ifmam_addrs = info.rti_addrs; 1064 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1065 if (error) 1066 goto done; 1067 } 1068 } 1069 } 1070 done: 1071 /* IFNET_RUNLOCK(); */ /* XXX */ 1072 return (error); 1073 } 1074 1075 static int 1076 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1077 { 1078 int *name = (int *)arg1; 1079 u_int namelen = arg2; 1080 struct radix_node_head *rnh; 1081 int i, lim, s, error = EINVAL; 1082 u_char af; 1083 struct walkarg w; 1084 1085 name ++; 1086 namelen--; 1087 if (req->newptr) 1088 return (EPERM); 1089 if (namelen != 3) 1090 return ((namelen < 3) ? EISDIR : ENOTDIR); 1091 af = name[0]; 1092 if (af > AF_MAX) 1093 return (EINVAL); 1094 bzero(&w, sizeof(w)); 1095 w.w_op = name[1]; 1096 w.w_arg = name[2]; 1097 w.w_req = req; 1098 1099 s = splnet(); 1100 switch (w.w_op) { 1101 1102 case NET_RT_DUMP: 1103 case NET_RT_FLAGS: 1104 if (af == 0) { /* dump all tables */ 1105 i = 1; 1106 lim = AF_MAX; 1107 } else /* dump only one table */ 1108 i = lim = af; 1109 for (error = 0; error == 0 && i <= lim; i++) 1110 if ((rnh = rt_tables[i]) != NULL) { 1111 /* RADIX_NODE_HEAD_LOCK(rnh); */ 1112 error = rnh->rnh_walktree(rnh, 1113 sysctl_dumpentry, &w);/* could sleep XXX */ 1114 /* RADIX_NODE_HEAD_UNLOCK(rnh); */ 1115 } else if (af != 0) 1116 error = EAFNOSUPPORT; 1117 break; 1118 1119 case NET_RT_IFLIST: 1120 error = sysctl_iflist(af, &w); 1121 break; 1122 1123 case NET_RT_IFMALIST: 1124 error = sysctl_ifmalist(af, &w); 1125 break; 1126 } 1127 splx(s); 1128 if (w.w_tmem) 1129 free(w.w_tmem, M_RTABLE); 1130 return (error); 1131 } 1132 1133 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1134 1135 /* 1136 * Definitions of protocols supported in the ROUTE domain. 1137 */ 1138 1139 extern struct domain routedomain; /* or at least forward */ 1140 1141 static struct protosw routesw[] = { 1142 { SOCK_RAW, &routedomain, 0, PR_ATOMIC|PR_ADDR, 1143 0, route_output, raw_ctlinput, 0, 1144 0, 1145 raw_init, 0, 0, 0, 1146 &route_usrreqs 1147 } 1148 }; 1149 1150 static struct domain routedomain = 1151 { PF_ROUTE, "route", 0, 0, 0, 1152 routesw, &routesw[sizeof(routesw)/sizeof(routesw[0])] }; 1153 1154 DOMAIN_SET(route); 1155