1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_sctp.h" 33 #include <sys/param.h> 34 #include <sys/domain.h> 35 #include <sys/kernel.h> 36 #include <sys/jail.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/priv.h> 40 #include <sys/proc.h> 41 #include <sys/protosw.h> 42 #include <sys/signalvar.h> 43 #include <sys/socket.h> 44 #include <sys/socketvar.h> 45 #include <sys/sysctl.h> 46 #include <sys/systm.h> 47 48 #include <net/if.h> 49 #include <net/netisr.h> 50 #include <net/raw_cb.h> 51 #include <net/route.h> 52 53 #include <netinet/in.h> 54 55 #ifdef SCTP 56 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 57 #endif /* SCTP */ 58 59 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 60 61 /* NB: these are not modified */ 62 static struct sockaddr route_dst = { 2, PF_ROUTE, }; 63 static struct sockaddr route_src = { 2, PF_ROUTE, }; 64 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 65 66 static struct { 67 int ip_count; /* attached w/ AF_INET */ 68 int ip6_count; /* attached w/ AF_INET6 */ 69 int ipx_count; /* attached w/ AF_IPX */ 70 int any_count; /* total attached */ 71 } route_cb; 72 73 struct mtx rtsock_mtx; 74 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 75 76 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 77 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 78 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 79 80 static struct ifqueue rtsintrq; 81 82 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 83 SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW, 84 &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length"); 85 86 struct walkarg { 87 int w_tmemsize; 88 int w_op, w_arg; 89 caddr_t w_tmem; 90 struct sysctl_req *w_req; 91 }; 92 93 static void rts_input(struct mbuf *m); 94 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 95 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 96 caddr_t cp, struct walkarg *w); 97 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 98 struct rt_addrinfo *rtinfo); 99 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 100 static int sysctl_iflist(int af, struct walkarg *w); 101 static int sysctl_ifmalist(int af, struct walkarg *w); 102 static int route_output(struct mbuf *m, struct socket *so); 103 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 104 struct rt_metrics_lite *out); 105 static void rt_getmetrics(const struct rt_metrics_lite *in, 106 struct rt_metrics *out); 107 static void rt_dispatch(struct mbuf *, const struct sockaddr *); 108 109 static void 110 rts_init(void) 111 { 112 int tmp; 113 114 rtsintrq.ifq_maxlen = 256; 115 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 116 rtsintrq.ifq_maxlen = tmp; 117 mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF); 118 netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, NETISR_MPSAFE); 119 } 120 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0) 121 122 static void 123 rts_input(struct mbuf *m) 124 { 125 struct sockproto route_proto; 126 unsigned short *family; 127 struct m_tag *tag; 128 129 route_proto.sp_family = PF_ROUTE; 130 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 131 if (tag != NULL) { 132 family = (unsigned short *)(tag + 1); 133 route_proto.sp_protocol = *family; 134 m_tag_delete(m, tag); 135 } else 136 route_proto.sp_protocol = 0; 137 138 raw_input(m, &route_proto, &route_src, &route_dst); 139 } 140 141 /* 142 * It really doesn't make any sense at all for this code to share much 143 * with raw_usrreq.c, since its functionality is so restricted. XXX 144 */ 145 static void 146 rts_abort(struct socket *so) 147 { 148 149 raw_usrreqs.pru_abort(so); 150 } 151 152 static void 153 rts_close(struct socket *so) 154 { 155 156 raw_usrreqs.pru_close(so); 157 } 158 159 /* pru_accept is EOPNOTSUPP */ 160 161 static int 162 rts_attach(struct socket *so, int proto, struct thread *td) 163 { 164 struct rawcb *rp; 165 int s, error; 166 167 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 168 169 /* XXX */ 170 MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 171 if (rp == NULL) 172 return ENOBUFS; 173 174 /* 175 * The splnet() is necessary to block protocols from sending 176 * error notifications (like RTM_REDIRECT or RTM_LOSING) while 177 * this PCB is extant but incompletely initialized. 178 * Probably we should try to do more of this work beforehand and 179 * eliminate the spl. 180 */ 181 s = splnet(); 182 so->so_pcb = (caddr_t)rp; 183 error = raw_attach(so, proto); 184 rp = sotorawcb(so); 185 if (error) { 186 splx(s); 187 so->so_pcb = NULL; 188 free(rp, M_PCB); 189 return error; 190 } 191 RTSOCK_LOCK(); 192 switch(rp->rcb_proto.sp_protocol) { 193 case AF_INET: 194 route_cb.ip_count++; 195 break; 196 case AF_INET6: 197 route_cb.ip6_count++; 198 break; 199 case AF_IPX: 200 route_cb.ipx_count++; 201 break; 202 } 203 rp->rcb_faddr = &route_src; 204 route_cb.any_count++; 205 RTSOCK_UNLOCK(); 206 soisconnected(so); 207 so->so_options |= SO_USELOOPBACK; 208 splx(s); 209 return 0; 210 } 211 212 static int 213 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 214 { 215 216 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 217 } 218 219 static int 220 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 221 { 222 223 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 224 } 225 226 /* pru_connect2 is EOPNOTSUPP */ 227 /* pru_control is EOPNOTSUPP */ 228 229 static void 230 rts_detach(struct socket *so) 231 { 232 struct rawcb *rp = sotorawcb(so); 233 234 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 235 236 RTSOCK_LOCK(); 237 switch(rp->rcb_proto.sp_protocol) { 238 case AF_INET: 239 route_cb.ip_count--; 240 break; 241 case AF_INET6: 242 route_cb.ip6_count--; 243 break; 244 case AF_IPX: 245 route_cb.ipx_count--; 246 break; 247 } 248 route_cb.any_count--; 249 RTSOCK_UNLOCK(); 250 raw_usrreqs.pru_detach(so); 251 } 252 253 static int 254 rts_disconnect(struct socket *so) 255 { 256 257 return (raw_usrreqs.pru_disconnect(so)); 258 } 259 260 /* pru_listen is EOPNOTSUPP */ 261 262 static int 263 rts_peeraddr(struct socket *so, struct sockaddr **nam) 264 { 265 266 return (raw_usrreqs.pru_peeraddr(so, nam)); 267 } 268 269 /* pru_rcvd is EOPNOTSUPP */ 270 /* pru_rcvoob is EOPNOTSUPP */ 271 272 static int 273 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 274 struct mbuf *control, struct thread *td) 275 { 276 277 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 278 } 279 280 /* pru_sense is null */ 281 282 static int 283 rts_shutdown(struct socket *so) 284 { 285 286 return (raw_usrreqs.pru_shutdown(so)); 287 } 288 289 static int 290 rts_sockaddr(struct socket *so, struct sockaddr **nam) 291 { 292 293 return (raw_usrreqs.pru_sockaddr(so, nam)); 294 } 295 296 static struct pr_usrreqs route_usrreqs = { 297 .pru_abort = rts_abort, 298 .pru_attach = rts_attach, 299 .pru_bind = rts_bind, 300 .pru_connect = rts_connect, 301 .pru_detach = rts_detach, 302 .pru_disconnect = rts_disconnect, 303 .pru_peeraddr = rts_peeraddr, 304 .pru_send = rts_send, 305 .pru_shutdown = rts_shutdown, 306 .pru_sockaddr = rts_sockaddr, 307 .pru_close = rts_close, 308 }; 309 310 /*ARGSUSED*/ 311 static int 312 route_output(struct mbuf *m, struct socket *so) 313 { 314 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 315 struct rt_msghdr *rtm = NULL; 316 struct rtentry *rt = NULL; 317 struct radix_node_head *rnh; 318 struct rt_addrinfo info; 319 int len, error = 0; 320 struct ifnet *ifp = NULL; 321 struct sockaddr_in jail; 322 323 #define senderr(e) { error = e; goto flush;} 324 if (m == NULL || ((m->m_len < sizeof(long)) && 325 (m = m_pullup(m, sizeof(long))) == NULL)) 326 return (ENOBUFS); 327 if ((m->m_flags & M_PKTHDR) == 0) 328 panic("route_output"); 329 len = m->m_pkthdr.len; 330 if (len < sizeof(*rtm) || 331 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 332 info.rti_info[RTAX_DST] = NULL; 333 senderr(EINVAL); 334 } 335 R_Malloc(rtm, struct rt_msghdr *, len); 336 if (rtm == NULL) { 337 info.rti_info[RTAX_DST] = NULL; 338 senderr(ENOBUFS); 339 } 340 m_copydata(m, 0, len, (caddr_t)rtm); 341 if (rtm->rtm_version != RTM_VERSION) { 342 info.rti_info[RTAX_DST] = NULL; 343 senderr(EPROTONOSUPPORT); 344 } 345 rtm->rtm_pid = curproc->p_pid; 346 bzero(&info, sizeof(info)); 347 info.rti_addrs = rtm->rtm_addrs; 348 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 349 info.rti_info[RTAX_DST] = NULL; 350 senderr(EINVAL); 351 } 352 info.rti_flags = rtm->rtm_flags; 353 if (info.rti_info[RTAX_DST] == NULL || 354 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 355 (info.rti_info[RTAX_GATEWAY] != NULL && 356 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 357 senderr(EINVAL); 358 if (info.rti_info[RTAX_GENMASK]) { 359 struct radix_node *t; 360 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1); 361 if (t != NULL && 362 bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1, 363 (char *)(void *)t->rn_key + 1, 364 ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0) 365 info.rti_info[RTAX_GENMASK] = 366 (struct sockaddr *)t->rn_key; 367 else 368 senderr(ENOBUFS); 369 } 370 371 /* 372 * Verify that the caller has the appropriate privilege; RTM_GET 373 * is the only operation the non-superuser is allowed. 374 */ 375 if (rtm->rtm_type != RTM_GET) { 376 error = priv_check(curthread, PRIV_NET_ROUTE); 377 if (error) 378 senderr(error); 379 } 380 381 switch (rtm->rtm_type) { 382 struct rtentry *saved_nrt; 383 384 case RTM_ADD: 385 if (info.rti_info[RTAX_GATEWAY] == NULL) 386 senderr(EINVAL); 387 saved_nrt = NULL; 388 error = rtrequest1(RTM_ADD, &info, &saved_nrt); 389 if (error == 0 && saved_nrt) { 390 RT_LOCK(saved_nrt); 391 rt_setmetrics(rtm->rtm_inits, 392 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 393 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 394 RT_REMREF(saved_nrt); 395 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; 396 RT_UNLOCK(saved_nrt); 397 } 398 break; 399 400 case RTM_DELETE: 401 saved_nrt = NULL; 402 error = rtrequest1(RTM_DELETE, &info, &saved_nrt); 403 if (error == 0) { 404 RT_LOCK(saved_nrt); 405 rt = saved_nrt; 406 goto report; 407 } 408 break; 409 410 case RTM_GET: 411 case RTM_CHANGE: 412 case RTM_LOCK: 413 rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family]; 414 if (rnh == NULL) 415 senderr(EAFNOSUPPORT); 416 RADIX_NODE_HEAD_LOCK(rnh); 417 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 418 info.rti_info[RTAX_NETMASK], rnh); 419 if (rt == NULL) { /* XXX looks bogus */ 420 RADIX_NODE_HEAD_UNLOCK(rnh); 421 senderr(ESRCH); 422 } 423 RT_LOCK(rt); 424 RT_ADDREF(rt); 425 RADIX_NODE_HEAD_UNLOCK(rnh); 426 427 /* 428 * Fix for PR: 82974 429 * 430 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 431 * returns a perfect match in case a netmask is 432 * specified. For host routes only a longest prefix 433 * match is returned so it is necessary to compare the 434 * existence of the netmask. If both have a netmask 435 * rnh_lookup() did a perfect match and if none of them 436 * have a netmask both are host routes which is also a 437 * perfect match. 438 */ 439 440 if (rtm->rtm_type != RTM_GET && 441 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 442 RT_UNLOCK(rt); 443 senderr(ESRCH); 444 } 445 446 switch(rtm->rtm_type) { 447 448 case RTM_GET: 449 report: 450 RT_LOCK_ASSERT(rt); 451 info.rti_info[RTAX_DST] = rt_key(rt); 452 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 453 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 454 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 455 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 456 ifp = rt->rt_ifp; 457 if (ifp) { 458 info.rti_info[RTAX_IFP] = 459 ifp->if_addr->ifa_addr; 460 if (jailed(so->so_cred)) { 461 bzero(&jail, sizeof(jail)); 462 jail.sin_family = PF_INET; 463 jail.sin_len = sizeof(jail); 464 jail.sin_addr.s_addr = 465 htonl(prison_getip(so->so_cred)); 466 info.rti_info[RTAX_IFA] = 467 (struct sockaddr *)&jail; 468 } else 469 info.rti_info[RTAX_IFA] = 470 rt->rt_ifa->ifa_addr; 471 if (ifp->if_flags & IFF_POINTOPOINT) 472 info.rti_info[RTAX_BRD] = 473 rt->rt_ifa->ifa_dstaddr; 474 rtm->rtm_index = ifp->if_index; 475 } else { 476 info.rti_info[RTAX_IFP] = NULL; 477 info.rti_info[RTAX_IFA] = NULL; 478 } 479 } else if ((ifp = rt->rt_ifp) != NULL) { 480 rtm->rtm_index = ifp->if_index; 481 } 482 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 483 if (len > rtm->rtm_msglen) { 484 struct rt_msghdr *new_rtm; 485 R_Malloc(new_rtm, struct rt_msghdr *, len); 486 if (new_rtm == NULL) { 487 RT_UNLOCK(rt); 488 senderr(ENOBUFS); 489 } 490 bcopy(rtm, new_rtm, rtm->rtm_msglen); 491 Free(rtm); rtm = new_rtm; 492 } 493 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 494 rtm->rtm_flags = rt->rt_flags; 495 rtm->rtm_use = 0; 496 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 497 rtm->rtm_addrs = info.rti_addrs; 498 break; 499 500 case RTM_CHANGE: 501 /* 502 * New gateway could require new ifaddr, ifp; 503 * flags may also be different; ifp may be specified 504 * by ll sockaddr when protocol address is ambiguous 505 */ 506 if (((rt->rt_flags & RTF_GATEWAY) && 507 info.rti_info[RTAX_GATEWAY] != NULL) || 508 info.rti_info[RTAX_IFP] != NULL || 509 (info.rti_info[RTAX_IFA] != NULL && 510 !sa_equal(info.rti_info[RTAX_IFA], 511 rt->rt_ifa->ifa_addr))) { 512 RT_UNLOCK(rt); 513 if ((error = rt_getifa(&info)) != 0) 514 senderr(error); 515 RT_LOCK(rt); 516 } 517 if (info.rti_ifa != NULL && 518 info.rti_ifa != rt->rt_ifa && 519 rt->rt_ifa != NULL && 520 rt->rt_ifa->ifa_rtrequest != NULL) { 521 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 522 &info); 523 IFAFREE(rt->rt_ifa); 524 } 525 if (info.rti_info[RTAX_GATEWAY] != NULL) { 526 if ((error = rt_setgate(rt, rt_key(rt), 527 info.rti_info[RTAX_GATEWAY])) != 0) { 528 RT_UNLOCK(rt); 529 senderr(error); 530 } 531 if (!(rt->rt_flags & RTF_LLINFO)) 532 rt->rt_flags |= RTF_GATEWAY; 533 } 534 if (info.rti_ifa != NULL && 535 info.rti_ifa != rt->rt_ifa) { 536 IFAREF(info.rti_ifa); 537 rt->rt_ifa = info.rti_ifa; 538 rt->rt_ifp = info.rti_ifp; 539 } 540 /* Allow some flags to be toggled on change. */ 541 if (rtm->rtm_fmask & RTF_FMASK) 542 rt->rt_flags = (rt->rt_flags & 543 ~rtm->rtm_fmask) | 544 (rtm->rtm_flags & rtm->rtm_fmask); 545 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 546 &rt->rt_rmx); 547 rtm->rtm_index = rt->rt_ifp->if_index; 548 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 549 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 550 if (info.rti_info[RTAX_GENMASK]) 551 rt->rt_genmask = info.rti_info[RTAX_GENMASK]; 552 /* FALLTHROUGH */ 553 case RTM_LOCK: 554 /* We don't support locks anymore */ 555 break; 556 } 557 RT_UNLOCK(rt); 558 break; 559 560 default: 561 senderr(EOPNOTSUPP); 562 } 563 564 flush: 565 if (rtm) { 566 if (error) 567 rtm->rtm_errno = error; 568 else 569 rtm->rtm_flags |= RTF_DONE; 570 } 571 if (rt) /* XXX can this be true? */ 572 RTFREE(rt); 573 { 574 struct rawcb *rp = NULL; 575 /* 576 * Check to see if we don't want our own messages. 577 */ 578 if ((so->so_options & SO_USELOOPBACK) == 0) { 579 if (route_cb.any_count <= 1) { 580 if (rtm) 581 Free(rtm); 582 m_freem(m); 583 return (error); 584 } 585 /* There is another listener, so construct message */ 586 rp = sotorawcb(so); 587 } 588 if (rtm) { 589 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 590 if (m->m_pkthdr.len < rtm->rtm_msglen) { 591 m_freem(m); 592 m = NULL; 593 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 594 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 595 Free(rtm); 596 } 597 if (m) { 598 if (rp) { 599 /* 600 * XXX insure we don't get a copy by 601 * invalidating our protocol 602 */ 603 unsigned short family = rp->rcb_proto.sp_family; 604 rp->rcb_proto.sp_family = 0; 605 rt_dispatch(m, info.rti_info[RTAX_DST]); 606 rp->rcb_proto.sp_family = family; 607 } else 608 rt_dispatch(m, info.rti_info[RTAX_DST]); 609 } 610 } 611 return (error); 612 #undef sa_equal 613 } 614 615 static void 616 rt_setmetrics(u_long which, const struct rt_metrics *in, 617 struct rt_metrics_lite *out) 618 { 619 #define metric(f, e) if (which & (f)) out->e = in->e; 620 /* 621 * Only these are stored in the routing entry since introduction 622 * of tcp hostcache. The rest is ignored. 623 */ 624 metric(RTV_MTU, rmx_mtu); 625 /* Userland -> kernel timebase conversion. */ 626 if (which & RTV_EXPIRE) 627 out->rmx_expire = in->rmx_expire ? 628 in->rmx_expire - time_second + time_uptime : 0; 629 #undef metric 630 } 631 632 static void 633 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 634 { 635 #define metric(e) out->e = in->e; 636 bzero(out, sizeof(*out)); 637 metric(rmx_mtu); 638 /* Kernel -> userland timebase conversion. */ 639 out->rmx_expire = in->rmx_expire ? 640 in->rmx_expire - time_uptime + time_second : 0; 641 #undef metric 642 } 643 644 /* 645 * Extract the addresses of the passed sockaddrs. 646 * Do a little sanity checking so as to avoid bad memory references. 647 * This data is derived straight from userland. 648 */ 649 static int 650 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 651 { 652 struct sockaddr *sa; 653 int i; 654 655 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 656 if ((rtinfo->rti_addrs & (1 << i)) == 0) 657 continue; 658 sa = (struct sockaddr *)cp; 659 /* 660 * It won't fit. 661 */ 662 if (cp + sa->sa_len > cplim) 663 return (EINVAL); 664 /* 665 * there are no more.. quit now 666 * If there are more bits, they are in error. 667 * I've seen this. route(1) can evidently generate these. 668 * This causes kernel to core dump. 669 * for compatibility, If we see this, point to a safe address. 670 */ 671 if (sa->sa_len == 0) { 672 rtinfo->rti_info[i] = &sa_zero; 673 return (0); /* should be EINVAL but for compat */ 674 } 675 /* accept it */ 676 rtinfo->rti_info[i] = sa; 677 cp += SA_SIZE(sa); 678 } 679 return (0); 680 } 681 682 static struct mbuf * 683 rt_msg1(int type, struct rt_addrinfo *rtinfo) 684 { 685 struct rt_msghdr *rtm; 686 struct mbuf *m; 687 int i; 688 struct sockaddr *sa; 689 int len, dlen; 690 691 switch (type) { 692 693 case RTM_DELADDR: 694 case RTM_NEWADDR: 695 len = sizeof(struct ifa_msghdr); 696 break; 697 698 case RTM_DELMADDR: 699 case RTM_NEWMADDR: 700 len = sizeof(struct ifma_msghdr); 701 break; 702 703 case RTM_IFINFO: 704 len = sizeof(struct if_msghdr); 705 break; 706 707 case RTM_IFANNOUNCE: 708 case RTM_IEEE80211: 709 len = sizeof(struct if_announcemsghdr); 710 break; 711 712 default: 713 len = sizeof(struct rt_msghdr); 714 } 715 if (len > MCLBYTES) 716 panic("rt_msg1"); 717 m = m_gethdr(M_DONTWAIT, MT_DATA); 718 if (m && len > MHLEN) { 719 MCLGET(m, M_DONTWAIT); 720 if ((m->m_flags & M_EXT) == 0) { 721 m_free(m); 722 m = NULL; 723 } 724 } 725 if (m == NULL) 726 return (m); 727 m->m_pkthdr.len = m->m_len = len; 728 m->m_pkthdr.rcvif = NULL; 729 rtm = mtod(m, struct rt_msghdr *); 730 bzero((caddr_t)rtm, len); 731 for (i = 0; i < RTAX_MAX; i++) { 732 if ((sa = rtinfo->rti_info[i]) == NULL) 733 continue; 734 rtinfo->rti_addrs |= (1 << i); 735 dlen = SA_SIZE(sa); 736 m_copyback(m, len, dlen, (caddr_t)sa); 737 len += dlen; 738 } 739 if (m->m_pkthdr.len != len) { 740 m_freem(m); 741 return (NULL); 742 } 743 rtm->rtm_msglen = len; 744 rtm->rtm_version = RTM_VERSION; 745 rtm->rtm_type = type; 746 return (m); 747 } 748 749 static int 750 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 751 { 752 int i; 753 int len, dlen, second_time = 0; 754 caddr_t cp0; 755 756 rtinfo->rti_addrs = 0; 757 again: 758 switch (type) { 759 760 case RTM_DELADDR: 761 case RTM_NEWADDR: 762 len = sizeof(struct ifa_msghdr); 763 break; 764 765 case RTM_IFINFO: 766 len = sizeof(struct if_msghdr); 767 break; 768 769 case RTM_NEWMADDR: 770 len = sizeof(struct ifma_msghdr); 771 break; 772 773 default: 774 len = sizeof(struct rt_msghdr); 775 } 776 cp0 = cp; 777 if (cp0) 778 cp += len; 779 for (i = 0; i < RTAX_MAX; i++) { 780 struct sockaddr *sa; 781 782 if ((sa = rtinfo->rti_info[i]) == NULL) 783 continue; 784 rtinfo->rti_addrs |= (1 << i); 785 dlen = SA_SIZE(sa); 786 if (cp) { 787 bcopy((caddr_t)sa, cp, (unsigned)dlen); 788 cp += dlen; 789 } 790 len += dlen; 791 } 792 len = ALIGN(len); 793 if (cp == NULL && w != NULL && !second_time) { 794 struct walkarg *rw = w; 795 796 if (rw->w_req) { 797 if (rw->w_tmemsize < len) { 798 if (rw->w_tmem) 799 free(rw->w_tmem, M_RTABLE); 800 rw->w_tmem = (caddr_t) 801 malloc(len, M_RTABLE, M_NOWAIT); 802 if (rw->w_tmem) 803 rw->w_tmemsize = len; 804 } 805 if (rw->w_tmem) { 806 cp = rw->w_tmem; 807 second_time = 1; 808 goto again; 809 } 810 } 811 } 812 if (cp) { 813 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 814 815 rtm->rtm_version = RTM_VERSION; 816 rtm->rtm_type = type; 817 rtm->rtm_msglen = len; 818 } 819 return (len); 820 } 821 822 /* 823 * This routine is called to generate a message from the routing 824 * socket indicating that a redirect has occured, a routing lookup 825 * has failed, or that a protocol has detected timeouts to a particular 826 * destination. 827 */ 828 void 829 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 830 { 831 struct rt_msghdr *rtm; 832 struct mbuf *m; 833 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 834 835 if (route_cb.any_count == 0) 836 return; 837 m = rt_msg1(type, rtinfo); 838 if (m == NULL) 839 return; 840 rtm = mtod(m, struct rt_msghdr *); 841 rtm->rtm_flags = RTF_DONE | flags; 842 rtm->rtm_errno = error; 843 rtm->rtm_addrs = rtinfo->rti_addrs; 844 rt_dispatch(m, sa); 845 } 846 847 /* 848 * This routine is called to generate a message from the routing 849 * socket indicating that the status of a network interface has changed. 850 */ 851 void 852 rt_ifmsg(struct ifnet *ifp) 853 { 854 struct if_msghdr *ifm; 855 struct mbuf *m; 856 struct rt_addrinfo info; 857 858 if (route_cb.any_count == 0) 859 return; 860 bzero((caddr_t)&info, sizeof(info)); 861 m = rt_msg1(RTM_IFINFO, &info); 862 if (m == NULL) 863 return; 864 ifm = mtod(m, struct if_msghdr *); 865 ifm->ifm_index = ifp->if_index; 866 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 867 ifm->ifm_data = ifp->if_data; 868 ifm->ifm_addrs = 0; 869 rt_dispatch(m, NULL); 870 } 871 872 /* 873 * This is called to generate messages from the routing socket 874 * indicating a network interface has had addresses associated with it. 875 * if we ever reverse the logic and replace messages TO the routing 876 * socket indicate a request to configure interfaces, then it will 877 * be unnecessary as the routing socket will automatically generate 878 * copies of it. 879 */ 880 void 881 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 882 { 883 struct rt_addrinfo info; 884 struct sockaddr *sa = NULL; 885 int pass; 886 struct mbuf *m = NULL; 887 struct ifnet *ifp = ifa->ifa_ifp; 888 889 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 890 ("unexpected cmd %u", cmd)); 891 #ifdef SCTP 892 /* 893 * notify the SCTP stack 894 * this will only get called when an address is added/deleted 895 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 896 */ 897 sctp_addr_change(ifa, cmd); 898 #endif /* SCTP */ 899 if (route_cb.any_count == 0) 900 return; 901 for (pass = 1; pass < 3; pass++) { 902 bzero((caddr_t)&info, sizeof(info)); 903 if ((cmd == RTM_ADD && pass == 1) || 904 (cmd == RTM_DELETE && pass == 2)) { 905 struct ifa_msghdr *ifam; 906 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 907 908 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 909 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 910 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 911 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 912 if ((m = rt_msg1(ncmd, &info)) == NULL) 913 continue; 914 ifam = mtod(m, struct ifa_msghdr *); 915 ifam->ifam_index = ifp->if_index; 916 ifam->ifam_metric = ifa->ifa_metric; 917 ifam->ifam_flags = ifa->ifa_flags; 918 ifam->ifam_addrs = info.rti_addrs; 919 } 920 if ((cmd == RTM_ADD && pass == 2) || 921 (cmd == RTM_DELETE && pass == 1)) { 922 struct rt_msghdr *rtm; 923 924 if (rt == NULL) 925 continue; 926 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 927 info.rti_info[RTAX_DST] = sa = rt_key(rt); 928 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 929 if ((m = rt_msg1(cmd, &info)) == NULL) 930 continue; 931 rtm = mtod(m, struct rt_msghdr *); 932 rtm->rtm_index = ifp->if_index; 933 rtm->rtm_flags |= rt->rt_flags; 934 rtm->rtm_errno = error; 935 rtm->rtm_addrs = info.rti_addrs; 936 } 937 rt_dispatch(m, sa); 938 } 939 } 940 941 /* 942 * This is the analogue to the rt_newaddrmsg which performs the same 943 * function but for multicast group memberhips. This is easier since 944 * there is no route state to worry about. 945 */ 946 void 947 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 948 { 949 struct rt_addrinfo info; 950 struct mbuf *m = NULL; 951 struct ifnet *ifp = ifma->ifma_ifp; 952 struct ifma_msghdr *ifmam; 953 954 if (route_cb.any_count == 0) 955 return; 956 957 bzero((caddr_t)&info, sizeof(info)); 958 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 959 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 960 /* 961 * If a link-layer address is present, present it as a ``gateway'' 962 * (similarly to how ARP entries, e.g., are presented). 963 */ 964 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 965 m = rt_msg1(cmd, &info); 966 if (m == NULL) 967 return; 968 ifmam = mtod(m, struct ifma_msghdr *); 969 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 970 __func__)); 971 ifmam->ifmam_index = ifp->if_index; 972 ifmam->ifmam_addrs = info.rti_addrs; 973 rt_dispatch(m, ifma->ifma_addr); 974 } 975 976 static struct mbuf * 977 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 978 struct rt_addrinfo *info) 979 { 980 struct if_announcemsghdr *ifan; 981 struct mbuf *m; 982 983 if (route_cb.any_count == 0) 984 return NULL; 985 bzero((caddr_t)info, sizeof(*info)); 986 m = rt_msg1(type, info); 987 if (m != NULL) { 988 ifan = mtod(m, struct if_announcemsghdr *); 989 ifan->ifan_index = ifp->if_index; 990 strlcpy(ifan->ifan_name, ifp->if_xname, 991 sizeof(ifan->ifan_name)); 992 ifan->ifan_what = what; 993 } 994 return m; 995 } 996 997 /* 998 * This is called to generate routing socket messages indicating 999 * IEEE80211 wireless events. 1000 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1001 */ 1002 void 1003 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1004 { 1005 struct mbuf *m; 1006 struct rt_addrinfo info; 1007 1008 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1009 if (m != NULL) { 1010 /* 1011 * Append the ieee80211 data. Try to stick it in the 1012 * mbuf containing the ifannounce msg; otherwise allocate 1013 * a new mbuf and append. 1014 * 1015 * NB: we assume m is a single mbuf. 1016 */ 1017 if (data_len > M_TRAILINGSPACE(m)) { 1018 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1019 if (n == NULL) { 1020 m_freem(m); 1021 return; 1022 } 1023 bcopy(data, mtod(n, void *), data_len); 1024 n->m_len = data_len; 1025 m->m_next = n; 1026 } else if (data_len > 0) { 1027 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1028 m->m_len += data_len; 1029 } 1030 if (m->m_flags & M_PKTHDR) 1031 m->m_pkthdr.len += data_len; 1032 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1033 rt_dispatch(m, NULL); 1034 } 1035 } 1036 1037 /* 1038 * This is called to generate routing socket messages indicating 1039 * network interface arrival and departure. 1040 */ 1041 void 1042 rt_ifannouncemsg(struct ifnet *ifp, int what) 1043 { 1044 struct mbuf *m; 1045 struct rt_addrinfo info; 1046 1047 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1048 if (m != NULL) 1049 rt_dispatch(m, NULL); 1050 } 1051 1052 static void 1053 rt_dispatch(struct mbuf *m, const struct sockaddr *sa) 1054 { 1055 struct m_tag *tag; 1056 1057 /* 1058 * Preserve the family from the sockaddr, if any, in an m_tag for 1059 * use when injecting the mbuf into the routing socket buffer from 1060 * the netisr. 1061 */ 1062 if (sa != NULL) { 1063 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1064 M_NOWAIT); 1065 if (tag == NULL) { 1066 m_freem(m); 1067 return; 1068 } 1069 *(unsigned short *)(tag + 1) = sa->sa_family; 1070 m_tag_prepend(m, tag); 1071 } 1072 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1073 } 1074 1075 /* 1076 * This is used in dumping the kernel table via sysctl(). 1077 */ 1078 static int 1079 sysctl_dumpentry(struct radix_node *rn, void *vw) 1080 { 1081 struct walkarg *w = vw; 1082 struct rtentry *rt = (struct rtentry *)rn; 1083 int error = 0, size; 1084 struct rt_addrinfo info; 1085 1086 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1087 return 0; 1088 bzero((caddr_t)&info, sizeof(info)); 1089 info.rti_info[RTAX_DST] = rt_key(rt); 1090 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1091 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1092 info.rti_info[RTAX_GENMASK] = rt->rt_genmask; 1093 if (rt->rt_ifp) { 1094 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1095 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1096 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1097 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1098 } 1099 size = rt_msg2(RTM_GET, &info, NULL, w); 1100 if (w->w_req && w->w_tmem) { 1101 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1102 1103 rtm->rtm_flags = rt->rt_flags; 1104 rtm->rtm_use = rt->rt_rmx.rmx_pksent; 1105 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1106 rtm->rtm_index = rt->rt_ifp->if_index; 1107 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1108 rtm->rtm_addrs = info.rti_addrs; 1109 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1110 return (error); 1111 } 1112 return (error); 1113 } 1114 1115 static int 1116 sysctl_iflist(int af, struct walkarg *w) 1117 { 1118 struct ifnet *ifp; 1119 struct ifaddr *ifa; 1120 struct rt_addrinfo info; 1121 int len, error = 0; 1122 1123 bzero((caddr_t)&info, sizeof(info)); 1124 IFNET_RLOCK(); 1125 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1126 if (w->w_arg && w->w_arg != ifp->if_index) 1127 continue; 1128 ifa = ifp->if_addr; 1129 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1130 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1131 info.rti_info[RTAX_IFP] = NULL; 1132 if (w->w_req && w->w_tmem) { 1133 struct if_msghdr *ifm; 1134 1135 ifm = (struct if_msghdr *)w->w_tmem; 1136 ifm->ifm_index = ifp->if_index; 1137 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1138 ifm->ifm_data = ifp->if_data; 1139 ifm->ifm_addrs = info.rti_addrs; 1140 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); 1141 if (error) 1142 goto done; 1143 } 1144 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1145 if (af && af != ifa->ifa_addr->sa_family) 1146 continue; 1147 if (jailed(curthread->td_ucred) && 1148 prison_if(curthread->td_ucred, ifa->ifa_addr)) 1149 continue; 1150 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1151 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1152 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1153 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1154 if (w->w_req && w->w_tmem) { 1155 struct ifa_msghdr *ifam; 1156 1157 ifam = (struct ifa_msghdr *)w->w_tmem; 1158 ifam->ifam_index = ifa->ifa_ifp->if_index; 1159 ifam->ifam_flags = ifa->ifa_flags; 1160 ifam->ifam_metric = ifa->ifa_metric; 1161 ifam->ifam_addrs = info.rti_addrs; 1162 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1163 if (error) 1164 goto done; 1165 } 1166 } 1167 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1168 info.rti_info[RTAX_BRD] = NULL; 1169 } 1170 done: 1171 IFNET_RUNLOCK(); 1172 return (error); 1173 } 1174 1175 int 1176 sysctl_ifmalist(int af, struct walkarg *w) 1177 { 1178 struct ifnet *ifp; 1179 struct ifmultiaddr *ifma; 1180 struct rt_addrinfo info; 1181 int len, error = 0; 1182 struct ifaddr *ifa; 1183 1184 bzero((caddr_t)&info, sizeof(info)); 1185 IFNET_RLOCK(); 1186 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1187 if (w->w_arg && w->w_arg != ifp->if_index) 1188 continue; 1189 ifa = ifp->if_addr; 1190 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1191 IF_ADDR_LOCK(ifp); 1192 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1193 if (af && af != ifma->ifma_addr->sa_family) 1194 continue; 1195 if (jailed(curproc->p_ucred) && 1196 prison_if(curproc->p_ucred, ifma->ifma_addr)) 1197 continue; 1198 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1199 info.rti_info[RTAX_GATEWAY] = 1200 (ifma->ifma_addr->sa_family != AF_LINK) ? 1201 ifma->ifma_lladdr : NULL; 1202 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1203 if (w->w_req && w->w_tmem) { 1204 struct ifma_msghdr *ifmam; 1205 1206 ifmam = (struct ifma_msghdr *)w->w_tmem; 1207 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1208 ifmam->ifmam_flags = 0; 1209 ifmam->ifmam_addrs = info.rti_addrs; 1210 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1211 if (error) { 1212 IF_ADDR_UNLOCK(ifp); 1213 goto done; 1214 } 1215 } 1216 } 1217 IF_ADDR_UNLOCK(ifp); 1218 } 1219 done: 1220 IFNET_RUNLOCK(); 1221 return (error); 1222 } 1223 1224 static int 1225 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1226 { 1227 int *name = (int *)arg1; 1228 u_int namelen = arg2; 1229 struct radix_node_head *rnh; 1230 int i, lim, error = EINVAL; 1231 u_char af; 1232 struct walkarg w; 1233 1234 name ++; 1235 namelen--; 1236 if (req->newptr) 1237 return (EPERM); 1238 if (namelen != 3) 1239 return ((namelen < 3) ? EISDIR : ENOTDIR); 1240 af = name[0]; 1241 if (af > AF_MAX) 1242 return (EINVAL); 1243 bzero(&w, sizeof(w)); 1244 w.w_op = name[1]; 1245 w.w_arg = name[2]; 1246 w.w_req = req; 1247 1248 error = sysctl_wire_old_buffer(req, 0); 1249 if (error) 1250 return (error); 1251 switch (w.w_op) { 1252 1253 case NET_RT_DUMP: 1254 case NET_RT_FLAGS: 1255 if (af == 0) { /* dump all tables */ 1256 i = 1; 1257 lim = AF_MAX; 1258 } else /* dump only one table */ 1259 i = lim = af; 1260 for (error = 0; error == 0 && i <= lim; i++) 1261 if ((rnh = rt_tables[i]) != NULL) { 1262 RADIX_NODE_HEAD_LOCK(rnh); 1263 error = rnh->rnh_walktree(rnh, 1264 sysctl_dumpentry, &w); 1265 RADIX_NODE_HEAD_UNLOCK(rnh); 1266 } else if (af != 0) 1267 error = EAFNOSUPPORT; 1268 break; 1269 1270 case NET_RT_IFLIST: 1271 error = sysctl_iflist(af, &w); 1272 break; 1273 1274 case NET_RT_IFMALIST: 1275 error = sysctl_ifmalist(af, &w); 1276 break; 1277 } 1278 if (w.w_tmem) 1279 free(w.w_tmem, M_RTABLE); 1280 return (error); 1281 } 1282 1283 SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1284 1285 /* 1286 * Definitions of protocols supported in the ROUTE domain. 1287 */ 1288 1289 static struct domain routedomain; /* or at least forward */ 1290 1291 static struct protosw routesw[] = { 1292 { 1293 .pr_type = SOCK_RAW, 1294 .pr_domain = &routedomain, 1295 .pr_flags = PR_ATOMIC|PR_ADDR, 1296 .pr_output = route_output, 1297 .pr_ctlinput = raw_ctlinput, 1298 .pr_init = raw_init, 1299 .pr_usrreqs = &route_usrreqs 1300 } 1301 }; 1302 1303 static struct domain routedomain = { 1304 .dom_family = PF_ROUTE, 1305 .dom_name = "route", 1306 .dom_protosw = routesw, 1307 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1308 }; 1309 1310 DOMAIN_SET(route); 1311