1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_compat.h" 33 #include "opt_sctp.h" 34 #include "opt_mpath.h" 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/jail.h> 40 #include <sys/kernel.h> 41 #include <sys/domain.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/rwlock.h> 49 #include <sys/signalvar.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <net/if.h> 56 #include <net/if_dl.h> 57 #include <net/if_llatbl.h> 58 #include <net/if_types.h> 59 #include <net/netisr.h> 60 #include <net/raw_cb.h> 61 #include <net/route.h> 62 #include <net/vnet.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 #include <netinet/ip_carp.h> 67 #ifdef INET6 68 #include <netinet6/scope6_var.h> 69 #endif 70 71 #if defined(INET) || defined(INET6) 72 #ifdef SCTP 73 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 74 #endif /* SCTP */ 75 #endif 76 77 #ifdef COMPAT_FREEBSD32 78 #include <sys/mount.h> 79 #include <compat/freebsd32/freebsd32.h> 80 81 struct if_data32 { 82 uint8_t ifi_type; 83 uint8_t ifi_physical; 84 uint8_t ifi_addrlen; 85 uint8_t ifi_hdrlen; 86 uint8_t ifi_link_state; 87 uint8_t ifi_vhid; 88 uint8_t ifi_spare_char2; 89 uint8_t ifi_datalen; 90 uint32_t ifi_mtu; 91 uint32_t ifi_metric; 92 uint32_t ifi_baudrate; 93 uint32_t ifi_ipackets; 94 uint32_t ifi_ierrors; 95 uint32_t ifi_opackets; 96 uint32_t ifi_oerrors; 97 uint32_t ifi_collisions; 98 uint32_t ifi_ibytes; 99 uint32_t ifi_obytes; 100 uint32_t ifi_imcasts; 101 uint32_t ifi_omcasts; 102 uint32_t ifi_iqdrops; 103 uint32_t ifi_noproto; 104 uint32_t ifi_hwassist; 105 int32_t ifi_epoch; 106 struct timeval32 ifi_lastchange; 107 }; 108 109 struct if_msghdr32 { 110 uint16_t ifm_msglen; 111 uint8_t ifm_version; 112 uint8_t ifm_type; 113 int32_t ifm_addrs; 114 int32_t ifm_flags; 115 uint16_t ifm_index; 116 struct if_data32 ifm_data; 117 }; 118 119 struct if_msghdrl32 { 120 uint16_t ifm_msglen; 121 uint8_t ifm_version; 122 uint8_t ifm_type; 123 int32_t ifm_addrs; 124 int32_t ifm_flags; 125 uint16_t ifm_index; 126 uint16_t _ifm_spare1; 127 uint16_t ifm_len; 128 uint16_t ifm_data_off; 129 struct if_data32 ifm_data; 130 }; 131 132 struct ifa_msghdrl32 { 133 uint16_t ifam_msglen; 134 uint8_t ifam_version; 135 uint8_t ifam_type; 136 int32_t ifam_addrs; 137 int32_t ifam_flags; 138 uint16_t ifam_index; 139 uint16_t _ifam_spare1; 140 uint16_t ifam_len; 141 uint16_t ifam_data_off; 142 int32_t ifam_metric; 143 struct if_data32 ifam_data; 144 }; 145 #endif /* COMPAT_FREEBSD32 */ 146 147 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 148 149 /* NB: these are not modified */ 150 static struct sockaddr route_src = { 2, PF_ROUTE, }; 151 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 152 153 /* These are external hooks for CARP. */ 154 int (*carp_get_vhid_p)(struct ifaddr *); 155 156 /* 157 * Used by rtsock/raw_input callback code to decide whether to filter the update 158 * notification to a socket bound to a particular FIB. 159 */ 160 #define RTS_FILTER_FIB M_PROTO8 161 #define RTS_ALLFIBS -1 162 163 static struct { 164 int ip_count; /* attached w/ AF_INET */ 165 int ip6_count; /* attached w/ AF_INET6 */ 166 int ipx_count; /* attached w/ AF_IPX */ 167 int any_count; /* total attached */ 168 } route_cb; 169 170 struct mtx rtsock_mtx; 171 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 172 173 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 174 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 175 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 176 177 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 178 179 struct walkarg { 180 int w_tmemsize; 181 int w_op, w_arg; 182 caddr_t w_tmem; 183 struct sysctl_req *w_req; 184 }; 185 186 static void rts_input(struct mbuf *m); 187 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 188 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 189 caddr_t cp, struct walkarg *w); 190 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 191 struct rt_addrinfo *rtinfo); 192 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 193 static int sysctl_iflist(int af, struct walkarg *w); 194 static int sysctl_ifmalist(int af, struct walkarg *w); 195 static int route_output(struct mbuf *m, struct socket *so); 196 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 197 struct rt_metrics_lite *out); 198 static void rt_getmetrics(const struct rt_metrics_lite *in, 199 struct rt_metrics *out); 200 static void rt_dispatch(struct mbuf *, sa_family_t); 201 202 static struct netisr_handler rtsock_nh = { 203 .nh_name = "rtsock", 204 .nh_handler = rts_input, 205 .nh_proto = NETISR_ROUTE, 206 .nh_policy = NETISR_POLICY_SOURCE, 207 }; 208 209 static int 210 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 211 { 212 int error, qlimit; 213 214 netisr_getqlimit(&rtsock_nh, &qlimit); 215 error = sysctl_handle_int(oidp, &qlimit, 0, req); 216 if (error || !req->newptr) 217 return (error); 218 if (qlimit < 1) 219 return (EINVAL); 220 return (netisr_setqlimit(&rtsock_nh, qlimit)); 221 } 222 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 223 0, 0, sysctl_route_netisr_maxqlen, "I", 224 "maximum routing socket dispatch queue length"); 225 226 static void 227 rts_init(void) 228 { 229 int tmp; 230 231 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 232 rtsock_nh.nh_qlimit = tmp; 233 netisr_register(&rtsock_nh); 234 } 235 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 236 237 static int 238 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 239 struct rawcb *rp) 240 { 241 int fibnum; 242 243 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 244 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 245 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 246 247 /* No filtering requested. */ 248 if ((m->m_flags & RTS_FILTER_FIB) == 0) 249 return (0); 250 251 /* Check if it is a rts and the fib matches the one of the socket. */ 252 fibnum = M_GETFIB(m); 253 if (proto->sp_family != PF_ROUTE || 254 rp->rcb_socket == NULL || 255 rp->rcb_socket->so_fibnum == fibnum) 256 return (0); 257 258 /* Filtering requested and no match, the socket shall be skipped. */ 259 return (1); 260 } 261 262 static void 263 rts_input(struct mbuf *m) 264 { 265 struct sockproto route_proto; 266 unsigned short *family; 267 struct m_tag *tag; 268 269 route_proto.sp_family = PF_ROUTE; 270 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 271 if (tag != NULL) { 272 family = (unsigned short *)(tag + 1); 273 route_proto.sp_protocol = *family; 274 m_tag_delete(m, tag); 275 } else 276 route_proto.sp_protocol = 0; 277 278 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 279 } 280 281 /* 282 * It really doesn't make any sense at all for this code to share much 283 * with raw_usrreq.c, since its functionality is so restricted. XXX 284 */ 285 static void 286 rts_abort(struct socket *so) 287 { 288 289 raw_usrreqs.pru_abort(so); 290 } 291 292 static void 293 rts_close(struct socket *so) 294 { 295 296 raw_usrreqs.pru_close(so); 297 } 298 299 /* pru_accept is EOPNOTSUPP */ 300 301 static int 302 rts_attach(struct socket *so, int proto, struct thread *td) 303 { 304 struct rawcb *rp; 305 int error; 306 307 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 308 309 /* XXX */ 310 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 311 if (rp == NULL) 312 return ENOBUFS; 313 314 so->so_pcb = (caddr_t)rp; 315 so->so_fibnum = td->td_proc->p_fibnum; 316 error = raw_attach(so, proto); 317 rp = sotorawcb(so); 318 if (error) { 319 so->so_pcb = NULL; 320 free(rp, M_PCB); 321 return error; 322 } 323 RTSOCK_LOCK(); 324 switch(rp->rcb_proto.sp_protocol) { 325 case AF_INET: 326 route_cb.ip_count++; 327 break; 328 case AF_INET6: 329 route_cb.ip6_count++; 330 break; 331 case AF_IPX: 332 route_cb.ipx_count++; 333 break; 334 } 335 route_cb.any_count++; 336 RTSOCK_UNLOCK(); 337 soisconnected(so); 338 so->so_options |= SO_USELOOPBACK; 339 return 0; 340 } 341 342 static int 343 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 344 { 345 346 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 347 } 348 349 static int 350 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 351 { 352 353 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 354 } 355 356 /* pru_connect2 is EOPNOTSUPP */ 357 /* pru_control is EOPNOTSUPP */ 358 359 static void 360 rts_detach(struct socket *so) 361 { 362 struct rawcb *rp = sotorawcb(so); 363 364 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 365 366 RTSOCK_LOCK(); 367 switch(rp->rcb_proto.sp_protocol) { 368 case AF_INET: 369 route_cb.ip_count--; 370 break; 371 case AF_INET6: 372 route_cb.ip6_count--; 373 break; 374 case AF_IPX: 375 route_cb.ipx_count--; 376 break; 377 } 378 route_cb.any_count--; 379 RTSOCK_UNLOCK(); 380 raw_usrreqs.pru_detach(so); 381 } 382 383 static int 384 rts_disconnect(struct socket *so) 385 { 386 387 return (raw_usrreqs.pru_disconnect(so)); 388 } 389 390 /* pru_listen is EOPNOTSUPP */ 391 392 static int 393 rts_peeraddr(struct socket *so, struct sockaddr **nam) 394 { 395 396 return (raw_usrreqs.pru_peeraddr(so, nam)); 397 } 398 399 /* pru_rcvd is EOPNOTSUPP */ 400 /* pru_rcvoob is EOPNOTSUPP */ 401 402 static int 403 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 404 struct mbuf *control, struct thread *td) 405 { 406 407 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 408 } 409 410 /* pru_sense is null */ 411 412 static int 413 rts_shutdown(struct socket *so) 414 { 415 416 return (raw_usrreqs.pru_shutdown(so)); 417 } 418 419 static int 420 rts_sockaddr(struct socket *so, struct sockaddr **nam) 421 { 422 423 return (raw_usrreqs.pru_sockaddr(so, nam)); 424 } 425 426 static struct pr_usrreqs route_usrreqs = { 427 .pru_abort = rts_abort, 428 .pru_attach = rts_attach, 429 .pru_bind = rts_bind, 430 .pru_connect = rts_connect, 431 .pru_detach = rts_detach, 432 .pru_disconnect = rts_disconnect, 433 .pru_peeraddr = rts_peeraddr, 434 .pru_send = rts_send, 435 .pru_shutdown = rts_shutdown, 436 .pru_sockaddr = rts_sockaddr, 437 .pru_close = rts_close, 438 }; 439 440 #ifndef _SOCKADDR_UNION_DEFINED 441 #define _SOCKADDR_UNION_DEFINED 442 /* 443 * The union of all possible address formats we handle. 444 */ 445 union sockaddr_union { 446 struct sockaddr sa; 447 struct sockaddr_in sin; 448 struct sockaddr_in6 sin6; 449 }; 450 #endif /* _SOCKADDR_UNION_DEFINED */ 451 452 static int 453 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 454 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 455 { 456 457 /* First, see if the returned address is part of the jail. */ 458 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 459 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 460 return (0); 461 } 462 463 switch (info->rti_info[RTAX_DST]->sa_family) { 464 #ifdef INET 465 case AF_INET: 466 { 467 struct in_addr ia; 468 struct ifaddr *ifa; 469 int found; 470 471 found = 0; 472 /* 473 * Try to find an address on the given outgoing interface 474 * that belongs to the jail. 475 */ 476 IF_ADDR_RLOCK(ifp); 477 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 478 struct sockaddr *sa; 479 sa = ifa->ifa_addr; 480 if (sa->sa_family != AF_INET) 481 continue; 482 ia = ((struct sockaddr_in *)sa)->sin_addr; 483 if (prison_check_ip4(cred, &ia) == 0) { 484 found = 1; 485 break; 486 } 487 } 488 IF_ADDR_RUNLOCK(ifp); 489 if (!found) { 490 /* 491 * As a last resort return the 'default' jail address. 492 */ 493 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 494 sin_addr; 495 if (prison_get_ip4(cred, &ia) != 0) 496 return (ESRCH); 497 } 498 bzero(&saun->sin, sizeof(struct sockaddr_in)); 499 saun->sin.sin_len = sizeof(struct sockaddr_in); 500 saun->sin.sin_family = AF_INET; 501 saun->sin.sin_addr.s_addr = ia.s_addr; 502 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 503 break; 504 } 505 #endif 506 #ifdef INET6 507 case AF_INET6: 508 { 509 struct in6_addr ia6; 510 struct ifaddr *ifa; 511 int found; 512 513 found = 0; 514 /* 515 * Try to find an address on the given outgoing interface 516 * that belongs to the jail. 517 */ 518 IF_ADDR_RLOCK(ifp); 519 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 520 struct sockaddr *sa; 521 sa = ifa->ifa_addr; 522 if (sa->sa_family != AF_INET6) 523 continue; 524 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 525 &ia6, sizeof(struct in6_addr)); 526 if (prison_check_ip6(cred, &ia6) == 0) { 527 found = 1; 528 break; 529 } 530 } 531 IF_ADDR_RUNLOCK(ifp); 532 if (!found) { 533 /* 534 * As a last resort return the 'default' jail address. 535 */ 536 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 537 sin6_addr; 538 if (prison_get_ip6(cred, &ia6) != 0) 539 return (ESRCH); 540 } 541 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 542 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 543 saun->sin6.sin6_family = AF_INET6; 544 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 545 if (sa6_recoverscope(&saun->sin6) != 0) 546 return (ESRCH); 547 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 548 break; 549 } 550 #endif 551 default: 552 return (ESRCH); 553 } 554 return (0); 555 } 556 557 /*ARGSUSED*/ 558 static int 559 route_output(struct mbuf *m, struct socket *so) 560 { 561 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 562 struct rt_msghdr *rtm = NULL; 563 struct rtentry *rt = NULL; 564 struct radix_node_head *rnh; 565 struct rt_addrinfo info; 566 int len, error = 0; 567 struct ifnet *ifp = NULL; 568 union sockaddr_union saun; 569 sa_family_t saf = AF_UNSPEC; 570 571 #define senderr(e) { error = e; goto flush;} 572 if (m == NULL || ((m->m_len < sizeof(long)) && 573 (m = m_pullup(m, sizeof(long))) == NULL)) 574 return (ENOBUFS); 575 if ((m->m_flags & M_PKTHDR) == 0) 576 panic("route_output"); 577 len = m->m_pkthdr.len; 578 if (len < sizeof(*rtm) || 579 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 580 info.rti_info[RTAX_DST] = NULL; 581 senderr(EINVAL); 582 } 583 R_Malloc(rtm, struct rt_msghdr *, len); 584 if (rtm == NULL) { 585 info.rti_info[RTAX_DST] = NULL; 586 senderr(ENOBUFS); 587 } 588 m_copydata(m, 0, len, (caddr_t)rtm); 589 if (rtm->rtm_version != RTM_VERSION) { 590 info.rti_info[RTAX_DST] = NULL; 591 senderr(EPROTONOSUPPORT); 592 } 593 rtm->rtm_pid = curproc->p_pid; 594 bzero(&info, sizeof(info)); 595 info.rti_addrs = rtm->rtm_addrs; 596 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 597 info.rti_info[RTAX_DST] = NULL; 598 senderr(EINVAL); 599 } 600 info.rti_flags = rtm->rtm_flags; 601 if (info.rti_info[RTAX_DST] == NULL || 602 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 603 (info.rti_info[RTAX_GATEWAY] != NULL && 604 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 605 senderr(EINVAL); 606 saf = info.rti_info[RTAX_DST]->sa_family; 607 /* 608 * Verify that the caller has the appropriate privilege; RTM_GET 609 * is the only operation the non-superuser is allowed. 610 */ 611 if (rtm->rtm_type != RTM_GET) { 612 error = priv_check(curthread, PRIV_NET_ROUTE); 613 if (error) 614 senderr(error); 615 } 616 617 /* 618 * The given gateway address may be an interface address. 619 * For example, issuing a "route change" command on a route 620 * entry that was created from a tunnel, and the gateway 621 * address given is the local end point. In this case the 622 * RTF_GATEWAY flag must be cleared or the destination will 623 * not be reachable even though there is no error message. 624 */ 625 if (info.rti_info[RTAX_GATEWAY] != NULL && 626 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 627 struct route gw_ro; 628 629 bzero(&gw_ro, sizeof(gw_ro)); 630 gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY]; 631 rtalloc_ign_fib(&gw_ro, 0, so->so_fibnum); 632 /* 633 * A host route through the loopback interface is 634 * installed for each interface adddress. In pre 8.0 635 * releases the interface address of a PPP link type 636 * is not reachable locally. This behavior is fixed as 637 * part of the new L2/L3 redesign and rewrite work. The 638 * signature of this interface address route is the 639 * AF_LINK sa_family type of the rt_gateway, and the 640 * rt_ifp has the IFF_LOOPBACK flag set. 641 */ 642 if (gw_ro.ro_rt != NULL && 643 gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK && 644 gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) 645 info.rti_flags &= ~RTF_GATEWAY; 646 if (gw_ro.ro_rt != NULL) 647 RTFREE(gw_ro.ro_rt); 648 } 649 650 switch (rtm->rtm_type) { 651 struct rtentry *saved_nrt; 652 653 case RTM_ADD: 654 if (info.rti_info[RTAX_GATEWAY] == NULL) 655 senderr(EINVAL); 656 saved_nrt = NULL; 657 658 /* support for new ARP code */ 659 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 660 (rtm->rtm_flags & RTF_LLDATA) != 0) { 661 error = lla_rt_output(rtm, &info); 662 break; 663 } 664 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 665 so->so_fibnum); 666 if (error == 0 && saved_nrt) { 667 RT_LOCK(saved_nrt); 668 rt_setmetrics(rtm->rtm_inits, 669 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 670 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 671 RT_REMREF(saved_nrt); 672 RT_UNLOCK(saved_nrt); 673 } 674 break; 675 676 case RTM_DELETE: 677 saved_nrt = NULL; 678 /* support for new ARP code */ 679 if (info.rti_info[RTAX_GATEWAY] && 680 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 681 (rtm->rtm_flags & RTF_LLDATA) != 0) { 682 error = lla_rt_output(rtm, &info); 683 break; 684 } 685 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 686 so->so_fibnum); 687 if (error == 0) { 688 RT_LOCK(saved_nrt); 689 rt = saved_nrt; 690 goto report; 691 } 692 break; 693 694 case RTM_GET: 695 case RTM_CHANGE: 696 case RTM_LOCK: 697 rnh = rt_tables_get_rnh(so->so_fibnum, 698 info.rti_info[RTAX_DST]->sa_family); 699 if (rnh == NULL) 700 senderr(EAFNOSUPPORT); 701 RADIX_NODE_HEAD_RLOCK(rnh); 702 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 703 info.rti_info[RTAX_NETMASK], rnh); 704 if (rt == NULL) { /* XXX looks bogus */ 705 RADIX_NODE_HEAD_RUNLOCK(rnh); 706 senderr(ESRCH); 707 } 708 #ifdef RADIX_MPATH 709 /* 710 * for RTM_CHANGE/LOCK, if we got multipath routes, 711 * we require users to specify a matching RTAX_GATEWAY. 712 * 713 * for RTM_GET, gate is optional even with multipath. 714 * if gate == NULL the first match is returned. 715 * (no need to call rt_mpath_matchgate if gate == NULL) 716 */ 717 if (rn_mpath_capable(rnh) && 718 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 719 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 720 if (!rt) { 721 RADIX_NODE_HEAD_RUNLOCK(rnh); 722 senderr(ESRCH); 723 } 724 } 725 #endif 726 /* 727 * If performing proxied L2 entry insertion, and 728 * the actual PPP host entry is found, perform 729 * another search to retrieve the prefix route of 730 * the local end point of the PPP link. 731 */ 732 if (rtm->rtm_flags & RTF_ANNOUNCE) { 733 struct sockaddr laddr; 734 735 if (rt->rt_ifp != NULL && 736 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 737 struct ifaddr *ifa; 738 739 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1); 740 if (ifa != NULL) 741 rt_maskedcopy(ifa->ifa_addr, 742 &laddr, 743 ifa->ifa_netmask); 744 } else 745 rt_maskedcopy(rt->rt_ifa->ifa_addr, 746 &laddr, 747 rt->rt_ifa->ifa_netmask); 748 /* 749 * refactor rt and no lock operation necessary 750 */ 751 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh); 752 if (rt == NULL) { 753 RADIX_NODE_HEAD_RUNLOCK(rnh); 754 senderr(ESRCH); 755 } 756 } 757 RT_LOCK(rt); 758 RT_ADDREF(rt); 759 RADIX_NODE_HEAD_RUNLOCK(rnh); 760 761 /* 762 * Fix for PR: 82974 763 * 764 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 765 * returns a perfect match in case a netmask is 766 * specified. For host routes only a longest prefix 767 * match is returned so it is necessary to compare the 768 * existence of the netmask. If both have a netmask 769 * rnh_lookup() did a perfect match and if none of them 770 * have a netmask both are host routes which is also a 771 * perfect match. 772 */ 773 774 if (rtm->rtm_type != RTM_GET && 775 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 776 RT_UNLOCK(rt); 777 senderr(ESRCH); 778 } 779 780 switch(rtm->rtm_type) { 781 782 case RTM_GET: 783 report: 784 RT_LOCK_ASSERT(rt); 785 if ((rt->rt_flags & RTF_HOST) == 0 786 ? jailed_without_vnet(curthread->td_ucred) 787 : prison_if(curthread->td_ucred, 788 rt_key(rt)) != 0) { 789 RT_UNLOCK(rt); 790 senderr(ESRCH); 791 } 792 info.rti_info[RTAX_DST] = rt_key(rt); 793 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 794 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 795 info.rti_info[RTAX_GENMASK] = 0; 796 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 797 ifp = rt->rt_ifp; 798 if (ifp) { 799 info.rti_info[RTAX_IFP] = 800 ifp->if_addr->ifa_addr; 801 error = rtm_get_jailed(&info, ifp, rt, 802 &saun, curthread->td_ucred); 803 if (error != 0) { 804 RT_UNLOCK(rt); 805 senderr(error); 806 } 807 if (ifp->if_flags & IFF_POINTOPOINT) 808 info.rti_info[RTAX_BRD] = 809 rt->rt_ifa->ifa_dstaddr; 810 rtm->rtm_index = ifp->if_index; 811 } else { 812 info.rti_info[RTAX_IFP] = NULL; 813 info.rti_info[RTAX_IFA] = NULL; 814 } 815 } else if ((ifp = rt->rt_ifp) != NULL) { 816 rtm->rtm_index = ifp->if_index; 817 } 818 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 819 if (len > rtm->rtm_msglen) { 820 struct rt_msghdr *new_rtm; 821 R_Malloc(new_rtm, struct rt_msghdr *, len); 822 if (new_rtm == NULL) { 823 RT_UNLOCK(rt); 824 senderr(ENOBUFS); 825 } 826 bcopy(rtm, new_rtm, rtm->rtm_msglen); 827 Free(rtm); rtm = new_rtm; 828 } 829 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 830 rtm->rtm_flags = rt->rt_flags; 831 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 832 rtm->rtm_addrs = info.rti_addrs; 833 break; 834 835 case RTM_CHANGE: 836 /* 837 * New gateway could require new ifaddr, ifp; 838 * flags may also be different; ifp may be specified 839 * by ll sockaddr when protocol address is ambiguous 840 */ 841 if (((rt->rt_flags & RTF_GATEWAY) && 842 info.rti_info[RTAX_GATEWAY] != NULL) || 843 info.rti_info[RTAX_IFP] != NULL || 844 (info.rti_info[RTAX_IFA] != NULL && 845 !sa_equal(info.rti_info[RTAX_IFA], 846 rt->rt_ifa->ifa_addr))) { 847 RT_UNLOCK(rt); 848 RADIX_NODE_HEAD_LOCK(rnh); 849 error = rt_getifa_fib(&info, rt->rt_fibnum); 850 /* 851 * XXXRW: Really we should release this 852 * reference later, but this maintains 853 * historical behavior. 854 */ 855 if (info.rti_ifa != NULL) 856 ifa_free(info.rti_ifa); 857 RADIX_NODE_HEAD_UNLOCK(rnh); 858 if (error != 0) 859 senderr(error); 860 RT_LOCK(rt); 861 } 862 if (info.rti_ifa != NULL && 863 info.rti_ifa != rt->rt_ifa && 864 rt->rt_ifa != NULL && 865 rt->rt_ifa->ifa_rtrequest != NULL) { 866 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 867 &info); 868 ifa_free(rt->rt_ifa); 869 } 870 if (info.rti_info[RTAX_GATEWAY] != NULL) { 871 RT_UNLOCK(rt); 872 RADIX_NODE_HEAD_LOCK(rnh); 873 RT_LOCK(rt); 874 875 error = rt_setgate(rt, rt_key(rt), 876 info.rti_info[RTAX_GATEWAY]); 877 RADIX_NODE_HEAD_UNLOCK(rnh); 878 if (error != 0) { 879 RT_UNLOCK(rt); 880 senderr(error); 881 } 882 rt->rt_flags |= (RTF_GATEWAY & info.rti_flags); 883 } 884 if (info.rti_ifa != NULL && 885 info.rti_ifa != rt->rt_ifa) { 886 ifa_ref(info.rti_ifa); 887 rt->rt_ifa = info.rti_ifa; 888 rt->rt_ifp = info.rti_ifp; 889 } 890 /* Allow some flags to be toggled on change. */ 891 rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) | 892 (rtm->rtm_flags & RTF_FMASK); 893 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 894 &rt->rt_rmx); 895 rtm->rtm_index = rt->rt_ifp->if_index; 896 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 897 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 898 /* FALLTHROUGH */ 899 case RTM_LOCK: 900 /* We don't support locks anymore */ 901 break; 902 } 903 RT_UNLOCK(rt); 904 break; 905 906 default: 907 senderr(EOPNOTSUPP); 908 } 909 910 flush: 911 if (rtm) { 912 if (error) 913 rtm->rtm_errno = error; 914 else 915 rtm->rtm_flags |= RTF_DONE; 916 } 917 if (rt) /* XXX can this be true? */ 918 RTFREE(rt); 919 { 920 struct rawcb *rp = NULL; 921 /* 922 * Check to see if we don't want our own messages. 923 */ 924 if ((so->so_options & SO_USELOOPBACK) == 0) { 925 if (route_cb.any_count <= 1) { 926 if (rtm) 927 Free(rtm); 928 m_freem(m); 929 return (error); 930 } 931 /* There is another listener, so construct message */ 932 rp = sotorawcb(so); 933 } 934 if (rtm) { 935 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 936 if (m->m_pkthdr.len < rtm->rtm_msglen) { 937 m_freem(m); 938 m = NULL; 939 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 940 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 941 } 942 if (m) { 943 M_SETFIB(m, so->so_fibnum); 944 m->m_flags |= RTS_FILTER_FIB; 945 if (rp) { 946 /* 947 * XXX insure we don't get a copy by 948 * invalidating our protocol 949 */ 950 unsigned short family = rp->rcb_proto.sp_family; 951 rp->rcb_proto.sp_family = 0; 952 rt_dispatch(m, saf); 953 rp->rcb_proto.sp_family = family; 954 } else 955 rt_dispatch(m, saf); 956 } 957 /* info.rti_info[RTAX_DST] (used above) can point inside of rtm */ 958 if (rtm) 959 Free(rtm); 960 } 961 return (error); 962 #undef sa_equal 963 } 964 965 static void 966 rt_setmetrics(u_long which, const struct rt_metrics *in, 967 struct rt_metrics_lite *out) 968 { 969 #define metric(f, e) if (which & (f)) out->e = in->e; 970 /* 971 * Only these are stored in the routing entry since introduction 972 * of tcp hostcache. The rest is ignored. 973 */ 974 metric(RTV_MTU, rmx_mtu); 975 metric(RTV_WEIGHT, rmx_weight); 976 /* Userland -> kernel timebase conversion. */ 977 if (which & RTV_EXPIRE) 978 out->rmx_expire = in->rmx_expire ? 979 in->rmx_expire - time_second + time_uptime : 0; 980 #undef metric 981 } 982 983 static void 984 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 985 { 986 #define metric(e) out->e = in->e; 987 bzero(out, sizeof(*out)); 988 metric(rmx_mtu); 989 metric(rmx_weight); 990 /* Kernel -> userland timebase conversion. */ 991 out->rmx_expire = in->rmx_expire ? 992 in->rmx_expire - time_uptime + time_second : 0; 993 #undef metric 994 } 995 996 /* 997 * Extract the addresses of the passed sockaddrs. 998 * Do a little sanity checking so as to avoid bad memory references. 999 * This data is derived straight from userland. 1000 */ 1001 static int 1002 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1003 { 1004 struct sockaddr *sa; 1005 int i; 1006 1007 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1008 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1009 continue; 1010 sa = (struct sockaddr *)cp; 1011 /* 1012 * It won't fit. 1013 */ 1014 if (cp + sa->sa_len > cplim) 1015 return (EINVAL); 1016 /* 1017 * there are no more.. quit now 1018 * If there are more bits, they are in error. 1019 * I've seen this. route(1) can evidently generate these. 1020 * This causes kernel to core dump. 1021 * for compatibility, If we see this, point to a safe address. 1022 */ 1023 if (sa->sa_len == 0) { 1024 rtinfo->rti_info[i] = &sa_zero; 1025 return (0); /* should be EINVAL but for compat */ 1026 } 1027 /* accept it */ 1028 rtinfo->rti_info[i] = sa; 1029 cp += SA_SIZE(sa); 1030 } 1031 return (0); 1032 } 1033 1034 /* 1035 * Used by the routing socket. 1036 */ 1037 static struct mbuf * 1038 rt_msg1(int type, struct rt_addrinfo *rtinfo) 1039 { 1040 struct rt_msghdr *rtm; 1041 struct mbuf *m; 1042 int i; 1043 struct sockaddr *sa; 1044 int len, dlen; 1045 1046 switch (type) { 1047 1048 case RTM_DELADDR: 1049 case RTM_NEWADDR: 1050 len = sizeof(struct ifa_msghdr); 1051 break; 1052 1053 case RTM_DELMADDR: 1054 case RTM_NEWMADDR: 1055 len = sizeof(struct ifma_msghdr); 1056 break; 1057 1058 case RTM_IFINFO: 1059 len = sizeof(struct if_msghdr); 1060 break; 1061 1062 case RTM_IFANNOUNCE: 1063 case RTM_IEEE80211: 1064 len = sizeof(struct if_announcemsghdr); 1065 break; 1066 1067 default: 1068 len = sizeof(struct rt_msghdr); 1069 } 1070 if (len > MCLBYTES) 1071 panic("rt_msg1"); 1072 m = m_gethdr(M_DONTWAIT, MT_DATA); 1073 if (m && len > MHLEN) { 1074 MCLGET(m, M_DONTWAIT); 1075 if ((m->m_flags & M_EXT) == 0) { 1076 m_free(m); 1077 m = NULL; 1078 } 1079 } 1080 if (m == NULL) 1081 return (m); 1082 m->m_pkthdr.len = m->m_len = len; 1083 m->m_pkthdr.rcvif = NULL; 1084 rtm = mtod(m, struct rt_msghdr *); 1085 bzero((caddr_t)rtm, len); 1086 for (i = 0; i < RTAX_MAX; i++) { 1087 if ((sa = rtinfo->rti_info[i]) == NULL) 1088 continue; 1089 rtinfo->rti_addrs |= (1 << i); 1090 dlen = SA_SIZE(sa); 1091 m_copyback(m, len, dlen, (caddr_t)sa); 1092 len += dlen; 1093 } 1094 if (m->m_pkthdr.len != len) { 1095 m_freem(m); 1096 return (NULL); 1097 } 1098 rtm->rtm_msglen = len; 1099 rtm->rtm_version = RTM_VERSION; 1100 rtm->rtm_type = type; 1101 return (m); 1102 } 1103 1104 /* 1105 * Used by the sysctl code and routing socket. 1106 */ 1107 static int 1108 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 1109 { 1110 int i; 1111 int len, dlen, second_time = 0; 1112 caddr_t cp0; 1113 1114 rtinfo->rti_addrs = 0; 1115 again: 1116 switch (type) { 1117 1118 case RTM_DELADDR: 1119 case RTM_NEWADDR: 1120 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1121 #ifdef COMPAT_FREEBSD32 1122 if (w->w_req->flags & SCTL_MASK32) 1123 len = sizeof(struct ifa_msghdrl32); 1124 else 1125 #endif 1126 len = sizeof(struct ifa_msghdrl); 1127 } else 1128 len = sizeof(struct ifa_msghdr); 1129 break; 1130 1131 case RTM_IFINFO: 1132 #ifdef COMPAT_FREEBSD32 1133 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1134 if (w->w_op == NET_RT_IFLISTL) 1135 len = sizeof(struct if_msghdrl32); 1136 else 1137 len = sizeof(struct if_msghdr32); 1138 break; 1139 } 1140 #endif 1141 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1142 len = sizeof(struct if_msghdrl); 1143 else 1144 len = sizeof(struct if_msghdr); 1145 break; 1146 1147 case RTM_NEWMADDR: 1148 len = sizeof(struct ifma_msghdr); 1149 break; 1150 1151 default: 1152 len = sizeof(struct rt_msghdr); 1153 } 1154 cp0 = cp; 1155 if (cp0) 1156 cp += len; 1157 for (i = 0; i < RTAX_MAX; i++) { 1158 struct sockaddr *sa; 1159 1160 if ((sa = rtinfo->rti_info[i]) == NULL) 1161 continue; 1162 rtinfo->rti_addrs |= (1 << i); 1163 dlen = SA_SIZE(sa); 1164 if (cp) { 1165 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1166 cp += dlen; 1167 } 1168 len += dlen; 1169 } 1170 len = ALIGN(len); 1171 if (cp == NULL && w != NULL && !second_time) { 1172 struct walkarg *rw = w; 1173 1174 if (rw->w_req) { 1175 if (rw->w_tmemsize < len) { 1176 if (rw->w_tmem) 1177 free(rw->w_tmem, M_RTABLE); 1178 rw->w_tmem = (caddr_t) 1179 malloc(len, M_RTABLE, M_NOWAIT); 1180 if (rw->w_tmem) 1181 rw->w_tmemsize = len; 1182 } 1183 if (rw->w_tmem) { 1184 cp = rw->w_tmem; 1185 second_time = 1; 1186 goto again; 1187 } 1188 } 1189 } 1190 if (cp) { 1191 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 1192 1193 rtm->rtm_version = RTM_VERSION; 1194 rtm->rtm_type = type; 1195 rtm->rtm_msglen = len; 1196 } 1197 return (len); 1198 } 1199 1200 /* 1201 * This routine is called to generate a message from the routing 1202 * socket indicating that a redirect has occured, a routing lookup 1203 * has failed, or that a protocol has detected timeouts to a particular 1204 * destination. 1205 */ 1206 void 1207 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1208 int fibnum) 1209 { 1210 struct rt_msghdr *rtm; 1211 struct mbuf *m; 1212 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1213 1214 if (route_cb.any_count == 0) 1215 return; 1216 m = rt_msg1(type, rtinfo); 1217 if (m == NULL) 1218 return; 1219 1220 if (fibnum != RTS_ALLFIBS) { 1221 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1222 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1223 M_SETFIB(m, fibnum); 1224 m->m_flags |= RTS_FILTER_FIB; 1225 } 1226 1227 rtm = mtod(m, struct rt_msghdr *); 1228 rtm->rtm_flags = RTF_DONE | flags; 1229 rtm->rtm_errno = error; 1230 rtm->rtm_addrs = rtinfo->rti_addrs; 1231 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1232 } 1233 1234 void 1235 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1236 { 1237 1238 rt_missmsg_fib(type, rtinfo, flags, error, RTS_ALLFIBS); 1239 } 1240 1241 /* 1242 * This routine is called to generate a message from the routing 1243 * socket indicating that the status of a network interface has changed. 1244 */ 1245 void 1246 rt_ifmsg(struct ifnet *ifp) 1247 { 1248 struct if_msghdr *ifm; 1249 struct mbuf *m; 1250 struct rt_addrinfo info; 1251 1252 if (route_cb.any_count == 0) 1253 return; 1254 bzero((caddr_t)&info, sizeof(info)); 1255 m = rt_msg1(RTM_IFINFO, &info); 1256 if (m == NULL) 1257 return; 1258 ifm = mtod(m, struct if_msghdr *); 1259 ifm->ifm_index = ifp->if_index; 1260 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1261 ifm->ifm_data = ifp->if_data; 1262 ifm->ifm_addrs = 0; 1263 rt_dispatch(m, AF_UNSPEC); 1264 } 1265 1266 /* 1267 * This is called to generate messages from the routing socket 1268 * indicating a network interface has had addresses associated with it. 1269 * if we ever reverse the logic and replace messages TO the routing 1270 * socket indicate a request to configure interfaces, then it will 1271 * be unnecessary as the routing socket will automatically generate 1272 * copies of it. 1273 */ 1274 void 1275 rt_newaddrmsg_fib(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt, 1276 int fibnum) 1277 { 1278 struct rt_addrinfo info; 1279 struct sockaddr *sa = NULL; 1280 int pass; 1281 struct mbuf *m = NULL; 1282 struct ifnet *ifp = ifa->ifa_ifp; 1283 1284 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 1285 ("unexpected cmd %u", cmd)); 1286 #if defined(INET) || defined(INET6) 1287 #ifdef SCTP 1288 /* 1289 * notify the SCTP stack 1290 * this will only get called when an address is added/deleted 1291 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 1292 */ 1293 sctp_addr_change(ifa, cmd); 1294 #endif /* SCTP */ 1295 #endif 1296 if (route_cb.any_count == 0) 1297 return; 1298 for (pass = 1; pass < 3; pass++) { 1299 bzero((caddr_t)&info, sizeof(info)); 1300 if ((cmd == RTM_ADD && pass == 1) || 1301 (cmd == RTM_DELETE && pass == 2)) { 1302 struct ifa_msghdr *ifam; 1303 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1304 1305 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1306 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1307 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1308 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1309 if ((m = rt_msg1(ncmd, &info)) == NULL) 1310 continue; 1311 ifam = mtod(m, struct ifa_msghdr *); 1312 ifam->ifam_index = ifp->if_index; 1313 ifam->ifam_metric = ifa->ifa_metric; 1314 ifam->ifam_flags = ifa->ifa_flags; 1315 ifam->ifam_addrs = info.rti_addrs; 1316 } 1317 if ((cmd == RTM_ADD && pass == 2) || 1318 (cmd == RTM_DELETE && pass == 1)) { 1319 struct rt_msghdr *rtm; 1320 1321 if (rt == NULL) 1322 continue; 1323 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1324 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1325 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1326 if ((m = rt_msg1(cmd, &info)) == NULL) 1327 continue; 1328 rtm = mtod(m, struct rt_msghdr *); 1329 rtm->rtm_index = ifp->if_index; 1330 rtm->rtm_flags |= rt->rt_flags; 1331 rtm->rtm_errno = error; 1332 rtm->rtm_addrs = info.rti_addrs; 1333 } 1334 if (fibnum != RTS_ALLFIBS) { 1335 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: " 1336 "fibnum out of range 0 <= %d < %d", __func__, 1337 fibnum, rt_numfibs)); 1338 M_SETFIB(m, fibnum); 1339 m->m_flags |= RTS_FILTER_FIB; 1340 } 1341 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1342 } 1343 } 1344 1345 void 1346 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 1347 { 1348 1349 rt_newaddrmsg_fib(cmd, ifa, error, rt, RTS_ALLFIBS); 1350 } 1351 1352 /* 1353 * This is the analogue to the rt_newaddrmsg which performs the same 1354 * function but for multicast group memberhips. This is easier since 1355 * there is no route state to worry about. 1356 */ 1357 void 1358 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1359 { 1360 struct rt_addrinfo info; 1361 struct mbuf *m = NULL; 1362 struct ifnet *ifp = ifma->ifma_ifp; 1363 struct ifma_msghdr *ifmam; 1364 1365 if (route_cb.any_count == 0) 1366 return; 1367 1368 bzero((caddr_t)&info, sizeof(info)); 1369 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1370 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1371 /* 1372 * If a link-layer address is present, present it as a ``gateway'' 1373 * (similarly to how ARP entries, e.g., are presented). 1374 */ 1375 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1376 m = rt_msg1(cmd, &info); 1377 if (m == NULL) 1378 return; 1379 ifmam = mtod(m, struct ifma_msghdr *); 1380 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1381 __func__)); 1382 ifmam->ifmam_index = ifp->if_index; 1383 ifmam->ifmam_addrs = info.rti_addrs; 1384 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1385 } 1386 1387 static struct mbuf * 1388 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1389 struct rt_addrinfo *info) 1390 { 1391 struct if_announcemsghdr *ifan; 1392 struct mbuf *m; 1393 1394 if (route_cb.any_count == 0) 1395 return NULL; 1396 bzero((caddr_t)info, sizeof(*info)); 1397 m = rt_msg1(type, info); 1398 if (m != NULL) { 1399 ifan = mtod(m, struct if_announcemsghdr *); 1400 ifan->ifan_index = ifp->if_index; 1401 strlcpy(ifan->ifan_name, ifp->if_xname, 1402 sizeof(ifan->ifan_name)); 1403 ifan->ifan_what = what; 1404 } 1405 return m; 1406 } 1407 1408 /* 1409 * This is called to generate routing socket messages indicating 1410 * IEEE80211 wireless events. 1411 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1412 */ 1413 void 1414 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1415 { 1416 struct mbuf *m; 1417 struct rt_addrinfo info; 1418 1419 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1420 if (m != NULL) { 1421 /* 1422 * Append the ieee80211 data. Try to stick it in the 1423 * mbuf containing the ifannounce msg; otherwise allocate 1424 * a new mbuf and append. 1425 * 1426 * NB: we assume m is a single mbuf. 1427 */ 1428 if (data_len > M_TRAILINGSPACE(m)) { 1429 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1430 if (n == NULL) { 1431 m_freem(m); 1432 return; 1433 } 1434 bcopy(data, mtod(n, void *), data_len); 1435 n->m_len = data_len; 1436 m->m_next = n; 1437 } else if (data_len > 0) { 1438 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1439 m->m_len += data_len; 1440 } 1441 if (m->m_flags & M_PKTHDR) 1442 m->m_pkthdr.len += data_len; 1443 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1444 rt_dispatch(m, AF_UNSPEC); 1445 } 1446 } 1447 1448 /* 1449 * This is called to generate routing socket messages indicating 1450 * network interface arrival and departure. 1451 */ 1452 void 1453 rt_ifannouncemsg(struct ifnet *ifp, int what) 1454 { 1455 struct mbuf *m; 1456 struct rt_addrinfo info; 1457 1458 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1459 if (m != NULL) 1460 rt_dispatch(m, AF_UNSPEC); 1461 } 1462 1463 static void 1464 rt_dispatch(struct mbuf *m, sa_family_t saf) 1465 { 1466 struct m_tag *tag; 1467 1468 /* 1469 * Preserve the family from the sockaddr, if any, in an m_tag for 1470 * use when injecting the mbuf into the routing socket buffer from 1471 * the netisr. 1472 */ 1473 if (saf != AF_UNSPEC) { 1474 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1475 M_NOWAIT); 1476 if (tag == NULL) { 1477 m_freem(m); 1478 return; 1479 } 1480 *(unsigned short *)(tag + 1) = saf; 1481 m_tag_prepend(m, tag); 1482 } 1483 #ifdef VIMAGE 1484 if (V_loif) 1485 m->m_pkthdr.rcvif = V_loif; 1486 else { 1487 m_freem(m); 1488 return; 1489 } 1490 #endif 1491 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1492 } 1493 1494 /* 1495 * This is used in dumping the kernel table via sysctl(). 1496 */ 1497 static int 1498 sysctl_dumpentry(struct radix_node *rn, void *vw) 1499 { 1500 struct walkarg *w = vw; 1501 struct rtentry *rt = (struct rtentry *)rn; 1502 int error = 0, size; 1503 struct rt_addrinfo info; 1504 1505 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1506 return 0; 1507 if ((rt->rt_flags & RTF_HOST) == 0 1508 ? jailed_without_vnet(w->w_req->td->td_ucred) 1509 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1510 return (0); 1511 bzero((caddr_t)&info, sizeof(info)); 1512 info.rti_info[RTAX_DST] = rt_key(rt); 1513 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1514 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1515 info.rti_info[RTAX_GENMASK] = 0; 1516 if (rt->rt_ifp) { 1517 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1518 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1519 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1520 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1521 } 1522 size = rt_msg2(RTM_GET, &info, NULL, w); 1523 if (w->w_req && w->w_tmem) { 1524 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1525 1526 rtm->rtm_flags = rt->rt_flags; 1527 /* 1528 * let's be honest about this being a retarded hack 1529 */ 1530 rtm->rtm_fmask = rt->rt_rmx.rmx_pksent; 1531 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1532 rtm->rtm_index = rt->rt_ifp->if_index; 1533 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1534 rtm->rtm_addrs = info.rti_addrs; 1535 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1536 return (error); 1537 } 1538 return (error); 1539 } 1540 1541 #ifdef COMPAT_FREEBSD32 1542 static void 1543 copy_ifdata32(struct if_data *src, struct if_data32 *dst) 1544 { 1545 1546 bzero(dst, sizeof(*dst)); 1547 CP(*src, *dst, ifi_type); 1548 CP(*src, *dst, ifi_physical); 1549 CP(*src, *dst, ifi_addrlen); 1550 CP(*src, *dst, ifi_hdrlen); 1551 CP(*src, *dst, ifi_link_state); 1552 CP(*src, *dst, ifi_vhid); 1553 dst->ifi_datalen = sizeof(struct if_data32); 1554 CP(*src, *dst, ifi_mtu); 1555 CP(*src, *dst, ifi_metric); 1556 CP(*src, *dst, ifi_baudrate); 1557 CP(*src, *dst, ifi_ipackets); 1558 CP(*src, *dst, ifi_ierrors); 1559 CP(*src, *dst, ifi_opackets); 1560 CP(*src, *dst, ifi_oerrors); 1561 CP(*src, *dst, ifi_collisions); 1562 CP(*src, *dst, ifi_ibytes); 1563 CP(*src, *dst, ifi_obytes); 1564 CP(*src, *dst, ifi_imcasts); 1565 CP(*src, *dst, ifi_omcasts); 1566 CP(*src, *dst, ifi_iqdrops); 1567 CP(*src, *dst, ifi_noproto); 1568 CP(*src, *dst, ifi_hwassist); 1569 CP(*src, *dst, ifi_epoch); 1570 TV_CP(*src, *dst, ifi_lastchange); 1571 } 1572 #endif 1573 1574 static int 1575 sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info, 1576 struct walkarg *w, int len) 1577 { 1578 struct if_msghdrl *ifm; 1579 1580 #ifdef COMPAT_FREEBSD32 1581 if (w->w_req->flags & SCTL_MASK32) { 1582 struct if_msghdrl32 *ifm32; 1583 1584 ifm32 = (struct if_msghdrl32 *)w->w_tmem; 1585 ifm32->ifm_addrs = info->rti_addrs; 1586 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1587 ifm32->ifm_index = ifp->if_index; 1588 ifm32->_ifm_spare1 = 0; 1589 ifm32->ifm_len = sizeof(*ifm32); 1590 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1591 1592 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1593 /* Fixup if_data carp(4) vhid. */ 1594 if (carp_get_vhid_p != NULL) 1595 ifm32->ifm_data.ifi_vhid = 1596 (*carp_get_vhid_p)(ifp->if_addr); 1597 1598 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len)); 1599 } 1600 #endif 1601 ifm = (struct if_msghdrl *)w->w_tmem; 1602 ifm->ifm_addrs = info->rti_addrs; 1603 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1604 ifm->ifm_index = ifp->if_index; 1605 ifm->_ifm_spare1 = 0; 1606 ifm->ifm_len = sizeof(*ifm); 1607 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1608 1609 ifm->ifm_data = ifp->if_data; 1610 /* Fixup if_data carp(4) vhid. */ 1611 if (carp_get_vhid_p != NULL) 1612 ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr); 1613 1614 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1615 } 1616 1617 static int 1618 sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info, 1619 struct walkarg *w, int len) 1620 { 1621 struct if_msghdr *ifm; 1622 1623 #ifdef COMPAT_FREEBSD32 1624 if (w->w_req->flags & SCTL_MASK32) { 1625 struct if_msghdr32 *ifm32; 1626 1627 ifm32 = (struct if_msghdr32 *)w->w_tmem; 1628 ifm32->ifm_addrs = info->rti_addrs; 1629 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1630 ifm32->ifm_index = ifp->if_index; 1631 1632 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1633 /* Fixup if_data carp(4) vhid. */ 1634 if (carp_get_vhid_p != NULL) 1635 ifm32->ifm_data.ifi_vhid = 1636 (*carp_get_vhid_p)(ifp->if_addr); 1637 1638 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len)); 1639 } 1640 #endif 1641 ifm = (struct if_msghdr *)w->w_tmem; 1642 ifm->ifm_addrs = info->rti_addrs; 1643 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1644 ifm->ifm_index = ifp->if_index; 1645 1646 ifm->ifm_data = ifp->if_data; 1647 /* Fixup if_data carp(4) vhid. */ 1648 if (carp_get_vhid_p != NULL) 1649 ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr); 1650 1651 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1652 } 1653 1654 static int 1655 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1656 struct walkarg *w, int len) 1657 { 1658 struct ifa_msghdrl *ifam; 1659 1660 #ifdef COMPAT_FREEBSD32 1661 if (w->w_req->flags & SCTL_MASK32) { 1662 struct ifa_msghdrl32 *ifam32; 1663 1664 ifam32 = (struct ifa_msghdrl32 *)w->w_tmem; 1665 ifam32->ifam_addrs = info->rti_addrs; 1666 ifam32->ifam_flags = ifa->ifa_flags; 1667 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1668 ifam32->_ifam_spare1 = 0; 1669 ifam32->ifam_len = sizeof(*ifam32); 1670 ifam32->ifam_data_off = 1671 offsetof(struct ifa_msghdrl32, ifam_data); 1672 ifam32->ifam_metric = ifa->ifa_metric; 1673 1674 copy_ifdata32(&ifa->ifa_ifp->if_data, &ifam32->ifam_data); 1675 /* Fixup if_data carp(4) vhid. */ 1676 if (carp_get_vhid_p != NULL) 1677 ifam32->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa); 1678 1679 return (SYSCTL_OUT(w->w_req, (caddr_t)ifam32, len)); 1680 } 1681 #endif 1682 1683 ifam = (struct ifa_msghdrl *)w->w_tmem; 1684 ifam->ifam_addrs = info->rti_addrs; 1685 ifam->ifam_flags = ifa->ifa_flags; 1686 ifam->ifam_index = ifa->ifa_ifp->if_index; 1687 ifam->_ifam_spare1 = 0; 1688 ifam->ifam_len = sizeof(*ifam); 1689 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1690 ifam->ifam_metric = ifa->ifa_metric; 1691 1692 ifam->ifam_data = ifa->if_data; 1693 /* Fixup if_data carp(4) vhid. */ 1694 if (carp_get_vhid_p != NULL) 1695 ifam->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa); 1696 1697 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1698 } 1699 1700 static int 1701 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1702 struct walkarg *w, int len) 1703 { 1704 struct ifa_msghdr *ifam; 1705 1706 ifam = (struct ifa_msghdr *)w->w_tmem; 1707 ifam->ifam_addrs = info->rti_addrs; 1708 ifam->ifam_flags = ifa->ifa_flags; 1709 ifam->ifam_index = ifa->ifa_ifp->if_index; 1710 ifam->ifam_metric = ifa->ifa_metric; 1711 1712 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1713 } 1714 1715 static int 1716 sysctl_iflist(int af, struct walkarg *w) 1717 { 1718 struct ifnet *ifp; 1719 struct ifaddr *ifa; 1720 struct rt_addrinfo info; 1721 int len, error = 0; 1722 1723 bzero((caddr_t)&info, sizeof(info)); 1724 IFNET_RLOCK(); 1725 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1726 if (w->w_arg && w->w_arg != ifp->if_index) 1727 continue; 1728 IF_ADDR_RLOCK(ifp); 1729 ifa = ifp->if_addr; 1730 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1731 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1732 info.rti_info[RTAX_IFP] = NULL; 1733 if (w->w_req && w->w_tmem) { 1734 if (w->w_op == NET_RT_IFLISTL) 1735 error = sysctl_iflist_ifml(ifp, &info, w, len); 1736 else 1737 error = sysctl_iflist_ifm(ifp, &info, w, len); 1738 if (error) 1739 goto done; 1740 } 1741 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1742 if (af && af != ifa->ifa_addr->sa_family) 1743 continue; 1744 if (prison_if(w->w_req->td->td_ucred, 1745 ifa->ifa_addr) != 0) 1746 continue; 1747 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1748 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1749 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1750 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1751 if (w->w_req && w->w_tmem) { 1752 if (w->w_op == NET_RT_IFLISTL) 1753 error = sysctl_iflist_ifaml(ifa, &info, 1754 w, len); 1755 else 1756 error = sysctl_iflist_ifam(ifa, &info, 1757 w, len); 1758 if (error) 1759 goto done; 1760 } 1761 } 1762 IF_ADDR_RUNLOCK(ifp); 1763 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1764 info.rti_info[RTAX_BRD] = NULL; 1765 } 1766 done: 1767 if (ifp != NULL) 1768 IF_ADDR_RUNLOCK(ifp); 1769 IFNET_RUNLOCK(); 1770 return (error); 1771 } 1772 1773 static int 1774 sysctl_ifmalist(int af, struct walkarg *w) 1775 { 1776 struct ifnet *ifp; 1777 struct ifmultiaddr *ifma; 1778 struct rt_addrinfo info; 1779 int len, error = 0; 1780 struct ifaddr *ifa; 1781 1782 bzero((caddr_t)&info, sizeof(info)); 1783 IFNET_RLOCK(); 1784 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1785 if (w->w_arg && w->w_arg != ifp->if_index) 1786 continue; 1787 ifa = ifp->if_addr; 1788 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1789 IF_ADDR_RLOCK(ifp); 1790 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1791 if (af && af != ifma->ifma_addr->sa_family) 1792 continue; 1793 if (prison_if(w->w_req->td->td_ucred, 1794 ifma->ifma_addr) != 0) 1795 continue; 1796 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1797 info.rti_info[RTAX_GATEWAY] = 1798 (ifma->ifma_addr->sa_family != AF_LINK) ? 1799 ifma->ifma_lladdr : NULL; 1800 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1801 if (w->w_req && w->w_tmem) { 1802 struct ifma_msghdr *ifmam; 1803 1804 ifmam = (struct ifma_msghdr *)w->w_tmem; 1805 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1806 ifmam->ifmam_flags = 0; 1807 ifmam->ifmam_addrs = info.rti_addrs; 1808 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1809 if (error) { 1810 IF_ADDR_RUNLOCK(ifp); 1811 goto done; 1812 } 1813 } 1814 } 1815 IF_ADDR_RUNLOCK(ifp); 1816 } 1817 done: 1818 IFNET_RUNLOCK(); 1819 return (error); 1820 } 1821 1822 static int 1823 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1824 { 1825 int *name = (int *)arg1; 1826 u_int namelen = arg2; 1827 struct radix_node_head *rnh = NULL; /* silence compiler. */ 1828 int i, lim, error = EINVAL; 1829 u_char af; 1830 struct walkarg w; 1831 1832 name ++; 1833 namelen--; 1834 if (req->newptr) 1835 return (EPERM); 1836 if (namelen != 3) 1837 return ((namelen < 3) ? EISDIR : ENOTDIR); 1838 af = name[0]; 1839 if (af > AF_MAX) 1840 return (EINVAL); 1841 bzero(&w, sizeof(w)); 1842 w.w_op = name[1]; 1843 w.w_arg = name[2]; 1844 w.w_req = req; 1845 1846 error = sysctl_wire_old_buffer(req, 0); 1847 if (error) 1848 return (error); 1849 switch (w.w_op) { 1850 1851 case NET_RT_DUMP: 1852 case NET_RT_FLAGS: 1853 if (af == 0) { /* dump all tables */ 1854 i = 1; 1855 lim = AF_MAX; 1856 } else /* dump only one table */ 1857 i = lim = af; 1858 1859 /* 1860 * take care of llinfo entries, the caller must 1861 * specify an AF 1862 */ 1863 if (w.w_op == NET_RT_FLAGS && 1864 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1865 if (af != 0) 1866 error = lltable_sysctl_dumparp(af, w.w_req); 1867 else 1868 error = EINVAL; 1869 break; 1870 } 1871 /* 1872 * take care of routing entries 1873 */ 1874 for (error = 0; error == 0 && i <= lim; i++) { 1875 rnh = rt_tables_get_rnh(req->td->td_proc->p_fibnum, i); 1876 if (rnh != NULL) { 1877 RADIX_NODE_HEAD_RLOCK(rnh); 1878 error = rnh->rnh_walktree(rnh, 1879 sysctl_dumpentry, &w); 1880 RADIX_NODE_HEAD_RUNLOCK(rnh); 1881 } else if (af != 0) 1882 error = EAFNOSUPPORT; 1883 } 1884 break; 1885 1886 case NET_RT_IFLIST: 1887 case NET_RT_IFLISTL: 1888 error = sysctl_iflist(af, &w); 1889 break; 1890 1891 case NET_RT_IFMALIST: 1892 error = sysctl_ifmalist(af, &w); 1893 break; 1894 } 1895 if (w.w_tmem) 1896 free(w.w_tmem, M_RTABLE); 1897 return (error); 1898 } 1899 1900 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1901 1902 /* 1903 * Definitions of protocols supported in the ROUTE domain. 1904 */ 1905 1906 static struct domain routedomain; /* or at least forward */ 1907 1908 static struct protosw routesw[] = { 1909 { 1910 .pr_type = SOCK_RAW, 1911 .pr_domain = &routedomain, 1912 .pr_flags = PR_ATOMIC|PR_ADDR, 1913 .pr_output = route_output, 1914 .pr_ctlinput = raw_ctlinput, 1915 .pr_init = raw_init, 1916 .pr_usrreqs = &route_usrreqs 1917 } 1918 }; 1919 1920 static struct domain routedomain = { 1921 .dom_family = PF_ROUTE, 1922 .dom_name = "route", 1923 .dom_protosw = routesw, 1924 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1925 }; 1926 1927 VNET_DOMAIN_SET(route); 1928