1 /*- 2 * Copyright (c) 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 30 * $FreeBSD$ 31 */ 32 #include "opt_compat.h" 33 #include "opt_sctp.h" 34 #include "opt_mpath.h" 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/jail.h> 40 #include <sys/kernel.h> 41 #include <sys/domain.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/rwlock.h> 49 #include <sys/signalvar.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <net/if.h> 56 #include <net/if_dl.h> 57 #include <net/if_llatbl.h> 58 #include <net/if_types.h> 59 #include <net/netisr.h> 60 #include <net/raw_cb.h> 61 #include <net/route.h> 62 #include <net/vnet.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 #ifdef INET6 67 #include <netinet6/scope6_var.h> 68 #endif 69 70 #if defined(INET) || defined(INET6) 71 #ifdef SCTP 72 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 73 #endif /* SCTP */ 74 #endif 75 76 #ifdef COMPAT_FREEBSD32 77 #include <sys/mount.h> 78 #include <compat/freebsd32/freebsd32.h> 79 80 struct if_data32 { 81 uint8_t ifi_type; 82 uint8_t ifi_physical; 83 uint8_t ifi_addrlen; 84 uint8_t ifi_hdrlen; 85 uint8_t ifi_link_state; 86 uint8_t ifi_spare_char1; 87 uint8_t ifi_spare_char2; 88 uint8_t ifi_datalen; 89 uint32_t ifi_mtu; 90 uint32_t ifi_metric; 91 uint32_t ifi_baudrate; 92 uint32_t ifi_ipackets; 93 uint32_t ifi_ierrors; 94 uint32_t ifi_opackets; 95 uint32_t ifi_oerrors; 96 uint32_t ifi_collisions; 97 uint32_t ifi_ibytes; 98 uint32_t ifi_obytes; 99 uint32_t ifi_imcasts; 100 uint32_t ifi_omcasts; 101 uint32_t ifi_iqdrops; 102 uint32_t ifi_noproto; 103 uint32_t ifi_hwassist; 104 int32_t ifi_epoch; 105 struct timeval32 ifi_lastchange; 106 }; 107 108 struct if_msghdr32 { 109 uint16_t ifm_msglen; 110 uint8_t ifm_version; 111 uint8_t ifm_type; 112 int32_t ifm_addrs; 113 int32_t ifm_flags; 114 uint16_t ifm_index; 115 struct if_data32 ifm_data; 116 }; 117 #endif 118 119 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 120 121 /* NB: these are not modified */ 122 static struct sockaddr route_src = { 2, PF_ROUTE, }; 123 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 124 125 /* 126 * Used by rtsock/raw_input callback code to decide whether to filter the update 127 * notification to a socket bound to a particular FIB. 128 */ 129 #define RTS_FILTER_FIB M_PROTO8 130 #define RTS_ALLFIBS -1 131 132 static struct { 133 int ip_count; /* attached w/ AF_INET */ 134 int ip6_count; /* attached w/ AF_INET6 */ 135 int ipx_count; /* attached w/ AF_IPX */ 136 int any_count; /* total attached */ 137 } route_cb; 138 139 struct mtx rtsock_mtx; 140 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 141 142 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 143 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 144 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 145 146 static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); 147 148 struct walkarg { 149 int w_tmemsize; 150 int w_op, w_arg; 151 caddr_t w_tmem; 152 struct sysctl_req *w_req; 153 }; 154 155 static void rts_input(struct mbuf *m); 156 static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); 157 static int rt_msg2(int type, struct rt_addrinfo *rtinfo, 158 caddr_t cp, struct walkarg *w); 159 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 160 struct rt_addrinfo *rtinfo); 161 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 162 static int sysctl_iflist(int af, struct walkarg *w); 163 static int sysctl_ifmalist(int af, struct walkarg *w); 164 static int route_output(struct mbuf *m, struct socket *so); 165 static void rt_setmetrics(u_long which, const struct rt_metrics *in, 166 struct rt_metrics_lite *out); 167 static void rt_getmetrics(const struct rt_metrics_lite *in, 168 struct rt_metrics *out); 169 static void rt_dispatch(struct mbuf *, sa_family_t); 170 171 static struct netisr_handler rtsock_nh = { 172 .nh_name = "rtsock", 173 .nh_handler = rts_input, 174 .nh_proto = NETISR_ROUTE, 175 .nh_policy = NETISR_POLICY_SOURCE, 176 }; 177 178 static int 179 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 180 { 181 int error, qlimit; 182 183 netisr_getqlimit(&rtsock_nh, &qlimit); 184 error = sysctl_handle_int(oidp, &qlimit, 0, req); 185 if (error || !req->newptr) 186 return (error); 187 if (qlimit < 1) 188 return (EINVAL); 189 return (netisr_setqlimit(&rtsock_nh, qlimit)); 190 } 191 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 192 0, 0, sysctl_route_netisr_maxqlen, "I", 193 "maximum routing socket dispatch queue length"); 194 195 static void 196 rts_init(void) 197 { 198 int tmp; 199 200 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 201 rtsock_nh.nh_qlimit = tmp; 202 netisr_register(&rtsock_nh); 203 } 204 SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0); 205 206 static int 207 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 208 struct rawcb *rp) 209 { 210 int fibnum; 211 212 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 213 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 214 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 215 216 /* No filtering requested. */ 217 if ((m->m_flags & RTS_FILTER_FIB) == 0) 218 return (0); 219 220 /* Check if it is a rts and the fib matches the one of the socket. */ 221 fibnum = M_GETFIB(m); 222 if (proto->sp_family != PF_ROUTE || 223 rp->rcb_socket == NULL || 224 rp->rcb_socket->so_fibnum == fibnum) 225 return (0); 226 227 /* Filtering requested and no match, the socket shall be skipped. */ 228 return (1); 229 } 230 231 static void 232 rts_input(struct mbuf *m) 233 { 234 struct sockproto route_proto; 235 unsigned short *family; 236 struct m_tag *tag; 237 238 route_proto.sp_family = PF_ROUTE; 239 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 240 if (tag != NULL) { 241 family = (unsigned short *)(tag + 1); 242 route_proto.sp_protocol = *family; 243 m_tag_delete(m, tag); 244 } else 245 route_proto.sp_protocol = 0; 246 247 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 248 } 249 250 /* 251 * It really doesn't make any sense at all for this code to share much 252 * with raw_usrreq.c, since its functionality is so restricted. XXX 253 */ 254 static void 255 rts_abort(struct socket *so) 256 { 257 258 raw_usrreqs.pru_abort(so); 259 } 260 261 static void 262 rts_close(struct socket *so) 263 { 264 265 raw_usrreqs.pru_close(so); 266 } 267 268 /* pru_accept is EOPNOTSUPP */ 269 270 static int 271 rts_attach(struct socket *so, int proto, struct thread *td) 272 { 273 struct rawcb *rp; 274 int s, error; 275 276 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 277 278 /* XXX */ 279 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 280 if (rp == NULL) 281 return ENOBUFS; 282 283 /* 284 * The splnet() is necessary to block protocols from sending 285 * error notifications (like RTM_REDIRECT or RTM_LOSING) while 286 * this PCB is extant but incompletely initialized. 287 * Probably we should try to do more of this work beforehand and 288 * eliminate the spl. 289 */ 290 s = splnet(); 291 so->so_pcb = (caddr_t)rp; 292 so->so_fibnum = td->td_proc->p_fibnum; 293 error = raw_attach(so, proto); 294 rp = sotorawcb(so); 295 if (error) { 296 splx(s); 297 so->so_pcb = NULL; 298 free(rp, M_PCB); 299 return error; 300 } 301 RTSOCK_LOCK(); 302 switch(rp->rcb_proto.sp_protocol) { 303 case AF_INET: 304 route_cb.ip_count++; 305 break; 306 case AF_INET6: 307 route_cb.ip6_count++; 308 break; 309 case AF_IPX: 310 route_cb.ipx_count++; 311 break; 312 } 313 route_cb.any_count++; 314 RTSOCK_UNLOCK(); 315 soisconnected(so); 316 so->so_options |= SO_USELOOPBACK; 317 splx(s); 318 return 0; 319 } 320 321 static int 322 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 323 { 324 325 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 326 } 327 328 static int 329 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 330 { 331 332 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 333 } 334 335 /* pru_connect2 is EOPNOTSUPP */ 336 /* pru_control is EOPNOTSUPP */ 337 338 static void 339 rts_detach(struct socket *so) 340 { 341 struct rawcb *rp = sotorawcb(so); 342 343 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 344 345 RTSOCK_LOCK(); 346 switch(rp->rcb_proto.sp_protocol) { 347 case AF_INET: 348 route_cb.ip_count--; 349 break; 350 case AF_INET6: 351 route_cb.ip6_count--; 352 break; 353 case AF_IPX: 354 route_cb.ipx_count--; 355 break; 356 } 357 route_cb.any_count--; 358 RTSOCK_UNLOCK(); 359 raw_usrreqs.pru_detach(so); 360 } 361 362 static int 363 rts_disconnect(struct socket *so) 364 { 365 366 return (raw_usrreqs.pru_disconnect(so)); 367 } 368 369 /* pru_listen is EOPNOTSUPP */ 370 371 static int 372 rts_peeraddr(struct socket *so, struct sockaddr **nam) 373 { 374 375 return (raw_usrreqs.pru_peeraddr(so, nam)); 376 } 377 378 /* pru_rcvd is EOPNOTSUPP */ 379 /* pru_rcvoob is EOPNOTSUPP */ 380 381 static int 382 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 383 struct mbuf *control, struct thread *td) 384 { 385 386 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 387 } 388 389 /* pru_sense is null */ 390 391 static int 392 rts_shutdown(struct socket *so) 393 { 394 395 return (raw_usrreqs.pru_shutdown(so)); 396 } 397 398 static int 399 rts_sockaddr(struct socket *so, struct sockaddr **nam) 400 { 401 402 return (raw_usrreqs.pru_sockaddr(so, nam)); 403 } 404 405 static struct pr_usrreqs route_usrreqs = { 406 .pru_abort = rts_abort, 407 .pru_attach = rts_attach, 408 .pru_bind = rts_bind, 409 .pru_connect = rts_connect, 410 .pru_detach = rts_detach, 411 .pru_disconnect = rts_disconnect, 412 .pru_peeraddr = rts_peeraddr, 413 .pru_send = rts_send, 414 .pru_shutdown = rts_shutdown, 415 .pru_sockaddr = rts_sockaddr, 416 .pru_close = rts_close, 417 }; 418 419 #ifndef _SOCKADDR_UNION_DEFINED 420 #define _SOCKADDR_UNION_DEFINED 421 /* 422 * The union of all possible address formats we handle. 423 */ 424 union sockaddr_union { 425 struct sockaddr sa; 426 struct sockaddr_in sin; 427 struct sockaddr_in6 sin6; 428 }; 429 #endif /* _SOCKADDR_UNION_DEFINED */ 430 431 static int 432 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 433 struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred) 434 { 435 436 /* First, see if the returned address is part of the jail. */ 437 if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) { 438 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 439 return (0); 440 } 441 442 switch (info->rti_info[RTAX_DST]->sa_family) { 443 #ifdef INET 444 case AF_INET: 445 { 446 struct in_addr ia; 447 struct ifaddr *ifa; 448 int found; 449 450 found = 0; 451 /* 452 * Try to find an address on the given outgoing interface 453 * that belongs to the jail. 454 */ 455 IF_ADDR_LOCK(ifp); 456 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 457 struct sockaddr *sa; 458 sa = ifa->ifa_addr; 459 if (sa->sa_family != AF_INET) 460 continue; 461 ia = ((struct sockaddr_in *)sa)->sin_addr; 462 if (prison_check_ip4(cred, &ia) == 0) { 463 found = 1; 464 break; 465 } 466 } 467 IF_ADDR_UNLOCK(ifp); 468 if (!found) { 469 /* 470 * As a last resort return the 'default' jail address. 471 */ 472 ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)-> 473 sin_addr; 474 if (prison_get_ip4(cred, &ia) != 0) 475 return (ESRCH); 476 } 477 bzero(&saun->sin, sizeof(struct sockaddr_in)); 478 saun->sin.sin_len = sizeof(struct sockaddr_in); 479 saun->sin.sin_family = AF_INET; 480 saun->sin.sin_addr.s_addr = ia.s_addr; 481 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 482 break; 483 } 484 #endif 485 #ifdef INET6 486 case AF_INET6: 487 { 488 struct in6_addr ia6; 489 struct ifaddr *ifa; 490 int found; 491 492 found = 0; 493 /* 494 * Try to find an address on the given outgoing interface 495 * that belongs to the jail. 496 */ 497 IF_ADDR_LOCK(ifp); 498 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 499 struct sockaddr *sa; 500 sa = ifa->ifa_addr; 501 if (sa->sa_family != AF_INET6) 502 continue; 503 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 504 &ia6, sizeof(struct in6_addr)); 505 if (prison_check_ip6(cred, &ia6) == 0) { 506 found = 1; 507 break; 508 } 509 } 510 IF_ADDR_UNLOCK(ifp); 511 if (!found) { 512 /* 513 * As a last resort return the 'default' jail address. 514 */ 515 ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)-> 516 sin6_addr; 517 if (prison_get_ip6(cred, &ia6) != 0) 518 return (ESRCH); 519 } 520 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 521 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 522 saun->sin6.sin6_family = AF_INET6; 523 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 524 if (sa6_recoverscope(&saun->sin6) != 0) 525 return (ESRCH); 526 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 527 break; 528 } 529 #endif 530 default: 531 return (ESRCH); 532 } 533 return (0); 534 } 535 536 /*ARGSUSED*/ 537 static int 538 route_output(struct mbuf *m, struct socket *so) 539 { 540 #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) 541 struct rt_msghdr *rtm = NULL; 542 struct rtentry *rt = NULL; 543 struct radix_node_head *rnh; 544 struct rt_addrinfo info; 545 int len, error = 0; 546 struct ifnet *ifp = NULL; 547 union sockaddr_union saun; 548 sa_family_t saf = AF_UNSPEC; 549 550 #define senderr(e) { error = e; goto flush;} 551 if (m == NULL || ((m->m_len < sizeof(long)) && 552 (m = m_pullup(m, sizeof(long))) == NULL)) 553 return (ENOBUFS); 554 if ((m->m_flags & M_PKTHDR) == 0) 555 panic("route_output"); 556 len = m->m_pkthdr.len; 557 if (len < sizeof(*rtm) || 558 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 559 info.rti_info[RTAX_DST] = NULL; 560 senderr(EINVAL); 561 } 562 R_Malloc(rtm, struct rt_msghdr *, len); 563 if (rtm == NULL) { 564 info.rti_info[RTAX_DST] = NULL; 565 senderr(ENOBUFS); 566 } 567 m_copydata(m, 0, len, (caddr_t)rtm); 568 if (rtm->rtm_version != RTM_VERSION) { 569 info.rti_info[RTAX_DST] = NULL; 570 senderr(EPROTONOSUPPORT); 571 } 572 rtm->rtm_pid = curproc->p_pid; 573 bzero(&info, sizeof(info)); 574 info.rti_addrs = rtm->rtm_addrs; 575 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { 576 info.rti_info[RTAX_DST] = NULL; 577 senderr(EINVAL); 578 } 579 info.rti_flags = rtm->rtm_flags; 580 if (info.rti_info[RTAX_DST] == NULL || 581 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 582 (info.rti_info[RTAX_GATEWAY] != NULL && 583 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 584 senderr(EINVAL); 585 saf = info.rti_info[RTAX_DST]->sa_family; 586 /* 587 * Verify that the caller has the appropriate privilege; RTM_GET 588 * is the only operation the non-superuser is allowed. 589 */ 590 if (rtm->rtm_type != RTM_GET) { 591 error = priv_check(curthread, PRIV_NET_ROUTE); 592 if (error) 593 senderr(error); 594 } 595 596 /* 597 * The given gateway address may be an interface address. 598 * For example, issuing a "route change" command on a route 599 * entry that was created from a tunnel, and the gateway 600 * address given is the local end point. In this case the 601 * RTF_GATEWAY flag must be cleared or the destination will 602 * not be reachable even though there is no error message. 603 */ 604 if (info.rti_info[RTAX_GATEWAY] != NULL && 605 info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 606 struct route gw_ro; 607 608 bzero(&gw_ro, sizeof(gw_ro)); 609 gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY]; 610 rtalloc_ign_fib(&gw_ro, 0, so->so_fibnum); 611 /* 612 * A host route through the loopback interface is 613 * installed for each interface adddress. In pre 8.0 614 * releases the interface address of a PPP link type 615 * is not reachable locally. This behavior is fixed as 616 * part of the new L2/L3 redesign and rewrite work. The 617 * signature of this interface address route is the 618 * AF_LINK sa_family type of the rt_gateway, and the 619 * rt_ifp has the IFF_LOOPBACK flag set. 620 */ 621 if (gw_ro.ro_rt != NULL && 622 gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK && 623 gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) 624 info.rti_flags &= ~RTF_GATEWAY; 625 if (gw_ro.ro_rt != NULL) 626 RTFREE(gw_ro.ro_rt); 627 } 628 629 switch (rtm->rtm_type) { 630 struct rtentry *saved_nrt; 631 632 case RTM_ADD: 633 if (info.rti_info[RTAX_GATEWAY] == NULL) 634 senderr(EINVAL); 635 saved_nrt = NULL; 636 637 /* support for new ARP code */ 638 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 639 (rtm->rtm_flags & RTF_LLDATA) != 0) { 640 error = lla_rt_output(rtm, &info); 641 break; 642 } 643 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt, 644 so->so_fibnum); 645 if (error == 0 && saved_nrt) { 646 RT_LOCK(saved_nrt); 647 rt_setmetrics(rtm->rtm_inits, 648 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 649 rtm->rtm_index = saved_nrt->rt_ifp->if_index; 650 RT_REMREF(saved_nrt); 651 RT_UNLOCK(saved_nrt); 652 } 653 break; 654 655 case RTM_DELETE: 656 saved_nrt = NULL; 657 /* support for new ARP code */ 658 if (info.rti_info[RTAX_GATEWAY] && 659 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) && 660 (rtm->rtm_flags & RTF_LLDATA) != 0) { 661 error = lla_rt_output(rtm, &info); 662 break; 663 } 664 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, 665 so->so_fibnum); 666 if (error == 0) { 667 RT_LOCK(saved_nrt); 668 rt = saved_nrt; 669 goto report; 670 } 671 break; 672 673 case RTM_GET: 674 case RTM_CHANGE: 675 case RTM_LOCK: 676 rnh = rt_tables_get_rnh(so->so_fibnum, 677 info.rti_info[RTAX_DST]->sa_family); 678 if (rnh == NULL) 679 senderr(EAFNOSUPPORT); 680 RADIX_NODE_HEAD_RLOCK(rnh); 681 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], 682 info.rti_info[RTAX_NETMASK], rnh); 683 if (rt == NULL) { /* XXX looks bogus */ 684 RADIX_NODE_HEAD_RUNLOCK(rnh); 685 senderr(ESRCH); 686 } 687 #ifdef RADIX_MPATH 688 /* 689 * for RTM_CHANGE/LOCK, if we got multipath routes, 690 * we require users to specify a matching RTAX_GATEWAY. 691 * 692 * for RTM_GET, gate is optional even with multipath. 693 * if gate == NULL the first match is returned. 694 * (no need to call rt_mpath_matchgate if gate == NULL) 695 */ 696 if (rn_mpath_capable(rnh) && 697 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) { 698 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]); 699 if (!rt) { 700 RADIX_NODE_HEAD_RUNLOCK(rnh); 701 senderr(ESRCH); 702 } 703 } 704 #endif 705 /* 706 * If performing proxied L2 entry insertion, and 707 * the actual PPP host entry is found, perform 708 * another search to retrieve the prefix route of 709 * the local end point of the PPP link. 710 */ 711 if (rtm->rtm_flags & RTF_ANNOUNCE) { 712 struct sockaddr laddr; 713 714 if (rt->rt_ifp != NULL && 715 rt->rt_ifp->if_type == IFT_PROPVIRTUAL) { 716 struct ifaddr *ifa; 717 718 ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1); 719 if (ifa != NULL) 720 rt_maskedcopy(ifa->ifa_addr, 721 &laddr, 722 ifa->ifa_netmask); 723 } else 724 rt_maskedcopy(rt->rt_ifa->ifa_addr, 725 &laddr, 726 rt->rt_ifa->ifa_netmask); 727 /* 728 * refactor rt and no lock operation necessary 729 */ 730 rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh); 731 if (rt == NULL) { 732 RADIX_NODE_HEAD_RUNLOCK(rnh); 733 senderr(ESRCH); 734 } 735 } 736 RT_LOCK(rt); 737 RT_ADDREF(rt); 738 RADIX_NODE_HEAD_RUNLOCK(rnh); 739 740 /* 741 * Fix for PR: 82974 742 * 743 * RTM_CHANGE/LOCK need a perfect match, rn_lookup() 744 * returns a perfect match in case a netmask is 745 * specified. For host routes only a longest prefix 746 * match is returned so it is necessary to compare the 747 * existence of the netmask. If both have a netmask 748 * rnh_lookup() did a perfect match and if none of them 749 * have a netmask both are host routes which is also a 750 * perfect match. 751 */ 752 753 if (rtm->rtm_type != RTM_GET && 754 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { 755 RT_UNLOCK(rt); 756 senderr(ESRCH); 757 } 758 759 switch(rtm->rtm_type) { 760 761 case RTM_GET: 762 report: 763 RT_LOCK_ASSERT(rt); 764 if ((rt->rt_flags & RTF_HOST) == 0 765 ? jailed_without_vnet(curthread->td_ucred) 766 : prison_if(curthread->td_ucred, 767 rt_key(rt)) != 0) { 768 RT_UNLOCK(rt); 769 senderr(ESRCH); 770 } 771 info.rti_info[RTAX_DST] = rt_key(rt); 772 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 773 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 774 info.rti_info[RTAX_GENMASK] = 0; 775 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 776 ifp = rt->rt_ifp; 777 if (ifp) { 778 info.rti_info[RTAX_IFP] = 779 ifp->if_addr->ifa_addr; 780 error = rtm_get_jailed(&info, ifp, rt, 781 &saun, curthread->td_ucred); 782 if (error != 0) { 783 RT_UNLOCK(rt); 784 senderr(error); 785 } 786 if (ifp->if_flags & IFF_POINTOPOINT) 787 info.rti_info[RTAX_BRD] = 788 rt->rt_ifa->ifa_dstaddr; 789 rtm->rtm_index = ifp->if_index; 790 } else { 791 info.rti_info[RTAX_IFP] = NULL; 792 info.rti_info[RTAX_IFA] = NULL; 793 } 794 } else if ((ifp = rt->rt_ifp) != NULL) { 795 rtm->rtm_index = ifp->if_index; 796 } 797 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); 798 if (len > rtm->rtm_msglen) { 799 struct rt_msghdr *new_rtm; 800 R_Malloc(new_rtm, struct rt_msghdr *, len); 801 if (new_rtm == NULL) { 802 RT_UNLOCK(rt); 803 senderr(ENOBUFS); 804 } 805 bcopy(rtm, new_rtm, rtm->rtm_msglen); 806 Free(rtm); rtm = new_rtm; 807 } 808 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); 809 rtm->rtm_flags = rt->rt_flags; 810 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 811 rtm->rtm_addrs = info.rti_addrs; 812 break; 813 814 case RTM_CHANGE: 815 /* 816 * New gateway could require new ifaddr, ifp; 817 * flags may also be different; ifp may be specified 818 * by ll sockaddr when protocol address is ambiguous 819 */ 820 if (((rt->rt_flags & RTF_GATEWAY) && 821 info.rti_info[RTAX_GATEWAY] != NULL) || 822 info.rti_info[RTAX_IFP] != NULL || 823 (info.rti_info[RTAX_IFA] != NULL && 824 !sa_equal(info.rti_info[RTAX_IFA], 825 rt->rt_ifa->ifa_addr))) { 826 RT_UNLOCK(rt); 827 RADIX_NODE_HEAD_LOCK(rnh); 828 error = rt_getifa_fib(&info, rt->rt_fibnum); 829 /* 830 * XXXRW: Really we should release this 831 * reference later, but this maintains 832 * historical behavior. 833 */ 834 if (info.rti_ifa != NULL) 835 ifa_free(info.rti_ifa); 836 RADIX_NODE_HEAD_UNLOCK(rnh); 837 if (error != 0) 838 senderr(error); 839 RT_LOCK(rt); 840 } 841 if (info.rti_ifa != NULL && 842 info.rti_ifa != rt->rt_ifa && 843 rt->rt_ifa != NULL && 844 rt->rt_ifa->ifa_rtrequest != NULL) { 845 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, 846 &info); 847 ifa_free(rt->rt_ifa); 848 } 849 if (info.rti_info[RTAX_GATEWAY] != NULL) { 850 RT_UNLOCK(rt); 851 RADIX_NODE_HEAD_LOCK(rnh); 852 RT_LOCK(rt); 853 854 error = rt_setgate(rt, rt_key(rt), 855 info.rti_info[RTAX_GATEWAY]); 856 RADIX_NODE_HEAD_UNLOCK(rnh); 857 if (error != 0) { 858 RT_UNLOCK(rt); 859 senderr(error); 860 } 861 rt->rt_flags |= (RTF_GATEWAY & info.rti_flags); 862 } 863 if (info.rti_ifa != NULL && 864 info.rti_ifa != rt->rt_ifa) { 865 ifa_ref(info.rti_ifa); 866 rt->rt_ifa = info.rti_ifa; 867 rt->rt_ifp = info.rti_ifp; 868 } 869 /* Allow some flags to be toggled on change. */ 870 rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) | 871 (rtm->rtm_flags & RTF_FMASK); 872 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 873 &rt->rt_rmx); 874 rtm->rtm_index = rt->rt_ifp->if_index; 875 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 876 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 877 /* FALLTHROUGH */ 878 case RTM_LOCK: 879 /* We don't support locks anymore */ 880 break; 881 } 882 RT_UNLOCK(rt); 883 break; 884 885 default: 886 senderr(EOPNOTSUPP); 887 } 888 889 flush: 890 if (rtm) { 891 if (error) 892 rtm->rtm_errno = error; 893 else 894 rtm->rtm_flags |= RTF_DONE; 895 } 896 if (rt) /* XXX can this be true? */ 897 RTFREE(rt); 898 { 899 struct rawcb *rp = NULL; 900 /* 901 * Check to see if we don't want our own messages. 902 */ 903 if ((so->so_options & SO_USELOOPBACK) == 0) { 904 if (route_cb.any_count <= 1) { 905 if (rtm) 906 Free(rtm); 907 m_freem(m); 908 return (error); 909 } 910 /* There is another listener, so construct message */ 911 rp = sotorawcb(so); 912 } 913 if (rtm) { 914 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 915 if (m->m_pkthdr.len < rtm->rtm_msglen) { 916 m_freem(m); 917 m = NULL; 918 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 919 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 920 } 921 if (m) { 922 M_SETFIB(m, so->so_fibnum); 923 m->m_flags |= RTS_FILTER_FIB; 924 if (rp) { 925 /* 926 * XXX insure we don't get a copy by 927 * invalidating our protocol 928 */ 929 unsigned short family = rp->rcb_proto.sp_family; 930 rp->rcb_proto.sp_family = 0; 931 rt_dispatch(m, saf); 932 rp->rcb_proto.sp_family = family; 933 } else 934 rt_dispatch(m, saf); 935 } 936 /* info.rti_info[RTAX_DST] (used above) can point inside of rtm */ 937 if (rtm) 938 Free(rtm); 939 } 940 return (error); 941 #undef sa_equal 942 } 943 944 static void 945 rt_setmetrics(u_long which, const struct rt_metrics *in, 946 struct rt_metrics_lite *out) 947 { 948 #define metric(f, e) if (which & (f)) out->e = in->e; 949 /* 950 * Only these are stored in the routing entry since introduction 951 * of tcp hostcache. The rest is ignored. 952 */ 953 metric(RTV_MTU, rmx_mtu); 954 metric(RTV_WEIGHT, rmx_weight); 955 /* Userland -> kernel timebase conversion. */ 956 if (which & RTV_EXPIRE) 957 out->rmx_expire = in->rmx_expire ? 958 in->rmx_expire - time_second + time_uptime : 0; 959 #undef metric 960 } 961 962 static void 963 rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) 964 { 965 #define metric(e) out->e = in->e; 966 bzero(out, sizeof(*out)); 967 metric(rmx_mtu); 968 metric(rmx_weight); 969 /* Kernel -> userland timebase conversion. */ 970 out->rmx_expire = in->rmx_expire ? 971 in->rmx_expire - time_uptime + time_second : 0; 972 #undef metric 973 } 974 975 /* 976 * Extract the addresses of the passed sockaddrs. 977 * Do a little sanity checking so as to avoid bad memory references. 978 * This data is derived straight from userland. 979 */ 980 static int 981 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 982 { 983 struct sockaddr *sa; 984 int i; 985 986 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 987 if ((rtinfo->rti_addrs & (1 << i)) == 0) 988 continue; 989 sa = (struct sockaddr *)cp; 990 /* 991 * It won't fit. 992 */ 993 if (cp + sa->sa_len > cplim) 994 return (EINVAL); 995 /* 996 * there are no more.. quit now 997 * If there are more bits, they are in error. 998 * I've seen this. route(1) can evidently generate these. 999 * This causes kernel to core dump. 1000 * for compatibility, If we see this, point to a safe address. 1001 */ 1002 if (sa->sa_len == 0) { 1003 rtinfo->rti_info[i] = &sa_zero; 1004 return (0); /* should be EINVAL but for compat */ 1005 } 1006 /* accept it */ 1007 rtinfo->rti_info[i] = sa; 1008 cp += SA_SIZE(sa); 1009 } 1010 return (0); 1011 } 1012 1013 static struct mbuf * 1014 rt_msg1(int type, struct rt_addrinfo *rtinfo) 1015 { 1016 struct rt_msghdr *rtm; 1017 struct mbuf *m; 1018 int i; 1019 struct sockaddr *sa; 1020 int len, dlen; 1021 1022 switch (type) { 1023 1024 case RTM_DELADDR: 1025 case RTM_NEWADDR: 1026 len = sizeof(struct ifa_msghdr); 1027 break; 1028 1029 case RTM_DELMADDR: 1030 case RTM_NEWMADDR: 1031 len = sizeof(struct ifma_msghdr); 1032 break; 1033 1034 case RTM_IFINFO: 1035 len = sizeof(struct if_msghdr); 1036 break; 1037 1038 case RTM_IFANNOUNCE: 1039 case RTM_IEEE80211: 1040 len = sizeof(struct if_announcemsghdr); 1041 break; 1042 1043 default: 1044 len = sizeof(struct rt_msghdr); 1045 } 1046 if (len > MCLBYTES) 1047 panic("rt_msg1"); 1048 m = m_gethdr(M_DONTWAIT, MT_DATA); 1049 if (m && len > MHLEN) { 1050 MCLGET(m, M_DONTWAIT); 1051 if ((m->m_flags & M_EXT) == 0) { 1052 m_free(m); 1053 m = NULL; 1054 } 1055 } 1056 if (m == NULL) 1057 return (m); 1058 m->m_pkthdr.len = m->m_len = len; 1059 m->m_pkthdr.rcvif = NULL; 1060 rtm = mtod(m, struct rt_msghdr *); 1061 bzero((caddr_t)rtm, len); 1062 for (i = 0; i < RTAX_MAX; i++) { 1063 if ((sa = rtinfo->rti_info[i]) == NULL) 1064 continue; 1065 rtinfo->rti_addrs |= (1 << i); 1066 dlen = SA_SIZE(sa); 1067 m_copyback(m, len, dlen, (caddr_t)sa); 1068 len += dlen; 1069 } 1070 if (m->m_pkthdr.len != len) { 1071 m_freem(m); 1072 return (NULL); 1073 } 1074 rtm->rtm_msglen = len; 1075 rtm->rtm_version = RTM_VERSION; 1076 rtm->rtm_type = type; 1077 return (m); 1078 } 1079 1080 static int 1081 rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) 1082 { 1083 int i; 1084 int len, dlen, second_time = 0; 1085 caddr_t cp0; 1086 1087 rtinfo->rti_addrs = 0; 1088 again: 1089 switch (type) { 1090 1091 case RTM_DELADDR: 1092 case RTM_NEWADDR: 1093 len = sizeof(struct ifa_msghdr); 1094 break; 1095 1096 case RTM_IFINFO: 1097 #ifdef COMPAT_FREEBSD32 1098 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1099 len = sizeof(struct if_msghdr32); 1100 break; 1101 } 1102 #endif 1103 len = sizeof(struct if_msghdr); 1104 break; 1105 1106 case RTM_NEWMADDR: 1107 len = sizeof(struct ifma_msghdr); 1108 break; 1109 1110 default: 1111 len = sizeof(struct rt_msghdr); 1112 } 1113 cp0 = cp; 1114 if (cp0) 1115 cp += len; 1116 for (i = 0; i < RTAX_MAX; i++) { 1117 struct sockaddr *sa; 1118 1119 if ((sa = rtinfo->rti_info[i]) == NULL) 1120 continue; 1121 rtinfo->rti_addrs |= (1 << i); 1122 dlen = SA_SIZE(sa); 1123 if (cp) { 1124 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1125 cp += dlen; 1126 } 1127 len += dlen; 1128 } 1129 len = ALIGN(len); 1130 if (cp == NULL && w != NULL && !second_time) { 1131 struct walkarg *rw = w; 1132 1133 if (rw->w_req) { 1134 if (rw->w_tmemsize < len) { 1135 if (rw->w_tmem) 1136 free(rw->w_tmem, M_RTABLE); 1137 rw->w_tmem = (caddr_t) 1138 malloc(len, M_RTABLE, M_NOWAIT); 1139 if (rw->w_tmem) 1140 rw->w_tmemsize = len; 1141 } 1142 if (rw->w_tmem) { 1143 cp = rw->w_tmem; 1144 second_time = 1; 1145 goto again; 1146 } 1147 } 1148 } 1149 if (cp) { 1150 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 1151 1152 rtm->rtm_version = RTM_VERSION; 1153 rtm->rtm_type = type; 1154 rtm->rtm_msglen = len; 1155 } 1156 return (len); 1157 } 1158 1159 /* 1160 * This routine is called to generate a message from the routing 1161 * socket indicating that a redirect has occured, a routing lookup 1162 * has failed, or that a protocol has detected timeouts to a particular 1163 * destination. 1164 */ 1165 void 1166 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1167 int fibnum) 1168 { 1169 struct rt_msghdr *rtm; 1170 struct mbuf *m; 1171 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1172 1173 if (route_cb.any_count == 0) 1174 return; 1175 m = rt_msg1(type, rtinfo); 1176 if (m == NULL) 1177 return; 1178 1179 if (fibnum != RTS_ALLFIBS) { 1180 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1181 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1182 M_SETFIB(m, fibnum); 1183 m->m_flags |= RTS_FILTER_FIB; 1184 } 1185 1186 rtm = mtod(m, struct rt_msghdr *); 1187 rtm->rtm_flags = RTF_DONE | flags; 1188 rtm->rtm_errno = error; 1189 rtm->rtm_addrs = rtinfo->rti_addrs; 1190 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1191 } 1192 1193 void 1194 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1195 { 1196 1197 rt_missmsg_fib(type, rtinfo, flags, error, RTS_ALLFIBS); 1198 } 1199 1200 /* 1201 * This routine is called to generate a message from the routing 1202 * socket indicating that the status of a network interface has changed. 1203 */ 1204 void 1205 rt_ifmsg(struct ifnet *ifp) 1206 { 1207 struct if_msghdr *ifm; 1208 struct mbuf *m; 1209 struct rt_addrinfo info; 1210 1211 if (route_cb.any_count == 0) 1212 return; 1213 bzero((caddr_t)&info, sizeof(info)); 1214 m = rt_msg1(RTM_IFINFO, &info); 1215 if (m == NULL) 1216 return; 1217 ifm = mtod(m, struct if_msghdr *); 1218 ifm->ifm_index = ifp->if_index; 1219 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1220 ifm->ifm_data = ifp->if_data; 1221 ifm->ifm_addrs = 0; 1222 rt_dispatch(m, AF_UNSPEC); 1223 } 1224 1225 /* 1226 * This is called to generate messages from the routing socket 1227 * indicating a network interface has had addresses associated with it. 1228 * if we ever reverse the logic and replace messages TO the routing 1229 * socket indicate a request to configure interfaces, then it will 1230 * be unnecessary as the routing socket will automatically generate 1231 * copies of it. 1232 */ 1233 void 1234 rt_newaddrmsg_fib(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt, 1235 int fibnum) 1236 { 1237 struct rt_addrinfo info; 1238 struct sockaddr *sa = NULL; 1239 int pass; 1240 struct mbuf *m = NULL; 1241 struct ifnet *ifp = ifa->ifa_ifp; 1242 1243 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 1244 ("unexpected cmd %u", cmd)); 1245 #if defined(INET) || defined(INET6) 1246 #ifdef SCTP 1247 /* 1248 * notify the SCTP stack 1249 * this will only get called when an address is added/deleted 1250 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 1251 */ 1252 sctp_addr_change(ifa, cmd); 1253 #endif /* SCTP */ 1254 #endif 1255 if (route_cb.any_count == 0) 1256 return; 1257 for (pass = 1; pass < 3; pass++) { 1258 bzero((caddr_t)&info, sizeof(info)); 1259 if ((cmd == RTM_ADD && pass == 1) || 1260 (cmd == RTM_DELETE && pass == 2)) { 1261 struct ifa_msghdr *ifam; 1262 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1263 1264 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1265 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1266 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1267 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1268 if ((m = rt_msg1(ncmd, &info)) == NULL) 1269 continue; 1270 ifam = mtod(m, struct ifa_msghdr *); 1271 ifam->ifam_index = ifp->if_index; 1272 ifam->ifam_metric = ifa->ifa_metric; 1273 ifam->ifam_flags = ifa->ifa_flags; 1274 ifam->ifam_addrs = info.rti_addrs; 1275 } 1276 if ((cmd == RTM_ADD && pass == 2) || 1277 (cmd == RTM_DELETE && pass == 1)) { 1278 struct rt_msghdr *rtm; 1279 1280 if (rt == NULL) 1281 continue; 1282 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1283 info.rti_info[RTAX_DST] = sa = rt_key(rt); 1284 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1285 if ((m = rt_msg1(cmd, &info)) == NULL) 1286 continue; 1287 rtm = mtod(m, struct rt_msghdr *); 1288 rtm->rtm_index = ifp->if_index; 1289 rtm->rtm_flags |= rt->rt_flags; 1290 rtm->rtm_errno = error; 1291 rtm->rtm_addrs = info.rti_addrs; 1292 } 1293 if (fibnum != RTS_ALLFIBS) { 1294 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: " 1295 "fibnum out of range 0 <= %d < %d", __func__, 1296 fibnum, rt_numfibs)); 1297 M_SETFIB(m, fibnum); 1298 m->m_flags |= RTS_FILTER_FIB; 1299 } 1300 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1301 } 1302 } 1303 1304 void 1305 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 1306 { 1307 1308 rt_newaddrmsg_fib(cmd, ifa, error, rt, RTS_ALLFIBS); 1309 } 1310 1311 /* 1312 * This is the analogue to the rt_newaddrmsg which performs the same 1313 * function but for multicast group memberhips. This is easier since 1314 * there is no route state to worry about. 1315 */ 1316 void 1317 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1318 { 1319 struct rt_addrinfo info; 1320 struct mbuf *m = NULL; 1321 struct ifnet *ifp = ifma->ifma_ifp; 1322 struct ifma_msghdr *ifmam; 1323 1324 if (route_cb.any_count == 0) 1325 return; 1326 1327 bzero((caddr_t)&info, sizeof(info)); 1328 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1329 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; 1330 /* 1331 * If a link-layer address is present, present it as a ``gateway'' 1332 * (similarly to how ARP entries, e.g., are presented). 1333 */ 1334 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1335 m = rt_msg1(cmd, &info); 1336 if (m == NULL) 1337 return; 1338 ifmam = mtod(m, struct ifma_msghdr *); 1339 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1340 __func__)); 1341 ifmam->ifmam_index = ifp->if_index; 1342 ifmam->ifmam_addrs = info.rti_addrs; 1343 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1344 } 1345 1346 static struct mbuf * 1347 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1348 struct rt_addrinfo *info) 1349 { 1350 struct if_announcemsghdr *ifan; 1351 struct mbuf *m; 1352 1353 if (route_cb.any_count == 0) 1354 return NULL; 1355 bzero((caddr_t)info, sizeof(*info)); 1356 m = rt_msg1(type, info); 1357 if (m != NULL) { 1358 ifan = mtod(m, struct if_announcemsghdr *); 1359 ifan->ifan_index = ifp->if_index; 1360 strlcpy(ifan->ifan_name, ifp->if_xname, 1361 sizeof(ifan->ifan_name)); 1362 ifan->ifan_what = what; 1363 } 1364 return m; 1365 } 1366 1367 /* 1368 * This is called to generate routing socket messages indicating 1369 * IEEE80211 wireless events. 1370 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1371 */ 1372 void 1373 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1374 { 1375 struct mbuf *m; 1376 struct rt_addrinfo info; 1377 1378 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1379 if (m != NULL) { 1380 /* 1381 * Append the ieee80211 data. Try to stick it in the 1382 * mbuf containing the ifannounce msg; otherwise allocate 1383 * a new mbuf and append. 1384 * 1385 * NB: we assume m is a single mbuf. 1386 */ 1387 if (data_len > M_TRAILINGSPACE(m)) { 1388 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1389 if (n == NULL) { 1390 m_freem(m); 1391 return; 1392 } 1393 bcopy(data, mtod(n, void *), data_len); 1394 n->m_len = data_len; 1395 m->m_next = n; 1396 } else if (data_len > 0) { 1397 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1398 m->m_len += data_len; 1399 } 1400 if (m->m_flags & M_PKTHDR) 1401 m->m_pkthdr.len += data_len; 1402 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1403 rt_dispatch(m, AF_UNSPEC); 1404 } 1405 } 1406 1407 /* 1408 * This is called to generate routing socket messages indicating 1409 * network interface arrival and departure. 1410 */ 1411 void 1412 rt_ifannouncemsg(struct ifnet *ifp, int what) 1413 { 1414 struct mbuf *m; 1415 struct rt_addrinfo info; 1416 1417 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1418 if (m != NULL) 1419 rt_dispatch(m, AF_UNSPEC); 1420 } 1421 1422 static void 1423 rt_dispatch(struct mbuf *m, sa_family_t saf) 1424 { 1425 struct m_tag *tag; 1426 1427 /* 1428 * Preserve the family from the sockaddr, if any, in an m_tag for 1429 * use when injecting the mbuf into the routing socket buffer from 1430 * the netisr. 1431 */ 1432 if (saf != AF_UNSPEC) { 1433 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1434 M_NOWAIT); 1435 if (tag == NULL) { 1436 m_freem(m); 1437 return; 1438 } 1439 *(unsigned short *)(tag + 1) = saf; 1440 m_tag_prepend(m, tag); 1441 } 1442 #ifdef VIMAGE 1443 if (V_loif) 1444 m->m_pkthdr.rcvif = V_loif; 1445 else { 1446 m_freem(m); 1447 return; 1448 } 1449 #endif 1450 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1451 } 1452 1453 /* 1454 * This is used in dumping the kernel table via sysctl(). 1455 */ 1456 static int 1457 sysctl_dumpentry(struct radix_node *rn, void *vw) 1458 { 1459 struct walkarg *w = vw; 1460 struct rtentry *rt = (struct rtentry *)rn; 1461 int error = 0, size; 1462 struct rt_addrinfo info; 1463 1464 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1465 return 0; 1466 if ((rt->rt_flags & RTF_HOST) == 0 1467 ? jailed_without_vnet(w->w_req->td->td_ucred) 1468 : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0) 1469 return (0); 1470 bzero((caddr_t)&info, sizeof(info)); 1471 info.rti_info[RTAX_DST] = rt_key(rt); 1472 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1473 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1474 info.rti_info[RTAX_GENMASK] = 0; 1475 if (rt->rt_ifp) { 1476 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; 1477 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1478 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 1479 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1480 } 1481 size = rt_msg2(RTM_GET, &info, NULL, w); 1482 if (w->w_req && w->w_tmem) { 1483 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1484 1485 rtm->rtm_flags = rt->rt_flags; 1486 /* 1487 * let's be honest about this being a retarded hack 1488 */ 1489 rtm->rtm_fmask = rt->rt_rmx.rmx_pksent; 1490 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1491 rtm->rtm_index = rt->rt_ifp->if_index; 1492 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 1493 rtm->rtm_addrs = info.rti_addrs; 1494 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1495 return (error); 1496 } 1497 return (error); 1498 } 1499 1500 #ifdef COMPAT_FREEBSD32 1501 static void 1502 copy_ifdata32(struct if_data *src, struct if_data32 *dst) 1503 { 1504 1505 bzero(dst, sizeof(*dst)); 1506 CP(*src, *dst, ifi_type); 1507 CP(*src, *dst, ifi_physical); 1508 CP(*src, *dst, ifi_addrlen); 1509 CP(*src, *dst, ifi_hdrlen); 1510 CP(*src, *dst, ifi_link_state); 1511 dst->ifi_datalen = sizeof(struct if_data32); 1512 CP(*src, *dst, ifi_mtu); 1513 CP(*src, *dst, ifi_metric); 1514 CP(*src, *dst, ifi_baudrate); 1515 CP(*src, *dst, ifi_ipackets); 1516 CP(*src, *dst, ifi_ierrors); 1517 CP(*src, *dst, ifi_opackets); 1518 CP(*src, *dst, ifi_oerrors); 1519 CP(*src, *dst, ifi_collisions); 1520 CP(*src, *dst, ifi_ibytes); 1521 CP(*src, *dst, ifi_obytes); 1522 CP(*src, *dst, ifi_imcasts); 1523 CP(*src, *dst, ifi_omcasts); 1524 CP(*src, *dst, ifi_iqdrops); 1525 CP(*src, *dst, ifi_noproto); 1526 CP(*src, *dst, ifi_hwassist); 1527 CP(*src, *dst, ifi_epoch); 1528 TV_CP(*src, *dst, ifi_lastchange); 1529 } 1530 #endif 1531 1532 static int 1533 sysctl_iflist(int af, struct walkarg *w) 1534 { 1535 struct ifnet *ifp; 1536 struct ifaddr *ifa; 1537 struct rt_addrinfo info; 1538 int len, error = 0; 1539 1540 bzero((caddr_t)&info, sizeof(info)); 1541 IFNET_RLOCK(); 1542 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1543 if (w->w_arg && w->w_arg != ifp->if_index) 1544 continue; 1545 IF_ADDR_LOCK(ifp); 1546 ifa = ifp->if_addr; 1547 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1548 len = rt_msg2(RTM_IFINFO, &info, NULL, w); 1549 info.rti_info[RTAX_IFP] = NULL; 1550 if (w->w_req && w->w_tmem) { 1551 struct if_msghdr *ifm; 1552 1553 #ifdef COMPAT_FREEBSD32 1554 if (w->w_req->flags & SCTL_MASK32) { 1555 struct if_msghdr32 *ifm32; 1556 1557 ifm32 = (struct if_msghdr32 *)w->w_tmem; 1558 ifm32->ifm_index = ifp->if_index; 1559 ifm32->ifm_flags = ifp->if_flags | 1560 ifp->if_drv_flags; 1561 copy_ifdata32(&ifp->if_data, &ifm32->ifm_data); 1562 ifm32->ifm_addrs = info.rti_addrs; 1563 error = SYSCTL_OUT(w->w_req, (caddr_t)ifm32, 1564 len); 1565 goto sysctl_out; 1566 } 1567 #endif 1568 ifm = (struct if_msghdr *)w->w_tmem; 1569 ifm->ifm_index = ifp->if_index; 1570 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1571 ifm->ifm_data = ifp->if_data; 1572 ifm->ifm_addrs = info.rti_addrs; 1573 error = SYSCTL_OUT(w->w_req, (caddr_t)ifm, len); 1574 #ifdef COMPAT_FREEBSD32 1575 sysctl_out: 1576 #endif 1577 if (error) 1578 goto done; 1579 } 1580 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { 1581 if (af && af != ifa->ifa_addr->sa_family) 1582 continue; 1583 if (prison_if(w->w_req->td->td_ucred, 1584 ifa->ifa_addr) != 0) 1585 continue; 1586 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1587 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1588 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1589 len = rt_msg2(RTM_NEWADDR, &info, NULL, w); 1590 if (w->w_req && w->w_tmem) { 1591 struct ifa_msghdr *ifam; 1592 1593 ifam = (struct ifa_msghdr *)w->w_tmem; 1594 ifam->ifam_index = ifa->ifa_ifp->if_index; 1595 ifam->ifam_flags = ifa->ifa_flags; 1596 ifam->ifam_metric = ifa->ifa_metric; 1597 ifam->ifam_addrs = info.rti_addrs; 1598 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1599 if (error) 1600 goto done; 1601 } 1602 } 1603 IF_ADDR_UNLOCK(ifp); 1604 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1605 info.rti_info[RTAX_BRD] = NULL; 1606 } 1607 done: 1608 if (ifp != NULL) 1609 IF_ADDR_UNLOCK(ifp); 1610 IFNET_RUNLOCK(); 1611 return (error); 1612 } 1613 1614 static int 1615 sysctl_ifmalist(int af, struct walkarg *w) 1616 { 1617 struct ifnet *ifp; 1618 struct ifmultiaddr *ifma; 1619 struct rt_addrinfo info; 1620 int len, error = 0; 1621 struct ifaddr *ifa; 1622 1623 bzero((caddr_t)&info, sizeof(info)); 1624 IFNET_RLOCK(); 1625 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1626 if (w->w_arg && w->w_arg != ifp->if_index) 1627 continue; 1628 ifa = ifp->if_addr; 1629 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 1630 IF_ADDR_LOCK(ifp); 1631 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1632 if (af && af != ifma->ifma_addr->sa_family) 1633 continue; 1634 if (prison_if(w->w_req->td->td_ucred, 1635 ifma->ifma_addr) != 0) 1636 continue; 1637 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1638 info.rti_info[RTAX_GATEWAY] = 1639 (ifma->ifma_addr->sa_family != AF_LINK) ? 1640 ifma->ifma_lladdr : NULL; 1641 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); 1642 if (w->w_req && w->w_tmem) { 1643 struct ifma_msghdr *ifmam; 1644 1645 ifmam = (struct ifma_msghdr *)w->w_tmem; 1646 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 1647 ifmam->ifmam_flags = 0; 1648 ifmam->ifmam_addrs = info.rti_addrs; 1649 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 1650 if (error) { 1651 IF_ADDR_UNLOCK(ifp); 1652 goto done; 1653 } 1654 } 1655 } 1656 IF_ADDR_UNLOCK(ifp); 1657 } 1658 done: 1659 IFNET_RUNLOCK(); 1660 return (error); 1661 } 1662 1663 static int 1664 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 1665 { 1666 int *name = (int *)arg1; 1667 u_int namelen = arg2; 1668 struct radix_node_head *rnh = NULL; /* silence compiler. */ 1669 int i, lim, error = EINVAL; 1670 u_char af; 1671 struct walkarg w; 1672 1673 name ++; 1674 namelen--; 1675 if (req->newptr) 1676 return (EPERM); 1677 if (namelen != 3) 1678 return ((namelen < 3) ? EISDIR : ENOTDIR); 1679 af = name[0]; 1680 if (af > AF_MAX) 1681 return (EINVAL); 1682 bzero(&w, sizeof(w)); 1683 w.w_op = name[1]; 1684 w.w_arg = name[2]; 1685 w.w_req = req; 1686 1687 error = sysctl_wire_old_buffer(req, 0); 1688 if (error) 1689 return (error); 1690 switch (w.w_op) { 1691 1692 case NET_RT_DUMP: 1693 case NET_RT_FLAGS: 1694 if (af == 0) { /* dump all tables */ 1695 i = 1; 1696 lim = AF_MAX; 1697 } else /* dump only one table */ 1698 i = lim = af; 1699 1700 /* 1701 * take care of llinfo entries, the caller must 1702 * specify an AF 1703 */ 1704 if (w.w_op == NET_RT_FLAGS && 1705 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 1706 if (af != 0) 1707 error = lltable_sysctl_dumparp(af, w.w_req); 1708 else 1709 error = EINVAL; 1710 break; 1711 } 1712 /* 1713 * take care of routing entries 1714 */ 1715 for (error = 0; error == 0 && i <= lim; i++) { 1716 rnh = rt_tables_get_rnh(req->td->td_proc->p_fibnum, i); 1717 if (rnh != NULL) { 1718 RADIX_NODE_HEAD_LOCK(rnh); 1719 error = rnh->rnh_walktree(rnh, 1720 sysctl_dumpentry, &w); 1721 RADIX_NODE_HEAD_UNLOCK(rnh); 1722 } else if (af != 0) 1723 error = EAFNOSUPPORT; 1724 } 1725 break; 1726 1727 case NET_RT_IFLIST: 1728 error = sysctl_iflist(af, &w); 1729 break; 1730 1731 case NET_RT_IFMALIST: 1732 error = sysctl_ifmalist(af, &w); 1733 break; 1734 } 1735 if (w.w_tmem) 1736 free(w.w_tmem, M_RTABLE); 1737 return (error); 1738 } 1739 1740 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); 1741 1742 /* 1743 * Definitions of protocols supported in the ROUTE domain. 1744 */ 1745 1746 static struct domain routedomain; /* or at least forward */ 1747 1748 static struct protosw routesw[] = { 1749 { 1750 .pr_type = SOCK_RAW, 1751 .pr_domain = &routedomain, 1752 .pr_flags = PR_ATOMIC|PR_ADDR, 1753 .pr_output = route_output, 1754 .pr_ctlinput = raw_ctlinput, 1755 .pr_init = raw_init, 1756 .pr_usrreqs = &route_usrreqs 1757 } 1758 }; 1759 1760 static struct domain routedomain = { 1761 .dom_family = PF_ROUTE, 1762 .dom_name = "route", 1763 .dom_protosw = routesw, 1764 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] 1765 }; 1766 1767 VNET_DOMAIN_SET(route); 1768